TPA3250D2DDW [TI]

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下 | DDW | 44 | 0 to 70;
TPA3250D2DDW
型号: TPA3250D2DDW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下 | DDW | 44 | 0 to 70

放大器 音频放大器
文件: 总42页 (文件大小:1411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
TPA3250 70W 立体声、130W 峰值 PurePath™ 超高清 D 类放大器(焊盘  
朝下)  
1 特性  
采用推荐的系统设计时,符合电磁干扰 (EMI) 标准  
1
差分模拟输入  
2 应用  
总谐波失真+噪声 (THD+N) 10% 时的总输出功  
高端条形音箱  
微型 Combo 系统  
蓝光光盘™/DVD 接收器  
有源扬声器  
70W(连续功率)/8Ω,桥接负载 (BTL) 立体声  
配置(32V 时)  
130W(峰值功率)/4ΩBTL 立体声配置  
32V 时)  
3 说明  
总谐波失真+噪声 (THD+N) 1% 时的总输出功率  
TPA3250 器件是一款高性能 D 类功率放大器,具有 D  
类效率并且能够提供真正的高端音质。该器件 特有 高  
级集成反馈设计和专有高速栅极驱动器错误校正功能  
PurePath™ 超高清)。该技术可使器件在整个音频  
频带内保持超低失真,同时展现完美音质。该器件最多  
可驱动 2 130W(峰值功率)/4负载和 2 70W  
(连续功率)/8负载,并且 特有 一个 2 VRMS 模拟  
输入接口,支持与高性能 DAC(例如 TI 的  
60W(连续功率)/8Ω,桥接负载 (BTL) 立体声  
配置(32V 时)  
105W(峰值功率)/4ΩBTL 立体声配置  
32V 时)  
采用高级集成反馈设计,具有高速栅极驱动器错误  
校正功能  
PurePath™超清)  
高达 100kHz 的单宽带,用于高清 (HD) 源的高  
频成分  
PCM5242)无缝连接。除了出色的音频性能  
超低 THD+N1W/4时为 0.005%;削波时  
<0.01%  
外,TPA3250 还兼具高功率效率和超低功率级空闲损  
耗(低于 1W)两大优点。这可以通过 60mΩ  
电源抑制比 (PSRR) 60dBBTL,无输入信  
号)  
MOSFET 以及优化的栅极驱动器方案来实现。该方案  
相对于传统的分立实现方案可显著降低空闲损耗。  
A 加权)输出噪声 < 60µV  
A 加权)信噪比 (SNR) > 110dB  
器件信息(1)  
多种配置可供选择:  
立体声、单声道、2.1 4xSE  
器件型号  
TPA3250  
封装  
封装尺寸(标称值)  
HTSSOP (44)  
6.10mm x 14.00mm  
启动和停止时无喀哒声和噼啪声  
92% 高效 D 类操作 (8)  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
12V 36V 宽电源电压工作范围  
具有错误报告功能的自保护设计(包括欠压、过  
压、削波和短路保护)  
简化电路原理图  
总谐波失真  
10  
TPA3250  
8W  
LC  
RIGHT  
Filter  
Audio  
Source  
And Control  
1
0.1  
LEFT  
LC  
Filter  
/CLIP_OTW  
/RESET  
/FAULT  
12V  
M1:M2  
Operation Mode Select  
Switching Frequency Select  
Master/Slave Synchronization  
Power Supply  
36V  
FREQ_ADJ  
OSC_IO  
0.01  
110VAC->240VAC  
T A = 25èC  
0.001  
10m  
100m  
1
10  
100  
Po - Output Power - W  
D000  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE99  
 
 
 
 
 
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
目录  
9.2 Functional Block Diagrams ..................................... 15  
9.3 Feature Description................................................. 17  
9.4 Device Functional Modes........................................ 17  
10 Application and Implementation........................ 21  
10.1 Application Information.......................................... 21  
10.2 Typical Applications .............................................. 21  
11 Power Supply Recommendations ..................... 28  
11.1 Power Supplies ..................................................... 28  
11.2 Powering Up.......................................................... 28  
11.3 Powering Down..................................................... 29  
11.4 Thermal Design..................................................... 30  
12 Layout................................................................... 33  
12.1 Layout Guidelines ................................................. 33  
12.2 Layout Examples................................................... 34  
13 器件和文档支持 ..................................................... 37  
13.1 文档支持................................................................ 37  
13.2 社区资源................................................................ 37  
13.3 ....................................................................... 37  
13.4 静电放电警告......................................................... 37  
13.5 Glossary................................................................ 37  
14 机械、封装和可订购信息....................................... 37  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Audio Characteristics (BTL) ...................................... 8  
7.7 Audio Characteristics (SE) ....................................... 9  
7.8 Audio Characteristics (PBTL) ................................... 9  
7.9 Typical Characteristics, BTL Configuration............. 10  
7.10 Typical Characteristics, SE Configuration............. 12  
7.11 Typical Characteristics, PBTL Configuration ........ 13  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 14  
9.1 Overview ................................................................. 14  
8
9
4 修订历史记录  
Changes from Original (December 2015) to Revision A  
Page  
已将数据表器件编号由“TPS3250D2”改为“TPA3250” ............................................................................................................. 1  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
5 Device Comparison Table  
DEVICE NAME  
TPA3251  
DESCRIPTION  
175-W Stereo Class-D PurePath™ Ultra-HD Analog Input Audio Power Amplifier  
50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance  
30W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance  
TPA3116D2  
TPA3118D2  
6 Pin Configuration and Functions  
The TPA3250 is available in a thermally enhanced TSSOP package.  
The package type contains a PowerPad™ that is located on the bottom side of the device for thermal connection  
to the PCB.  
DDV Package  
HTSSOP 44-Pin  
(Top View)  
BST_D  
BST_C  
GND  
GVDD_CD  
CLIP_OTW  
VBG  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
3
GND  
FAULT  
4
OUT_D  
OUT_D  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_C  
GND  
RESET  
INPUT_D  
INPUT_C  
C_START  
AVDD  
5
6
7
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GND  
Thermal  
Pad  
GND  
DVDD  
OUT_B  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_A  
OUT_A  
GND  
OSC_IOP  
OSC_IOM  
FREQ_ADJ  
OC_ADJ  
INPUT_A  
INPUT_B  
M2  
GND  
M1  
BST_B  
BST_A  
VDD  
GVDD_AB  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
9
AVDD  
P
P
P
P
P
O
O
P
O
O
P
Internal voltage regulator, analog section  
BST_A  
BST_B  
BST_C  
BST_D  
23  
24  
43  
44  
2
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_A required.  
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_B required.  
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_C required.  
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_D required.  
Clipping warning and Over-temperature warning; open drain; active low  
Startup ramp, requires a charging capacitor to GND  
CLIP_OTW  
C_START  
DVDD  
8
12  
4
Internal voltage regulator, digital section  
FAULT  
Shutdown signal, open drain; active low  
FREQ_ADJ  
15  
Oscillator frequency programming pin  
10, 11, 25, 26,  
33, 34, 41, 42  
GND  
Ground  
GVDD_AB  
GVDD_CD  
INPUT_A  
INPUT_B  
INPUT_C  
INPUT_D  
M1  
22  
P
P
I
Gate-drive voltage supply; AB-side, requires 0.1 µF capacitor to GND  
Gate-drive voltage supply; CD-side, requires 0.1 µF capacitor to GND  
Input signal for half bridge A  
1
17  
18  
I
Input signal for half bridge B  
7
I
Input signal for half bridge C  
6
I
Input signal for half bridge D  
20  
I
Mode selection 1 (LSB)  
M2  
19  
I
Mode selection 2 (MSB)  
OC_ADJ  
OSC_IOM  
OSC_IOP  
OUT_A  
16  
I/O  
I/O  
O
O
O
O
O
P
P
I
Over-Current threshold programming pin  
Oscillator synchronization interface  
Oscillator synchronization interface  
Output, half bridge A  
14  
13  
27, 28  
OUT_B  
32  
Output, half bridge B  
OUT_C  
35  
Output, half bridge C  
OUT_D  
39, 40  
Output, half bridge D  
PVDD_AB  
PVDD_CD  
RESET  
29, 30, 31  
PVDD supply for half-bridge A and B  
PVDD supply for half-bridge C and D  
Device reset Input; active low  
36, 37, 38  
5
21  
3
VDD  
P
P
P
Power supply for internal voltage regulator requires a 10-µF capacitor with a 0.1-µF capacitor to GND for decoupling.  
Internal voltage reference requires a 0.1-µF capacitor to GND for decoupling.  
VBG  
PowerPAD™  
Ground, connect to PCB copper pour. Placed on bottom side of device.  
Table 1. Mode Selection Pins  
MODE PINS  
OUTPUT  
CONFIGURATION  
INPUT MODE  
DESCRIPTION  
M2  
0
M1  
0
2N + 1  
2N/1N + 1  
2N + 1  
2 × BTL  
1 x BTL + 2 x SE  
1 x PBTL  
Stereo BTL output configuration  
0
1
2.1 BTL + SE mode  
1
0
Parallelled BTL configuration. Connect INPUT_C and INPUT_D to GND.  
Single ended output configuration  
1
1
1N +1  
4 x SE  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
-0.3  
MAX  
50  
UNIT  
V
BST_X to GVDD_X(2)  
VDD to GND  
GVDD_X to GND(2)  
13.2  
13.2  
50  
V
V
Supply voltage  
PVDD_X to GND(2)  
V
DVDD to GND  
4.2  
8.5  
4.2  
50  
V
AVDD to GND  
V
VBG to GND  
V
OUT_X to GND(2)  
BST_X to GND(2)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
62.5  
4.2  
4.2  
7
V
OC_ADJ, M1, M2, OSC_IOP, OSC_IOM, FREQ_ADJ, C_START, to GND  
RESET, FAULT, CLIP_OTW, CLIP to GND  
INPUT_X to GND  
V
Interface pins  
V
V
Continuous sink current, RESET, FAULT, CLIP_OTW, CLIP, RESET to  
GND  
9
mA  
TJ  
Operating junction temperature range  
Storage temperature range  
0
150  
150  
°C  
°C  
Tstg  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) These voltages represents the DC voltage + peak AC waveform measured at the terminal of the device in all conditions.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins  
±2000  
V
(1)  
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
PVDD_x  
GVDD_x  
Half-bridge supply  
DC supply voltage  
DC supply voltage  
DC supply voltage  
12  
32  
38  
13.2  
13.2  
V
Supply for logic regulators and gate-drive  
circuitry  
10.8  
12  
V
V
VDD  
Digital regulator supply voltage  
10.8  
2.7  
1.5  
1.6  
5
12  
4
RL(BTL)  
RL(SE)  
Output filter inductance within  
recommended value range  
Load impedance  
3
RL(PBTL)  
LOUT(BTL)  
LOUT(SE)  
LOUT(PBTL)  
2
Output filter inductance  
Minimum output inductance at IOC  
5
μH  
kHz  
kΩ  
5
Nominal  
430  
475  
575  
29.7  
19.8  
9.9  
450  
500  
600  
30  
470  
525  
PWM frame rate selectable for AM  
interference avoidance; 1% Resistor  
tolerance  
FPWM  
AM1  
AM2  
625  
Nominal; Master mode  
AM1; Master mode  
AM2; Master mode  
30.3  
20.2  
10.1  
R(FREQ_ADJ)  
PWM frame rate programming resistor  
20  
10  
CPVDD  
ROC  
PVDD close decoupling capacitors  
Over-current programming resistor  
1.0  
μF  
kΩ  
kΩ  
Resistor tolerance = 5%  
Resistor tolerance = 5%  
22  
47  
30  
64  
ROC(LATCHED) Over-current programming resistor  
Voltage on FREQ_ADJ pin for slave  
mode operation  
V(FREQ_ADJ)  
Slave mode  
3.3  
V
TJ  
Junction temperature  
0
125  
°C  
7.4 Thermal Information  
TPA3250  
THERMAL METRIC(1)  
DDV 44-PINS HTSSOP  
UNIT  
JEDEC STANDARD 4 LAYER PCB  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.0  
10.2  
6.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
6.5  
RθJC(bot)  
1.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
7.5 Electrical Characteristics  
PVDD_X = 32 V, GVDD_X = 12 V, VDD = 12 V, TA (Ambient temperature) = 25°C, fS = 450 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION  
Voltage regulator, only used as reference  
DVDD  
VDD = 12 V  
3
3.3  
7.8  
3.6  
V
V
node  
Voltage regulator, only used as reference  
node  
AVDD  
VDD = 12 V  
Operating, 50% duty cycle  
Idle, reset mode  
40  
13  
25  
3
IVDD  
VDD supply current  
mA  
mA  
50% duty cycle  
IGVDD_X  
Gate-supply current per full-bridge  
PVDD idle current per full bridge  
Reset mode  
50% duty cycle with 10µH Output Filter Inductors  
Reset mode, No switching  
12.5  
1
mA  
mA  
IPVDD_X  
ANALOG INPUTS  
RIN  
Input resistance  
24  
20  
k  
V
VIN  
Maximum input voltage swing  
Maximum input current  
Inverting voltage Gain  
7
1
IIN  
mA  
dB  
G
VOUT/VIN  
OSCILLATOR  
Nominal, Master Mode  
AM1, Master Mode  
2.58  
2.85  
3.45  
1.86  
2.7  
3
2.82  
3.15  
3.75  
fOSC(IO+)  
FPWM × 6  
MHz  
AM2, Master Mode  
3.6  
VIH  
VIL  
High level input voltage  
Low level input voltage  
V
V
1.45  
OUTPUT-STAGE MOSFETs  
Drain-to-source resistance, low side (LS)  
60  
60  
100  
100  
mΩ  
mΩ  
TJ = 25°C, Includes metallization resistance,  
GVDD = 12 V  
RDS(on)  
Drain-to-source resistance, high side (HS)  
I/O PROTECTION  
Undervoltage protection limit, GVDD_x and  
VDD  
Vuvp,VDD,GVDD  
9.5  
V
(1)  
Vuvp,VDD, GVDD,hyst  
OTW  
0.6  
V
Overtemperature warning, CLIP_OTW(1)  
115  
145  
125  
135  
165  
°C  
Temperature drop needed below OTW  
temperature for CLIP_OTW to be inactive  
after OTW event.  
(1)  
OTWhyst  
25  
°C  
OTE(1)  
Overtemperature error  
OTE-OTW differential  
155  
30  
°C  
°C  
OTE-OTW(differential)  
(1)  
A reset needs to occur for FAULT to be  
released following an OTE event  
(1)  
OTEhyst  
25  
2.3  
14  
°C  
ms  
A
OLPC  
IOC  
Overload protection counter  
Overcurrent limit protection  
fPWM = 450 kHz  
Resistor – programmable, nominal peak current in  
1load, ROCP = 22 kΩ  
Resistor – programmable, peak current in 1load,  
ROCP = 47kΩ  
IOC(LATCHED)  
IDCspkr  
Overcurrent limit protection  
14  
1.5  
150  
A
A
DC Speaker Protection Current Threshold  
Overcurrent response time  
BTL current imbalance threshold  
Time from switching transition to flip-state induced  
by overcurrent.  
IOCT  
ns  
Connected when RESET is active to provide  
bootstrap charge. Not used in SE mode.  
IPD  
Output pulldown current of each half  
3
mA  
(1) Specified by design.  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
 
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
PVDD_X = 32 V, GVDD_X = 12 V, VDD = 12 V, TA (Ambient temperature) = 25°C, fS = 450 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC DIGITAL SPECIFICATIONS  
VIH  
VIL  
Ilkg  
High level input voltage  
Low level input voltage  
Input leakage current  
1.9  
V
V
M1, M2, OSC_IOP, OSC_IOM, RESET  
0.8  
100  
μA  
OTW/SHUTDOWN (FAULT)  
Internal pullup resistance, CLIP_OTW to  
RINT_PU  
20  
3
26  
32  
kΩ  
DVDD, FAULT to DVDD  
High level output voltage  
Low level output voltage  
CLIP_OTW, FAULT  
VOH  
Internal pullup resistor  
IO = 4 mA  
3.3  
200  
30  
3.6  
V
VOL  
500  
mV  
Device fanout  
No external pullup  
devices  
7.6 Audio Characteristics (BTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 32 V,  
GVDD_X = 12 V, RL = 8 , fS = 450 kHz, ROC = 22 k, TA = 25°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, mode = 00,  
AES17 + AUX-0025 measurement filters,unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
RL = 8 , 10% THD+N  
MIN  
TYP MAX UNIT  
70  
RL = 4 , 10% THD+N, 3 seconds Peak  
130  
Power(1)  
RL = 4 , 10% THD+N, Single Channel, 300  
W
130  
seconds duration(1)  
PO  
Power output per channel  
RL = 8 , 1% THD+N  
RL = 4 , 1% THD+N  
60  
40  
RL = 4 , 1% THD+N, 6 seconds Peak  
105  
105  
Power(1)  
RL = 4 , 1% THD+N, Single Channe(1)  
l
THD+N Total harmonic distortion + noise  
1 W  
0.005%  
A-weighted, AES17 filter, Input Capacitor  
Grounded  
Vn  
Output integrated noise  
60  
μV  
|VOS  
|
Output offset voltage  
Signal-to-noise ratio(2)  
Inputs AC coupled to GND  
20  
112  
112  
0.6  
60  
mV  
dB  
dB  
W
SNR  
DNR  
Pidle  
Dynamic range  
Power dissipation due to Idle losses (IPVDD_X  
)
PO = 0, 4 channels switching(3)  
(1) Peak Power rating using TPA3250 EVM  
(2) SNR is calculated relative to 1% THD+N output level.  
(3) Actual system idle losses also are affected by core losses of output inductors.  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
7.7 Audio Characteristics (SE)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 32 V,  
GVDD_X = 12 V, RL = 4 , fS = 450 kHz, ROC = 22 k, TA = 25°C, Output Filter: LDEM = 15 μH, CDEM = 1 µF, MODE = 11,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
RL = 4 , 10% THD+N  
MIN  
TYP MAX UNIT  
33  
RL = 3 , 10% THD+N  
RL = 4 , 1% THD+N  
RL = 3 , 1% THD+N  
1 W  
42  
PO  
Power output per channel  
W
27  
34  
THD+N Total harmonic distortion + noise  
0.015%  
A-weighted, AES17 filter, Input Capacitor  
Grounded  
Vn  
Output integrated noise  
111  
μV  
SNR  
DNR  
Pidle  
Signal to noise ratio(1)  
A-weighted  
100  
100  
0.5  
dB  
dB  
W
Dynamic range  
A-weighted  
PO = 0, 4 channels switching(2)  
Power dissipation due to idle losses (IPVDD_X)  
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
7.8 Audio Characteristics (PBTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 32 V,  
GVDD_X = 12 V, RL = 4 , fS = 450 kHz, ROC = 22 k, TA = 25°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, MODE = 10,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
RL = 8 , 10% THD+N  
MIN  
TYP MAX UNIT  
75  
RL = 4 , 10% THD+N  
RL = 3 , 10% THD+N  
RL = 8 , 1% THD+N  
RL = 4 , 1% THD+N  
RL = 3 , 1% THD+N  
1 W  
145  
189  
W
PO  
Power output per channel  
60  
115  
150  
THD+N Total harmonic distortion + noise  
0.015%  
A-weighted, AES17 filter, Input Capacitor  
Grounded  
Vn  
Output integrated noise  
62  
μV  
SNR  
DNR  
Pidle  
Signal to noise ratio(1)  
A-weighted  
112  
107  
0.6  
dB  
dB  
W
Dynamic range  
A-weighted  
PO = 0, 4 channels switching(2)  
Power dissipation due to idle losses (IPVDD_X)  
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
Copyright © 2015–2016, Texas Instruments Incorporated  
9
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.9 Typical Characteristics, BTL Configuration  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 32 V, GVDD_X = 12 V, RL = 8 , fS = 450 kHz, ROC = 22 k,  
TA = 25°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, mode = 00, AES17 + AUX-0025 measurement filters,unless otherwise  
noted.  
10  
5
10  
1
T A = 25èC  
1W  
T A = 25èC  
1W  
10W  
40W  
10W  
40W  
2
1
0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
0.005  
0.01  
0.001  
0.002  
0.001  
0.0005  
0.0003  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
40k  
f - Frequency - Hz  
f - Frequency - Hz  
D001  
D002  
RL = 8 Ω  
P = 1W, 10W, 40W  
TA = 25°C  
RL = 8 Ω  
P = 1W, 10W, 40W  
TA = 25°C  
AUX-0025 filter, 80 kHz analyzer BW  
Figure 1. Total Harmonic Distortion+Noise vs Frequency  
Figure 2. Total Harmonic Distortion+Noise vs Frequency  
125  
4W  
8W  
10  
8W  
100  
1
0.1  
75  
50  
0.01  
25  
THD+N = 10%  
TA = 25èC  
T A = 25èC  
0
0.001  
10  
15  
20  
25  
30  
35  
40  
10m  
100m  
1
10  
100  
PVDD - Supply Voltage - V  
Po - Output Power - W  
D004  
D0030  
RL = 4 Ω, 8 Ω  
THD+N = 10%  
TA = 25°C  
RL = 8 Ω  
TA = 25°C  
Figure 4. Output Power vs Supply Voltage  
Figure 3. Total Harmonic Distortion + Noise vs Output  
Power  
120  
100  
10  
1
4W  
8W  
4W  
8W  
100  
80  
60  
40  
20  
THD+N = 1%  
TA = 25èC  
TA = 25èC  
0
10  
15  
20  
25  
30  
35  
40  
10m  
100m  
1
10  
100  
PVDD - Supply Voltage - V  
2 Channel Output Power - W  
D005  
D006  
RL = 4 Ω, 8 Ω  
THD+N = 1%  
TA = 25°C  
RL = 4 Ω, 8 Ω  
THD+N = 10%  
TA = 25°C  
Figure 5. Output Power vs Supply Voltage  
Figure 6. System Efficiency vs Output Power  
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
 
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
Typical Characteristics, BTL Configuration (continued)  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 32 V, GVDD_X = 12 V, RL = 8 , fS = 450 kHz, ROC = 22 k,  
TA = 25°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, mode = 00, AES17 + AUX-0025 measurement filters,unless otherwise  
noted.  
0
30  
T A = 25èC  
8W  
4W  
8W  
V ref = 22.627 V  
FFT size = 16384  
-20  
-40  
25  
20  
15  
10  
5
-60  
-80  
-100  
-120  
-140  
-160  
TA = 25èC  
0
0
5k  
10k  
15k  
20k  
25k  
30k  
35k  
40k  
45k 48k  
0
50  
100  
150  
200  
f - Frequency - Hz  
2 Channel Output Power - W  
D008  
D007  
8 Ω, VREF = 25.46 V (1% Output power)  
FFT = 16384  
TA = 25°C  
RL = 4 Ω, 8 Ω  
THD+N = 10%  
TA = 25°C  
AUX-0025 filter, 80 kHz analyzer BW  
Figure 8. Noise Amplitude vs Frequency  
Figure 7. System Power Loss vs Output Power  
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
 
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.10 Typical Characteristics, SE Configuration  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 32 V, GVDD_X = 12 V, RL = 4 , fS = 450 kHz, ROC = 22 k,  
TA = 25°C, Output Filter: LDEM = 15 μH, CDEM = 680 nF, MODE = 11, AES17 + AUX-0025 measurement filters, unless  
otherwise noted.  
10  
1
10  
1
TA = 25èC  
1W  
5W  
15W  
3W  
4W  
0.1  
0.1  
0.01  
0.01  
TA = 25èC  
0.001  
0.001  
20  
100  
1k  
10k 20k  
10m  
RL = 3Ω, 4Ω  
100m  
1
10  
100  
f - Frequency - Hz  
D010  
Po - Output Power - W  
D009  
RL = 4Ω  
P = 1W, 10W, 25W  
TA = 25°C  
TA = 25°C  
Figure 10. Total Harmonic Distortion+Noise vs Frequency  
Figure 9. Total Harmonic Distortion+Noise vs Output Power  
70  
10  
3W  
4W  
TA = 25èC  
1W  
5W  
60  
15W  
50  
40  
30  
20  
1
0.1  
0.01  
10  
THD+N = 10%  
TA = 25èC  
0
10  
15  
20  
25  
30  
35  
40  
PVDD - Supply Voltage - V  
0.001  
D012  
20  
100  
1k  
10k  
40k  
RL = 3Ω, 4Ω  
THD+N = 10%  
TA = 25°C  
f - Frequency - Hz  
D011  
RL = 4Ω  
P = 1W, 10W, 25W  
TA = 25°C  
AUX-0025 filter, 80 kHz analyzer BW  
Figure 12. Output Power vs Supply Voltage  
Figure 11. Total Harmonic Distortion+Noise vs Frequency  
60  
3W  
4W  
50  
40  
30  
20  
10  
0
THD+N = 1%  
TA = 25èC  
10  
15  
20  
25  
30  
35  
40  
PVDD - Supply Voltage - V  
D013  
RL = 3Ω, 4Ω  
THD+N = 1%  
TA = 25°C  
Figure 13. Output Power vs Supply Voltage  
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
 
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
7.11 Typical Characteristics, PBTL Configuration  
All Measurements taken at audio frequency = 1kHz, PVDD_X = 32 V, GVDD_X = 12 V, RL = 4, fS = 450 kHz, ROC = 22 k,  
TA = 25°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, MODE = 10, AES17 + AUX-0025 measurement filters, unless otherwise  
noted.  
10  
5
10  
1
TA = 25èC  
1W  
20W  
75W  
4W  
8W  
2
1
0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
0.005  
0.01  
0.002  
0.001  
0.0005  
0.0003  
TA = 25èC  
0.001  
10m  
100m  
1
10  
100  
20  
100  
1k  
10k 20k  
Po - Output Power - W  
f - Frequency - Hz  
D014  
D015  
RL = 4Ω, 8Ω  
TA = 25°C  
RL = 4Ω  
P = 1W, 20W, 75W  
TA = 25°C  
Figure 14. Total Harmonic Distortion+Noise vs Output  
Power  
Figure 15. Total Harmonic Distortion+Noise vs Frequency  
275  
10  
3W  
250  
TA = 25èC  
1W  
4W  
20W  
75W  
225  
200  
175  
150  
125  
100  
75  
1
0.1  
0.01  
50  
THD+N = 10%  
TA = 25èC  
25  
0
0.001  
10  
15  
20  
25  
30  
35  
40  
20  
100  
1k  
10k  
40k  
PVDD - Supply Voltage - V  
D017  
f - Frequency - Hz  
D016  
RL = 3Ω, 4Ω  
THD+N = 10%  
TA = 25°C  
RL = 4Ω  
P = 1W, 20W, 75W  
TA = 25°C  
AUX-0025 filter, 80 kHz analyzer BW  
Figure 17. Output Power vs Supply Voltage  
Figure 16. Total Harmonic Distortion+Noise vs Frequency  
225  
3W  
4W  
200  
175  
150  
125  
100  
75  
50  
25  
THD+N = 1%  
TA = 25èC  
0
10  
15  
20  
25  
30  
35  
40  
PVDD - Supply Voltage - V  
D018  
RL = 3Ω, 4Ω  
THD+N = 1%  
TA = 25°C  
Figure 18. Output Power vs Supply Voltage  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
 
 
 
 
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
8 Parameter Measurement Information  
All parameters are measured according to the conditions described in the Recommended Operating Conditions,  
Typical Characteristics, BTL Configuration, Typical Characteristics, SE Configuration and Typical Characteristics,  
PBTL Configuration sections.  
Most audio analyzers will not give correct readings of Class-D amplifiers’ performance due to their sensitivity to  
out of band noise present at the amplifier output. AES-17 + AUX-0025 pre-analyzer filters are recommended to  
use for Class-D amplifier measurements. In absence of such filters, a 30-kHz low-pass filter (10 + 47 nF) can  
be used to reduce the out of band noise remaining on the amplifier outputs.  
9 Detailed Description  
9.1 Overview  
To facilitate system design, the TPA3250 needs only a 12-V supply in addition to the (typical) 32-V power-stage  
supply. An internal voltage regulator provides suitable voltage levels for the digital and low-voltage analog  
circuitry, AVDD and DVDD. Additionally, all circuitry requiring a floating voltage supply, that is, the high-side gate  
drive, is accommodated by built-in bootstrap circuitry requiring only an external capacitor for each half-bridge.  
The audio signal path including gate drive and output stage is designed as identical, independent half-bridges.  
For this reason, each half-bridge has separate bootstrap pins (BST_X). Power-stage supply pins (PVDD_X) and  
gate drive supply pins (GVDD_X) are separate for each full bridge. Although supplied from the same 12-V  
source, separating to GVDD_AB, GVDD_CD, and VDD on the printed-circuit board (PCB) by RC filters (see  
application diagram for details) is recommended. These RC filters provide the recommended high-frequency  
isolation. Special attention should be paid to placing all decoupling capacitors as close to their associated pins as  
possible. In general, the physical loop with the power supply pins, decoupling capacitors and GND return path to  
the device pins must be kept as short as possible and with as little area as possible to minimize induction (see  
reference board documentation for additional information).  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor is  
charged through an internal diode connected between the gate-drive power-supply pin (GVDD_X) and the  
bootstrap pins. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output  
potential and thus provides a suitable voltage supply for the high-side gate driver. It is recommended to use 33-  
nF ceramic capacitors, size 0603 or 0805, for the bootstrap supply. These 33nF capacitors ensure sufficient  
energy storage, even during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully  
turned on during the remaining part of the PWM cycle.  
Special attention should be paid to the power-stage power supply; this includes component selection, PCB  
placement, and routing. As indicated, each full-bridge has independent power-stage supply pins (PVDD_X). For  
optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X node is  
decoupled with 1-μF ceramic capacitor placed as close as possible to the supply pins. It is recommended to  
follow the PCB layout of the TPA3250 reference design. For additional information on recommended power  
supply and required components, see the application diagrams in this data sheet.  
The 12-V supply should be from a low-noise, low-output-impedance voltage regulator. Likewise, the 36-V power-  
stage supply is assumed to have low output impedance and low noise. The power-supply sequence is not critical  
as facilitated by the internal power-on-reset circuit, but it is recommended to release RESET after the power  
supply is settled for minimum turn on audible artefacts. Moreover, the TPA3250 is fully protected against  
erroneous power-stage turn on due to parasitic gate charging. Thus, voltage-supply ramp rates (dV/dt) are non-  
critical within the specified range (see the Recommended Operating Conditions table of this data sheet).  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
9.2 Functional Block Diagrams  
/CLIP_OTW  
VDD  
VBG  
VREG  
AVDD  
DVDD  
GND  
POWER-UP  
RESET  
/FAULT  
UVP  
M1  
M2  
TEMP  
SENSE  
GVDD_A  
GVDD_B  
GVDD_C  
GND  
GVDD_D  
/RESET  
DIFFOC  
CB3C  
STARTUP  
CONTROL  
C_START  
OVER-LOAD  
PROTECTION  
CURRENT  
SENSE  
OC_ADJ  
OSC_IOM  
OSC_IOP  
PVDD_X  
OUT_X  
GND  
OSCILLATOR  
PPSC  
FREQ_ADJ  
GVDD_AB  
BST_A  
PWM  
ACTIVITY  
DETECTOR  
PVDD_AB  
OUT_A  
GND  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
CONTROL  
GATE-DRIVE  
GATE-DRIVE  
GATE-DRIVE  
GATE-DRIVE  
INPUT_A  
ANALOG  
+
LOOP FILTER  
GVDD_AB  
BST_B  
PVDD_AB  
OUT_B  
GND  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
INPUT_B  
ANALOG  
CONTROL  
CONTROL  
CONTROL  
+
LOOP FILTER  
GVDD_CD  
BST_C  
PVDD_CD  
OUT_C  
GND  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
INPUT_C  
ANALOG  
+
LOOP FILTER  
GVDD_CD  
BST_D  
PVDD_CD  
OUT_D  
GND  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
INPUT_D  
ANALOG  
+
LOOP FILTER  
FunctionalBlockDiagram.vsd  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Functional Block Diagrams (continued)  
Capacitor for  
External  
Filtering  
&
System  
microcontroller or  
Analog circuitry  
Startup/Stop  
BST_A  
BST_B  
OSC_IOP  
OSC_IOM  
Oscillator  
Synchronization  
Bootstrap  
Capacitors  
2nd Order  
L-C Output  
Filter for  
each  
OUT_A  
OUT_B  
Output  
H-Bridge 1  
INPUT_A  
Input DC  
Blocking  
Caps  
ANALOG_IN_A  
ANALOG_IN_B  
Input  
H-Bridge 1  
INPUT_B  
H-Bridge  
2-CHANNEL  
H-BRIDGE  
BTL MODE  
Hardwire PWM  
Frame Adjust  
& Master/Slave  
Mode  
FREQ_ADJ  
2nd Order  
L-C Output  
Filter for  
each  
OUT_C  
OUT_D  
INPUT_C  
INPUT_D  
Input DC  
Blocking  
Caps  
ANALOG_IN_C  
ANALOG_IN_D  
Input  
H-Bridge 2  
Output  
H-Bridge 2  
H-Bridge  
BST_C  
BST_D  
M1  
M2  
Hardwire  
Mode  
Control  
Bootstrap  
Capacitors  
GVDD, VDD,  
DVDD &  
AVDD  
Power Supply  
Decoupling  
Hardwire  
PVDD  
GND  
PVDD  
Power Supply  
Decoupling  
36V  
Over-  
Current  
Limit  
SYSTEM  
Power  
Supplies  
GND  
12V  
GVDD (12V)/VDD (12V)  
VAC  
*NOTE1: Logic AND in or outside microcontroller  
Figure 19. System Block Diagram  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
9.3 Feature Description  
9.3.1 Error Reporting  
The FAULT, and CLIP_OTW, pins are active-low, open-drain outputs. The function is for protection-mode  
signaling to a system-control device.  
Any fault resulting in device shutdown is signaled by the FAULT pin going low. Also, CLIP_OTW goes low when  
the device junction temperature exceeds 125°C (see Table 2).  
Table 2. Error Reporting  
FAULT  
CLIP_OTW  
DESCRIPTION  
Overtemperature (OTE) or overload (OLP) or undervoltage (UVP) Junction  
temperature higher than 125°C (overtemperature warning)  
0
0
Overload (OLP) or undervoltage (UVP). Junction temperature higher than 125°C  
(overtemperature warning)  
0
0
0
1
1
1
0
1
Overload (OLP) or undervoltage (UVP). Junction temperature lower than 125°C  
Junction temperature higher than 125°C (overtemperature warning)  
Junction temperature lower than 125°C and no OLP or UVP faults (normal operation)  
Note that asserting either RESET low forces the FAULT signal high, independent of faults being present. TI  
recommends monitoring the CLIP_OTW signal using the system microcontroller and responding to an  
overtemperature warning signal by, that is, turning down the volume to prevent further heating of the device  
resulting in device shutdown (OTE).  
To reduce external component count, an internal pullup resistor to 3.3 V is provided on both FAULT and  
CLIP_OTW outputs.  
9.4 Device Functional Modes  
9.4.1 Device Protection System  
The TPA3250 contains advanced protection circuitry carefully designed to facilitate system integration and ease  
of use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions such as  
short circuits, overload, overtemperature, and undervoltage. The TPA3250 responds to a fault by immediately  
setting the power stage in a high-impedance (Hi-Z) state and asserting the FAULT pin low. In situations other  
than overload and overtemperature error (OTE), the device automatically recovers when the fault condition has  
been removed, that is, the supply voltage has increased.  
The device will function on errors, as shown in Table 3.  
Table 3. Device Protection  
BTL  
MODE  
PBTL  
MODE  
SE  
MODE  
LOCAL  
ERROR IN  
LOCAL  
ERROR IN  
LOCAL  
ERROR IN  
TURNS OFF  
TURNS OFF  
TURNS OFF  
A
B
C
D
A
B
C
D
A
B
C
D
A+B  
C+D  
A+B  
C+D  
A+B+C+D  
Bootstrap UVP does not shutdown according to the table, it shuts down the respective halfbridge (non-latching,  
does not assert FAULT).  
9.4.1.1 Overload and Short Circuit Current Protection  
TPA3250 has fast reacting current sensors with a programmable trip threshold (OC threshold) on all high-side  
and low-side FETs. To prevent output current to increase beyond the programmed threshold, TPA3250 has the  
option of either limiting the output current for each switching cycle (Cycle By Cycle Current Control, CB3C) or to  
perform an immediate shutdown of the output in case of excess output current (Latching Shutdown). CB3C  
prevents premature shutdown due to high output current transients caused by high level music transients and a  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
 
 
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
drop of real speaker’s load impedance, and allows the output current to be limited to a maximum programmed  
level. If the maximum output current persists, i.e. the power stage being overloaded with too low load impedance,  
the device will shut down the affected output channel and the affected output is put in a high-impedance (Hi- Z)  
state until a RESET cycle is initiated. CB3C works individually for each half bridge output. If an over current  
event is triggered, CB3C performs a state flip of the half bridge output that is cleared upon beginning of next  
PWM frame.  
PWM_X  
RISING EDGE PWM  
SETS CB3C LATCH  
HS PWM  
LS PWM  
OC EVENT RESETS  
CB3C LATCH  
OC THRESHOLD  
OUTPUT CURRENT  
OCH  
HS GATE-DRIVE  
LS GATE-DRIVE  
Figure 20. CB3C Timing Example  
During CB3C an over load counter increments for each over current event and decrease for each non-over  
current PWM cycle. This allows full amplitude transients into a low speaker impedance without a shutdown  
protection action. In the event of a short circuit condition, the over current protection limits the output current by  
the CB3C operation and eventually shut down the affected output if the overload counter reaches its maximum  
value. If a latched OC operation is required such that the device shuts down the affected output immediately  
upon first detected over current event, this protection mode should be selected. The over current threshold and  
mode (CB3C or Latched OC) is programmed by the OC_ADJ resistor value. The OC_ADJ resistor needs to be  
within its intentional value range for either CB3C operation or Latched OC operation.  
I_OC  
IOC_max  
IOC_min  
Not Defined  
ROC_ADJ  
Figure 21. OC Threshold versus OC_ADJ Resistor Value Example  
OC_ADJ values outside specified value range for either CB3C or latched OC operation will result in minimum OC  
threshold.  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
Table 4. Device Protection  
OC_ADJ Resistor Value  
Protection Mode  
CB3C  
OC Threshold  
16.3A  
22kΩ  
24kΩ  
27kΩ  
30kΩ  
47kΩ  
51kΩ  
56kΩ  
64kΩ  
CB3C  
15.1A  
CB3C  
13.5A  
CB3C  
12.3A  
Latched OC  
Latched OC  
Latched OC  
Latched OC  
16.3A  
15.1A  
13.5A  
12.3A  
9.4.1.2 DC Speaker Protection  
The output DC protection scheme protects a connected speaker from excess DC current caused by a speaker  
wire accidentally shorted to chassis ground. Such a short circuit results in a DC voltage of PVDD/2 across the  
speaker, which potentially can result in destructive current levels. The output DC protection detects any  
unbalance of the output and input current of a BTL output, and in the event of the unbalance exceeding a  
programmed threshold, the overload counter increments until its maximum value and the affected output channel  
is shut down. DC Speaker Protection is disabled in PBTL and SE mode operation.  
9.4.1.3 Pin-to-Pin Short Circuit Protection (PPSC)  
The PPSC detection system protects the device from permanent damage in the case that a power output pin  
(OUT_X) is shorted to GND_X or PVDD_X. For comparison, the OC protection system detects an overcurrent  
after the demodulation filter where PPSC detects shorts directly at the pin before the filter. PPSC detection is  
performed at startup that is, when VDD is supplied, consequently a short to either GND_X or PVDD_X after  
system startup does not activate the PPSC detection system. When PPSC detection is activated by a short on  
the output, all half bridges are kept in a Hi-Z state until the short is removed; the device then continues the  
startup sequence and starts switching. The detection is controlled globally by a two step sequence. The first step  
ensures that there are no shorts from OUT_X to GND_X, the second step tests that there are no shorts from  
OUT_X to PVDD_X. The total duration of this process is roughly proportional to the capacitance of the output LC  
filter. The typical duration is < 15 ms/μF. While the PPSC detection is in progress, FAULT is kept low, and the  
device will not react to changes applied to the RESET pin. If no shorts are present the PPSC detection passes,  
and FAULT is released. A device reset will not start a new PPSC detection. PPSC detection is enabled in BTL  
and PBTL output configurations, the detection is not performed in SE mode. To make sure not to trip the PPSC  
detection system it is recommended not to insert a resistive load to GND_X or PVDD_X.  
9.4.1.4 Overtemperature Protection OTW and OTE  
TPA3250 has a two-level temperature-protection system that asserts an active-low warning signal (CLIP_OTW)  
when the device junction temperature exceeds 125°C (typical) and, if the device junction temperature exceeds  
155°C (typical), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-  
impedance (Hi-Z) state and FAULT being asserted low. OTE is latched in this case. To clear the OTE latch,  
RESET must be asserted. Thereafter, the device resumes normal operation.  
9.4.1.5 Undervoltage Protection (UVP) and Power-on Reset (POR)  
The UVP and POR circuits of the TPA3250 fully protect the device in any power-up/down and brownout situation.  
While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are fully  
operational when the GVDD_X and VDD supply voltages reach stated in the Electrical Characteristics table.  
Although GVDD_X and VDD are independently monitored, a supply voltage drop below the UVP threshold on  
any VDD or GVDD_X pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z)  
state and FAULT being asserted low. The device automatically resumes operation when all supply voltages have  
increased above the UVP threshold.  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
9.4.1.6 Fault Handling  
If a fault situation occurs while in operation, the device acts accordingly to the fault being a global or a channel  
fault. A global fault is a chip-wide fault situation and causes all PWM activity of the device to be shut down, and  
will assert FAULT low. A global fault is a latching fault and clearing FAULT and restart operation requires  
resetting the device by toggling RESET. Toggling RESET should never be allowed with excessive system  
temperature, so it is advised to monitor RESET by a system microcontroller and only allow releasing RESET  
(RESET high) if the OTW signal is cleared (high). A channel fault results in shutdown of the PWM activity of the  
affected channel(s). Note that asserting RESET low forces the FAULT signal high, independent of faults being  
present. TI recommends monitoring the OTW signal using the system micro controller and responding to an over  
temperature warning signal by, that is, turning down the volume to prevent further heating of the device resulting  
in device shutdown (OTE).  
Table 5. Error Reporting  
Fault/Event  
Description  
Global or  
Channel  
Reporting  
Method  
Latched/Self  
Clearing  
Action needed  
to Clear  
Fault/Event  
Output FETs  
HI-Z  
PVDD_X UVP  
VDD UVP  
Increase affected  
supply voltage  
Voltage Fault  
Global  
FAULT pin  
Self Clearing  
AVDD UVP  
Allow DVDD to  
rise  
POR (DVDD UVP)  
Power On Reset Global  
FAULT pin  
None  
Self Clearing  
Self Clearing  
Self Clearing  
HI-Z  
Allow BST cap to  
recharge (lowside HighSide off  
ON, VDD 12V)  
Channel (Half  
Bridge)  
BST_X UVP  
Voltage Fault  
Cool below OTW  
threshold  
OTW  
OTE  
Thermal Warning Global  
OTW pin  
Normal operation  
Thermal  
Global  
FAULT pin  
FAULT pin  
Latched  
Latched  
Toggle RESET  
Toggle RESET  
HI-Z  
HI-Z  
Shutdown  
OLP (CB3C>1.7ms) OC Shutdown  
Channel  
Channel  
Latched OC  
(47kΩ<ROC_ADJ<68 OC Shutdown  
kΩ)  
FAULT pin  
None  
Latched  
Toggle RESET  
HI-Z  
CB3C  
Reduce signal  
level or remove  
short  
Flip state, cycle  
by cycle at fs/3  
(22kΩ<ROC_ADJ<30 OC Limiting  
kΩ)  
Channel  
Global  
Self Clearing  
Self Clearing  
No OSC_IO  
activity in Slave  
Mode  
Resume OSC_IO  
activity  
Stuck at Fault(1)  
None  
HI-Z  
(1) Stuck at Fault occurs when input OSC_IO input signal frequency drops below minimum frequency given in the Electrical Characteristics  
table of this data sheet.  
9.4.1.7 Device Reset  
Asserting RESET low initiates the device ramp down. The output FETs go into a Hi-Z state after the ramp down  
is complete. Output pull downs are active both in SE mode and BTL mode with RESET low.  
In BTL modes, to accommodate bootstrap charging prior to switching start, asserting the reset input low enables  
weak pulldown of the half-bridge outputs.  
Asserting reset input low removes any fault information to be signaled on the FAULT output, that is, FAULT is  
forced high. A rising-edge transition on reset input allows the device to resume operation after an overload fault.  
To ensure thermal reliability, the rising edge of reset must occur no sooner than 4 ms after the falling edge of  
FAULT.  
20  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
TPA3250 can be configured either in stereo BTL mode, 4 channel SE mode, mono PBTL mode, or in 2.1 mixed  
1x BTL + 2x SE mode depending on output power conditions and system design.  
10.2 Typical Applications  
10.2.1 Stereo BTL Application  
3R3  
+12V  
470uF  
100nF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GVDD_AB  
VDD  
BST_A  
BST_B  
GND  
10µH  
10nF  
33nF  
M1  
1nF  
1nF  
1µF  
1µF  
M2  
GND  
3w3  
10µF  
10µF  
INPUT_A  
INPUT_B  
INPUT_A  
INPUT_B  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
3R3  
22k  
10nF  
1µF  
10µH  
30k  
470uF  
PVDD  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1µF  
1µF  
1µF  
TPA3250  
GND  
GND  
GND  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
1µF  
AVDD  
10µH  
10nF  
C_START  
INPUT_C  
INPUT_D  
/RESET  
/FAULT  
VBG  
1µF 470uF  
10nF  
10µF  
10µF  
INPUT_C  
INPUT_D  
/RESET  
/FAULT  
1nF  
1nF  
1µF  
1µF  
3w3  
26  
25  
24  
23  
3R3  
100nF  
20  
21  
22  
10nF  
GND  
33nF  
10µH  
/CLIP_OTW  
/CLIP_OTW  
GVDD_CD  
BST_C  
BST_D  
3R3  
100nF  
33nF  
Figure 22. Typical Differential Input BTL Application  
Copyright © 2015–2016, Texas Instruments Incorporated  
21  
 
 
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Applications (continued)  
10.2.1.1 Design Requirements  
For this design example, use the parameters in Table 6.  
Table 6. Design Requirements, BTL Application  
DESIGN PARAMETER  
Low Power (Pull-up) Supply  
Mid Power Supply 12 V  
High Power Supply  
EXAMPLE  
3.3 V  
12 V  
12 - 32 V  
M2 = L  
Mode Selection  
M1 = L  
INPUT_A = ±3.9 V (peak, max)  
INPUT_B = ± 3.9V (peak, max)  
INPUT_C = ±3.9 V (peak, max)  
INPUT_D = ±3.9 V (peak, max)  
Analog Inputs  
Output Filters  
Inductor-Capacitor Low Pass FIlter (10 µH + 1 µF)  
Speaker Impedance  
3-8 Ω  
10.2.1.2 Detailed Design Procedures  
A rising-edge transition on reset input allows the device to execute the startup sequence and starts switching.  
The CLIP signal is indicating that the output is approaching clipping. The signal can be used to either an audio  
volume decrease or intelligent power supply nominally operating at a low rail adjusting to a higher supply rail.  
The device is inverting the audio signal from input to output.  
The DVDD and AVDD pins are not recommended to be used as a voltage sources for external circuitry.  
10.2.1.2.1 Decoupling Capacitor Recommendations  
In order to design an amplifier that has robust performance, passes regulatory requirements, and exhibits good  
audio performance, good quality decoupling capacitors should be used. In practice, X7R should be used in this  
application.  
The voltage of the decoupling capacitors should be selected in accordance with good design practices.  
Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the  
selection of the 1μF that is placed on the power supply to each full-bridge. It must withstand the voltage  
overshoot of the PWM switching, the heat generated by the amplifier during high power output, and the ripple  
current created by high power output. A minimum voltage rating of 50 V is required for use with a 32V power  
supply.  
10.2.1.2.2 PVDD Capacitor Recommendation  
The large capacitors used in conjunction with each full-bridge, are referred to as the PVDD Capacitors. These  
capacitors should be selected for proper voltage margin and adequate capacitance to support the power  
requirements. In practice, with a well designed system power supply, 1000 μF, 50 V supports most applications.  
The PVDD capacitors should be low ESR type because they are used in a circuit associated with high-speed  
switching.  
10.2.1.2.3 PCB Material Recommendation  
FR-4 Glass Epoxy material with 2 oz. (70 μm) copper is recommended for use with the TPA3250. The use of this  
material can provide for higher power output, improved thermal performance, and better EMI margin (due to  
lower PCB trace inductance.  
22  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
10.2.1.2.4 Oscillator  
The oscillator frequency can be trimmed by external control of the FREQ_ADJ pin.  
To reduce interference problems while using radio receiver tuned within the AM band, the switching frequency  
can be changed from nominal to lower values. These values should be chosen such that the nominal and the  
lower value switching frequencies together results in the fewest cases of interference throughout the AM band.  
The oscillator frequency can be selected by the value of the FREQ_ADJ resistor connected to GND in master  
mode according to the description in the Recommended Operating Conditions table.  
For slave mode operation, turn off the oscillator by pulling the FREQ_ADJ pin to DVDD. This configures the  
OSC_I/O pins as inputs to be slaved from an external differential clock. In a master/slave system inter channel  
delay is automatically setup between the switching of the audio channels, which can be illustrated by no idle  
channels switching at the same time. This will not influence the audio output, but only the switch timing to  
minimize noise coupling between audio channels through the power supply to optimize audio performance and to  
get better operating conditions for the power supply. The inter channel delay will be setup for a slave device  
depending on the polarity of the OSC_I/O connection such that a slave mode 1 is selected by connecting the  
master device OSC_I/O to the slave 1 device OSC_I/O with same polarity (+ to + and - to -), and slave mode 2 is  
selected with the inverse polarity (+ to - and - to +).  
10.2.2 Application Curves  
Relevant performance plots for TPA3250 in BTL configuration are shown in Typical Characteristics, BTL  
Configuration  
Table 7. Relevant Performance Plots, BTL Configuration  
PLOT TITLE  
Total Harmonic Distortion+Noise vs Frequency  
Total Harmonic Distortion+Noise vs Frequency, 80kHz analyzer BW  
Total Harmonic Distortion + Noise vs Output Power  
Output Power vs Supply Voltage, 10% THD+N  
Output Power vs Supply Voltage, 10% THD+N  
System Efficiency vs Output Power  
FIGURE NUMBER  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 6  
Figure 6  
System Power Loss vs Output Power  
Figure 7  
Output Power vs Case Temperature  
Noise Amplitude vs Frequency  
Figure 8  
Copyright © 2015–2016, Texas Instruments Incorporated  
23  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
10.2.3 Typical Application, Single Ended (1N) SE  
TPA3250 can be configured either in stereo BTL mode, 4 channel SE mode, mono PBTL mode, or in 2.1 mixed  
1x BTL + 2x SE mode depending on output power conditions and system design.  
470uF  
15µH  
3R3  
+12V  
470uF  
100nF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
10nF  
GVDD_AB  
VDD  
BST_A  
BST_B  
GND  
1nF  
1nF  
1µF  
1µF  
3w3  
33nF  
M1  
M2  
GND  
3R3  
10µF  
10µF  
INPUT_A  
INPUT_B  
INPUT_A  
INPUT_B  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
10nF  
22k  
1µF  
470uF  
15µH  
30k  
470uF  
PVDD  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1µF  
1µF  
1µF  
TPA3250  
GND  
GND  
GND  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
1µF  
AVDD  
470uF  
15µH  
470nF  
C_START  
INPUT_C  
INPUT_D  
/RESET  
/FAULT  
VBG  
1µF 470uF  
10µF  
10µF  
INPUT_C  
INPUT_D  
/RESET  
/FAULT  
10nF  
1nF  
1nF  
1µF  
1µF  
26  
25  
24  
23  
3w3  
100nF  
20  
21  
22  
GND  
33nF  
3R3  
/CLIP_OTW  
/CLIP_OTW  
GVDD_CD  
BST_C  
BST_D  
10nF  
3R3  
100nF  
33nF  
470uF  
15µH  
Figure 23. Typical Single Ended (1N) SE Application  
10.2.3.1 Design Requirements  
Refer to Stereo BTL Application for the Design Requirements.  
Table 8. Design Requirements, SE Application  
DESIGN PARAMETER  
Low Power (Pull-up) Supply  
Mid Power Supply 1 2V  
High Power Supply  
EXAMPLE  
3.3 V  
12 V  
12 - 32 V  
M2 = H  
M1 = H  
Mode Selection  
INPUT_A = ±3.9 V (peak, max)  
INPUT_B = ±3.9 V (peak, max)  
INPUT_C = ±3.9 V (peak, max)  
INPUT_D = ±3.9 V (peak, max)  
Analog Inputs  
Output Filters  
Inductor-Capacitor Low Pass FIlter (15 µH + 680 nF)  
Speaker Impedance  
2 - 8 Ω  
10.2.3.2 Detailed Design Procedures  
Refer to Stereo BTL Application for the Detailed Design Procedures.  
24  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
10.2.3.3 Application Curves  
Relevant performance plots for TPA3250 in PBTL configuration are shown in Typical Characteristics, SE  
Configuration  
Table 9. Relevant Performance Plots, SE Configuration  
PLOT TITLE  
FIGURE NUMBER  
Figure 9  
Total Harmonic Distortion+Noise vs Output Power  
Total Harmonic Distortion+Noise vs Frequency  
Total Harmonic Distortion+Noise vs Frequency, 80kHz analyzer BW  
Output Power vs Supply Voltage, 10% THD+N  
Output Power vs Supply Voltage, 1% THD+N  
Output Power vs Case Temperature  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Copyright © 2015–2016, Texas Instruments Incorporated  
25  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
10.2.4 Typical Application, Differential (2N) PBTL  
TPA3250 can be configured either in stereo BTL mode, 4 channel SE mode, mono PBTL mode, or in 2.1 mixed  
1x BTL + 2x SE mode depending on output power conditions and system design.  
3R3  
+12V  
470uF  
100nF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GVDD_AB  
VDD  
BST_A  
BST_B  
GND  
10µH  
33nF  
M1  
M2  
GND  
10µF  
10µF  
INPUT_A  
INPUT_B  
INPUT_A  
INPUT_B  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
22k  
PVDD  
1µF  
10µH  
30k  
470uF  
10nF  
1nF  
1nF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
680nF  
680nF  
1µF  
1µF  
1µF  
3w3  
TPA3250  
GND  
GND  
3R3  
GND  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
10nF  
1µF  
AVDD  
10µH  
10nF  
C_START  
INPUT_C  
INPUT_D  
/RESET  
/FAULT  
VBG  
1µF 470uF  
GND  
/RESET  
/FAULT  
26  
25  
24  
23  
100nF  
20  
21  
22  
GND  
33nF  
10µH  
/CLIP_OTW  
/CLIP_OTW  
GVDD_CD  
BST_C  
BST_D  
3R3  
100nF  
33nF  
Figure 24. Typical Differential (2N) PBTL Application  
10.2.4.1 Design Requirements  
Refer to Stereo BTL Application for the Design Requirements.  
Table 10. Design Requirements, PBTL Application  
DESIGN PARAMETER  
Low Power (Pull-up) Supply  
Mid Power Supply 12 V  
High Power Supply  
EXAMPLE  
3.3 V  
12 V  
12 - 32 V  
M2 = H  
M1 = L  
Mode Selection  
INPUT_A = ±3.9V (peak, max)  
INPUT_B = ±3.9V (peak, max)  
INPUT_C = Grounded  
Analog Inputs  
INPUT_D = Grounded  
Output Filters  
Inductor-Capacitor Low Pass FIlter (10 µH + 1 µF)  
Speaker Impedance  
2 - 4 Ω  
10.2.4.2 Detailed Design Procedures  
Refer to Stereo BTL Application for the Detailed Design Procedures.  
26  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
10.2.4.3 Application Curves  
Relevant performance plots for TPA3250 in PBTL configuration are shown in Typical Characteristics, PBTL  
Configuration  
Table 11. Relevant Performance Plots, PBTL Configuration  
PLOT TITLE  
FIGURE NUMBER  
Figure 14  
Total Harmonic Distortion+Noise vs Output Power  
Total Harmonic Distortion+Noise vs Frequency  
Total Harmonic Distortion+Noise vs Frequency, 80kHz analyzer BW  
Output Power vs Supply Voltage, 10% THD+N  
Output Power vs Supply Voltage, 1% THD+N  
Output Power vs Case Temperature  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Copyright © 2015–2016, Texas Instruments Incorporated  
27  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supplies  
The TPA3250 device requires two external power supplies for proper operation. A high-voltage supply called  
PVDD is required to power the output stage of the speaker amplifier and its associated circuitry. Additionally, one  
mid-voltage power supply for GVDD_X and VDD is required to power the gate-drive and other internal digital and  
analog portions of the device. The allowable voltage range for both the PVDD and the GVDD_X/VDD supplies  
are listed in the Recommended Operating Conditions table. Ensure both the PVDD and the GVDD_X/VDD  
supplies can deliver more current than listed in the Electrical Characteristics table.  
11.1.1 VDD Supply  
The VDD supply required from the system is used to power several portions of the device. It provides power to  
internal regulators DVDD and AVDD that are used to power digital and analog sections of the device,  
respectively. Proper connection, routing, and decoupling techniques are highlighted in the TPA3250 device EVM  
User's Guide SLVUAG8 (as well as the Application Information section and Layout Examples section) and must  
be followed as closely as possible for proper operation and performance. Deviation from the guidance offered in  
the TPA3250 device EVM User's Guide, which followed the same techniques as those shown in the Application  
Information section, may result in reduced performance, errant functionality, or even damage to the TPA3250  
device. Some portions of the device also require a separate power supply which is a lower voltage than the VDD  
supply. To simplify the power supply requirements for the system, the TPA3250 device includes integrated low-  
dropout (LDO) linear regulators to create these supplies. These linear regulators are internally connected to the  
VDD supply and their outputs are presented on AVDD and DVDD pins, providing a connection point for an  
external bypass capacitors. It is important to note that the linear regulators integrated in the device have only  
been designed to support the current requirements of the internal circuitry, and should not be used to power any  
additional external circuitry. Additional loading on these pins could cause the voltage to sag and increase noise  
injection, which negatively affects the performance and operation of the device.  
11.1.2 GVDD_X Supply  
The GVDD_X supply required from the system is used to power the gate-drives for the output H-bridges. Proper  
connection, routing, and decoupling techniques are highlighted in the TPA3250 device EVM User's Guide  
SLVUAG8 (as well as the Application Information section and Layout Examples section) and must be followed as  
closely as possible for proper operation and performance. Deviation from the guidance offered in the TPA3250  
device EVM User's Guide, which followed the same techniques as those shown in the Application Information  
section, may result in reduced performance, errant functionality, or even damage to the TPA3250 device.  
11.1.3 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques are  
highlighted in the TPA3250 device EVM User's Guide SLVUAG8 (as well as the Application Information section  
and Layout Examples section) and must be followed as closely as possible for proper operation and  
performance. Due the high-voltage switching of the output stage, it is particularly important to properly decouple  
the output power stages in the manner described in the TPA3250 device EVM User's Guide SLVUAG8. The lack  
of proper decoupling, like that shown in the EVM User's Guide, can results in voltage spikes which can damage  
the device, or cause poor audio performance and device shutdown faults.  
11.2 Powering Up  
The TPA3250 does not require a power-up sequence, but it is recommended to hold RESET low minimum  
400ms after PVDD supply voltage is turned ON. The outputs of the H-bridges remain in a high-impedance state  
until the gate-drive supply voltage (GVDD_X) and VDD voltage are above the undervoltage protection (UVP)  
voltage threshold (see the Electrical Characteristics table of this data sheet). This allows an internal circuit to  
charge the external bootstrap capacitors by enabling a weak pulldown of the half-bridge output as well as  
initiating a controlled ramp up sequence of the output voltage.  
28  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
Powering Up (continued)  
të55  
ë55  
Dë55  
5ë55  
> 400ms  
w9{9Ç delay  
/w9{9Ç  
!ë55  
C 100µs  
C 220ms  
!ë55 ramp  
/C!Ü[Ç  
ëLb_ó  
hÜÇ_ó  
trecꢁarge  
ëhÜÇ_ó  
{ꢀarꢀup ramp  
Figure 25. Startup Timing  
When RESET is released to turn on TPA3250, FAULT signal will turn low and AVDD voltage regulator will be  
enabled. FAULT will stay low until AVDD reaches the undervoltage protection (UVP) voltage threshold (see the  
Electrical Characteristics table of this data sheet). After a precharge time to stabilize the DC voltage across the  
input AC coupling capacitors, before the ramp up sequence starts.  
11.3 Powering Down  
The TPA3250 does not require a power-down sequence. The device remains fully operational as long as the  
gate-drive supply (GVDD_X) voltage and VDD voltage are above the undervoltage protection (UVP) voltage  
threshold (see the Electrical Characteristics table of this data sheet). Although not specifically required, it is a  
good practice to hold RESET low during power down, thus preventing audible artifacts including pops or clicks by  
initiating a controlled ramp down sequence of the output voltage.  
Copyright © 2015–2016, Texas Instruments Incorporated  
29  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
11.4 Thermal Design  
11.4.1 Thermal Performance  
TPA3250 thermal performance is dependent on the thermal design of the PCB. As a result, the maximum  
continuous output power attainable will be influenced by the PCB design. The continuous power rating is lower  
than the peak output power capability of the device. TPA3250 peak power rating is based on the burst capability  
of the device. The peak to average power ratio of TPA3250 is well suited to handle even demanding audio  
playback without thermal shutdown. Thermal performance with typical audio content (burst) versus sine wave  
content (continuous) should be considered when defining the thermal test requirements for the end product.  
11.4.2 Thermal Performance with Continuous Output Power  
It is recommended to operate TPA3250 below the OTW threshold, which in most systems will require the  
average output power to be below the maximum peak output power. The maximum continuous power TPA3250  
will deliver depends directly on the thermal design of the PCB and for the entire system (closed box with no air  
flow, or a fanned system etc.). Thermal performance is also impacted by PVDD voltage and switching frequency.  
The best configuration for a given application will often depend on the continuous output power requirements.  
Table 12. Device and PCB Temperatures with 8-Ω Load, TA = 40°C  
TA = 40°C, TPA3250 EVM, No Airflow. Steady State Temperatures.  
Switching  
Frequency  
Device Top  
Temperature  
Maximum PCB  
Temperature  
PVDD  
Continuous Power [W]  
Comment  
32V  
32V  
32V  
32V  
32V  
32V  
36V  
36V  
36V  
450kHz  
450kHz  
450kHz  
600kHz  
600kHz  
600kHz  
450kHz  
450kHz  
450kHz  
73W  
18W  
9W  
10% THD  
114°C  
87°C  
89°C  
71°C  
65°C  
98°C  
84°C  
70°C  
113°C  
87°C  
71°C  
1/4 of 10% THD power  
1/8 of 10% THD power  
10% THD  
77°C  
72W  
18W  
9W  
128°C  
105°C  
85°C  
OTW after 236 seconds  
OTW after 95 seconds  
1/4 of 10% THD power  
1/8 of 10% THD power  
10% THD  
92W  
23W  
11.5W  
150°C  
111°C  
79°C  
1/4 of 10% THD power  
1/8 of 10% THD power  
OTW after 3 seconds. Not  
recommended.  
36V  
600kHz  
91W  
10% THD  
OTE(1)  
36V  
36V  
600kHz  
600kHz  
22.5W  
11.5W  
1/4 of 10% THD power  
1/8 of 10% THD power  
144°C  
115°C  
109°C  
90°C  
OTW after 152 seconds  
(1) Steady state data is not available because device heats up to OTE in this condition.  
Table 13. Device and PCB Temperatures with 4-Ω Load, TA = 40°C  
TA = 40°C, TPA3250 EVM, No Airflow. Steady State Temperatures.  
Switching  
Frequency  
Device Top  
Temperature  
Maximum PCB  
Temperature  
PVDD  
32V  
Continuous Power [W]  
10% THD  
Comment  
OTW after 1 second.Not  
recommended.  
450kHz  
130W  
OTE  
OTW after 92 seconds. Not  
recommended.  
32V  
32V  
32V  
450kHz  
450kHz  
600kHz  
32.5W  
16W  
1/4 of 10% THD power  
1/8 of 10% THD power  
10% THD  
147°C  
107°C  
111°C  
85°C  
OTW after 1 second. Not  
recommended.  
130W  
OTE(1)  
OTW after 29 seconds. Not  
recommended.  
32V  
32V  
36V  
36V  
600kHz  
600kHz  
450kHz  
450kHz  
32.5W  
16W  
1/4 of 10% THD power  
1/8 of 10% THD power  
10% THD  
OTE(1)  
OTW after 92 seconds. Not  
recommended.  
147°C  
99°C  
OTW after 0 seconds. Not  
recommended.  
165W  
41W  
OTE(1)  
OTE(1)  
OTW after 11 seconds. Not  
recommended.  
1/4 of 10% THD power  
(1) Steady state data is not available because device heats up to OTE in this condition.  
30  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
Table 13. Device and PCB Temperatures with 4-Ω Load, TA = 40°C (continued)  
TA = 40°C, TPA3250 EVM, No Airflow. Steady State Temperatures.  
OTW after 134 seconds. Not  
recommended.  
36V  
36V  
450kHz  
600kHz  
21W  
1/8 of 10% THD power  
142°C  
108°C  
Not recommended  
11.4.3 Thermal Performance with Non-Continuous Output Power  
As audio signals often have a peak to average ratio larger than one (average level below maximum peak output),  
the thermal performance for audio signals can be illustrated using burst signals with different burst ratios.  
Figure 26. Example of audio signal  
A burst signal is characterized by the high-level to low-level ratio as well as the duration of the high level and low  
level, e.g. a burst 1:4 stimuli is a single period of high level followed by 4 cycles of low level.  
Iigh level  
[ow level  
1cycle : 4cycles  
Figure 27. Example of 1:4 Burst Signal  
The following analysis of thermal performance for TPA3250 is made with the TPA3250 EVM surrounded by still  
air (no airflow) with a controlled air temperature of 40°C. For 32-V operation the system is not thermally limited  
with 8load, but depending on the burst stimuli for operation at 36V some thermal limitations may occur,  
depending on switching frequency and average to maximum power ratio. Low to maximum power ratio of the  
burst stimuli is given in the plots as for example P1:8 which equals 1 cycle of full power followed by 8 cycles of  
low power.  
Copyright © 2015–2016, Texas Instruments Incorporated  
31  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
80  
80  
70  
70  
Device Top P1:8  
PCB Max P1:8  
Device Top P1:4  
PCB Max P1:4  
60  
60  
Device Top P1:8  
PCB Max P1:8  
Device Top P1:4  
PCB Max P1:4  
Device Top P1:2  
PCB Max P1:2  
50  
50  
1:8  
1:4  
1:2  
1
1:8  
1:4  
Burst Ratio (High:Low)  
PVDD = 32V, fs = 600kHz RL = 8Ω  
1:2  
1
Burst Ratio (High:Low)  
PVDD = 32V, fs = 450kHz RL = 8Ω  
D022  
D021  
TA = 40°C  
TA = 40°C  
Figure 28. Device and PCB Temperatures vs. Burst Ratio  
130  
Figure 29. Device and PCB Temperatures vs. Burst Ratio  
130  
120  
110  
100  
90  
120  
110  
100  
90  
80  
80  
70  
70  
Device Top P1:8  
PCB Max P1:8  
Device Top P1:4  
PCB Max P1:4  
60  
60  
Device Top P1:8  
PCB Max P1:8  
50  
50  
1:8  
1:4  
Burst Ratio (High:Low)  
PVDD = 36V, fs = 450kHz RL = 8Ω  
1:2  
1
1:8  
1:4  
Burst Ratio (High:Low)  
PVDD = 36V, fs = 600kHz RL = 8Ω  
1:2  
1
D023  
D024  
TA = 40°C  
TA = 40°C  
Figure 30. Device and PCB Temperatures vs. Burst Ratio  
Figure 31. Device and PCB Temperatures vs. Burst Ratio  
32  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
12 Layout  
12.1 Layout Guidelines  
Use an unbroken ground plane to have good low impedance and inductance return path to the power supply  
for power and audio signals.  
Maintain a contiguous ground plane from the ground pins to the PCB area surrounding the device for as  
many of the ground pins as possible, since the ground pins are the best conductors of heat in the package.  
PCB layout, audio performance and EMI are linked closely together.  
Routing the audio input should be kept short and together with the accompanied audio source ground.  
The small bypass capacitors on the PVDD lines of the DUT be placed as close the PVDD pins as possible.  
A local ground area underneath the device is important to keep solid to minimize ground bounce.  
Orient the passive component so that the narrow end of the passive component is facing the TPA3250  
device, unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads.  
Avoid placing other heat producing components or structures near the TPA3250 device.  
Avoid cutting off the flow of heat from the TPA3250 device to the surrounding ground areas with traces or via  
strings, especially on output side of device.  
Netlist for this printed circuit board is generated from the schematic in Figure 32.  
Copyright © 2015–2016, Texas Instruments Incorporated  
33  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
12.2 Layout Examples  
12.2.1 BTL Application Printed Circuit Board Layout Example  
ꢀad to top layer ground pour  
.ottom [ayer {ignal Çraces  
Çop [ayer {ignal Çraces  
.ottom to top layer connection via  
{ystem ꢀrocessor  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
Ç1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Ç2  
Ç2  
30  
29  
28  
27  
26  
25  
24  
23  
Ç1  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins. Wide  
traces should be routed on the top layer with direct connection to the pins and without going through vias. No vias or  
traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors placed close to the pins.  
D. Note T3: PowerPad™ needs to be soldered to PCB GND copper pour  
Figure 32. BTL Application Printed Circuit Board - Composite  
34  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
Layout Examples (continued)  
12.2.2 SE Application Printed Circuit Board Layout Example  
ꢀad to top layer ground pour  
.ottom [ayer {ignal Çraces  
Çop [ayer {ignal Çraces  
.ottom to top layer connection via  
{ystem ꢀrocessor  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
Ç1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Ç2  
Ç2  
30  
29  
28  
27  
26  
25  
24  
23  
Ç1  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins. Wide  
traces should be routed on the top layer with direct connection to the pins and without going through vias. No vias or  
traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed close to the pins.  
D. Note T3: PowerPad™ needs to be soldered to PCB GND copper pour  
Figure 33. SE Application Printed Circuit Board - Composite  
Copyright © 2015–2016, Texas Instruments Incorporated  
35  
TPA3250  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Layout Examples (continued)  
12.2.3 PBTL Application Printed Circuit Board Layout Example  
ꢀad to top layer ground pour  
.ottom [ayer {ignal Çraces  
Çop [ayer {ignal Çraces  
.ottom to top layer connection via  
{ystem ꢀrocessor  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
Ç1  
3
4
5
6
Drounded for ꢀ.Ç[  
Drounded for ꢀ.Ç[  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Ç2  
Ç2  
30  
29  
28  
27  
26  
25  
24  
23  
Ç1  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins. Wide  
traces should be routed on the top layer with direct connection to the pins and without going through vias. No vias or  
traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed close to the pins.  
D. ote T3: PowerPad™ needs to be soldered to PCB GND copper pour  
Figure 34. PBTL Application Printed Circuit Board - Composite  
36  
版权 © 2015–2016, Texas Instruments Incorporated  
TPA3250  
www.ti.com.cn  
ZHCSF33A DECEMBER 2015REVISED FEBRUARY 2016  
13 器件和文档支持  
13.1 文档支持  
TPA3250D2EVM 用户指南》SLVUAG8  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
PurePath, PowerPAD, E2E are trademarks of Texas Instruments.  
蓝光光盘 is a trademark of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
37  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA3250D2DDW  
TPA3250D2DDWR  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
DDW  
DDW  
44  
44  
35  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
0 to 70  
0 to 70  
3250  
3250  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DDW 44  
6.1 x 14, 0.635 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224876/A  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPA3250D2DDWR

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下 | DDW | 44 | 0 to 70
TI

TPA3251

175W 立体声、350W 单声道、12V 至 38V 电源电压、模拟输入 D 类智能音频放大器
TI

TPA3251D2DDV

175W 立体声、350W 单声道、12V 至 38V 电源电压、模拟输入 D 类智能音频放大器 | DDV | 44 | 0 to 70
TI

TPA3251D2DDVR

175W 立体声、350W 单声道、12V 至 38V 电源电压、模拟输入 D 类智能音频放大器 | DDV | 44 | 0 to 70
TI

TPA3255

315W 立体声、600W 单声道、18V 至 53.5V 电源电压、模拟输入 D 类音频放大器
TI

TPA3255-Q1

汽车类 315W、2 通道、18V 至 53.5V 电源模拟输入 D 类音频放大器
TI

TPA3255DDV

315W 立体声、600W 单声道、18V 至 53.5V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | 0 to 70
TI

TPA3255DDVR

315W 立体声、600W 单声道、18V 至 53.5V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | 0 to 70
TI

TPA3255TDDVRQ1

汽车类 315W、2 通道、18V 至 53.5V 电源模拟输入 D 类音频放大器 | DDV | 44 | -40 to 105
TI

TPA3858

Audio Line Coupling / Bridging Transformer
FILTRAN

TPA3858-1

Audio Line Coupling / Bridging Transformer
FILTRAN

TPA3858-2

Audio Line Coupling / Bridging Transformer
FILTRAN