TPA6211T-Q1 [TI]

汽车类 3.1W 单声道模拟输入 AB 类音频放大器;
TPA6211T-Q1
型号: TPA6211T-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 3.1W 单声道模拟输入 AB 类音频放大器

放大器 音频放大器
文件: 总35页 (文件大小:2729K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
TPA6211T-Q1 汽车3.1W 单声道模拟输AB 类音频放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPA6211A1-Q 器件是一款 3.1W 单声道全差分放大  
用于驱动阻抗至少为 3Ω 的扬声器而在大多数  
应用中仅占用 20mm2 的总印刷电路板 (PCB) 面积。  
此器件在 2.5V 5.5V 电压范围内运行仅消耗 4mA  
静态电源电流。TPA6211T-Q1 器件采用节省空间的 8  
HVSSOP 封装。  
– 器件温度等240°C 105°C  
– 器HBM ESD 分类等3A  
– 器CDM ESD 分类等C6  
THD = 10%典型值时  
可利5V 电源3负载输3.1W 功率  
• 低电源电流电压5V 4mA典型值)  
• 关断电流0.01µA典型值)  
• 快速启动具有极小杂音  
• 仅三个外部组件  
该器件包含如下特性80dB 的电源电压抑制比20Hz  
2KHz),改善的 RF 整流抗扰度以及较小的 PCB  
占用面积。杂音超低的快速启动特性使得 TPA6211T-  
Q1 器件成为了紧急呼叫应用的理想选择。此外该器  
件可满足信息娱乐系统与仪表组应用中例如仪表组提  
示音或驾驶员通知的低功耗需求。  
– 针对直接电池供电运行改进PSRR (80dB)  
和宽电源电压2.5V 5.5V)  
– 全差分设计简化了射频  
整流  
63dB CMRR 省去了两个输入  
耦合电容  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
HVSSOP (8)  
TPA6211T-Q1  
3.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
汽车音频  
紧急呼叫  
驾驶员通知  
仪表组蜂鸣装置  
5 V DC  
a
A.  
C(BYPASS) 是可选的  
应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS496  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Applications.................................................. 19  
9 Power Supply Recommendations................................25  
9.1 Power Supply Decoupling Capacitor........................ 25  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................27  
11.1 Receiving Notification of Documentation Updates..27  
11.2 Community Resources............................................27  
11.3 Trademarks............................................................. 27  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Operating Characteristics........................................... 6  
6.7 Dissipation Ratings..................................................... 6  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2020) to Revision A (July 2021)  
Page  
Updated Thermal Information table.................................................................................................................... 4  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
8
7
6
5
SHUTDOWN  
VO–  
BYPASS  
IN+  
GND  
VDD  
VO+  
Thermal  
Pad  
IN–  
Not to scale  
5-1. DGN Package 8-Pin HVSSOP Top View  
5-1. Pin Functions  
PIN  
NAME  
BYPASS  
I/O  
DESCRIPTION  
NO.  
2
I
I
I
I
I
Mid-supply voltage, adding a bypass capacitor improves PSRR  
High-current ground  
GND  
IN–  
IN+  
7
4
Negative differential input  
3
Positive differential input  
SHUTDOWN  
Thermal Pad  
1
Shutdown pin (active low logic)  
Connect to ground. Thermal pad must be soldered down in all applications to properly secure device on  
the PCB.  
VDD  
VO+  
VO–  
6
5
8
I
Power supply  
O
O
Positive BTL output  
Negative BTL output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPA6211T-Q1  
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range unless otherwise noted(1)  
MIN  
0.3  
0.3  
MAX  
UNIT  
Supply voltage, VDD  
6
V
Input voltage, VI  
VDD + 0.3 V  
See 6.7  
V
Continuous total power dissipation  
Lead temperature 1.6 mm (1/16 Inch) from case for 10 s  
Operating free-air temperature, TA  
Junction temperature, TJ  
DGN  
260  
105  
150  
150  
°C  
°C  
°C  
°C  
40  
40  
65  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under 6.3.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
2.5  
MAX  
UNIT  
V
VDD  
VIH  
VIL  
TA  
Supply voltage  
5.5  
High-level input voltage  
Low-level input voltage  
Operating free-air temperature  
SHUTDOWN  
SHUTDOWN  
1.55  
V
0.5  
V
105  
°C  
40  
6.4 Thermal Information  
TPA6211T-Q1  
THERMAL METRIC(1)  
DGN (HVSSOP)  
UNIT  
8 PINS  
53.9  
72.7  
26.4  
3.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
26.3  
10.2  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
 
 
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = 25°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.3  
MAX UNIT  
Output offset voltage (measured  
differentially)  
VOS  
VI = 0-V differential, Gain = 1 V/V, VDD = 5.5 V  
9
mV  
9  
PSRR  
VIC  
Power supply rejection ratio  
Common mode input range  
VDD = 2.5 V to 5.5 V  
dB  
V
85  
60  
DD 0.8  
40  
VDD = 2.5 V to 5.5 V  
0.5  
V
VDD = 5.5 V, VIC = 0.5 V to 4.7 V  
VDD = 2.5 V, VIC = 0.5 V to 1.7 V  
63  
63  
0.45  
0.37  
0.26  
CMRR Common mode rejection ratio  
dB  
40  
VDD = 5.5 V  
RL = 4 , VIN+ = VDD, VIN+ = 0 V,  
Gain = 1 V/V, VIN= 0 V or VIN= VDD  
Low-output swing  
VDD = 3.6 V  
VDD = 2.5 V  
VDD = 2.5 V  
0.4  
V
Low-output swing (only for  
TPA6211HTDGNRQ1)  
0.46  
RL = 4 , VIN+ = VDD, VIN+ = 0 V,  
Gain = 1 V/V, VIN= 0 V or VIN= VDD  
TA = 105°C  
VDD = 5.5 V  
VDD = 3.6 V  
VDD = 2.5 V  
VDD = 2.5 V  
4.95  
3.18  
2.13  
RL = 4 , VIN+ = VDD, VIN= VDD  
,
High-output swing  
Gain = 1 V/V, VIN= 0 V or VIN+ = 0 V  
2
V
High-output swing (only for  
TPA6211HTDGNRQ1)  
1.95  
RL = 4 , VIN+ = VDD, VIN= VDD  
Gain = 1 V/V, VIN= 0 V or VIN+ = 0 V  
TA = 105°C  
,
| IIH  
| IIH  
| IIL  
| IIL  
IQ  
|
|
High-level input current, shutdown  
VDD = 5.5 V, VI = 5.8 V  
58  
3
100  
115  
100  
115  
5
µA  
µA  
µA  
µA  
mA  
mA  
µA  
µA  
High-level input current, shutdown (only  
for TPA6211HTDGNRQ1)  
VDD = 5.5 V, VI = 5.8 V  
TA = 105°C  
|
Low-level input current, shutdown  
VDD = 5.5 V, VI = 0.3 V  
Low-level input current, shutdown (only  
for TPA6211HTDGNRQ1)  
VDD = 5.5 V, VI = 0.3 V  
TA = 105°C  
|
Quiescent current  
VDD = 2.5 V to 5.5 V, no load  
4
Quiescent current (only for  
TPA6211HTDGNRQ1)  
VDD = 2.5 V to 5.5 V, no load  
TA = 105°C  
IQ  
5.7  
1
I(SD)  
I(SD)  
Supply current  
0.01  
V
SHUTDOWN 0.5 V, VDD = 2.5 V to 5.5 V, RL = 4 Ω  
Supply current (only for  
TPA6211HTDGNRQ1)  
V
SHUTDOWN 0.5 V, VDD = 2.5 V to 5.5 V, RL = 4 Ω  
1.25  
TA = 105°C  
38 kW  
RI  
40 kW  
RI  
42 kW  
Gain  
V/V  
RL = 4 Ω  
RI  
44.4 k  
RI  
RL = 4 Ω  
TA = 105°C  
Gain (only for TPA6211HTDGNRQ1)  
Resistance from shutdown to GND  
V/V  
100  
kΩ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPA6211T-Q1  
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
MAX UNIT  
6.6 Operating Characteristics  
TA = 25°C, Gain = 1 V/V  
PARAMETER  
TEST CONDITIONS  
VDD = 5 V  
MIN  
TYP  
2.45  
1.22  
0.49  
2.22  
1.1  
VDD = 3.6 V  
VDD = 2.5 V  
VDD = 5 V  
THD + N = 1%, f = 1 kHz, RL = 3 Ω  
THD + N = 1%, f = 1 kHz, RL = 4 Ω  
THD + N = 1%, f = 1 kHz, RL = 8 Ω  
PO  
Output power  
VDD = 3.6 V  
VDD = 2.5 V  
VDD = 5 V  
W
0.47  
1.36  
0.72  
0.33  
0.045%  
0.05%  
0.06%  
0.03%  
0.03%  
0.04%  
0.02%  
0.02%  
0.03%  
80  
70  
105  
VDD = 3.6 V  
VDD = 2.5 V  
PO = 2 W, VDD = 5 V  
PO = 1 W, VDD = 3.6 V  
PO = 300 mW, VDD = 2.5 V  
PO = 1.8 W, VDD = 5 V  
PO = 0.7 W, VDD = 3.6 V  
PO = 300 mW, VDD = 2.5 V  
PO = 1 W, VDD = 5 V  
f = 1 kHz, RL = 3 Ω  
f = 1 kHz, RL = 4 Ω  
f = 1 kHz, RL = 8 Ω  
THD+N Total harmonic distortion plus noise  
PO = 0.5 W, VDD = 3.6 V  
PO = 200 mW, VDD = 2.5 V  
f = 217 Hz  
VDD = 3.6 V, Inputs AC-grounded with  
CI = 2 µF, VRIPPLE = 200 mVpp  
kSVR  
SNR  
Vn  
Supply ripple rejection ratio  
Signal-to-noise ratio  
dB  
dB  
f = 20 Hz to 20 kHz  
VDD = 5 V, PO = 2 W, RL = 4 Ω  
No weighting  
A weighting  
f = 217 Hz  
15  
VDD = 3.6 V, f = 20 Hz to 20 kHz,  
Inputs AC-grounded with CI = 2 µF  
Output voltage noise  
µVRMS  
dB  
12  
CMRR Common mode rejection ratio  
VDD = 3.6 V, VIC = 1 Vpp  
65  
40  
ZI  
Input impedance  
38  
44  
kΩ  
µs  
VDD = 3.6 V, No CBYPASS  
4
Start-up time from shutdown  
VDD = 3.6 V, CBYPASS = 0.1 µF  
27  
ms  
6.7 Dissipation Ratings  
DERATING  
FACTOR(1)  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
TA 25°C  
POWER RATING  
PACKAGE  
DGN  
2.13 W  
17.1 mW/°C  
1.36 W  
1.11 W  
(1) Derating factor based on High-k board layout.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
Typical Characteristics  
6-1. Table of Graphs  
FIGURE  
vs Supply voltage  
6-1  
Output power  
vs Load resistance  
vs Output power  
6-2  
Power dissipation  
6-3, 6-4  
vs Output power  
6-5, 6-6, 6-7  
Total harmonic distortion + noise  
vs Frequency  
6-8, 6-9, 6-10, 6-11, 6-12  
vs Common-mode input voltage  
vs Frequency  
6-13  
Supply voltage rejection ratio  
Supply voltage rejection ratio  
GSM Power supply rejection  
GSM Power supply rejection  
6-14, 6-15, 6-16, 6-17  
vs Common-mode input voltage  
vs Time  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
6-25  
6-26  
6-27  
vs Frequency  
vs Frequency  
Common-mode rejection ratio  
vs Common-mode input voltage  
vs Frequency  
Closed loop gain/phase  
Open loop gain/phase  
vs Frequency  
vs Supply voltage  
vs Shutdown voltage  
vs Bypass capacitor  
Supply current  
Start-up time  
3.5  
3.5  
3
f = 1 kHz  
Gain = 1 V/V  
3
f = 1 kHz  
V
DD  
= 5 V, THD 10%  
P
O
= 3 , THD 10%  
Gain = 1 V/V  
V
DD  
= 5 V, THD 1%  
P
O
= 4 , THD 10%  
2.5  
P
= 3 , THD 1%  
2.5  
2
O
V
DD  
= 3.6 V, THD 10%  
P
O
= 4 , THD 1%  
2
P
O
= 8 , THD 10%  
V
DD  
= 3.6 V, THD 1%  
P
O
= 8 , THD 1%  
1.5  
1.5  
1
V
DD  
= 2.5 V, THD 10%  
V
DD  
= 2.5 V, THD 1%  
1
0.5  
0
0.5  
0
2.5  
3
3.5  
4
4.5  
5
3
8
13  
18  
23  
28  
V
DD  
- Supply Voltage - V  
R
L
- Load Resistance -  
6-1. Output Power vs Supply Voltage  
6-2. Output Power vs Load Resistance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPA6211T-Q1  
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
1.4  
1.2  
0.8  
4  
V
DD  
= 3.6 V  
V
DD  
= 5 V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4  
1
0.8  
8 Ω  
0.6  
0.4  
0.2  
8 Ω  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
0
0.3  
0.6  
P - Output Power - W  
O
0.9  
1.2  
1.5  
1.8  
P
- Output Power - W  
O
6-3. Power Dissipation vs Output Power  
6-4. Power Dissipation vs Output Power  
20  
10  
R
C
= 4  
R
C
= 3  
L
,
L
,
10  
5
5
2
= 0 to 1 µF,  
= 0 to 1 µF,  
(BYPASS)  
(BYPASS)  
Gain = 1 V/V  
Gain = 1 V/V  
2
1
1
0.5  
0.5  
0.2  
0.1  
2.5 V  
2.5 V  
3.6 V  
3.6 V  
0.2  
0.1  
5 V  
5 V  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
20m  
50m 100m 200m 500m  
- Output Power - W  
1
2
3
10m 20m  
50m 100m 200m 500m  
P - Output Power - W  
O
1
2 3  
P
O
6-5. Total Harmonic Distortion + Noise vs Output 6-6. Total Harmonic Distortion + Noise vs Output  
Power Power  
20  
10  
5
V
= 5 V,  
= 3 ,  
R
C
= 8  
DD  
L
,
10  
5
R
C
= 0 to 1 µF,  
L
,
(BYPASS)  
= 0 to 1 µF,  
Gain = 1 V/V  
(BYPASS)  
Gain = 1 V/V,  
C = 2 µF  
2
1
I
2
1
0.5  
1 W  
2.5 V  
0.5  
0.2  
0.1  
3.6 V  
0.2  
0.1  
2 W  
5 V  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
10m 20m  
50m 100m 200m 500m  
- Output Power - W  
1
2 3  
20  
50 100 200 500 1k 2k  
f - Frequency - Hz  
5k 10k 20k  
P
O
6-7. Total Harmonic Distortion + Noise vs Output  
6-8. Total Harmonic Distortion + Noise vs  
Power  
Frequency  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
10  
5
10  
V
R
C
= 3.6 V,  
V
= 5 V,  
DD  
DD  
= 4 ,  
R
C
= 4 ,  
L
,
5
2
L
,
= 0 to 1 µF,  
= 0 to 1 µF,  
(BYPASS)  
(BYPASS)  
2
1
Gain = 1 V/V,  
C = 2 µF  
Gain = 1 V/V,  
C = 2 µF  
1 W  
I
I
1
0.5  
2 W  
0.1 W  
0.5 W  
0.5  
0.2  
0.1  
1.8 W  
1 W  
0.2  
0.05  
0.1  
0.02  
0.01  
0.05  
0.005  
0.02  
0.01  
0.002  
0.001  
0.005  
20  
50 100 200 500 1k 2k  
f - Frequency - Hz  
5k 10k 20k  
20  
50 100 200 500  
f - Frequency - Hz  
1k 2k  
5k 10k 20k  
6-10. Total Harmonic Distortion + Noise vs  
6-9. Total Harmonic Distortion + Noise vs  
Frequency  
Frequency  
10  
10  
V
= 2.5 V,  
V
= 3.6 V,  
= 8 ,  
DD  
DD  
5
5
R
C
= 4 ,  
R
C
L
,
L
,
= 0 to 1 µF,  
= 0 to 1 µF,  
(BYPASS)  
(BYPASS)  
2
1
2
1
Gain = 1 V/V,  
C = 2 µF  
Gain = 1 V/V,  
C = 2 µF  
I
I
0.5  
0.2  
0.5  
0.25 W  
0.4 W  
0.6 W  
0.1 W  
0.2  
0.28 W  
0.1  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20 50 100 200  
500 1k 2k  
5k 10k 20k  
20 50 100 200  
500 1k 2k  
5k 10k 20k  
f - Frequency - Hz  
f - Frequency - Hz  
6-11. Total Harmonic Distortion + Noise vs  
6-12. Total Harmonic Distortion + Noise vs  
Frequency  
Frequency  
0.06  
+0  
R
C
= 4 ,  
L
,
f = 1 kHz  
0.058  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= 0.47 µF,  
(BYPASS)  
P
O
= 200 mW,  
= 1 kHz  
Gain = 1 V/V,  
R
L
0.056  
0.054  
0.052  
0.05  
C = 2 µF,  
I
Inputs ac Grounded  
V
= 2.5 V  
= 3.6 V  
DD  
V
DD  
= 5 V  
0.048  
0.046  
0.044  
0.042  
0.04  
V
= 3.6 V  
DD  
V
DD  
= 2.5 V  
V
DD  
-90  
V
DD  
= 5 V  
-100  
20  
50 100 200 500 1k 2k  
f - Frequency - Hz  
5k 10k 20k  
0
1
2
3
4
5
V
IC  
- Common Mode Input Voltage - V  
6-13. Total Harmonic Distortion + Noise vs  
6-14. Supply Voltage Rejection Ratio vs  
Common-Mode Input Voltage  
Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPA6211T-Q1  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
+0  
+0  
R
C
= 4 ,  
R
C
= 4 ,  
L
,
L
,
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
= 0.47 µF,  
= 0.47 µF,  
(BYPASS)  
(BYPASS)  
Gain = 5 V/V,  
C = 2 µF,  
I
-20  
-30  
-40  
-50  
-60  
-70  
-80  
C = 2 µF,  
I
Inputs ac Grounded  
V
= 2.5 V to 5 V  
Inputs Floating  
DD  
V
DD  
= 3.6 V  
V
DD  
= 2.5 V  
V
DD  
= 5 V  
-90  
-90  
-100  
-100  
20  
50 100 200 500 1k 2k  
f - Frequency - Hz  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
f - Frequency - Hz  
5k 10k 20k  
6-15. Supply Voltage Rejection Ratio vs  
6-16. Supply Ripple Rejection Ratio vs  
Frequency  
Frequency  
+0  
0
R
= 4 ,  
L
C = 2 µF,  
,
R
= 4 ,  
L
C = 2 µF,  
,
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
I
Gain = 1 V/V,  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
I
Gain = 1 V/V,  
V
DD  
= 3.6 V  
C
= 0.47 µF  
(BYPASS)  
= 3.6 V,  
V
DD  
f = 217 Hz,  
Inputs ac Grounded  
V
DD  
= 2.5 V  
V
DD  
= 3.6 V  
C
= 0.1 µF  
(BYPASS)  
No C  
(BYPASS)  
V
DD  
= 5 V  
C
= 1 µF  
(BYPASS)  
−90  
C
= 0.47 µF  
(BYPASS)  
−100  
20  
50 100 200 500 1k 2k  
f − Frequency − Hz  
5k 10k 20k  
0
1
2
3
4
5
6
DC Common Mode Input − V  
6-17. Supply Voltage Rejection Ratio vs  
6-18. Supply Voltage Rejection Ratio vs DC  
Frequency  
Common-Mode Input  
0
V
DD  
C1  
−50  
Frequency  
217 Hz  
C1 − Duty  
20%  
−100  
C1 Pk−Pk  
500 mV  
V
R
Shown in Figure 19,  
= 8 ,  
DD  
−150  
L
−100  
−120  
−140  
C = 2.2 µF,  
I
Inputs Grounded  
R
= 8 Ω  
L
C = 2.2 µF  
I
V
OUT  
C
= 0.47 µF  
(BYPASS)  
−160  
−180  
C
= 0.47 µF  
(BYPASS)  
2 ms/div  
Ch1 100 mV/div  
Ch4 10 mV/div  
0
400  
800  
1200  
1600  
2000  
t − Time − ms  
f − Frequency − Hz  
6-19. GSM Power Supply Rejection vs Time  
6-20. GSM Power Supply Rejection vs  
Frequency  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
0
+0  
R
L
= 4 ,  
,
R
= 4 ,  
L
Gain = 1 V/V,  
,
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
IC  
Gain = 1 V/V,  
= 200 mV V  
,
p-p  
-10  
dc Change in V  
IC  
-20  
-30  
-40  
-50  
-60  
-70  
V
DD  
= 2.5 V  
V
DD  
= 2.5 V  
V
DD  
= 5 V  
V
DD  
= 3.5 V  
V
DD  
= 5 V  
-80  
-90  
-90  
-100  
20  
50 100 200 500 1k 2k  
f - Frequency - Hz  
5k 10k 20k  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
IC  
- Common Mode Input Voltage - V  
6-21. Common-Mode Rejection Ratio vs  
6-22. Common-Mode Rejection Ratio vs  
Frequency  
Common-Mode Input Voltage  
40  
100  
180  
150  
180  
V
= 5 V,  
DD  
Phase  
90  
80  
70  
60  
30  
R
= 8  
150  
L
120  
90  
20  
10  
120  
90  
60  
60  
0
Gain  
50  
40  
30  
20  
10  
Gain  
30  
-10  
30  
0
-20  
-30  
-40  
0
−30  
−60  
−90  
−120  
−150  
−180  
-30  
-60  
Phase  
0
-50  
-60  
-70  
-80  
-90  
−10  
V
= 5 V  
-120  
DD  
−20  
R
= 8  
= 1  
L
−30  
−40  
-150  
-180  
A
V
100  
1 k  
10 k  
f − Frequency − Hz  
100 k  
1 M  
1
10  
100  
1 k 10 k 100 k 1 M 10 M  
f - Frequency - Hz  
6-24. Open Loop Gain/Phase vs Frequency  
6-23. Closed Loop Gain/Phase vs Frequency  
5
10  
V
DD  
= 5 V  
T
= 125°C  
= 25°C  
A
4.5  
V
DD  
= 5 V  
1
0.1  
4
V
= 3.6 V  
DD  
T
3.5  
A
V
= 2.5 V  
DD  
3
2.5  
2
T
A
= -40°C  
0.01  
0.001  
0.0001  
0.00001  
1.5  
1
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1
0
2
3
4
5
V
DD  
- Supply Voltage - V  
Voltage on SHUTDOWN Terminal - V  
6-25. Supply Current vs Supply Voltage  
6-26. Supply Current vs Shutdown Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPA6211T-Q1  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
300  
250  
200  
150  
100  
50  
0
0
0.2  
0.4  
0.6  
0.8  
1
C
- Bypass Capacitor - µF  
(Bypass)  
6-27. Start-up Time vs Bypass Capacitor  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPA6211T-Q1 device is a fully differential amplifier with differential inputs and outputs. The fully differential  
amplifier consists of a differential amplifier and a common-mode amplifier. The differential amplifier ensures that  
the amplifier outputs a differential voltage that is equal to the differential input times the gain. The common-mode  
feedback ensures that the common-mode voltage at the output is biased around VDD / 2 regardless of the  
common-mode voltage at the input.  
7.2 Functional Block Diagram  
5 V DC  
A. C(BYPASS) is optional  
7.3 Feature Description  
7.3.1 Advantages of Fully Differential Amplifiers  
Input coupling capacitors are not required. A fully differential amplifier with good CMRR, such as the TPA6211T-  
Q1 device, allows the inputs to be biased at voltage other than mid-supply. For example, if a DAC has a lower  
mid-supply voltage than that of the TPA6211T-Q1 device, the common-mode feedback circuit compensates, and  
the outputs are still biased at the mid-supply point of the TPA6211T-Q1 device. The inputs of the TPA6211T-Q1  
device can be biased from 0.5 V to VDD 0.8 V. If the inputs are biased outside of that range, input coupling  
capacitors are required.  
A Mid-supply bypass capacitor, CBYPASS, is not required. The fully differential amplifier does not require a bypass  
capacitor. Any shift in the mid-supply voltage affects both positive and negative channels equally, thus canceling  
at the differential output. Removing the bypass capacitor slightly worsens power supply rejection ratio (kSVR), but  
a slight decrease of kSVR can be acceptable when an additional component can be eliminated (see 6-17).  
The RF-immunity is improved. A fully differential amplifier cancels the noise from RF disturbances much better  
than the typical audio amplifier.  
7.3.2 Fully Differential Amplifier Efficiency and Thermal Information  
Class-AB amplifiers are inefficient, primarily because of voltage drop across the output-stage transistors. The  
two components of this internal voltage drop are the headroom or DC voltage drop that varies inversely to output  
power, and the sinewave nature of the output. The total voltage drop can be calculated by subtracting the RMS  
value of the output voltage from VDD. The internal voltage drop multiplied by the average value of the supply  
current, IDD(avg), determines the internal power dissipation of the amplifier.  
An easy-to-use equation to calculate efficiency starts out as being equal to the ratio of power from the power  
supply to the power delivered to the load. To accurately calculate the RMS and average values of power in the  
load and in the amplifier, the current and voltage waveform shapes must first be understood (see 7-1).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
V
O
V
(LRMS)  
I
DD  
I
DD(avg)  
7-1. Voltage and Current Waveforms for BTL Amplifiers  
Although the voltages and currents for SE and BTL are sinusoidal in the load, currents from the supply are  
different between SE and BTL configurations. In an SE application the current waveform is a half-wave rectified  
shape, whereas in BTL the current waveform is a full-wave rectified waveform. This means RMS conversion  
factors are different. Keep in mind that for most of the waveform both the push and pull transistors are not on at  
the same time, which supports the fact that each amplifier in the BTL device only draws current from the supply  
for half the waveform. 方程1 to 方程10 are the basis for calculating amplifier efficiency.  
PL  
hBTL  
=
PSUP  
(1)  
where  
BTL is the efficiency of a BTL amplifier  
ŋ
PL is the power delivered to load  
PSUP is the power drawn from power supply  
PL is calculated with 方程2, and VLRMS is calculated with 方程3.  
2
VLRMS  
PL =  
RL  
(2)  
where  
VLRMS = RMS voltage on BTL load  
RL is load resistance  
VP  
=
VLRMS  
2
(3)  
where  
VP is peak voltage on BTL load  
Therefore, PL can be given as 方程4.  
2
VP  
PL =  
2´RL  
(4)  
(5)  
PSUP is calculated with 方程5.  
PSUP = VDD × IDDavg  
where  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
VDD is power supply voltge  
IDDavg is average current drawn from the power supply  
IDDavg is calculated with 方程6.  
p VP  
VP  
RL  
2´ VP  
RL  
1
1 ò0  
IDDavg =  
´ sin(t)´ dt = –  
´
´cos(t)0p  
=
p
RL  
p
(6)  
(7)  
Therefore, PSUP can be given as 方程7.  
2´ VDD ´ VP  
PSUP  
=
RL  
Substituting for PL and PSUP, 方程1 becomes 方程8  
2
VP  
VP  
2´RL  
hBTL  
=
=
2´VDD´VP  
RL  
4´ VDD  
(8)  
(9)  
VP is calculated with 方程9.  
VP 2´PL ´RL  
=
And substituting for VP, ŋBTL can be calculated with 方程10  
p 2´PL ´RL  
hBTL  
=
4´ VDD  
(10)  
A simple formula for calculating the maximum power dissipated (PDmax) can be used for a differential output  
application:  
2VD2D  
PDmax  
=
p2RL  
(11)  
7-1. Efficiency and Maximum Ambient Temperature vs Output Power  
OUTPUT POWER  
5-V, 3-SYSTEMS  
0.5 W  
EFFICIENCY  
INTERNAL DISSIPATION  
POWER FROM SUPPLY  
MAX AMBIENT TEMPERATURE  
27.2%  
38.4%  
60.2%  
67.7%  
1.34 W  
1.6 W  
1.84 W  
2.6 W  
54°C  
35°C  
34°C  
44°C  
1 W  
2.45 W  
1.62 W  
1.48 W  
4.07 W  
4.58 W  
3.1 W  
5-V, 4-BTL SYSTEMS  
0.5 W  
31.4%  
44.4%  
62.8%  
74.3%  
1.09 W  
1.25 W  
1.18 W  
0.97 W  
1.59 W  
2.25 W  
3.18 W  
3.77 W  
72°C  
60°C  
65°C  
80°C  
1 W  
2 W  
2.8 W  
5-V, 8-SYSTEMS  
105°C (limited by maximum ambient  
temperature specification)  
0.5 W  
1 W  
44.4%  
62.8%  
0.625 W  
0.592 W  
1.13 W  
1.6 W  
105°C (limited by maximum ambient  
temperature specification)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
7-1. Efficiency and Maximum Ambient Temperature vs Output Power (continued)  
OUTPUT POWER  
EFFICIENCY  
INTERNAL DISSIPATION  
POWER FROM SUPPLY  
MAX AMBIENT TEMPERATURE  
105°C (limited by maximum ambient  
temperature specification)  
1.36 W  
73.3%  
0.496 W  
1.86 W  
105°C (limited by maximum ambient  
temperature specification)  
1.7 W  
81.9%  
0.375 W  
2.08 W  
方程式 10 is used to calculate efficiencies for four different output power levels, see 7-1. The efficiency of the  
amplifier is quite low for lower power levels and rises sharply as power to the load is increased resulting in a  
nearly flat internal power dissipation over the normal operating range. The internal dissipation at full output  
power is less than in the half power range. Calculating the efficiency for a specific system is the key to proper  
power supply design. For a 2.8-W audio system with 4-loads and a 5-V supply, the maximum draw on the  
power supply is almost 3.8 W.  
A final point to remember about Class-AB amplifiers is how to manipulate the terms in the efficiency equation to  
the utmost advantage when possible. In 方程式 10, VDD is in the denominator. This indicates that as VDD goes  
down, efficiency goes up.  
The maximum ambient temperature depends on the heat sinking ability of the PCB system. Given Rθ JA  
(junction-to-ambient thermal resistance), the maximum allowable junction temperature, and the internal  
dissipation at 1-W output power with a 4-Ohm load, the maximum ambient temperature can be calculated with 方  
12. The maximum recommended junction temperature for the TPA6211T-Q1 device is 150°C.  
TA (Max) = TJ(Max) -RqJA ´PD = 150 - 71.7´1.25 = 60°C  
(12)  
方程式 12 shows that the maximum ambient temperature is 60°C at 1-W output power and 4-Ohm load with a 5-  
V supply.  
7-1 shows that the thermal performance must be considered when using a Class-AB amplifier to keep  
junction temperatures in the specified range. The TPA6211T-Q1 device is designed with thermal protection that  
turns the device off when the junction temperature surpasses 150°C to prevent damage to the IC. In addition,  
using speakers with an impedance higher than 4 dramatically increases the thermal performance by reducing  
the output current.  
7.3.3 Differential Output Versus Single-Ended Output  
7-2 shows a Class-AB audio power amplifier (APA) in a fully differential configuration. The TPA6211T-Q1  
amplifier has differential outputs driving both ends of the load. One of several potential benefits to this  
configuration is power to the load. The differential drive to the speaker means that as one side is slewing up, the  
other side is slewing down, and vice versa. This in effect doubles the voltage swing on the load as compared to  
a ground-referenced load. Plugging 2 × VO(PP) into the power equation (方程式 13) yields four-times the output  
power (as the voltage is squared) from the same supply rail and load impedance (see 方程15 and 方程16).  
VO(PP)  
V
=
(rms)  
2 2  
2
V
(rms)  
Power =  
RL  
(13)  
(14)  
2
V
æ
ç
è
O(PP) ö  
÷
2
2
V
VO(PP)  
8RL  
2 2  
RL  
(rms)  
ø
Power  
=
=
=
(S-E)  
RL  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
2
2 ´ V  
O(PP) ö  
æ
ç
è
÷
2
2
V
VO(PP)  
2RL  
2 2  
RL  
(rms)  
ø
Power  
=
=
=
(Diff)  
RL  
(15)  
(16)  
Power  
= 4 ´ Power  
(Diff)  
(S-E)  
V
DD  
V
O(PP)  
2x V  
O(PP)  
R
L
V
DD  
-V  
O(PP)  
7-2. Differential Output Configuration  
In a typical automotive application operating at 5 V, bridging raises the power into an 8-speaker from a  
singled-ended (SE, ground reference) limit of 390 mW to 1.56 W. This is a 6-dB improvement in sound power, or  
loudness of the sound. In addition to increased power, there are frequency-response concerns. Consider the  
single-supply SE configuration shown in 7-3. A coupling capacitor (CC) is required to block the DC-offset  
voltage from the load. This capacitor can be quite large (approximately 33 µF to 1000 µF) so it tends to be  
expensive, heavy, occupy valuable PCB area, and have the additional drawback of limiting low-frequency  
performance. This frequency-limiting effect is due to the high-pass filter network created with the speaker  
impedance and the coupling capacitance. This is calculated with 方程17.  
1
fc =  
2pRLCC  
(17)  
For example, a 68-µF capacitor with an 8-speaker would attenuate low frequencies below 293 Hz. The BTL  
configuration cancels the DC offsets, which eliminates the need for the blocking capacitors. Low-frequency  
performance is then limited only by the input network and speaker response. Cost and PCB space are also  
minimized by eliminating the bulky coupling capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
V
DD  
V
O(PP)  
C
C
R
V
O(PP)  
L
-3 dB  
f
c
7-3. Single-Ended Output and Frequency Response  
Increasing power to the load does carry a penalty of increased internal power dissipation. The increased  
dissipation is understandable considering that the BTL configuration produces four-times the output power of the  
SE configuration.  
7.4 Device Functional Modes  
The TPA6211T-Q1 device can be put in shutdown mode when asserting SHUTDOWN pin to a logic LOW. While  
in shutdown mode, the device output stage is turned off and set into high impedance, making the current  
consumption very low. The device exits shutdown mode when a HIGH logic level is applied to SHUTDOWN pin.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPA6211T-Q1 is a fully-differential amplifier designed to drive a speaker with at least 3-Ω impedance while  
consuming only 20-mm2 total printed-circuit board (PCB) area in most applications.  
8.2 Typical Applications  
8-1 shows a typical application circuit for the TPA6211T-Q1 with a speaker, input resistors, and supporting  
power supply decoupling capacitors.  
8.2.1 Typical Differential Input Application  
5 V DC  
Copyright © 2016, Texas Instruments Incorporated  
A. C(BYPASS) is optional  
8-1. Typical Differential Input Application Schematic  
Typical values are shown in 8-1.  
8-1. Typical Component Values  
COMPONENT  
VALUE  
RI  
40 kΩ  
(1)  
CBYPASS  
0.22 µF  
1 µF  
CS  
CI  
0.22 µF  
(1) CBYPASS is optional.  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 8-2 as the input parameters.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
8-2. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
2.5 V to 5.5 V  
4 mA to 5 mA  
High > 1.55 V  
Low < 0.5 V  
Power supply voltage  
Current  
Shutdown  
Speaker  
3 , 4 , or 8 Ω  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Resistors (RI)  
The input resistor (RI) can be selected to set the gain of the amplifier according to 方程18.  
RF  
Gain =  
RI  
(18)  
The internal feedback resistors (RF) are trimmed to 40 k.  
Resistor matching is very important in fully differential amplifiers. The balance of the output on the reference  
voltage depends on matched ratios of the resistors. CMRR, PSRR, and the cancellation of the second harmonic  
distortion diminishes if resistor mismatch occurs. Therefore, TI recommends 1%-tolerance resistors or better to  
optimize performance.  
8.2.1.2.2 Bypass Capacitor (CBYPASS) and Start-Up Time  
The internal voltage divider at the BYPASS pin of this device sets a mid-supply voltage for internal references  
and sets the output common mode voltage to VDD / 2. Adding a capacitor filters any noise into this pin,  
increasing kSVR. CBYPASS also determines the rise time of VO+ and VOwhen the device exits shutdown. The  
larger the capacitor, the slower the rise time.  
8.2.1.2.3 Input Capacitor (CI)  
The TPA6211T-Q1 device does not require input coupling capacitors when driven by a differential input source  
biased from 0.5 V to VDD 0.8 V. Use 1% tolerance or better gain-setting resistors if not using input coupling  
capacitors.  
In the single-ended input application, an input capacitor (CI) is required to allow the amplifier to bias the input  
signal to the proper DC level. In this case, CI and RI form a high-pass filter with the corner frequency defined in  
方程19.  
1
fc =  
2pRICI  
(19)  
-3 dB  
f
c
8-2. Input Filter Cutoff Frequency  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
The value of CI is an important consideration, as it directly affects the bass (low frequency) performance of the  
circuit. Consider the example where RI is 10 kand the specification calls for a flat bass response down to  
100 Hz. 方程19 is reconfigured as 方程20.  
1
CI =  
2pRIfc  
(20)  
In this example, CI is 0.16 µF, so the likely choice ranges from 0.22 µF to 0.47 µF. TI recommends the use of  
ceramic capacitors because they are the best choice in preventing leakage current. When polarized capacitors  
are used, the positive side of the capacitor faces the amplifier input in most applications. The input DC level is  
held at VDD / 2, typically higher than the source DC level. Confirming the capacitor polarity in the application is  
important.  
8.2.1.2.4 Band-Pass Filter (RI, CI, and CF)  
Having signal filtering beyond the one-pole high-pass filter formed by the combination of CI and RI can be  
desirable. A low-pass filter can be added by placing a capacitor (CF) between the inputs and outputs, forming a  
band-pass filter.  
An example of when this technique might be used would be in an application where the desirable pass-band  
range is between 100 Hz and 10 kHz, with a gain of 4 V/V. 方程式 21 to 方程式 28 allow the proper values of CF  
and CI to be determined.  
8.2.1.2.4.1 Step 1: Low-Pass Filter  
1
fc(LPF)  
=
2pRFCF  
(21)  
(22)  
1
fc(LPF)  
=
2p40kWCF  
Therefore,  
1
CF =  
2p40 kW fc(LPF)  
(23)  
(24)  
Substituting 10 kHz for fc(LPF) and solving for CF:  
CF = 398 pF  
8.2.1.2.4.2 Step 2: High-Pass Filter  
1
fc(HPF)  
=
2pRICI  
(25)  
(26)  
Because the application in this case requires a gain of 4 V/V, RI must be set to 10 k.  
Substituting RI into 方程25.  
1
fc(HPF)  
=
2p10 kW CI  
Therefore,  
1
CI =  
2p10 kW fc(HPF)  
(27)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPA6211T-Q1  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
Substituting 100 Hz for fc(HPF) and solving for CI:  
CI = 0.16 µF  
(28)  
At this point, a first-order band-pass filter has been created with the low-frequency cutoff set to 100 Hz and the  
high-frequency cutoff set to 10 kHz.  
The process can be taken a step further by creating a second-order high-pass filter. This is accomplished by  
placing a resistor (Ra) and capacitor (Ca) in the input path. Ra must be at least 10 times smaller than RI;  
otherwise its value has a noticeable effect on the gain, as Ra and RI are in series.  
8.2.1.2.4.3 Step 3: Additional Low-Pass Filter  
Ra must be at least ten-times smaller than RI. Set Ra = 1 kΩ  
1
fc(LPF)  
=
2pRaCa  
(29)  
Therefore,  
1
Ca =  
2p 1kW fc(LPF)  
(30)  
(31)  
Substituting 10 kHz for fc(LPF) and solving for Ca:  
Ca = 160 pF  
8-3 is a bode plot for the band-pass filter in the previous example. 8-8 shows how to configure the  
TPA6211T-Q1 device as a band-pass filter.  
AV  
12 dB  
9 dB  
−20 dB/dec  
+20 dB/dec  
−40 dB/dec  
f
= 100 Hz  
f
= 10 kHz  
c(LPF)  
c(HPF)  
f
8-3. Bode Plot  
8.2.1.2.5 Decoupling Capacitor (CS)  
The TPA6211T-Q1 device is a high-performance CMOS audio amplifier that requires adequate power supply  
decoupling to ensure the output total harmonic distortion (THD) is as low as possible. Power-supply decoupling  
also prevents oscillations for long lead lengths between the amplifier and the speaker. For higher frequency  
transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor,  
typically 0.1 µF to 1 µF, placed as close as possible to the device VDD lead works best. For filtering lower  
frequency noise signals, a 10-µF or greater capacitor placed near the audio power amplifier also helps, but is not  
required in most applications because of the high PSRR of this device.  
8.2.1.2.6 Using Low-ESR Capacitors  
Low-ESR capacitors are recommended throughout this applications section. A real (as opposed to ideal)  
capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this  
resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this  
resistance the more the real capacitor behaves like an ideal capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
8.2.1.3 Application Curves  
3.5  
3.5  
3
PO = 8 W, THD 1%  
VDD = 2.5 V, THD 1%  
VDD = 2.5 V, THD 10%  
VDD = 3.6 V, THD 1%  
VDD = 3.6 V, THD 10%  
VDD = 5 V, THD 1%  
VDD = 5 V, THD 10%  
PO = 8 W, THD 10%  
3
PO = 4 W, THD 1%  
PO = 3 W, THD 1%  
PO = 4 W, THD 10%  
PO = 3 W, THD 10%  
2.5  
2.5  
2
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
2.5  
3
3.5 4  
Supply Voltage (V)  
4.5  
5
3
8
13  
18  
23  
28  
33  
Load Resistance (W)  
D002  
D001  
8-4. Output Power vs Supply Voltage  
8-5. Output Power vs Load Resistance  
8.2.2 Other Application Circuits  
8-6, 8-7, and 8-8 show example circuits using the TPA6211T-Q1 device.  
5 V DC  
C
C
Copyright © 2016, Texas Instruments Incorporated  
A. C(BYPASS) is optional  
8-6. Differential Input Application Schematic Optimized With Input Capacitors  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPA6211T-Q1  
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
5 V DC  
C
C
Copyright © 2016, Texas Instruments Incorporated  
A. C(BYPASS) is optional  
8-7. Single-Ended Input Application Schematic  
C
F
C
F
5 V DC  
C
C
C
C
Copyright © 2016, Texas Instruments Incorporated  
A. C(BYPASS) is optional  
8-8. Differential Input Application Schematic With Input Bandpass Filter  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPA6211T-Q1 device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V.  
Therefore, the output voltage range of power supply must be within this range and well regulated. The current  
capability of upper power should not exceed the maximum current limit of the power switch.  
9.1 Power Supply Decoupling Capacitor  
The TPA6211T-Q1 device requires adequate power supply decoupling to ensure a high efficiency operation with  
low total harmonic distortion (THD). Place a low equivalent series resistance (ESR) ceramic capacitor, typically  
0.1 µF, as close as possible of the VDD pin. This choice of capacitor and placement helps with higher frequency  
transients, spikes, or digital hash on the line. TI recommends placing a 2.2-µF to 10-µF capacitor on the VDD  
supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus  
helping to prevent any droop in the supply voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPA6211T-Q1  
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Place all the external components close to the TPA6211T-Q1 device. The input resistors need to be close to the  
device input pins so noise does not couple on the high impedance nodes between the input resistors and the  
input amplifier of the device. Placing the decoupling capacitors, CS and CBYPASS, close to the TPA6211T-Q1  
device is important for the efficiency of the amplifier. Any resistance or inductance in the trace between the  
device and the capacitor can cause a loss in efficiency.  
10.2 Layout Example  
10-1. TPA6211T-Q1 8-Pin HVSSOP (DGN) Board Layout  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPA6211T-Q1  
 
 
 
TPA6211T-Q1  
ZHCSKV6A MARCH 2020 REVISED JULY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.2 Community Resources  
11.3 Trademarks  
所有商标均为其各自所有者的财产。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPA6211T-Q1  
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA6211TDGNRQ1  
ACTIVE  
HVSSOP  
DGN  
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 105  
6211Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA6211TDGNRQ1  
HVSSOP DGN  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jun-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HVSSOP DGN  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
TPA6211TDGNRQ1  
8
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DGN 8  
3 x 3, 0.65 mm pitch  
PowerPAD VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225482/A  
www.ti.com  
PACKAGE OUTLINE  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE PACKAGE  
C
5.05  
4.75  
TYP  
A
0.1 C  
SEATING  
PLANE  
PIN 1 INDEX AREA  
6X 0.65  
8
1
2X  
3.1  
2.9  
1.95  
NOTE 3  
4
5
0.38  
8X  
0.25  
3.1  
2.9  
0.13  
C A B  
B
NOTE 4  
0.23  
0.13  
SEE DETAIL A  
EXPOSED THERMAL PAD  
4
5
0.25  
GAGE PLANE  
2.15  
1.95  
9
1.1 MAX  
8
0.15  
0.05  
1
0.7  
0.4  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1.846  
1.646  
4225480/B 12/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(2)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(1.57)  
SOLDER MASK  
DEFINED PAD  
SYMM  
8X (1.4)  
(R0.05) TYP  
8
8X (0.45)  
1
(3)  
NOTE 9  
SYMM  
(1.89)  
9
(1.22)  
6X (0.65)  
5
4
(
0.2) TYP  
VIA  
SEE DETAILS  
(0.55)  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225480/B 12/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(1.57)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
(R0.05) TYP  
8X (1.4)  
8
1
8X (0.45)  
(1.89)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
6X (0.65)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
(4.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD 9:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
1.76 X 2.11  
1.57 X 1.89 (SHOWN)  
1.43 X 1.73  
0.125  
0.15  
0.175  
1.33 X 1.60  
4225480/B 12/2022  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPA6211TDGNRQ1

汽车类 3.1W 单声道模拟输入 AB 类音频放大器 | DGN | 8 | -40 to 105
TI

TPA62A-12

82V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA62A-12-RL

82V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA62A-18-RL

82V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA62B-12

75V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA62B-12-RL

75V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA62B-18

75V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA62B-18-RL

75V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA62RL

TRISIL FOR TELECOM EQUIPMENT PROTECTION
STMICROELECTR

TPA6304-Q1

45W、2.1MHz 模拟输入 4 通道汽车 D 类 Burr-Brown™ 音频放大器
TI

TPA6304QDDVRQ1

45W、2.1MHz 模拟输入 4 通道汽车 D 类 Burr-Brown™ 音频放大器 | DDV | 44 | -40 to 125
TI

TPA6404-Q1

具有负载突降保护功能的汽车类 45W、2MHz、4 通道、4.5V 至 18V 电源模拟输入 D 类音频放大器
TI