TPA3126D2DAD [TI]

50W 立体声、100W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器,低空闲电流 | DAD | 32 | -40 to 85;
TPA3126D2DAD
型号: TPA3126D2DAD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

50W 立体声、100W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器,低空闲电流 | DAD | 32 | -40 to 85

放大器 光电二极管 商用集成电路 音频放大器
文件: 总41页 (文件大小:3455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
具有 15mA 低空闲电流和 AM 抑制功能的 TPA3126D2 50W 立体声、模拟  
输入 D 类音频放大器  
1 特性  
2 应用  
1
电池使用时间更长:  
超低空闲电流:12V 时为 15mA  
扬声器底座  
Bluetooth®Wi-Fi 扬声器  
声控扬声器或智能扬声器  
条形音箱  
21V 电压、10% THD+N4Ω 负载条件下的功率为  
2 × 50W  
宽电压范围:4.5V 26V  
高效 D 类运行模式  
书架立体声系统  
3 说明  
混合调制方案可动态降低功率损耗  
TPA3126D2 是一款采用热增强型封装的 50W 立体声  
低空闲电流 D 类放大器。TPA3126D2 采用了 TI 专有  
的混合调制方案,可在低功率水平下动态降低空闲电  
流,从而延长便携式音频系统(如蓝牙扬声器)的电池  
寿命。  
低至 90mΩ Rds(on) 可确保效率 > 90%  
噗声和嘀哒声噪声抑制  
支持立体声、单声道 BTL 和单声道 PBTL  
多种开关频率:  
AM 抑制  
主从同步  
为了进一步简化设计,该 D 类放大器集成了全面的保  
护 特性 ,包括短路、热关断、过压、欠压和直流扬声  
器保护。在过载情况下,器件会将故障情况报告给处理  
器,从而避免自身遭到损坏。  
300kHz 1.2MHz 开关频率  
可选增益:20dB26dB32dB36dB  
可编程功率限制  
支持单电源和双电源  
器件信息(1)  
带错误报告的综合保护功能:  
器件型号  
TPA3126D2  
封装  
封装尺寸(标称值)  
过压、欠压、过热、直流检测和短路  
HTSSOP (32)  
11.00mm x 6.20mm  
热增强型封装  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
DAD32 引脚 HTSSOP PowerPAD™封装,  
焊盘朝上)  
性能在 TPA3116D2 基础上升级  
空闲电流降低 70%;引脚对引脚兼容  
TPA3126 TPA3116 空闲电流  
空白  
简化应用电路  
80  
70  
60  
50  
40  
30  
20  
10  
0
TPA3116 (BD Mode)  
TPA3126 (Hybrid Mode)  
TPA3126D2  
LC  
Filter  
MONO  
DETECT  
RIGHT  
Audio  
Source  
And Control  
PBTL  
DETECT  
LEFT  
LC  
Filter  
SDZ  
MUTE  
FAULTZ  
Power Supply  
4.5V t 26V  
PVCC  
AVCC  
AM2,1,0  
AM Avoidance Control  
Mode Select  
MODSEL  
GAIN/SLV  
PLIMIT  
GAIN control and Master/Slave setting  
Power Limit  
Separate Power  
Supply (Optional)  
4.5V-26V  
Gain = 26dB, TA = 25èC, RL = 8W  
Capable of synchronizaing to other devices  
SYNC  
5
10  
15  
20  
25  
Supply Voltage (V)  
D002  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS942  
 
 
 
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings ............................................................ 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 DC Electrical Characteristics .................................... 7  
7.6 AC Electrical Characteristics..................................... 8  
7.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
10 Power Supply Recommendations ..................... 26  
10.1 Power Supply Mode.............................................. 26  
11 Layout................................................................... 27  
11.1 Layout Guidelines ................................................. 27  
11.2 Layout Example .................................................... 28  
11.3 Heat Sink Used on the EVM................................. 30  
12 器件和文档支持 ..................................................... 31  
12.1 器件支持 ............................................................... 31  
12.2 接收文档更新通知 ................................................. 31  
12.3 相关文档................................................................ 31  
12.4 社区资源................................................................ 31  
12.5 ....................................................................... 31  
12.6 静电放电警告......................................................... 31  
12.7 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 31  
8
4 修订历史记录  
日期  
修订版本  
说明  
2018 4 月  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
5 Device Comparison Table  
THERMAL  
PAD  
LOCATION  
MODULATION  
SCHEME  
TPA3126 PIN-  
COMPATIBLE  
PRODUCT  
DESCRIPTION  
TPA3116D2  
TPA3118D2  
50-W Stereo, Analog-Input Class D Amplifier  
30-W Stereo, Analog-Input Class D Amplifier  
BD, 1SPW  
BD, 1SPW  
Top  
Y
Y
Bottom  
30-W Stereo, Analog-Input Class D Amplifier with Low Idle Power  
Dissipation  
TPA3128D2  
TPA3156D2  
BD, 1SPW, Hybrid  
BD, 1SPW, Hybrid  
Bottom  
Top  
Y
Y
70-W Stereo, Analog-Input Class D Amplifier with Low Idle Power  
Dissipation  
Copyright © 2018, Texas Instruments Incorporated  
3
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
DAD Package  
32-Pin HTSSOP With PowerPAD™ Up  
Top View  
MODSEL  
SDZ  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PVCC  
PVCC  
BSPR  
OUTPR  
GND  
2
FAULTZ  
RINP  
3
4
RINN  
5
PLIMIT  
GVDD  
GAIN/SLV  
GND  
6
OUTNR  
BSNR  
GND  
7
8
Thermal  
Pad  
9
BSPL  
LINP  
10  
11  
12  
13  
14  
15  
16  
OUTPL  
GND  
LINN  
MUTE  
AM2  
OUTNL  
BSNL  
PVCC  
PVCC  
AVCC  
AM1  
AM0  
SYNC  
Not to scale  
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
Mode selection logic input (LOW = Hybrid Mode, HIGH = BD Mode). TTL logic levels with compliance to  
AVCC. Refer to: Device Modulation Scheme  
1
MODSEL  
SDZ  
I
I
Shutdown logic input for audio amp (LOW = outputs Hi-Z, HIGH = outputs enabled). TTL logic levels with  
compliance to AVCC. Refer to: Startup and Shutdown Operation  
2
3
General fault reporting including Over-temp, DC Detect. Open drain. Refer to: Device Protection System  
FAULTZ = High, normal operation  
FAULTZ  
DO  
FAULTZ = Low (an external 100 kΩ pull-up resistor required), fault condition  
4
5
RINP  
RINN  
I
I
Positive audio input for right channel. Connect to GND for MONO mode.  
Negative audio input for right channel. Connect to GND for MONO mode.  
Power limit level adjust. Connect a resistor divider from GVDD to GND to set power limit. Connect directly  
to GVDD for no power limit. Refer to: PLIMIT Operation  
6
PLIMIT  
I
Internally generated gate voltage supply. Not to be used as a supply or connected to any component other  
than a 1 µF X7R ceramic decoupling capacitor and the PLIMIT and GAIN/SLV resistor dividers. Refer to:  
GVDD Supply  
7
GVDD  
PO  
Selects Gain and selects between Master and Slave mode depending on pin voltage divider. Refer to:  
Gain Setting and Master and Slave  
8
9
GAIN/SLV  
GND  
I
G
Ground  
(1) DO = Digital Output, I = Analog Input, G = General Ground, PO = Power Output, BST = Boot Strap.  
4
Copyright © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
PIN  
ZHCSHZ1 APRIL 2018  
Pin Functions (continued)  
TYPE(1)  
DESCRIPTION  
NO.  
10  
NAME  
LINP  
LINN  
I
I
Positive audio input for left channel. Connect to GND for PBTL mode.  
Negative audio input for left channel. Connect to GND for PBTL mode.  
11  
Mute signal for fast disable/enable of outputs (HIGH = outputs Hi-Z, LOW = outputs enabled). TTL logic  
levels with compliance to AVCC.  
12  
MUTE  
I
13  
14  
15  
AM2  
AM1  
AM0  
I
I
I
AM Avoidance Frequency Selection  
AM Avoidance Frequency Selection  
AM Avoidance Frequency Selection  
Clock input/output for synchronizing multiple Class-D devices. Direction determined by GAIN/SLV terminal.  
Refer to: Gain Setting and Master and Slave  
16  
SYNC  
DIO  
17  
18  
19  
20  
21  
22  
23  
AVCC  
PVCC  
PVCC  
BSNL  
P
P
Analog Supply  
Power supply  
P
Power supply  
BST  
PO  
G
Boot strap for negative left channel output, connect to 220 nF X5R, or better ceramic cap to OUTPL  
OUTNL  
GND  
Negative left channel output  
Ground  
OUTPL  
PO  
Positive left channel output  
Boot strap for positive left channel output, connect to 220 nF X5R, or better ceramic cap to OUTNL Refer  
to: BSPx and BSNx Capacitors  
24  
25  
26  
BSPL  
GND  
BST  
G
Ground  
Boot strap for negative right channel output, connect to 220 nF X5R, or better ceramic cap to OUTNR.  
Refer to: BSPx and BSNx Capacitors  
BSNR  
BST  
27  
28  
29  
OUTNR  
GND  
PO  
G
Negative right channel output  
Ground  
OUTPR  
PO  
Positive right channel output  
Boot strap for positive right channel output, connect to 220 nF X5R or better ceramic cap to OUTPR. Refer  
to: BSPx and BSNx Capacitors  
30  
BSPR  
BST  
31  
32  
PVCC  
PVCC  
P
P
G
Power supply  
Power supply  
PowerPAD™  
Connect to GND for best system performance. If not connected to GND, leave floating.  
Copyright © 2018, Texas Instruments Incorporated  
5
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
30  
UNIT  
V
Supply voltage, VCC  
Input voltage, VI  
PVCC, AVCC  
INPL, INNL, INPR, INNR  
6.3  
V
PLIMIT, GAIN/SLV, SYNC  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
GVDD+0.3  
PVCC+0.3  
10  
V
V
Slew rate, maximum(2)  
V/ms  
°C  
Operating free-air temperature, TA  
Operating junction temperature , TJ  
Storage temperature, Tstg  
–40  
–40  
–40  
85  
150  
°C  
125  
°C  
(1) Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.  
(2) 100-kΩ series resistor is required if maximum slew rate is exceeded.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. .  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
2
NOM  
MAX  
UNIT  
VCC  
VIH  
VIL  
Supply voltage  
PVCC, AVCC  
26  
V
V
V
V
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL  
AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL  
FAULTZ, RPULL-UP = 100 kΩ, PVCC = 26 V  
0.8  
0.8  
VOL  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
(VI = 2 V, VCC = 18 V)  
IIH  
High-level input current  
Minimum load Impedance  
Output-filter Inductance  
50  
µA  
Ω
RL(BTL)  
Output filter: L = 10 µH, C = 680 nF  
Output filter: L = 10 µH, C = 1 µF  
3.2  
1.6  
4
2
RL(PBTL)  
Minimum output filter inductance under short-  
circuit condition  
Lo  
1
µH  
6
Copyright © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
7.4 Thermal Information  
TPA3126D2  
DAD(2)  
32 PINS  
N/A  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
1.2  
1.2  
ψJB  
21  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) For the PCB layout, see the TPA3126D2EVM user guide.  
7.5 DC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω, fs = 400 kHz, hybrid mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Class-D output offset voltage  
(measured differentially)  
| VOS  
ICC  
|
VI = 0 V  
1.5  
5
mV  
mA  
SDZ = 2 V, With load and filter, PVCC = 12 V  
SDZ = 2 V, With load and filter, PVCC = 24 V  
SDZ = 0.8 V, With load and filter, PVCC = 12 V  
SDZ = 0.8 V, With load and filter, PVCC = 24 V  
15  
23  
20  
30  
Quiescent supply current  
Quiescent supply current in  
shutdown mode  
ICC(SD)  
rDS(on)  
µA  
mΩ  
dB  
Drain-source on-state resistance,  
measured pin to pin  
PVCC = 21 V, Iout = 500 mA, TJ = 25°C  
90  
R1 = 5.6 kΩ, R2 = Open  
R1 = 20 kΩ, R2 = 100 kΩ  
R1 = 39 kΩ, R2 = 100 kΩ  
R1 = 47 kΩ, R2 = 75 kΩ  
R1 = 51 kΩ, R2 = 51 kΩ  
R1 = 75 kΩ, R2 = 47 kΩ  
R1 = 100 kΩ, R2 = 39 kΩ  
R1 = 100 kΩ, R2 = 16 kΩ  
SDZ = 2 V  
19  
25  
31  
35  
19  
25  
31  
35  
20  
26  
32  
36  
20  
26  
32  
36  
40  
2
21  
27  
33  
37  
21  
27  
33  
37  
G
G
Gain (BTL)  
Gain (SLV)  
dB  
dB  
dB  
ton  
Turn-on time  
ms  
µs  
V
tOFF  
GVDD  
Turn-off time  
SDZ = 0.8 V  
Gate drive supply  
IGVDD < 200 µA  
5.1  
5.6  
6.3  
Output voltage maximum under  
PLIMIT control  
VO  
V(PLIMIT) = 2 V; VI = 1 Vrms  
6.75  
8.2  
8.75  
V
Copyright © 2018, Texas Instruments Incorporated  
7
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
7.6 AC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 mVPP ripple at 1 kHz, Gain = 26 dB,  
Inputs  
KSVR  
Power supply ripple rejection  
–70  
dB  
AC-coupled to GND  
THD+N = 10%, f = 1 kHz, PVCC = 14.4 V  
THD+N = 10%, f = 1 kHz, PVCC = 21 V  
25  
50  
PO  
Continuous output power  
Total harmonic distortion + noise  
Output integrated noise  
W
VCC = 21 V, f = 1 kHz, PO = 15 W (half-  
power)  
THD+N  
Vn  
0.1%  
65  
–80  
µV  
dBV  
dB  
20 Hz to 22 kHz, A-weighted filter, Gain = 20  
dB  
Crosstalk  
VO = 1 Vrms, Gain = 20 dB, f = 1 kHz  
–100  
Maximum output at THD+N < 1%, f = 1 kHz,  
Gain = 20 dB, A-weighted  
SNR  
Signal-to-noise ratio  
102  
dB  
AM2=0, AM1=0, AM0=0  
AM2=0, AM1=0, AM0=1  
AM2=0, AM1=1, AM0=0  
AM2=0, AM1=1, AM0=1  
AM2=1, AM1=0, AM0=0  
AM2=1, AM1=0, AM0=1  
376  
470  
400  
500  
424  
530  
564  
600  
636  
940  
1000  
1200  
300  
1060  
1278  
318  
fOSC  
Oscillator frequency  
kHz  
1128  
282  
AM2=1, AM1=1, AM0=0  
Modulation scheme Fixed in 1SPW Mode  
282  
300  
318  
AM2=1, AM1=1, AM0=1, Reserved  
Thermal trip point  
150  
15  
°C  
°C  
A
Thermal hysteresis  
Over current trip point  
7.5  
8
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
7.7 Typical Characteristics  
fs = 400 kHz, Hybrid Mode, TPA3126D2EVM Tested With AP2722. (unless otherwise noted)  
30  
20  
10  
0
10  
Gain=26dB  
TA=25èC  
RL=4W  
Gain=26dB  
PVcc=12V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
1
0.1  
0.01  
FPWM = 400 kHz  
20 25  
0.001  
5
10  
15  
20  
100  
1k  
10k 20k  
Supply Voltage (V)  
Frequency (Hz)  
D0021  
D005  
1. Idle Current vs PVCC  
2. Total Harmonic Distortion + Noise (BTL) vs Frequency  
10  
1
10  
Gain=26dB  
PVcc=24V  
TA=25èC  
RL=8W  
P O=1W  
PO =5W  
PO=10W  
Gain=26dB  
PVCC=6V  
TA=25èC  
RL=4W  
1
0.1  
0.1  
0.01  
0.01  
f= 20Hz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
20  
100  
1k  
10k 20k  
0.01  
0.1  
Output Power (W)  
1
10  
Frequency (Hz)  
D006  
D007  
3. Total Harmonic Distortion + Noise (BTL) vs Frequency  
4. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
10  
10  
Gain=26dB  
PVCC=12V  
TA=25èC  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=4W  
RL=4W  
1
0.1  
1
0.1  
0.01  
0.01  
f= 20Hz  
f= 20Hz  
f= 1kHz  
f= 6KHz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
D008  
D009  
5. Total Harmonic Distortion + Noise (BTL) vs Output  
6. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
Power  
版权 © 2018, Texas Instruments Incorporated  
9
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
fs = 400 kHz, Hybrid Mode, TPA3126D2EVM Tested With AP2722. (unless otherwise noted)  
10  
10  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=8W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=8W  
1
1
0.1  
0.1  
0.01  
0.01  
f= 20Hz  
f= 20Hz  
f= 1kHz  
f= 6KHz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
0.01  
0.1  
1
10  
50  
0.01  
0.1  
1
10  
50  
Output Power (W)  
Output Power (W)  
D010  
D011  
7. Total Harmonic Distortion + Noise (BTL) vs Output  
8. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
Power  
50  
30  
20  
300  
200  
100  
0
Gain=26dB  
TA=25èC  
PVCC=24V  
RL=4W  
40  
30  
20  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-100  
-200  
-300  
-400  
-500  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=4W  
Gain  
Phase  
1
2
3
4
5
20  
100  
1k  
10k 20k  
100k  
PLIMIT Voltage(V)  
Frequency (Hz)  
D0012  
D0225  
9. Output Power (BTL) vs PLIMIT Voltage  
10. Gain/Phase (BTL) vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Gain=26dB  
TA=25èC  
RL=4W  
Gain=26dB  
TA=25èC  
RL=8W  
THD+N=1%  
THD+N=10%  
THD+N=1%  
THD+N=10%  
0
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
D014  
D037  
15  
D037  
11. Maximum Output Power (BTL) vs Supply Voltage  
12. Maximum Output Power (BTL) vs Supply Voltage  
10  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
Typical Characteristics (接下页)  
fs = 400 kHz, Hybrid Mode, TPA3126D2EVM Tested With AP2722. (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain=26dB  
TA=25èC  
RL=8W  
Gain=26dB  
TA=25èC  
RL=4W  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Power (W)  
Output Power (W)  
D016  
D017  
13. Power Efficiency (BTL) vs Output Power  
14. Power Efficiency (BTL) vs Output Power  
0
0
-20  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=8W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=4W  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
Right to Left  
Left to Right  
Right to Left  
Left to Right  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D010318  
D00139  
15. Crosstalk vs Frequency  
16. Crosstalk vs Frequency  
0
-20  
10  
Gain=26dB  
PVCC=12VDC+200mVP-P  
TA=25èC  
Gain=26dB  
PVcc=12V  
TA=25èC  
RL=2W  
P O=1W  
PO =5W  
PO=10W  
RL=8W  
1
0.1  
-40  
-60  
0.01  
-80  
Left Channel  
Right Channel  
-100  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D020  
D021  
17. Supply Ripple Rejection Ratio (BTL) vs Frequency  
18. Total Harmonic Distortion + Noise (PBTL) vs  
Frequency  
版权 © 2018, Texas Instruments Incorporated  
11  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
fs = 400 kHz, Hybrid Mode, TPA3126D2EVM Tested With AP2722. (unless otherwise noted)  
180  
160  
140  
120  
100  
80  
10  
Gain=26dB  
TA=25èC  
RL=2W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=2W  
1
0.1  
60  
0.01  
40  
f= 20Hz  
f= 1kHz  
f= 6KHz  
THD+N=1%  
THD+N=10%  
20  
0.001  
0
0.01  
0.1  
1
10  
40  
4
6
8
10  
12  
14  
16  
18  
20  
22  
Output Power (W)  
Supply Voltage (V)  
D022  
D023  
19. Total Harmonic Distortion + Noise (PBTL) vs Output  
20. Maximum Output Power (PBTL) vs Supply Voltage  
Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
Gain=26dB  
PVCC=12VDC+200mVP-P  
TA=25èC  
RL=2W  
-20  
-40  
-60  
-80  
Gain = 26dB  
TA = 25èC  
RL = 3W  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
10  
0
-100  
20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
100  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
D001  
D025  
21. Power Efficiency (PBTL) vs Output Power  
22. Supply Ripple Rejection Ratio (PBTL) vs Frequency  
10  
140  
Gain = 26dB  
PVCC = 24V  
Gain = 26dB  
TA = 25èC  
130  
120  
110  
100  
90  
5
2
1
TA = 25èC  
RL = 3W  
RL = 3W  
0.5  
0.2  
0.1  
80  
70  
60  
0.05  
50  
0.02  
0.01  
40  
30  
f = 20Hz  
f = 1kHz  
f = 6KHz  
0.005  
20  
THD+N=1%  
THD+N=10%  
0.002  
0.001  
10  
0
0.01  
0.1  
1
10  
50 100 200  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
Output Power (W)  
D002  
D004  
23. Total Harmonic Distortion + Noise (PBTL) vs Output  
24. Maximum Output Power (PBTL) vs Supply Voltage  
Power  
12  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
8 Detailed Description  
8.1 Overview  
The analog-input Class-D amplifier TPA3126D2 is a performance upgrade to the prior generation TPA3116D2. It  
features a more efficient, 90-mΩ MOSFET, and has an extremely-low idle current of < 23 mA (24 V) in the  
standard LC filter configuration. The device can operate from the ultra-low-idle-loss modulation scheme, which  
enables low power dissipation in both idle condition and while playing music, optimized for battery-powered audio  
systems.  
The TPA3126D2 supports both stereo and mono BTL modes, as well as mono PBTL mode. Comparing to the  
conventional Class-D amplifiers, in the mono BTL mode, the idle channel of the TPA3126D2 is not in the  
switching mode; therefore, it saves nearly half of the power loss, enabling low-power operation in single channel  
applications.  
The device may be configured for either master or slave operation by using the SYNC pin. This configuration  
helps prevent the audible beats noise.  
8.2 Functional Block Diagram  
GVDD  
PVCC  
BSPR  
SDZ  
PVCC  
TTL  
Buffer  
Modulation and  
PBTL Select  
MUTE  
Gain  
Control  
OUTPR_FB  
Gate  
Drive  
OUTPR  
GAIN  
+
OUTPR_FB  
GND  
RINP  
RINN  
+
+
PWM  
Logic  
Gain  
Control  
PLIMIT  
GVDD  
PVCC  
+
BSNR  
+
PVCC  
OUTPNR_FB  
OUTNR_  
FB  
+
FAULTZ  
Gate  
Drive  
OUTNR  
GND  
Input  
Sense  
MONO  
Select  
SC Detect  
DC Detect  
SYNC  
GAIN/SLV  
Ramp  
Generator  
Startup Protection  
Logic  
Biases and  
References  
Thermal  
Detect  
AM<2:0>  
PLIMIT  
Reference  
PLIMIT  
PVCC  
UVLO/OVLO  
PVCC  
GVDD  
PVCC  
BSNL  
AVDD  
PVCC  
LDO  
Regulator  
AVCC  
GVDD  
GVDD  
Gate  
Drive  
OUTNL  
OUTNL_FB  
OUTNL_  
FB  
+
+
LINP  
LINN  
GND  
+
+
Gain  
Control  
PWM  
Logic  
PLIMIT  
GVDD  
PVCC  
+
+
BSPL  
PVCC  
OUTPL_FB  
Gate  
Drive  
OUTPL  
GND  
Input  
Sense  
PBTL  
Select  
Modulation and  
PBTL Select  
OUTPL_FB  
GND  
Thermal  
Pad  
版权 © 2018, Texas Instruments Incorporated  
13  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Gain Setting and Master and Slave  
The gain of the TPA3126D2 is set by the voltage divider connected to the GAIN/SLV control pin. Master or Slave  
mode is also controlled by the same pin. An internal ADC is used to detect the 8 input states. The first four states  
set the GAIN in Master mode with gains of 20, 26, 32, and 36 dB respectively, while the next four states set the  
GAIN in Slave mode with gains of 20, 26, 32, and 36 dB respectively. The gain setting is latched during power-  
up and cannot be changed while the device is powered on. 1 lists the recommended resistor values for  
different state settings.  
1. Gain and Master/Slave  
MASTER / SLAVE  
GAIN  
R1 (to GND)(1)  
R2 (to GVDD)(1)  
INPUT IMPEDANCE  
MODE  
Master  
Master  
Master  
Master  
Slave  
20 dB  
26 dB  
32 dB  
36 dB  
20 dB  
26 dB  
32 dB  
36 dB  
5.6 kΩ  
20 kΩ  
39 kΩ  
47 kΩ  
51 kΩ  
75 kΩ  
100 kΩ  
100 kΩ  
OPEN  
100 kΩ  
100 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
39 kΩ  
16 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
Slave  
Slave  
Slave  
(1) Resistor tolerance should be 5% or better.  
5
6
INNR  
2
1
PLIMIT  
GVDD  
1
C5 1 µF  
2
7
2
1
R2  
8
51 k  
GAIN/SLV  
GND  
9
R1 51 k  
10  
25. Gain, Master/Slave  
In Master mode, the SYNC terminal is an output, while in Slave mode, the SYNC terminal is an input for a clock.  
TTL logic levels with compliance to GVDD.  
8.3.2 Input Impedance  
The TPA3126D2 input stage is a fully differential input stage and the input impedance changes with the gain  
setting from 7.3 kat 36 dB gain to 50 kat 20 dB gain. 1 lists the values from min to max gain. The  
tolerance of the input resistor value is ±20% so that the minimum value will be higher than 5.9 k. The inputs  
must be AC-coupled to minimize the output DC-offset and ensure correct ramping of the output voltages during  
power-ON and power-OFF. The input AC-coupling capacitor along with the input impedance forms a high-pass  
filter with the following cut-off frequency:  
1
ƒ
=  
2pZiCi  
(1)  
If a flat bass response is required down to 20 Hz the recommended cut-off frequency is a tenth of that, 2 Hz. 2  
lists the recommended AC-coupling capacitors for each gain setting. If a –3-dB frequency response is accepted  
at 20 Hz, 10 times lower capacitors (for example, a 1-µF capacitor) can be used.  
14  
版权 © 2018, Texas Instruments Incorporated  
 
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
2. Recommended Input AC-Coupling Capacitors  
GAIN  
20 dB  
26 dB  
32 dB  
36 dB  
INPUT IMPEDANCE  
50 kΩ  
INPUT CAPACITANCE  
HIGH-PASS FILTER  
2.1 Hz  
1.5 µF  
3.3 µF  
5.6 µF  
10 µF  
25 kΩ  
1.9 Hz  
12.5 kΩ  
2.3 Hz  
7.3 kΩ  
2.2 Hz  
Z
f
C
i
Z
i
IN  
Input  
Signal  
26. Input Impedance  
The input capacitors should be a type of low leakage, such as quality electrolytic, tantalum, or ceramic  
capacitors. If a polarized type is used the positive connection should face the input pins which are biased to 3  
Vdc.  
8.3.3 Startup and Shutdown Operation  
The TPA3126D2 employs a shutdown mode of operation designed to reduce supply current (ICC) to the absolute  
minimum level during periods of non-use for power conservation. The SDZ input terminal should be held high  
(see specification table for trip point) during normal operation when the amplifier is in use. Pulling SDZ low puts  
the outputs to mute and the amplifier to enter a low-current state. Do not leave SDZ unconnected, because the  
amplifier operation is unpredictable.  
For the best power-off pop performance, place the amplifier in the shutdown mode prior to removing the power  
supply. The gain setting is selected at the end of the start-up cycle, and cannot be changed until the next power-  
up.  
8.3.4 PLIMIT Operation  
The TPA3126D2 has a built-in voltage limiter that can be used to limit the output voltage level below the supply  
rail. The amplifier operates as if it was powered by a lower supply voltage, and thereby, limits the output power.  
Add a resistor divider from GVDD to ground to set the voltage at the PLIMIT pin. An external reference may also  
be used if tighter tolerance is required. Add a 1-µF capacitor from pin PLIMIT to ground to ensure stability.  
27. Power Limit Example  
版权 © 2018, Texas Instruments Incorporated  
15  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
The PLIMIT circuit sets a limit on the output peak-to-peak voltage. This is done by limiting the duty cycle to a  
fixed maximum value. The limit can be considered as a "virtual" voltage rail which is lower than the supply  
connected to PVCC. The "virtual" rail is approximately four times the voltage at the PLIMIT pin. The output  
voltage can be used to calculate the maximum output power for a given maximum input voltage and speaker  
impedance.  
æ
ö2  
æ
ç
è
ö
÷
ø
RL  
´ V  
ç
÷
P
ç
÷
RL + 2 ´ RS  
è
ø
POUT  
=
for unclipped power  
2 ´ RL  
where  
POUT (10%THD) = 1.25 × POUT (unclipped)  
RL is the load resistance.  
RS is the total series resistance including RDS(on), and output filter resistance.  
VP is the peak amplitude, which is limited by the "virtual" voltage rail.  
(2)  
3. Power Limit Example  
PVCC (V)  
24 V  
PLIMIT VOLTAGE (V)(1)  
R to GND  
Open  
R to GVDD  
Short  
OUTPUT VOLTAGE (Vrms)  
GVDD  
3.3  
17.9  
12.67  
9
24 V  
45 kΩ  
24 kΩ  
Open  
51 kΩ  
24 V  
2.25  
GVDD  
2.25  
1.5  
51 kΩ  
12 V  
Short  
10.33  
9
12 V  
24 kΩ  
18 kΩ  
51 kΩ  
12 V  
68 kΩ  
6.3  
(1) PLIMIT measurements taken with EVM gain set to 26 dB and input voltage set to 1 Vrms  
.
8.3.5 GVDD Supply  
The GVDD Supply is used to power the gates of the output full bridge transistors. The GVDD supply can also be  
used to supply the PLIMIT and GAIN/SLV voltage dividers. Decouple GVDD with a X5R ceramic 1-µF capacitor  
to GND. The GVDD supply is not intended to be used for external supply. The current consumption should be  
limited by using resistor voltage dividers for GAIN/SLV and PLIMIT of 100 kor more.  
8.3.6 BSPx and BSNx Capacitors  
The full H-bridge output stages use only NMOS transistors. Therefore, they require bootstrap capacitors for the  
high side of each output to turn on correctly. A 220-nF ceramic capacitor of quality X5R or better, rated for at  
least 16 V, must be connected from each output to the corresponding bootstrap input. (See the application circuit  
diagram in 34.) The bootstrap capacitors connected between the BSxx pins and corresponding output function  
as a floating power supply for the high-side N-channel power MOSFET gate drive circuitry. During each high-side  
switching cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side  
MOSFETs turned on.  
8.3.7 Differential Inputs  
The differential input stage of the amplifier cancels any noise that appears on both input lines of the channel. To  
use the TPA3126D2 with a differential source, connect the positive lead of the audio source to the RINP or LINP  
input and the negative lead from the audio source to the RINN or LINN input. To use the TPA3126D2 with a  
single-ended source, AC ground the negative input through a capacitor equal in value to the input capacitor on  
positive and apply the audio source to either input. In a single-ended input application, the unused input should  
be AC grounded at the audio source instead of at the device input for best noise performance. For good transient  
performance, the impedance seen at each of the two differential inputs should be the same.  
The impedance seen at the inputs should be limited to an RC time constant of 1 ms or less if possible to allow  
the input DC blocking capacitors to become completely charged during the 40-ms power-up time. If the input  
capacitors are not allowed to completely charged, there will be some additional sensitivity to the component  
matching which can result in pop if the input components are not well matched.  
16  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
8.3.8 Device Protection System  
The TPA3126D2 contains a complete set of protection circuits carefully designed to make system design efficient  
as well as to protect the device against any kind of permanent failures due to short circuits, overload, over  
temperature, and under-voltage. The FAULTZ pin signals if an error is detected according to 4:  
4. Fault Reporting  
TRIGGERING CONDITION  
(typical value)  
LATCHED/SELF-  
CLEARING  
FAULT  
FAULTZ  
ACTION  
Over Current  
Output short or short to PVCC or GND  
Tj > 150°C  
Low  
Low  
Low  
Output high impedance  
Output high impedance  
Output high impedance  
Latched  
Latched  
Latched  
Over Temperature  
Too High DC Offset  
DC output voltage  
Under Voltage on  
PVCC  
PVCC < 4.5V  
PVCC > 27V  
Output high impedance  
Output high impedance  
Self-clearing  
Self-clearing  
Over Voltage on  
PVCC  
8.3.9 DC Detect Protection  
The TPA3126D2 has circuitry which protects the speakers from DC current which might occur due to defective  
capacitors on the input or shorts on the printed circuit board at the inputs. A DC detect fault is reported on the  
FAULT pin as a low state. The DC Detect fault causes the amplifier to shutdown by changing the state of the  
outputs to Hi-Z.  
If automatic recovery from the short circuit protection latch is desired, connect the FAULTZ pin directly to the  
SDZ pin. Connecting the FAULTZ and SDZ pins allows the FAULTZ pin function to automatically drive the SDZ  
pin low which clears the DC Detect protection latch.  
A DC Detect Fault is issued when the output differential voltage of either channel exceeds DC protection  
threshold level for more than 640 ms at the same polarity. 5 shows some examples of the typical DC Detect  
Protection threshold for several values of the supply voltage. The Detect Protection Threshold feature protects  
the speaker from large DC currents or AC currents less than 2 Hz. To avoid nuisance faults due to the DC detect  
circuit, hold the SD pin low at power-up until the signals at the inputs are stable. Also, take care to match the  
impedance seen at the positive and negative inputs to avoid nuisance DC detect faults.  
5 lists the minimum output offset voltages required to trigger the DC detect. The outputs must remain at or  
above the voltage listed in the table for more than 640 ms to trigger the DC detect.  
5. DC Detect Threshold  
PVCC (V)  
VOS - OUTPUT OFFSET VOLTAGE (V)  
4.5  
6
1.35  
1.8  
12  
18  
3.6  
5.4  
8.3.10 Short-Circuit Protection and Automatic Recovery Feature  
The TPA3126D2 has protection from over current conditions caused by a short circuit on the output stage. The  
short circuit protection fault is reported on the FAULTZ pin as a low state. The amplifier outputs are switched to a  
high impedance state when the short circuit protection latch is engaged. The latch can be cleared by cycling the  
SDZ pin through the low state.  
If automatic recovery from the short circuit protection latch is desired, connect the FAULTZ pin directly to the  
SDZ pin. Connecting the FAULTZ and SDZ pins allows the FAULTZ pin function to automatically drive the SDZ  
pin low which clears the short-circuit protection latch.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
 
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
8.3.11 Thermal Protection  
Thermal protection on the TPA3126D2 prevents damage to the device when the internal die temperature  
exceeds 150°C. This trip point has a ±15°C tolerance from device to device. Once the die temperature exceeds  
the thermal trip point, the device enters into the shutdown state and the outputs are disabled. This is a latched  
fault.  
Thermal protection faults are reported on the FAULTZ terminal as a low state.  
If automatic recovery from the thermal protection latch is desired, connect the FAULTZ pin directly to the SDZ  
pin. This allows the FAULTZ pin function to automatically drive the SDZ pin low which clears the thermal  
protection latch.  
8.3.12 Device Modulation Scheme  
The TPA3126D2 has the option of running in either BD modulation or ultra-low idle current Hybrid Mode.  
8.3.12.1 BD Modulation  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amplifier  
is driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
18  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
0V  
-
OUTP OUTN  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
28. BD Mode Modulation  
版权 © 2018, Texas Instruments Incorporated  
19  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
8.3.13 Efficiency: LC Filter Required with the Traditional Class-D Modulation Scheme  
Many traditional Class-D amplifiers are based on the AD modulation. Due to the out-of-phase nature of a BTL or  
PBTL amplifier operating in the AD modulation, if no LC filter was present, the load sees the full PWM signal  
across its terminals. This causes a high-frequency ripple current to pass through the load, which leads to high  
power dissipation, poor efficiency, and potential speaker damage. The ripple current is large in the AD  
modulation scheme, because it is proportional to voltage multiplied by the time at that voltage. The differential  
voltage swing is 2 × VCC, and the time at each voltage is half the period for the AD modulation scheme. An ideal  
LC filter is required to store the ripple current from each half cycle for the next half cycle, while any resistance  
causes power dissipation. The speaker is both resistive and reactive, whereas an LC filter is almost purely  
reactive.  
The modulation schemes implemented in the TPA3126D2 have little loss in the load even without a filter because  
the pulses are short and the change in voltage is VCC instead of 2 × VCC. As the output power increases and  
the pulses widen, the ripple current can go up. In this case, the ripple current can be filtered with an LC filter for  
increased efficiency. However, in most applications the filter is not required.  
With an LC filter, specifically as the cut-off frequency of the LC filter is smaller than the PWM switching frequency  
of the amplifier, the ripple current is reduced such that only a small residual ripple voltage is present after the LC  
filter. The filter has less resistance but higher impedance at the switching frequency than the speaker, which  
results in less power dissipation, hence increasing efficiency.  
8.3.14 Ferrite Bead Filter Considerations  
Using the Advanced Emissions Suppression Technology in the TPA3126D2, a high efficiency Class-D audio  
amplifier can be designed while minimizing interference to the surrounding circuits. Designing the amplifier can  
also be accomplished with only a low-cost ferrite bead filter. In this case the user must carefully select the ferrite  
bead used in the filter. One important aspect of the ferrite bead selection is the type of material used in the ferrite  
bead. Not all ferrite material is alike, therefore the user must select a material that is effective in the 10-MHz to  
100-MHz range which is key to the operation of the Class-D amplifier. Many of the specifications regulating  
consumer electronics have emissions limits as low as 30-MHz. The ferrite bead filter should be used to block  
radiation in the 30-MHz and above range from appearing on the speaker wires and the power supply lines which  
are good antennas for these signals. The impedance of the ferrite bead can be used along with a small capacitor  
with a value in the range of 1000-pF to reduce the frequency spectrum of the signal to an acceptable level. For  
best performance, the resonant frequency of the ferrite bead or capacitor filter should be less than 10-MHz.  
Also, the ferrite bead must be large enough to maintain its impedance at the peak currents expected for the  
amplifier. Some ferrite bead manufacturers specify the bead impedance at a variety of current levels. In this case  
it is possible to make sure the ferrite bead maintains an adequate amount of impedance at the peak current the  
amplifier will see. If these specifications are not available, the device can also estimate the bead current handling  
capability by measuring the resonant frequency of the filter output at low power and at maximum power. A  
change of resonant frequency of less than fifty percent under this condition is desirable. Examples of ferrite  
beads which have been tested and work well with the TPA3136D2 can be seen in the TPA3136D2EVM user  
guide SLOU444.  
A high quality ceramic capacitor is also required for the ferrite bead filter. A low ESR capacitor with good  
temperature and voltage characteristics will work best.  
Additional EMC improvements may be obtained by adding snubber networks from each of the Class-D outputs to  
ground. Suggested values for a simple RC series snubber network would be 18-Ω in series with a 330-pF  
capacitor, although design of the snubber network is specific to different applications and must be designed with  
the consideration of the parasitic reactance of the printed circuit board as well as the audio amp. Take care to  
evaluate the stress on the component in the snubber network especially if the amp is running at high PVCC.  
Also, verify the layout of the snubber network is tight and returns directly to the GND pins on the IC.  
29 and 30 are TPA3126D2 EN55022 Radiated Emissions results uses TPA3126D2EVM with 8-Ω  
speakers.  
20  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
29. TPA3126D2 Radiated Emissions-Horizontal  
30. TPA3126D2 Radiated Emissions-Vertical  
(PVCC=19V, PO=1W)  
(PVCC=19V, PO=1W)  
8.3.15 When to Use an Output Filter for EMI Suppression  
A complete LC reconstruction filter should be added in some circuit instances. These circumstances might occur  
if there are nearby circuits which are sensitive to noise. In these cases, a classic second order Butterworth filter  
similar to those shown in 31 can be used.  
Some systems have little power supply decoupling from the AC line but are also subject to line conducted  
interference (LCI) regulations. These include systems powered by "wall warts" and "power bricks." In these  
cases, LC reconstruction filters can be the lowest-cost methods to pass LCI tests. Common mode chokes using  
low frequency ferrite material can also be effective in preventing line conducted interference.  
10 µH  
OUTP  
C2  
L1  
0.68 µF  
4 W - 8 W  
10 µH  
OUTN  
C3  
L2  
0.68 µF  
Ferrite  
Chip Bead  
OUTP  
1 nF  
4 W - 8 W  
Ferrite  
Chip Bead  
OUTN  
1 nF  
31. Output Filters  
版权 © 2018, Texas Instruments Incorporated  
21  
 
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
8.3.16 AM Avoidance EMI Reduction  
6. AM Frequencies  
US  
EUROPEAN  
SWITCHING FREQUENCY (kHz)  
AM2  
AM1  
AM0  
AM FREQUENCY (kHz)  
AM FREQUENCY (kHz)  
540-917  
540-914  
500  
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
0
1
0
0
0
1
917-1125  
1125-1375  
1375-1547  
914-1122  
1122-1373  
1373-1548  
600 (or 400)  
500  
600 (or 400)  
1547-1700  
1548-1701  
600 (or 500)  
8.4 Device Functional Modes  
TPA3126D2 can be configured in either a stereo BTL (Bridge Tied Load) mode, mono BTL mode (only one  
output BTL channel active), or in a mono PBTL (Parallel Bridge Tied Load) mode.  
8.4.1 Mono PBTL Mode  
In mono PBTL mode, the device can deliver up to 100-W output power. Configuration steps for mono PBTL  
mode are as follows:  
Connect LINP and LINN directly to Ground (without capacitors), so the device is set in a mono PBTL mode  
during power up.  
Connect OUTPR and OUTNR together for the positive speaker terminal, and OUTNL and OUTPL together for  
the negative speaker terminal.  
Analog input signal is applied to RINP and RINN.  
PVCC  
TPA3156D2  
TPA3126D2  
TPA3128D2  
RINP  
Audio  
Source  
And Control  
TPA3129D2  
Power Supply  
4.5V œ 26V  
RINN  
RIGHT  
OUTPR  
LINP  
LINN  
OUTNR  
PBTL  
DETECT  
LC  
Filter  
OUTPL  
OUTNL  
Copyright © 2018, Texas Instruments Incorporated  
32. Mono PBTL Mode  
22  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
Device Functional Modes (接下页)  
8.4.2 Mono BTL Mode (Single Channel Mode)  
The TPA3126D2 can be connected in mono BTL mode while cutting the idle power-loss nearly by half.  
Connect RINP and RINN directly to Ground (without capacitors), so the device is set in mono BTL mode  
during power up.  
Connect OUTPL to the positive speaker terminal, and OUTNL to the negative speaker terminal.  
Analog input signal is applied to LINP and LINN.  
TPA3156D2  
TPA3126D2  
TPA3128D2  
TPA3129D2  
RINP  
MONO  
DETECT  
RIGHT  
RINN  
Power Supply  
4.5V œ 26V  
OUTPR  
OUTNR  
LINP  
LINN  
Audio  
Source  
LEFT  
And Control  
OUTPL  
OUTNL  
LC  
Filter  
Copyright © 2018, Texas Instruments Incorporated  
33. Mono BTL Mode  
版权 © 2018, Texas Instruments Incorporated  
23  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Typical Application  
This section describes a 2.1 Master and Slave application. The Master (U1 TPA3126D2) is configured as stereo  
BTL outputs with 400-kHz switching frequency and no power limit implemented, and the Slave (U2) is configured  
as a mono PBTL output. Both U1 and U2 are setup with a gain of 26-dB. Inputs are connected for differential  
inputs.  
39&&  
39&&ꢌ'(&283/,1*  
287387ꢌ/&ꢌ),/7(5  
/
(0,ꢌ&ꢎ5&ꢌ618%%(5  
39&&  
*1'  
&ꢁꢉ  
ꢀꢃQ)  
ꢂꢃ9  
&ꢀ  
ꢈꢈꢃ—)  
ꢇꢂ9  
&ꢈ  
&ꢇ  
ꢃꢄꢀ—)  
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
ꢀꢃ—
ꢅꢄꢉ$  
&ꢈꢁ  
ꢃꢄꢃꢀ—
ꢂꢃ9  
5ꢀ  
&ꢀꢆ  
&ꢈꢃ  
ꢀꢃꢃꢃS) ꢂꢃ9  
ꢀꢃꢃN  
ꢃꢄꢆꢉ—
ꢂꢃ9  
ꢇꢄꢇꢈ  
*1'  
8ꢀ  
02'6(/  
ꢇꢈ  
ꢇꢀ  
ꢇꢃ  
ꢈꢊ  
ꢈꢉ  
ꢈꢅ  
ꢈꢆ  
ꢈꢂ  
ꢈꢁ  
ꢈꢇ  
ꢈꢈ  
ꢈꢀ  
ꢈꢃ  
ꢀꢊ  
ꢀꢉ  
ꢀꢅ  
*1'  
39&&  
39&&  
%635  
28735  
*1'  
*1'  
*1'  
6'=  
ꢁ5  
ꢋ6'B/5  
&ꢊ  
)$8/7=  
5,13  
5ꢉ  
ꢇꢄꢇꢈ  
&ꢁ ꢀ—)  
ꢃꢄꢈꢈ—) ꢈꢂ9  
*1'  
*1'  
,1B3B5,*+7  
,1B1B5,*+7  
&ꢀꢅ  
&ꢈꢀ  
ꢃꢄꢆꢉ—
ꢂꢃ9  
&ꢂ ꢀ—)  
ꢀꢃꢃꢃS) ꢂꢃ9  
&ꢈꢂ  
5,11  
3/,0,7  
*9''  
*$,1ꢋ6/9  
*1'  
*1'  
*1'  
*1'  
ꢃꢄꢃꢀ—
ꢂꢃ9  
28715  
%615  
*1'  
ꢀꢃ—
ꢅꢄꢉ$  
5ꢈ  
&ꢀꢃ  
ꢀꢃꢃN  
&ꢆ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
/ꢇ  
—)  
5ꢇ  
&ꢀꢀ  
%63/  
ꢈꢃꢄꢃN  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢀꢃ—
ꢅꢄꢉ$  
&ꢈꢆ  
ꢀꢃ  
ꢀꢀ  
ꢀꢈ  
ꢀꢇ  
ꢀꢁ  
ꢀꢂ  
ꢀꢆ  
ꢃꢄꢃꢀ—
ꢂꢃ9  
/,13  
2873/  
*1'  
*1'  
&ꢅ ꢀ—)  
&ꢉ ꢀ—)  
&ꢀꢉ  
&ꢈꢈ  
/,11  
,1B3B/()7  
,1B1B/()7  
39&&  
ꢃꢄꢆꢉ—
ꢂꢃ9  
5ꢊ  
ꢀꢃꢃꢃS) ꢂꢃ9  
087(  
$0ꢈ  
2871/  
%61/  
39&&  
39&&  
$9&&  
ꢇꢄꢇꢈ  
5ꢂ  
ꢀꢃꢃN  
&ꢀꢈ  
5ꢁ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢁ5  
ꢀꢃꢃN  
$0ꢀ  
5ꢀꢃ  
ꢇꢄꢇꢈ  
*1'  
&ꢀꢊ  
*1'&ꢈꢇ  
ꢀꢃꢃꢃS) ꢂꢃ9  
39&&ꢌ'(&283/,1*  
39&&  
ꢃꢄꢆꢉ—
ꢂꢃ9  
$0ꢃ  
5ꢀꢉ  
ꢀN  
4ꢀ  
087(B/5  
&ꢈꢅ  
ꢃꢄꢃꢀ—
ꢂꢃ9  
/ꢁ  
6<1&  
*1'  
73$ꢇꢀꢆ'ꢈ  
&ꢀꢇ  
&ꢀꢁ  
&ꢀꢂ  
ꢈꢈꢃ—
ꢇꢂ9  
ꢃꢄꢀ—
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
ꢀꢃ—
ꢅꢄꢉ$  
*1'  
39&&ꢌ'(&283/,1*  
5ꢆ  
ꢁꢄꢅꢃN  
*1'  
39&&  
39&&  
&ꢁꢈ  
ꢈꢈꢃ—)  
ꢇꢂ9  
&ꢁꢇ  
&ꢁꢁ  
ꢃꢄꢀ—)  
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
5ꢀꢀ  
&ꢁꢊ  
ꢀꢃQ)  
ꢂꢃ9  
ꢀꢃꢃN  
*1'  
8ꢈ  
02'6(/  
287387ꢌ/&ꢌ),/7(5  
(0,ꢌ&ꢎ5&ꢌ618%%(5  
ꢇꢈ  
ꢇꢀ  
ꢇꢃ  
ꢈꢊ  
ꢈꢉ  
ꢈꢅ  
ꢈꢆ  
ꢈꢂ  
ꢈꢁ  
ꢈꢇ  
ꢈꢈ  
ꢈꢀ  
ꢈꢃ  
ꢀꢊ  
ꢀꢉ  
ꢀꢅ  
*1'  
39&&  
39&&  
%635  
28735  
*1'  
*1'  
6'=  
/ꢂ  
ꢋ6'B68%  
,1B3B68%  
,1B1B68%  
&ꢈꢉ  
&ꢈꢊ  
—)  
—)  
&ꢇꢈ  
)$8/7=  
5,13  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢀꢃ—
ꢀꢇꢄꢂ$  
&ꢁꢃ  
ꢃꢄꢃꢀ—)  
ꢂꢃ9  
&ꢇꢆ  
&ꢇꢉ  
ꢃꢄꢆꢉ—
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
5,11  
3/,0,7  
*9''  
*$,1ꢋ6/9  
*1'  
*1'  
*1'  
*1'  
5ꢀꢆ  
28715  
%615  
*1'  
ꢇꢄꢇꢈ  
5ꢀꢈ  
ꢁꢅN  
&ꢇꢇ  
&ꢇꢃ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢈ5  
—)  
5ꢀꢇ  
ꢅꢂN  
&ꢇꢁ  
%63/  
ꢃꢄꢈꢈ—) ꢈꢂ9  
*1'  
*1'  
ꢀꢃ  
ꢀꢀ  
ꢀꢈ  
ꢀꢇ  
ꢀꢁ  
ꢀꢂ  
ꢀꢆ  
/,13  
2873/  
*1'  
ꢇꢄꢇꢈ  
*1'  
39&&  
&ꢇꢅ  
&ꢇꢊ  
/,11  
ꢃꢄꢆꢉ—
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
5ꢀꢂ  
ꢀꢃꢃN  
&ꢁꢀ  
ꢃꢄꢃꢀ—)  
ꢂꢃ9  
/ꢆ  
087(  
$0ꢈ  
2871/  
%61/  
39&&  
39&&  
$9&&  
5ꢀꢁ  
ꢀꢃꢃN  
&ꢇꢂ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢀꢃ—
ꢀꢇꢄꢂ$  
$0ꢀ  
39&&ꢌ'(&283/,1*  
39&&  
5ꢀꢅ  
ꢀN  
4ꢀ  
$0ꢃ  
087(B68%  
6<1&  
73$ꢇꢀꢆ'ꢈ  
&ꢁꢂ  
&ꢁꢆ  
&ꢁꢅ  
&ꢇꢀ  
ꢈꢈꢃ—)  
ꢇꢂ9  
ꢃꢄꢀ—)  
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
ꢁꢅS)  
*1'  
*1'  
*1'  
34. TPA3126D2 in a 2.1 Mode Application  
24  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
Application Information (接下页)  
9.1.1.1 Design Requirements  
DESIGN PARAMETERS  
Input voltage range PVCC  
PWM output frequencies  
Maximum output power  
EXAMPLE VALUE  
4.5 V to 26 V  
300kHz, 400 kHz, 500 kHz, 600 kHz, 1 MHz or 1.2 MHz  
2 × 50 W  
9.1.1.2 Detailed Design Procedure  
The TPA3126D2 devices are very flexible and easy-to-use Class D amplifiers; therefore, the design process is  
straightforward. Before beginning the design, gather the following information regarding the audio system.  
PVCC rail planned for the design  
Speaker or load impedance  
Maximum output power requirement  
Desired PWM frequency  
9.1.1.2.1 Select the PWM Frequency  
Set the PWM frequency by using AM0, AM1 and AM2 pins.  
9.1.1.2.2 Select the Amplifier Gain and Master/Slave Mode  
To select the amplifier gain setting, the designer must determine the maximum power target and the speaker  
impedance. Once these parameters have been determined, calculate the required output voltage swing which  
delivers the maximum output power.  
Choose the lowest analog gain setting that corresponds to produce an output voltage swing greater than the  
required output swing for maximum power. The analog gain and master/slave mode can be set by selecting the  
voltage divider resistors (R1 and R2) on the Gain/SLV pin.  
9.1.1.2.3 Select Input Capacitance  
Select the bulk capacitors at the PVCC inputs for proper voltage margin and adequate capacitance to support the  
power requirements. In practice, with a well-designed power supply, two 100-μF, 50-V capacitors should be  
sufficient. One capacitor should be placed near the PVCC inputs at each side of the device. PVCC capacitors  
should be a low ESR type because they are being used in a fast-switching application.  
9.1.1.2.4 Select Decoupling Capacitors  
Good quality decoupling capacitors must be added at each of the PVCC inputs to provide good reliability, good  
audio performance, and to meet regulatory requirements. X5R or better ratings should be used in this  
application. Consider temperature, ripple current, and voltage overshoots when selecting decoupling capacitors.  
Also, these decoupling capacitors should be located near the PVCC and GND connections to the device in order  
to minimize series inductances.  
9.1.1.2.5 Select Bootstrap Capacitors  
Each of the outputs require bootstrap capacitors to provide gate drive for the high-side output FETs. For this  
design, use 0.22-μF, 25-V capacitors of X5R quality or better.  
版权 © 2018, Texas Instruments Incorporated  
25  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
9.1.1.3 Application Curves  
10  
140  
130  
120  
110  
100  
90  
Gain = 26dB  
PVCC = 24V  
Gain = 26dB  
TA = 25èC  
5
2
1
TA = 25èC  
RL = 3W  
RL = 3W  
0.5  
0.2  
0.1  
80  
70  
60  
0.05  
50  
0.02  
0.01  
40  
30  
f = 20Hz  
f = 1kHz  
f = 6KHz  
0.005  
20  
THD+N=1%  
THD+N=10%  
0.002  
0.001  
10  
0
0.01  
0.1  
1
10  
50 100 200  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
Output Power (W)  
D002  
D004  
35. Total Harmonic Distortion + Noise (PBTL) vs Output  
36. Maximum Output Power (PBTL) vs Supply Voltage  
Power  
10 Power Supply Recommendations  
The TPA3126D2 device requires an external power supply, between 4.5 V and 26 V, for the analog circuitry  
(AVCC) and the power stage (PVCC) of the amplifier. Several on-chip regulators are included on the  
TPA3126D2 to generate the voltages necessary for the internal circuitry of the audio path. The voltage regulators  
which have been integrated are sized only to provide the current necessary to power the internal circuitry. The  
external pins are provided only as a connection point for off-chip bypass capacitors to filter the supply.  
Connecting external circuitry to these regulator outputs may result in reduced performance and damage to the  
device. The AVCC supply feeds internal LDO including GVDD. This LDO output are connected to external pins  
for filtering purposes, but should not be connected to external circuits. GVDD LDO output have been sized to  
provide current necessary for internal functions but not for external loading.  
10.1 Power Supply Mode  
The TPA3126D2 supports both single and dual power supply modes. For dual power supply mode application,  
when AVCC is supplied with 4.5-V power, PVCC is recommended to be lower than 20 V. When PVCC is  
supplied with power greater than 20 V, AVCC is recommended to be higher than 6 V.  
26  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
11 Layout  
11.1 Layout Guidelines  
The TPA3126D2 can be used with a small, inexpensive ferrite bead output filter in most applications. However,  
because the Class-D switching edges are fast, the layout of the printed circuit board must be planned carefully.  
The following suggestions helps to meet EMC requirements.  
Decoupling capacitors — The high-frequency decoupling capacitors should be placed as close to the PVCC  
and AVCC terminals as possible. Large (100-μF or greater) bulk power supply decoupling capacitors should  
be placed near the TPA3126D2 on the PVCC supplies. Local, high-frequency bypass capacitors should be  
placed as close to the PVCC pins as possible. These caps can be connected to the IC GND pad directly for  
an excellent ground connection. Consider adding a small, good quality low ESR ceramic capacitor between  
220-pF and 1-nF, and a larger mid-frequency cap of value between 100-nF and 1-µF also of good quality to  
the PVCC connections at each end of the chip.  
Minimize the current loop from each of the outputs through the ferrite bead filter and back to GND. The size  
of this current loop determines its effectiveness as an antenna.  
Grounding — The PVCC decoupling capacitors should connect to GND. All ground should be connected at  
the IC GND, which should be used as a central ground connection or star ground for the TPA3126D2.  
Output filter — The ferrite EMI filter (see 31) should be placed as close to the output terminals as possible  
for the best EMI performance. The LC filter should be placed close to the outputs. The capacitors used in  
both the ferrite and LC filters should be grounded.  
For an example layout, see the TPA3126D2 Evaluation Module (TPA3126D2EVM) User Guide (SLOU506). Both  
the EVM user manual and the thermal pad application reports, SLMA002 and SLMA004, are available on the TI  
Web site at http://www.ti.com.  
版权 © 2018, Texas Instruments Incorporated  
27  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
11.2 Layout Example  
37. Layout Example Top  
28  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
Layout Example (接下页)  
38. Layout Example Bottom  
版权 © 2018, Texas Instruments Incorporated  
29  
TPA3126D2  
ZHCSHZ1 APRIL 2018  
www.ti.com.cn  
11.3 Heat Sink Used on the EVM  
The heat sink (part number ATS-TI 10 OP-521-C1-R1) used on the EVM is an 14x25x50 mm extruded aluminum  
heat sink with three fins (see drawing below). For additional information on the heat sink, go to www.qats.com.  
50.00 0.38  
[1.969 .015]  
SINK LENGTH  
MACHINE THESE  
3 EDGES AFTER  
0.00  
ANODIZATION  
25.00  
–0.60  
3.00  
[.118]  
+.000  
–.024  
SINK HEIGHT  
.984  
1.00  
[.118]  
6.35  
[.250]  
3.00  
[.118]  
13.90 0.38  
[.547 .015]  
BASE WIDTH  
6.95  
[.274]  
5.00  
[.197]  
40.00  
[1.575]  
2X 4-40 x 6.5  
39. EVM Heat Sink  
This size heat sink has shown to be sufficient for continuous output power. The crest factor of music and having  
airflow will lower the requirement for the heat sink size and smaller types can be used.  
30  
版权 © 2018, Texas Instruments Incorporated  
TPA3126D2  
www.ti.com.cn  
ZHCSHZ1 APRIL 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
TPA3126D2 评估模块用户指南》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 相关文档  
如需相关文档,请参阅:  
D 类音频放大器系统级保护概述》  
《借助 TPA3128D2 实现超低空闲电流》  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
TPA3126D2DAD  
TPA3126D2DADR  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
HTSSOP  
HTSSOP  
DAD  
32  
32  
46  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
TPA  
3126  
D2  
ACTIVE  
DAD  
2000 RoHS & Green  
NIPDAU  
-40 to 85  
TPA  
3126  
D2  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA3126D2DADR  
HTSSOP DAD  
32  
2000  
330.0  
24.4  
8.6  
11.5  
1.6  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DAD 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPA3126D2DADR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DAD HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPA3126D2DAD  
32  
46  
530  
11.89  
3600  
4.9  
Pack Materials-Page 3  
PACKAGE OUTLINE  
TM  
DAD0032A  
PowerPAD TSSOP - 1.15 mm max height  
S
C
A
L
E
1
.
6
0
0
PLASTIC SMALL OUTLINE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
A
0.1 C  
PIN 1 ID AREA  
30X 0.65  
32  
1
EXPOSED  
THERMAL PAD  
11.1  
10.9  
NOTE 3  
4.36  
3.26  
2X  
9.75  
16  
17  
0.30  
32X  
0.19  
4.11  
3.31  
0.1  
C A  
B
6.2  
6.0  
B
(0.15) TYP  
0.25  
SEE DETAIL A  
1.15  
1.00  
GAGE PLANE  
0.75  
0.50  
0.15  
0.05  
0 - 8  
DETAIL A  
TYPICAL  
4222646/B 02/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DAD0032A  
PowerPAD TMTSSOP - 1.15 mm max height  
PLASTIC SMALL OUTLINE  
32X (1.5)  
SEE DETAILS  
SYMM  
1
32  
32X (0.45)  
30X (0.65)  
SYMM  
(R0.05) TYP  
17  
16  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222646/B 02/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
DAD0032A  
PowerPAD TSSOP - 1.15 mm max height  
PLASTIC SMALL OUTLINE  
32X (1.5)  
SYMM  
1
32  
32X (0.45)  
30X (0.65)  
SYMM  
(R0.05) TYP  
16  
17  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4222646/B 02/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPA3126D2DADR

50W 立体声、100W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器,低空闲电流 | DAD | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3128D2

具有低空闲电流的 30W 立体声、60W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3128D2DAP

具有低空闲电流的 30W 立体声、60W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3128D2DAPR

具有低空闲电流的 30W 立体声、60W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3129D2

具有低空闲电流的 15W 立体声、30W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3129D2DAP

具有低空闲电流的 15W 立体声、30W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3129D2DAPR

具有低空闲电流的 15W 立体声、30W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3130D2

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3130D2DAP

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3130D2DAPR

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3131D2

4W, 25W Filter-Free Class-D Stereo Amplifier with AM Avoidance

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3131D2RHBR

支持无滤波器操作的 4W 立体声、8W 单声道、4.5V 至 26V 电源电压、模拟输入 D 类音频放大器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI