TPA6304QDDVRQ1 [TI]

45W、2.1MHz 模拟输入 4 通道汽车 D 类 Burr-Brown™ 音频放大器 | DDV | 44 | -40 to 125;
TPA6304QDDVRQ1
型号: TPA6304QDDVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

45W、2.1MHz 模拟输入 4 通道汽车 D 类 Burr-Brown™ 音频放大器 | DDV | 44 | -40 to 125

放大器 音频放大器
文件: 总122页 (文件大小:3634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPA6304-Q1  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
TPA6304-Q1 具有负载突降保护I2C 诊断功能45W2.1MHz 模拟输4 通道  
汽车D Burr-Brown™ 音频放大器  
1 特性  
2 应用  
• 高效D 类  
汽车音响主机  
汽车外部放大器模块  
– 效率显著高AB 类  
– 改善了散热解决方案AB 类相比热耗散降  
75%  
• 启动/停止操作低4.5V  
• 符合面向汽车应用AEC-Q100 标准:  
– 温度等140°C 125°C TA  
HBM ESD 分类等2  
3 说明  
TPA6304-Q1 器件是一款采用 2.1MHz PWM 开关频率  
的四通道模拟输入 D Burr-Brown音频放大器可  
实现经成本优化的解决方案PCB 尺寸非常小仅为  
2.7cm2具有高阻抗单端输入启动/停止过程中可在  
4.5V 的电压下全面运行。  
CDM ESD 分类等C2B  
4负载、14.4V 电源电压的条件下输出功率  
27WTHD 10%  
– 驱42负载  
• 负载诊断功能  
TPA6304-Q1 D 类音频放大器的设计十分出色可适  
用于入门级汽车音响主机以作为系统设计的一部分提  
供模拟音频输入信号。与传统的线性放大器解决方案相  
D 类拓扑技术显著提高了器件效率。  
– 开路和短路输出负载  
– 输出至电池短路或接地短路  
– 连接高频扬声器  
输出开关频率既可以设置为高于 AM 频带以便消除  
AM 频带干扰并降低输出滤波器尺寸及成本也可以设  
置为低AM 频带以便进一步优化效率。  
• 采用高级栅极驱动设计以满CISPR25-L5 EMC  
规范  
该器件采用带外露散热焊盘的 44 引脚 HTSSOP 封  
装。  
D 类音频放大器2.1MHz 开关频率AM 干  
– 扩频模式、相位偏移、压摆率控制  
• 保护功能  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPA6304-Q1  
HTSSOP (44)  
14.00mm x 6.10mm  
40V 负载突降保护  
– 输出短路保护  
– 直流失调电压和过热保护  
– 意外接地开路和电源开路保护  
• 音频输入  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 四通道单端模拟输入  
10dB16dB22dB 28dB 增益选项  
• 支持通道并联驱(PBTL)  
4负载14.4V1kHz 条件下的音频性能  
THD+N < 0.006%  
42µVRMS 输出噪声  
80dB PSRR  
– 效> 80%  
• 特性  
参考板  
– 可编程削波探测  
– 负载电流限制器  
– 热增益和热折返  
– 快速、自动启动诊断功能  
– 在负载电< 10mA 的条件下进行  
交流负载阻抗测量  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEP6  
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
Table of Contents  
7.5 Programming............................................................ 43  
7.6 Register Maps...........................................................47  
8 Application Information Disclaimer...........................104  
8.1 Application Information........................................... 104  
8.2 Typical Applications................................................ 106  
9 Power Supply Recommendations..............................109  
10 Layout.........................................................................110  
10.1 Layout Guidelines................................................. 110  
10.2 Layout Example.....................................................111  
10.3 Thermal Considerations........................................112  
11 Device and Documentation Support........................ 114  
11.1 Documentation Support.........................................114  
11.2 接收文档更新通知..................................................114  
11.3 支持资源................................................................ 114  
11.4 Trademarks........................................................... 114  
11.5 静电放电警告.........................................................114  
11.6 术语表....................................................................114  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................23  
7.1 Overview...................................................................23  
7.2 Functional Block Diagram.........................................23  
7.3 Feature Description...................................................24  
7.4 Device Functional Modes..........................................35  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (September 2019) to Revision B (December 2020)  
Page  
• 将器件状态从预告信更改为数据.............................................................................................................1  
Changed From: Single-Ended Analog input with 3 gain option To: Single-Ended Analog input with 4 gain  
options in the Functional Block Diagram ......................................................................................................... 23  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
5 Pin Configuration and Functions  
PVDD  
PVDDQ  
VBAT  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
BST_4P  
OUT_4P  
GND  
2
3
GVDD_RET  
GVDD  
AVDD  
4
OUT_4M  
BST_4M  
BST_3P  
OUT_3P  
GND  
5
6
AVDD_RET  
IN_REF  
IN_4  
7
8
9
OUT_3M  
BST_3M  
PVDD  
IN_3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
IN_2  
Thermal  
Pad  
IN_1  
PVDD  
DVSS  
BST_2P  
OUT_2P  
GND  
DVDD  
SCL  
SDA  
OUT_2M  
BST_2M  
BST_1P  
OUT_1P  
GND  
STANDBY  
FAULT  
GPIO1  
GPIO2  
GND  
OUT_1M  
BST_1M  
PVDD  
Not to scale  
5-1. DDV Package, 44-Pin HTSSOP, Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Voltage regulator bypass, derived from VBAT input pins. Connect 1 µF capacitor from AVDD  
(pin 6) to AVDD_RET (pin 7).  
AVDD  
6
PWR  
AVDD_RET  
BST_1M  
BST_1P  
BST_2M  
BST_2P  
BST_3M  
BST_3P  
7
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
AVDD voltage regulator return. Connect to ground.  
23  
27  
28  
32  
35  
39  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BST_4M  
BST_4P  
DVDD  
NO.  
40  
PWR  
PWR  
PWR  
GND  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
DVDD supply input. Connect 1 µF capacitor from DVDD to DVSS (pin 13).  
DVDD ground reference. Connect to ground.  
44  
14  
DVSS  
13  
Reports a fault (active low, open drain), external pullup resistor determines I2C address during  
power on reset.  
FAULT  
GND  
18  
DI/O  
GND  
21, 25, 30,  
37, 42  
Ground  
GPIO1  
GPIO2  
19  
20  
DI/O  
DI/O  
General purpose IO, function set by register programming.  
General purpose IO, function set by register programming.  
Gate drive voltage regulator bypass for all output channels, derived from VBAT input pins.  
Connect 2.2µF capacitor to GVDD_RET (pin 4).  
GVDD  
5
PWR  
GVDD_RET  
IN_1  
4
GND  
AI  
Gate drive voltage regulator return. Connect to ground.  
12  
11  
10  
9
Non-inverting input channel. Internally biased to AVDD/2. Connect to AC coupling capacitor.  
Non-inverting input channel. Internally biased to AVDD/2. Connect to AC coupling capacitor.  
Non-inverting input channel. Internally biased to AVDD/2. Connect to AC coupling capacitor.  
Non-inverting input channel. Internally biased to AVDD/2. Connect to AC coupling capacitor.  
IN_2  
AI  
IN_3  
AI  
IN_4  
AI  
Reference input voltage for IN_1, IN_2, IN_3, IN_4. Internally biased to AVDD/2. Connect to  
AC coupling capacitor.  
IN_REF  
8
AI  
OUT_1M  
OUT_1P  
OUT_2M  
OUT_2P  
OUT_3M  
OUT_3P  
OUT_4M  
OUT_4P  
PVDD  
24  
26  
29  
31  
36  
38  
41  
43  
NO  
PO  
Negative output for the channel  
Positive output for the channel  
NO  
Negative output for the channel  
PO  
Positive output for the channel  
NO  
Negative output for the channel  
PO  
Positive output for the channel  
NO  
Negative output for the channel  
PO  
Positive output for the channel  
1, 22, 33, 34  
PWR  
PWR  
DI  
PVDD voltage input carrying load currents (can be connected to battery).  
PVDD voltage input not loaded with load currents (can be connected to battery).  
I2C clock input  
PVDDQ  
SCL  
2
15  
16  
17  
3
SDA  
DI/O  
DI  
I2C data input and output  
STANDBY  
VBAT  
Enables low power standby state (active Low), 100-kΩinternal pulldown resistor.  
Battery voltage input  
PWR  
GND  
Thermal Pad  
Provides thermal connection for the device. Heatsink must be connected to GND.  
(1) AI = analog input, GND = ground, PWR = power, PO = positive output, NO = negative output, DI = digital input, DO = digital output,  
DI/O = digital input and output, NC = No Connection  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN  
0.3  
1  
MAX UNIT  
PVDD, VBAT DC supply-voltage range relative to GND  
30  
40  
V
V
VMAX  
VRAMP  
VIN  
Transient supply-voltage range - PVDD, VBAT  
Supply-voltage ramp rate - PVDD, VBAT  
Audio input pins - IN_x, IN_Ref  
t 400 ms exposure  
75 V/ms  
5.5  
3.5  
V
V
0.3  
0.3  
DVDD  
DC supply voltage range relative to GND  
Maximum current per pin - PVDD, VBAT, OUTxP,  
OUT xM, GND  
IMAX  
Peak Audio Current, t < 25ms  
7.5  
A
V
Input voltage for logic pins - SCL, SDA, FAULT,  
STANDBY, GPIOx  
DVDD +  
0.5  
VLOGIC  
0.3  
VGND  
TJ  
Maximum voltage between GND pins  
Maximum operating junction temperature range  
Storage temperature range  
±0.3  
175  
150  
V
°C  
°C  
55  
55  
Tstg  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model  
Human-body model (HBM), per AEC  
V(ESD)  
Electrostatic discharge  
(HBM), per AEC  
±2000  
V
Q100-002(1)  
Q100-002(1)  
Charged-device model (CDM), per AEC  
Q100-011  
V(ESD)  
V(ESD)  
Electrostatic discharge  
Electrostatic discharge  
All pins  
±750  
±750  
V
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 22, 23 and  
44)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
4.5  
TYP  
14.4  
14.4  
3.3  
MAX UNIT  
PVDD  
VBAT  
DVDD  
TA  
Output FET Supply Voltage Range  
Battery Supply Voltage Range  
Digital Logic Supply  
Relative to GND  
Relative to GND  
Relative to GND  
18  
18  
V
V
4.5  
3.0  
3.5  
125  
V
Ambient temperature  
°C  
40  
An adequate thermal design is  
required  
TJ  
Junction temperature  
160  
°C  
40  
RL  
Nominal speaker load impedance  
Nominal speaker load impedance  
I2C pullup resistance on SDA and SCL pins  
External capacitance on bypass pins  
External capacitance on GVDD pin  
BTL Mode  
2
1.75  
1
4
2
Ω
Ω
RL  
PBTL Mode  
RPU_I2C  
CBypass  
CGVDD  
4.7  
1
10  
kΩ  
µF  
µF  
Pin 1, 3, 6, 14  
Pin 5  
2.2  
Limit set by DC-diagnostic  
timing  
COUT  
External capacitance to GND on OUT pins  
1
3.3  
µF  
Minimum output filter  
inductance at ISD current  
levels. Applies to short to  
ground or short to power  
protection.  
LO  
Output filter inductance - ISD  
0.5  
µH  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPA6304-Q1  
 
 
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.3 Recommended Operating Conditions (continued)  
MIN  
TYP  
MAX UNIT  
Minimum output filter  
inductance at ILIMIT current  
levels. Applies to current  
limiting.  
LO  
Output filter inductance - ILIMIT  
1
µH  
6.4 Thermal Information  
THERMAL METRIC(1)  
TPA6304-Q1(2)  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.6  
17.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
16.8  
ψJT  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermalmetrics, see the SPRA953 application report.  
(2) JEDEC Standard 4 Layer PCB.  
6.5 Electrical Characteristics  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒout = 1  
kHz, Fsw = 2.1 MHz, Gain = 22 dB, BD Mode, AES17 Filter, LC reconstruction filter: 3.3μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2Ωconfiguration and 1μF, default I2C settings, see application diagrams in Typical Applications  
section.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING CURRENT  
IPVDD_IDLE  
IVBAT_IDLE  
IDVDD  
PVDD idle current  
All channels playing, no audio input  
All channels playing, no audio input  
All channels playing, -60 dB Signal  
STANDBY active, DVDD = 0 V  
STANDBY active, DVDD = 0 V  
60  
115  
4
70  
130  
4.5  
10  
mA  
mA  
mA  
µA  
VBAT idle current  
DVDD supply current  
PVDD standby current  
VBAT standby current  
IPVDD_STBY  
IVBAT_STBY  
OUTPUT POWER  
Output power per  
1.5  
1
2
µA  
4 Ω, PVDD = 14.4 V, THD+N = 1%,  
TC = 75°C  
PO_BTL  
PO_BTL  
PO_BTL  
PO_BTL  
PO_BTL  
20  
25  
22  
27  
27  
37  
45  
W
W
W
W
W
channel, BTL  
Output power per  
channel, BTL  
4 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C  
Output power per  
channel, BTL  
4 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C, Inductor DCR = 25mΩ  
Output power per  
channel, BTL  
2 Ω, PVDD = 14.4 V, THD+N = 1%,  
TC = 75°C  
32  
40  
Output power per  
channel, BTL  
2 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C  
Output power per  
channel with square  
wave, BTL  
4 Ω, PVDD = 14.4 V, 2 VRMS Input  
Square Wave  
PO_BTL_SQ  
PO_BTL_SQ  
PO_PBTL  
45  
55  
43  
W
W
W
Output power per  
channel with square  
wave, BTL  
4 Ω, PVDD = 16 V, 2 VRMS Input  
Square Wave  
Output power per  
channel in parallel mode,  
PBTL  
2 Ω, PVDD = 14.4 V, THD+N = 1%,  
TC = 75°C  
38  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒout = 1  
kHz, Fsw = 2.1 MHz, Gain = 22 dB, BD Mode, AES17 Filter, LC reconstruction filter: 3.3μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2Ωconfiguration and 1μF, default I2C settings, see application diagrams in Typical Applications  
section.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output power per  
channel in parallel mode,  
PBTL  
2 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C  
PO_PBTL  
47  
53  
W
4 channels operating, 25 W output  
power per channel, RL = 4 Ω, PVDD =  
14.4 V, TC = 25°C; (includes device  
and LC filter losses)  
EFFP  
Power efficiency  
88  
%
PWM OUTPUT STAGE  
FET drain-to-source  
25°C, Including bond wire and  
package resistance  
RDS(on)  
100  
80  
mΩ  
mΩ  
resistance  
FET drain-to-source  
resistance  
25°C, Not including bond wire and  
package resistance  
RDS(on)  
AUDIO PERFORMANCE  
Vn  
Vn  
Vn  
Vn  
Output noise voltage  
Zero input, A-weighting, 10 dB gain  
Zero input, A-weighting, 16 dB gain  
Zero input, A-weighting, 22 dB gain  
Zero input, A-weighting, 28 dB gain  
35  
42  
60  
75  
µV  
µV  
µV  
µV  
Output noise voltage  
Output noise voltage  
Output noise voltage  
Total harmonic distortion  
+ noise  
THD+N  
0.013  
%
G
G
G
G
Gain  
Gain  
Gain  
Gain  
Level 1  
Level 2  
Level 3  
Level 4  
9
15  
21  
27  
10  
16  
22  
28  
10.5  
16.5  
22.5  
28.5  
dB  
dB  
dB  
dB  
Channel-to-channel gain  
variation  
GCH  
0
90  
80  
0.5  
dB  
dB  
dB  
0.5  
Crosstalk  
PSRR  
Channel crosstalk  
Power-supply rejection  
ratio  
PVDD = 14.4 Vdc + 1 VRMS, ƒ= 1 kHz  
Assert MUTE and compare to amp  
playing 1W audio into 4 Ω  
GMUTE  
VCLICK  
Vn_LINEOUT  
Output attenuation  
Click and Pop  
100  
117  
7
dB  
Zero input, ITU-filter, 28dB gain  
mV  
Zero input, A-weighting, channel set to  
Line Output, RL = 600 Ω, Gain = 16  
dB  
Line output noise voltage  
42  
µV  
%
Line output Total  
harmonic distortion +  
noise  
VOUT = 2 VRMS , channel set to Line  
Output  
THD+N  
0.01  
ANALOG INPUT PINS  
RIN  
RIN  
Input impedance  
IN_1, IN_2, IN_3, IN_4  
IN_REF  
80  
20  
kΩ  
kΩ  
Input impedance  
Maximum input voltage  
swing  
VIN AC coupled through capacitor.  
Pins IN_1, IN_2, IN_3, IN_4  
VIN  
1
5
VRMS  
Maximum input voltage  
swing  
VIN  
IIN  
IN_REF  
mV  
mA  
Maximum input current  
IN_1, IN_2, IN_3, IN_4, IN_REF  
10  
DIGITAL INPUT PINS  
VIH  
Input logic level high  
70  
%DVDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒout = 1  
kHz, Fsw = 2.1 MHz, Gain = 22 dB, BD Mode, AES17 Filter, LC reconstruction filter: 3.3μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2Ωconfiguration and 1μF, default I2C settings, see application diagrams in Typical Applications  
section.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
%DVDD  
µA  
VIL  
IIH  
IIL  
Input logic level low  
Input logic current  
Input logic current  
30  
VI = DVDD  
33  
50  
VI = 0  
µA  
50  
33  
DIGITAL OUTPUT PINS  
Output voltage for logic  
level high  
VOH  
VOL  
I = ±2 mA  
I = ±2 mA  
90  
%DVDD  
%DVDD  
Output voltage for logic  
level low  
10  
BYPASS VOLTAGES  
Gate drive bypass pin  
VGVDD  
5
5
V
V
voltage  
Analog bypass pin  
voltage  
VAVDD  
OVERVOLTAGE (OV) PROTECTION  
PVDD overvoltage  
VPVDD_OV_SET  
18.5  
18.5  
20  
0.5  
20  
22  
22  
V
V
V
V
shutdown set  
PVDD overvoltage  
VPVDD_OV_HYS  
recovery hysteresis  
VBAT overvoltage  
VVBAT_OV_SET  
shutdown set  
VBAT overvoltage  
VVBAT_OV_HYS  
0.5  
recovery hysteresis  
UNDERVOLTAGE (UV) PROTECTION  
VBAT undervoltage  
VBATUV_SET  
3.7  
3.7  
4.5  
4.5  
V
V
V
V
shutdown set  
VBAT undervoltage  
VBATUV_HYS  
0.3  
0.3  
recovery hysteresis  
PVDD undervoltage  
PVDDUV_SET  
shutdown set  
PVDD undervoltage  
PVDDUV_HYS  
recovery hysteresis  
POWER-ON RESET (POR)  
VPOR_SET  
VPOR_HYS  
DVDD power on reset set Increasing DVDD  
1.9  
0.5  
V
V
DVDD power on reset  
recovery hysteresis  
DVDD power off  
Decreasing DVDD  
threshold  
VPOR_OFF  
1.5  
2.4  
V
OVERTEMPERATURE (OT) PROTECTION  
Per channel over-  
OTW(i)  
160  
175  
130  
160  
15  
°C  
°C  
°C  
°C  
°C  
temperature warning  
Per channel over-  
OTSD(i)  
temperature shutdown  
Global junction over-  
OTW  
Default value (see Misc Control  
Register 1)  
temperature warning  
Global junction over-  
OTSD  
temperature shutdown  
Over-temperature  
OTHYS  
recovery hysterisis  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒout = 1  
kHz, Fsw = 2.1 MHz, Gain = 22 dB, BD Mode, AES17 Filter, LC reconstruction filter: 3.3μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2Ωconfiguration and 1μF, default I2C settings, see application diagrams in Typical Applications  
section.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOAD OVERCURRENT PROTECTION  
ILIMIT  
ILIMIT  
ILIMIT  
ILIMIT  
Load Overcurrent limit  
Load Overcurrent limit  
Load Overcurrent limit  
Load Overcurrent limit  
OC level 1, load current (default)  
OC level 2, load current  
OC level 3, load current  
OC level 4, load current  
3.0  
3.5  
5.0  
6.0  
3.4  
4
A
A
A
A
5.8  
6.5  
OC level 1, any short to supply,  
ground, or other channels (default)  
ISD  
ISD  
ISD  
Overcurrent shutdown  
Overcurrent shutdown  
Overcurrent shutdown  
Overcurrent shutdown  
4.7  
5.5  
8.0  
9.0  
6
7
A
A
A
A
OC level 2, any short to supply,  
ground, or other channels  
OC level 3, any short to supply,  
ground, or other channels  
10  
11  
OC level 4, any short to supply,  
ground, or other channels  
ISD  
DC DETECT  
DCFAULT  
SYNC  
Output DC fault  
protection  
1
1.75  
2.5  
V
Misc Control 2 Register,  
PWM_FREQUENCY: 00, fsw  
2.1MHz  
Supported SYNC  
frequency, master mode  
fsync  
=
=
8.4  
9.2  
MHz  
MHz  
%
Misc Control 2 Register,  
PWM_FREQUENCY: 01, fsw  
2.3MHz  
Supported SYNC  
frequency, master mode  
fsync  
SYNC frequency  
deviation from nominal,  
master mode  
10  
Δfsync  
10  
Supported SYNC  
frequency, slave mode  
fsync  
fsync  
fsw = 2.1MHz  
fsw = 2.3 MHz  
8.4  
9.2  
MHz  
MHz  
Supported SYNC  
frequency, slave mode  
Supported SYNC  
frequency deviation,  
slave mode  
10  
56  
%
%
Δfsync  
10  
Supported SYNC duty  
cycle, slave mode  
Dsync  
44  
50  
LOAD DIAGNOSTICS  
Maximum resistance to  
S2P  
detect a short from OUT  
pin(s) to PVDD  
8000  
Ω
Ω
Maximum resistance to  
detect a short from OUT  
pin(s) to ground  
S2G  
SL  
300  
Shorted load detection  
tolerance  
One channel, other channels in Hi-Z  
±12.5%  
Minimum impedance  
detected as open load  
OL  
Other channels in Hi-Z  
4 channels, no faults  
110  
174  
Ω
TDC_DIAG  
DC diagnostic time  
ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒout = 1  
kHz, Fsw = 2.1 MHz, Gain = 22 dB, BD Mode, AES17 Filter, LC reconstruction filter: 3.3μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2Ωconfiguration and 1μF, default I2C settings, see application diagrams in Typical Applications  
section.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Maximum detectable  
impedance for line output  
mode  
LO  
12  
kΩ  
Line output diagnostic  
time  
TLINE_DIAG  
150  
ms  
ƒ= 18.5 kHz, RL = 4 Ω, Impedance at  
output pins  
ACIMP  
TAC_DIAG  
FAC  
AC impedance accuracy  
AC diagnostic time  
±0.75  
217  
Ω
ms  
4 channels, ƒ= 18.5 kHz  
AC diagnostic test  
frequency  
Default frequency  
18.5  
kHz  
I2C CONTROL PORT  
Bus free time between  
tBUS  
1.3  
0
µs  
ns  
µs  
start and stop conditions  
tH1  
Hold Time, SCL to SDA  
Hold Time, start condition  
to SCL  
tH2  
0.6  
I2C Startup Time After  
DVDD Power On Reset  
tSTART  
10  
ms  
(1)  
tRISE  
tFALL  
tSU1  
Rise Time, SCL and SDA  
Fall Time, SCL and SDA  
Setup, SDA to SCL  
300  
300  
ns  
ns  
ns  
(1)  
100  
0.6  
Setup, SCL to Start  
Condition  
tSU2  
tSU3  
tW(H)  
tW(L)  
µs  
µs  
µs  
µs  
Setup, SCL to Stop  
Condition  
0.6  
0.6  
1.3  
Required Pulse Duration  
SCL High  
Required Pulse Duration  
SCL Low  
(1) Specified by design.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6 Typical Characteristics  
6.6.1 Bridge-Tied Load (BTL), BD  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 2.1 MHz, Gain = 22 dB, BD  
Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 3.3 μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2 Ωconfiguration and 1 μF (unless otherwise noted). See application diagram in 8-2  
10  
5
10  
5
2 W Load  
4 W Load  
2 W Load  
4 W Load  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.02  
0.01  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0.005  
10m  
100m  
1
Output Power(W)  
10  
50  
0.002  
0.001  
PVDD = 14.4V  
BTL  
10m  
100m  
1
Output Power(W)  
10  
50  
6-1. THD+N vs Power - 2 Ω, 4 Ω- 14.4 V  
PVDD = 18V  
6-2. THD+N vs Power - 2 Ω, 4 Ω- 18 V  
BTL  
10  
45  
2 W Load  
4 W Load  
2 W 1%THD+N  
2 W 10%THD+N  
4 W 1%THD+N  
4 W 10%THD+N  
5
40  
35  
30  
25  
20  
15  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
20  
100  
1k  
10k 20k  
Supply Voltage (V)  
Frequency (Hz)  
TC = 75 °C  
BTL  
PO = 1 W  
BTL  
6-4. Output Power vs Supply Voltage - 2 Ω1%, 2 Ω10%, 4 Ω  
1%, 4 Ω10%  
6-3. THD+N vs Frequency - 2 Ω, 4 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
PVDD  
PVDD  
10  
0
PVDD + VBAT  
PVDD + VBAT  
0
20  
40  
60  
80  
100 120  
0.3 0.50.7 1  
2
3
4 5 67 10  
20 30 50 70100 200  
Output Power (W)  
Output Power (W)  
TC = 75 °C  
6-5. Efficiency vs Output Power - 4 Ω  
BTL  
TC = 75 °C  
6-6. Efficiency vs Output Power - 4 Ω(Zoomed)  
BTL  
4 Ω  
4 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.1 Bridge-Tied Load (BTL), BD (continued)  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 2.1 MHz, Gain = 22 dB, BD  
Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 3.3 μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2 Ωconfiguration and 1 μF (unless otherwise noted). See application diagram in 8-2  
20  
18  
16  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
4
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
PVDD  
2
PVDD + VBAT  
0
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
0
20  
40  
60  
80  
100 120 140 160 180  
Output Power (W)  
TC = 75 °C  
BTL  
TC = 75 °C  
BTL  
BTL  
BTL  
4 Ω  
2 Ω  
6-7. Power Dissipation vs Output Power - 4 Ω  
6-8. Efficiency vs Output Power - 2 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
PVDD  
PVDD + VBAT  
10  
0
0.3 0.5  
0
1
5
10  
50  
100 200  
0
20  
40  
60  
80 100 120 140 160 180  
Output Power (W)  
Output Power (W)  
TC = 75 °C  
BTL  
TC = 75 °C  
2 Ω  
2 Ω  
6-9. Efficiency vs Output Power - 2 Ω(Zoomed)  
6-10. Power Dissipation vs Output Power - 2 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
60  
40  
20  
0
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
BTL  
6-11. PVDD Idle vs Supply Voltage  
6-12. VBAT Idle Current vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.1 Bridge-Tied Load (BTL), BD (continued)  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 2.1 MHz, Gain = 22 dB, BD  
Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 3.3 μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2 Ωconfiguration and 1 μF (unless otherwise noted). See application diagram in 8-2  
140  
120  
100  
80  
0
Gain = 10 dB  
Gain = 16 dB  
Gain = 22 dB  
Gain = 28 dB  
CH 1 to CH 2  
CH 1 to CH 3  
CH 1 to CH 4  
-20  
-40  
-60  
60  
-80  
40  
-100  
20  
0
-120  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
20  
100  
1k  
10k 20k  
Supply Voltage (V)  
Frequency(Hz)  
A-Weighted  
6-13. Noise vs Supply Voltage  
BTL  
BTL  
BTL  
BTL  
6-14. Crosstalk vs Frequency  
0
-10  
0
-10  
PVDD  
VBAT  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
PO = 1 W  
PVDD = 14.4 V + 1 V RMS  
BTL  
PO = 1 W  
VBAT = 14.4 V + 1 V RMS  
6-15. PSRR vs Frequency - PVDD Only  
6-16. PSRR vs Frequency - VBAT Only  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
PVDD + VBAT  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
PO = 1 W  
PVDD = VBAT = 14.4 V + 1 V RMS  
6-17. PSRR vs Frequency - PVDD+VBAT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.2 Parallel Bridge-Tied Load (PBTL)  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 2 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 2.1 MHz, Gain = 22 dB, BD  
Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 3.3 μH - ASWPA6055S3R3MT in 2 Ωconfiguration and 1  
μF (unless otherwise noted). See application diagram in 8.2.2  
10  
5
10  
5
2 W Load  
2 W Load  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10m  
100m  
1
10  
100  
10m  
100m  
1
10  
100  
Output Power (W)  
Output Power(W)  
PVDD = 14.4 V  
PBTL  
PBTL  
PBTL  
PVDD = 18 V  
PBTL  
PBTL  
PBTL  
6-18. THD+N vs Power - PBTL, 2 Ω, 14.4 V  
6-19. THD+N vs Power - PBTL, 2 Ω, 18 V  
10  
90  
2 W Load  
2 W 1%THD+N  
2 W 10%THD+N  
5
80  
2
1
70  
60  
50  
40  
30  
20  
10  
0
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
20  
100  
1k  
10k 20k  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Frequency (Hz)  
Supply Voltage (V)  
P O = 1 W  
6-20. THD+N vs Frequency - PBTL, 2 Ω  
TC = 75 °C  
2 Ω  
6-21. Ouput Power vs Supply Voltage - PBTL, 2 Ω  
100  
20  
18  
16  
14  
12  
10  
8
80  
60  
40  
20  
0
6
4
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
PVDD  
PVDD + VBAT  
2
0
0
20  
40  
60  
80  
100  
120  
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
Output Power (W)  
TC = 75 °C  
TC = 75 °C  
2 Ω  
2 Ω  
6-22. Efficiency vs Output Power - PBTL, 2 Ω  
6-23. Power Dissipation vs Output Power - PBTL, 2 Ω  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.2 Parallel Bridge-Tied Load (PBTL) (continued)  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 2 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 2.1 MHz, Gain = 22 dB, BD  
Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 3.3 μH - ASWPA6055S3R3MT in 2 Ωconfiguration and 1  
μF (unless otherwise noted). See application diagram in 8.2.2  
140  
Gain = 10 dB  
Gain = 16 dB  
120  
100  
Gain = 22 dB  
Gain = 28 dB  
80  
60  
40  
20  
0
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Supply Voltage (V)  
A-Weighted  
6-24. Noise vs Supply Voltage - PBTL, 2 Ω  
PBTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.3 Bridge-Tied Load (BTL), 1SPW  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 2.1 MHz, Gain = 22 dB,  
1SPW Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 3.3 μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2 Ωconfiguration and 1 μF (unless otherwise noted). See application diagram in 8-2  
10  
5
10  
5
2 W Load  
4 W Load  
2 W Load  
4 W Load  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10m  
100m  
1
10  
50  
10m  
100m  
1
10  
50  
Output Power (W)  
Output Power (W)  
PVDD = 14.4 V  
BTL  
PVDD = 18 V  
BTL  
6-25. THD+N vs Power - BTL, 2 Ω, 4 Ω, 14.4 V, 1SPW  
6-26. THD+N vs Power - BTL, 2 Ω, 4 Ω, 18 V, 1SPW  
10  
50  
2 W Load  
4 W Load  
2 W 1%THD+N  
5
45  
2 W 10%THD+N  
2
4 W 1%THD+N  
4 W 10%THD+N  
40  
1
35  
0.5  
30  
25  
20  
15  
10  
5
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0
20  
100  
1k  
10k 20k  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Frequency (Hz)  
Supply Voltage (V)  
P O = 1 W  
BTL  
TC = 75 °C  
BTL  
6-27. THD+N vs Frequency - BTL, 2 Ω, 4 Ω, 14.4 V, 1SPW  
6-28. Ouput Power vs Supply Voltage - BTL, 2 Ω, 4 Ω, 1SPW  
100  
90  
80  
70  
60  
50  
40  
30  
20  
20  
18  
16  
14  
12  
10  
8
6
4
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
PVDD + VBAT  
PVDD  
10  
0
2
0
0
20  
40  
60  
80  
100  
120  
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
Output Power (W)  
TC = 75 °C  
BTL  
TC = 75 °C  
BTL  
4 Ω  
4 Ω  
6-29. Efficiency vs Output Power - BTL, 4 Ω, 14.4 V, 1SPW  
6-30. Power Dissipation vs Output Power - BTL, 4 Ω, 14.4 V,  
1SPW  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.3 Bridge-Tied Load (BTL), 1SPW (continued)  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 2.1 MHz, Gain = 22 dB,  
1SPW Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 3.3 μH - ASWPA4035S3R3MT in 4Ω,  
ASWPA6055S3R3MT in 2 Ωconfiguration and 1 μF (unless otherwise noted). See application diagram in 8-2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
PVDD  
PVDD + VBAT  
0
0
20  
40  
60  
80  
100 120 140 160 180  
0
20  
40  
60  
80  
Output Power (W)  
100 120 140 160 180  
Output Power (W)  
TC = 75 °C  
BTL  
TC = 75 °C  
BTL  
2 Ω  
2 Ω  
6-31. Efficiency vs Output Power - BTL, 2 Ω, 14.4 V, 1SPW  
6-32. Power Dissipation vs Output Power - BTL, 2 Ω, 14.4 V,  
1SPW  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Supply Voltage (V)  
Supply Voltage (V)  
BTL  
BTL  
6-33. PVDD Idle Current vs Supply Voltage - BTL, 1SPW  
6-34. VBAT Idle Current vs Supply Voltage - BTL, 1SPW  
100  
140  
BD  
Gain = 10 dB  
Gain = 16 dB  
130  
120  
90  
1SPW  
Gain = 22 dB  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
Gain = 28 dB  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Supply Voltage (V)  
Supply Voltage(V)  
F SW = 384 kHz  
BTL  
A-Weighted  
6-36. Noise vs Supply Voltage - BTL, 1SPW  
BTL  
6-35. PVDD Idle Current vs Supply Voltage - BTL, 1SPW, 384  
kHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.4 Bridge-Tied Load (BTL), 384 kHz, BD  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 384 kHz, Gain = 22 dB, BD  
Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 10 μH Sagami 7G14C-100M in 4 Ω/2 Ωconfiguration and  
1 μF (unless otherwise noted). See application diagram in 8-2  
10  
5
10  
5
2 W Load  
4 W Load  
2 W Load  
4 W Load  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10m  
100m  
1
10  
50  
10m  
100m  
1
10  
50  
Output Power (W)  
Output Power (W)  
PVDD = 14.4V  
BTL  
PVDD = 18V  
BTL  
6-37. THD+N vs Power - 2 Ω, 4 Ω- 14.4 V  
6-38. THD+N vs Power - 2 Ω, 4 Ω- 18 V  
10  
50  
2 W Load  
4 W Load  
2 W 1%THD+N  
5
45  
2 W 10%THD+N  
2
4 W 1%THD+N  
4 W 10%THD+N  
40  
1
35  
0.5  
30  
25  
20  
15  
10  
5
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0
20  
100  
1k  
10k 20k  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Frequency (Hz)  
Supply Voltage (V)  
PO = 1 W  
6-39. THD+N vs Frequency - 2 Ω, 4 Ω  
BTL  
TC = 75 °C  
BTL  
6-40. Output Power vs Supply Voltage - 2 Ω1%, 2 Ω10%, 4  
Ω1%, 4 Ω10%  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD  
PVDD  
PVDD + VBAT  
10  
PVDD + VBAT  
0
0.02 0.05 0.1 0.2 0.5  
Output Power (W)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
1
2 3 45 7 10 2030 50 100 200  
Output Power (W)  
TC = 75 °C  
BTL  
TC = 75 °C  
6-42. Efficiency vs Output Power - 4 Ω(Zoomed)  
BTL  
4 Ω  
4 Ω  
6-41. Efficiency vs Output Power - 4 Ω  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.4 Bridge-Tied Load (BTL), 384 kHz, BD (continued)  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 384 kHz, Gain = 22 dB, BD  
Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 10 μH Sagami 7G14C-100M in 4 Ω/2 Ωconfiguration and  
1 μF (unless otherwise noted). See application diagram in 8-2  
20  
18  
16  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
6
4
PVDD  
2
PVDD + VBAT  
0
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
0
20  
40  
60  
80  
100 120 140 160 180  
Output Power (W)  
TC = 75 °C  
BTL  
BTL  
BTL  
TC = 75 °C  
BTL  
BTL  
BTL  
4 Ω  
2 Ω  
6-43. Power Dissipation vs Output Power - 4 Ω  
6-44. Efficiency vs Output Power - 2 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
50  
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
45  
40  
35  
30  
25  
20  
15  
10  
5
PVDD  
PVDD + VBAT  
10  
0
0.02 0.05 0.1 0.2 0.5  
Output Power (W)  
0
1
2
3 45 7 10 2030 50 100 200  
0
20  
40  
60  
80 100 120 140 160 180  
Output Power (W)  
TC = 75 °C  
TC = 75 °C  
2 Ω  
2 Ω  
6-45. Efficiency vs Output Power - 2 Ω(Zoomed)  
6-46. Power Dissipation vs Output Power - 2 Ω  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
BD  
90  
1SPW  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Supply Voltage (V)  
Supply Voltage (V)  
6-47. PVDD Idle vs Supply Voltage  
6-48. VBAT Idle Current vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.5 Bridge-Tied Load (BTL), 384 kHz, 1SPW  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 384 kHz, Gain = 22 dB,  
1SPW Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 10 μH Sagami 7G14C-100M in 4 Ω/2 Ω  
configuration and 1 μF (unless otherwise noted). See application diagram in 8-2  
10  
5
10  
5
2 W Load  
4 W Load  
2 W Load  
4 W Load  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10m  
100m  
1
Output Power(W)  
10  
50  
10m  
100m  
1
10  
50  
Output Power (W)  
PVDD = 18V  
BTL  
PVDD = 14.4V  
BTL  
6-50. THD+N vs Power - 2 Ω, 4 Ω- 18 V  
6-49. THD+N vs Power - 2 Ω, 4 Ω- 14.4 V  
10  
50  
2 W Load  
4 W Load  
2 W 1%THD+N  
5
45  
2 W 10%THD+N  
2
4 W 1%THD+N  
4 W 10%THD+N  
40  
1
35  
0.5  
30  
25  
20  
15  
10  
5
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0
20  
100  
1k  
10k 20k  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Frequency (Hz)  
Supply Voltage (V)  
PO = 1 W  
6-51. THD+N vs Frequency - 2 Ω, 4 Ω  
BTL  
TC = 75 °C  
BTL  
6-52. Output Power vs Supply Voltage - 2 Ω1%, 2 Ω10%, 4  
Ω1%, 4 Ω10%  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD  
PVDD  
PVDD + VBAT  
10  
PVDD + VBAT  
0
0.02 0.05 0.1 0.2 0.5  
Output Power (W)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
1
2 3 45 7 10 2030 50 100 200  
Output Power (W)  
TC = 75 °C  
BTL  
TC = 75 °C  
6-54. Efficiency vs Output Power - 4 Ω(Zoomed)  
BTL  
4 Ω  
4 Ω  
6-53. Efficiency vs Output Power - 4 Ω  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
6.6.5 Bridge-Tied Load (BTL), 384 kHz, 1SPW (continued)  
TC = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, RL = 4 , Pout = 1 W/ch, ƒOUT = 1 kHz, FSW = 384 kHz, Gain = 22 dB,  
1SPW Mode, AES17 Filter, default I2C settings, LC reconstruction filter: 10 μH Sagami 7G14C-100M in 4 Ω/2 Ω  
configuration and 1 μF (unless otherwise noted). See application diagram in 8-2  
20  
18  
16  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
6
4
PVDD  
2
PVDD + VBAT  
0
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
0
20  
40  
60  
80  
100 120 140 160 180  
Output Power (W)  
TC = 75 °C  
BTL  
TC = 75 °C  
BTL  
4 Ω  
2 Ω  
6-55. Power Dissipation vs Output Power - 4 Ω  
6-56. Efficiency vs Output Power - 2 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
50  
PVDD (Device only)  
PVDD+VBAT (Device only)  
PVDD+VBAT (Device + LC)  
45  
40  
35  
30  
25  
20  
15  
10  
5
PVDD  
PVDD + VBAT  
10  
0
0.02 0.05 0.1 0.2 0.5  
Output Power (W)  
0
1
2
3 45 7 10 2030 50 100 200  
0
20  
40  
60  
80  
Output Power (W)  
100 120 140 160 180  
TC = 75 °C  
BTL  
TC = 75 °C  
BTL  
2 Ω  
2 Ω  
6-57. Efficiency vs Output Power - 2 Ω(Zoomed)  
6-58. Power Dissipation vs Output Power - 2 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
Parameter measurement information  
The parameters for the TPA6304-Q1 device were measured using the circuit in 8-2.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7 Detailed Description  
7.1 Overview  
The TPA6304-Q1 device is a four-channel analog input Class-D audio amplifier, specifically designed for use in  
the automotive industry. The device is designed for vehicle battery operation. The ultra-efficient Class-D  
technology allows for reduced power consumption, PCB area, heat, and peak currents in the electrical system.  
The device realizes an audio sound system design with smaller size and lower weight than traditional Class-AB  
solutions.  
The core design blocks are:  
Single-ended analog inputs  
Clock management  
Pulse width modulator (PWM) with output stage feedback  
Gate drive  
Power FETs  
Diagnostics  
Protection  
Power supply  
I2C serial communication bus  
7.2 Functional Block Diagram  
DVDD  
VBAT  
GVDD  
AVDD  
PVDD  
Analog Supply  
Regulator  
Gate Drive  
Regulator  
STANDBY  
FAULT  
Digital Core  
GPIO1  
Closed Loop Class-D Amplifier  
Channel 1  
Powerstage  
GPIO2  
OUT_1P  
OUT_1M  
Spread Spectrum  
Timer  
Channel 2  
Powerstage  
OUT_2P  
OUT_2M  
IN_1  
IN_2  
PWM  
modulators  
Gate  
Drives  
Channel 3  
Powerstage  
OUT_3P  
OUT_3M  
Single-Ended Analog input  
with 4 gain options  
IN_3  
IN_4  
Clip  
Detection  
Channel 4  
Powerstage  
OUT_4P  
OUT_4M  
IN_REF  
Protection  
Over-Current Limit/SD  
Diagnostics  
DC Short to GND  
DC Short to Power  
DC Open Load  
Thermal Gain Foldback  
Over Temperature  
Over/Under Voltage  
DC Detection  
SCL  
SDA  
I2C Control  
DC Shorted Load  
AC Diagnostics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPA6304-Q1  
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.3 Feature Description  
7.3.1 Single-Ended Analog Inputs  
The TPA6304-Q1 features single-ended analog audio inputs in combination with a reference ground input.  
Single-ended outputs available in the system are connected via AC coupling capacitors to the TPA6304-Q1 input  
pins. The TPA6304-Q1 IN_REF pin is connected via AC coupling capacitor and a separate line back to the  
ground reference point of the source of the single-ended audio signals.  
Class-D Amplifier  
Input Stage  
System DAC  
Single-Ended Outputs  
PCB Traces  
IN_1  
CH1  
CH2  
CH3  
CH4  
0.47 F  
IN_2  
OUT1  
OUT2  
0.47 F  
IN_3  
DAC  
OUT3  
OUT4  
0.47 F  
IN_4  
GND  
0.47 F  
IN_REF  
2.2 F  
7-1. Single-Ended Analog Input Connections  
7.3.2 Gain Control  
The gain of the TPA6304-Q1 is configurable in the Miscellaneous Control Register 2 through I2C. There are four  
gain settings of 10 dB, 16 dB, 22 dB, and 28 dB. 28 dB is the default setting. It is recommended to select the  
lowest possible gain for the expected PVDD operation and input voltage range to optimize dynamic range  
performance.  
The combination of input voltage range and supply voltage sets the requirement for the chosen gain setting. In a  
typical application with maximum input signal amplitude of 0.5 Vrms and 14.4 V supply voltage the default gain of  
28 dB allows for full output power of the device.  
The input impedance for the IN_1, IN_2, IN_3 and IN_4 pins is typically 80 kΩ and independent of the gain  
setting. The input impedance for the IN_REF input is typically 20 kΩ.  
The inputs need to be AC-coupled to minimize the output DC-offset and ensure correct ramping of the output  
voltages during power-ON and power-OFF. Time constants for all inputs, IN_1, IN_2, IN_3, IN_4 and IN_REF  
need to match. The input AC-coupling capacitor together with the input impedance forms a high-pass filter.  
If a flat frequency response is required down to 20 Hz the recommended cut-off frequency is a fifth of that, 4 Hz.  
This can be achieved with a 0.47 µF ac-coupling capacitor.  
It is recommenced to use AC-coupling capacitors with low leakage current, like ceramic-, film- or quality  
electrolytic-capacitors.  
The TPA6304-Q1 has an output DC detection built in to protect the attached speaker in case an input AC-  
coupling capacitor fails or has too high leakage current.  
7.3.3 Class-D Operation and Spread Spectrum Control  
7.3.3.1 High Frequency Pulse Width Modulator (PWM)  
The PWM converts the input audio data into a switched signal of varying duty cycle. The PWM modulator is an  
advanced design with high bandwidth, low noise, low distortion, and excellent stability.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
The TPA6304-Q1, by default, generates its own internal clock signals. This mode of operation is called clock  
primary mode. The output switching rate is selectable via I2C, Miscellaneous Control Register 2. If desired, an  
external frequency source can be used to drive the switching output. This signal can be sent to the device using  
a GPIO Pin. The source frequency is 4x the selected switching frequency. By default, the four channels switches  
out of phase with a phase offset of 90 degrees between each channel. With 90 degree phase shift and 2.1 MHz  
switching frequency, the combined ripple current of all output channels are combined such that the effective  
ripple current has its fundamental at 8.4 MHz This enables the use of smaller and lower cost external filtering  
components due to lower power supply ripple.  
For best EMI results the high frequency clock signals support spread spectrum control.  
7.3.3.2 Clock Synchronization  
The TPA6304-Q1 supports clock synchronization. During clock synchronization, one device is clock primary  
(Device A) sending out a synchronization clock and one device is clock secondary (Device B), receiving the  
synchronization clock. For Device A, set one of the GPIO Pins 'Sync Out'. By default Device A is in clock primary  
mode. The Sync Pin Control Register allows to set up Device B as clock secondary. Finally one GPIO Pin of  
Device B is set to 'Sync In' and the corresponding GPIO pins need to be connected on the PCB board.  
Device B is frequency locked to one fourth of the received synchronization clock frequency. Device B creates an  
Invalid Clock Fault Event if the clock signal fed to the GPIO configured as clock sync input is out of nominal  
range.  
GPIOx  
Device A  
GPIOx  
Device B  
7-2. Clock Synchronization Diagram  
7.3.3.3 Spread Spectrum Control  
The TPA6304-Q1 offers spread spectrum control. Controlling the spectrum of the clock signal translates into an  
optimized behavior of higher frequency signal components which are visible during EMI testing. By default  
spread spectrum control is turned on and can be turned off in Spread Spectrum Control Register 2.  
The four parameters SSC1, SSC2, SSC3 and SSC4 determine the spread spectrum behavior. The following  
predefined profiles determine allowed and supported combinations of SSCx settings and in addition define  
settings for the PWM Phase Control Register 1 and PWM Phase Control Register 2.  
There are two Spread Spectrum profiles recommend in the TPA6304-Q1:  
Default Profile - optimized for best audio performance and efficiency with EMI performance that can meet  
most systems specifications.  
Low EMI - optimized for the lowest EMI for systems with stringent EMI system specficiations.  
7-1. Spread Spectrum Profiles  
SSC1[7:0]  
SSC2[3:0]  
SSC3[5:4]  
SSC4[5:4]  
PWM Phase  
Control 1  
PWM Phase  
Control 2  
Default  
0x22  
0x22  
0x0  
0x0  
0x0  
0x2  
0x0  
0x2  
0x40  
0x40  
0x62  
0x62  
Low EMI  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.3.4 Gate Drive  
The gate driver accepts the low-voltage PWM signal and level shifts it to drive the high-current, full-bridge,  
power-FET stage. The device uses proprietary techniques to optimize EMI and audio performance.  
The gate driver power supply voltage, GVDD, is internally generated and a decoupling capacitor must be  
connected at pin 5.  
7.3.5 Power FETs  
The BTL output for each channel comprises four N-channel 80 mFETs for high efficiency and maximum power  
transfer to the load. These FETs are designed to handle large voltage transients during load dump.  
7.3.6 Load Diagnostics  
The device incorporates both DC- and AC- load diagnostics which are used to determine the status of the load.  
The DC-diagnostics are turned on by default. The AC-load diagnostics is turned off by default.  
7.3.6.1 DC Load Diagnostics  
The DC load diagnostics are used to verify the load is connected properly.  
In order to support fast system level start up requirements to play audio:  
The diagnostics are available as soon as the device power supplies are within the recommended operating  
range.  
The diagnostics do not rely on external audio input signals or clock and sync frequencies to be available.  
DC Diagnostics pass and allow a channel to enter MUTE or PLAY mode if the following tests pass on the output  
pins:  
No short to ground  
No short to power  
No shorted load  
No open load  
On completion of the diagnostic routine where no fault is reported, the respective CH(i) LDG STATE REPORT bit  
of Channel State Report CH1, CH2 Register or Channel State Report CH3, CH4 Register is set high.  
Any of the following conditions start the DC Load Diagnostics:  
Automatic DC load diagnostics at device initialization. Automatically on all four channels at device  
initialization: After DVDD power on reset (POR) and when STANDBY Pin transitions from low to high.  
Automatic DC load diagnostics during Hi-Z to MUTE or PLAY transition. When any channel is directed to  
leave the Hi-Z state and enter the MUTE or PLAY state.  
Manual start of DC load diagnostics. DC diagnostics can be enabled manually to run on any or all channels at  
any time.  
7.3.6.1.1 Automatic DC Load Diagnostics at Device Initialization  
The TPA6304-Q1 supports automatic and autonomous DC load diagnostics at device start up. With power  
stable, the device starts the internal power-on-reset. After completion of power-on-reset, the FAULT pin will be  
pulled high. The next low to high transition on STANDBY pin starts an automatic DC load diagnostics on all four  
channels.  
No I2C configuration nor any audio signals are necessary for the TPA6304-Q1 to perform short-to-power (S2P),  
short-to-ground (S2G), open load (OL), and shorted load (SL) based on default configuration. Systems can  
benefit from this autonomous operation as it is possible to run the load diagnostics while bringing up the digital  
part of the audio chain.  
For each channel that yields a successful diagnostics test the CH(i) LDG STATE REPORT bit is set. For these  
channels, once the system is ready to set the channel status to PLAY mode, no further delay is introduced.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
If the default values of automatic DC load diagnostics are not desired, the STANDBY pin can be held low until  
the device is fully configured via I2C.  
7.3.6.1.2 Automatic DC Load Diagnostics During Hi-Z to MUTE or PLAY Transition  
By default, the LDG BYPASS bit in DC Load Diagnostics Control Register 1 is not set and the device starts the  
DC load diagnostics when STANDBY is high and a channel is leaving HiZ state before entering MUTE or PLAY  
state. If the automatic DC load diagnostics at device initialization already tested that channel with no faults  
reported then DC load diagnostics is bypassed.  
If DC load diagnostics identifies a fault, the CH(i) LDG STATE REPORT bit in Channel State Report CH1, CH2  
Register or Channel State Report CH3, CH4 Register stays low indicating 'DC Load Diagnostic did not complete  
without faults'. Details of the fault is reported in DC Load Diagnostic Report CH1, CH2 Register and DC Load  
Diagnostic Report CH3, CH4 Register. The channel is retested after approximately 750 ms until either the fault  
has been eliminated or the diagnostics function is turned off by I2C control.  
If DC load diagnostics completed successfully CH(i) LDG STATE REPORT bit is set high.  
7.3.6.1.3 Manual Start of DC Load Diagnostics  
Automatic DC load diagnostics may not be a desired function at power up. Setting the LDG ABORT bit in DC  
Load Diagnostics Control Register 1 disables automatic DC load diagnostics when pulling the STANDBY high.  
This register must be written before the STANDBY pin is pulled high.  
Before a channel can enter PLAY mode, DC load diagnostics need to be started manually.  
To run manual DC load diagnostics:  
1. Set audio channel into Hi-Z mode by setting CH(i) STATE CONTROL of Channel State Control Register to  
'01'.  
2. Write any desired control parameters for DC load diagnostics in DC Load Diagnostics Control Register 1, DC  
Load Diagnostics Control Register 2, DC Load Diagnostics Control Register 3, DC Load Diagnostics Control  
Register 4 and DC Load Diagnostics Control Register 5.  
3. Set audio channel into Diag mode to start DC Diagnostics. For that, set CH(i) STATE CONTROL of Channel  
State Control Register to '11'.  
4. Monitor (read) CH(i) STATE REPORT bits in Channel State Report CH1, CH2 Register and Channel State  
Report CH3, CH4 Register continuously until they change to '001'.  
5. The DC load diagnostics results are stored in DC Load Diagnostic Report CH1, CH2 Register and DC Load  
Diagnostic Report CH3, CH4 Register.  
6. For each channel that yields a successful diagnostics test the CH(i) LDG STATE REPORT bit is set in  
Channel State Report CH1, CH2 Register and Channel State Report CH3, CH4 Register. Once the system  
is ready to set the channel status to PLAY mode, no further delay is introduced.  
7.3.6.1.4 Short-to-Ground  
The short-to-ground (S2G) tests triggers a fault condition if there is a conductive path from output pin OUT_(i)M  
or OUT_(i)P of the tested channel (i) to GND with an impedance below that specified in the Specifications  
section.  
7.3.6.1.5 Short-to-Power  
The short-to-power (S2P) tests triggers a fault condition if there is a conductive path from output pin OUT_(i)M or  
OUT_(i)P of the tested channel (i) to a power rail with an impedance below that specified in the Specifications  
section. The diagnostic also detects a short to vehicle battery when the supply is boosted.  
7.3.6.1.6 Shorted Load and Open Load  
The shorted load (SL) test triggers a fault condition if the conductive path between the OUT_(i)M pin and  
OUT_(i)P pin of the tested channel (i) has an impedance below the threshold set in DC Load Diagnostics Control  
Register 4 and DC Load Diagnostics Control Register 5. The SL test has a configurable threshold depending on  
the expected load to be connected. Because the speakers and cable impedance connected to each channel  
might be different, each channel can be assigned a unique threshold value.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPA6304-Q1  
 
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
The open load (OL) test triggers a fault condition if the conductive path between the OUT_(i)M pin and OUT_(i)P  
pin of the tested channel (i) has an impedance higher than that specified in the Specifications section.  
Open Load  
Open Load Detected  
OL Maximum  
Open Load (OL)  
Detection Threshold  
Normal or Open Load  
May Be Detected  
OL Minimum  
SL Maximum  
SL Minimum  
Normal Load  
Play Mode  
Shorted Load (SL)  
Detection Threshold  
Normal or Shorted Load  
May Be Detected  
Shorted Load  
Shorted Load Detected  
7-3. DC Load Diagnostic Reporting Thresholds  
7.3.6.1.7 Line Output Diagnostics  
The device also includes an optional test to detect a line output load (LO). DC Load Diagnostics Control Register  
2 configures the channels that are enabled for LO testing. A line output load is a high-impedance load that is  
above the open load (OL) threshold such that the DC-load diagnostics report an OL condition. If the line output  
detection bit is set high, when an OL condition is detected during the DC Diagnostic test, the system also checks  
if a line output load is present. This test may not be pop free, so if an external amplifier is connected it should be  
muted.  
7.3.6.2 AC Load Diagnostics  
The AC load diagnostic is used to determine the proper connection of a capacitive coupled speaker or tweeter  
when used with a passive crossover. The AC load diagnostic is controlled through I2C. The TPA6304-Q1  
provides a required signal source to determine the AC impedance and reports the tweeter detection result back  
to I2C registers. The I2C selected test frequency should create current flow through the desired speaker for  
proper detection.  
备注  
If a fault occurs during AC diagnostics, the AC diagnostics is stopped. AC Diagnostics is not allowed  
to be performed again until the DC Diagnostics are performed. This is to ensure the fault is not  
potentially a hazard during AC diagnostics.  
7.3.6.2.1 Operating Principal  
The AC Load Diagnostic circuit of TPA6304-Q1 provides an internally generated stimulus to the load, captures  
the response of the load, provides real and imaginary parts of the captured complex load impedance and offers  
a magnitude estimator and tweeter detection comparator.  
7.3.6.2.2 Stimulus  
The frequency of the stimulus is set in AC Load Diagnostic Frequency Control Register. The device drives a low  
level, 10 mA output current through the load which does not create any significant sound pressure levels from  
the speaker.  
7.3.6.2.3 Load Impedance  
The load impedance as seen by the device is simply the ratio of voltage across the output pins and current  
flowing through the load.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
Typically the load has a frequency dependent magnitude and causes current and voltage to have a phase shift.  
The TPA6304-Q1 internally captures the load impedance as a complex value consisting of a real and imaginary  
part. Expressing a load impedance in magnitude and phase or in real and imaginary part is mathematically  
equivalent. Both forms can be transformed into each other without loss of information. After AC load diagnostics  
has finished the real and imaginary parts of the complex impedance are available for readout in I2C registers  
starting with the AC Load Diagnostic Report Real Part CH1 Register.  
7.3.6.2.4 Tweeter Detection  
In most cases, it is sufficient to use the TPA6304-Q1 built-in magnitude estimator and tweeter detection report to  
perform the desired tweeter detection test. If a tweeter is properly connected in the system the magnitude of the  
load impedance is close to the nominal impedance of the speaker , for example 4 Ω. Once AC load diagnostics  
is finished, the magnitude of the load impedance is calculated and compared against a threshold set in the  
Tweeter Detection Threshold Register. If the measured impedance is lower than the set threshold, the tweeter is  
detected and marked accordingly in the Tweeter Detection Register.  
7.3.6.2.5 Operation  
To perform AC load diagnostics on TPA6304-Q1:  
1. Use the Channel State Control Register to set the desired set of channels into Hi-Z mode.  
2. Start the AC diagnostics by marking the channels in AC Load Diagnostic Control Register 1.  
3. Poll the channel state from Channel State Report CH1, CH2 Register or Channel State Report CH3, CH4  
Register. Once CH(i) STATE REPORT returns to 'Hi-Z' the AC load diagnostics results are ready for read  
out.  
7.3.7 Power Supply  
The device has three power supply inputs:  
DVDD This pin is a 3.3 V supply pin that provides power to the digital circuitry.  
VBAT This pin is a higher voltage supply that can be connected to the vehicle battery or the regulated  
voltage rail in a boosted system within the recommended limits. For best performance, this rail should be 10  
V or higher. See the Recommended Operating Conditions table for the maximum supply voltage. This supply  
rail is used for higher voltage analog circuits but not the output FETs.  
PVDD This pin is a high-voltage supply that can either be connected to the vehicle battery or to another  
voltage rail in a boosted system. The PVDD pin supplies the power to the output FETs and can be within the  
recommended operating limits, even if that is below the VBAT supply, to allow for dynamic voltage systems.  
An on-chip regulator is included generating the GVDD voltage necessary for the gate drive circuitry. The GVDD  
supply pin is provided only for bypass capacitors to filter the supply and should not be used to power other  
circuits.  
The device can withstand fortuitous open ground and power conditions within the Absolute Maximum Ratings for  
the device. Fortuitous open ground usually occurs when a speaker wire is shorted to ground, allowing for a  
second ground path through the body diode in the output FETs.  
7.3.7.1 Power-Supply Sequence  
The device can accept any sequence of VBAT, PVDD and DVDD supply.  
In a typical system, the VBAT and PVDD supplies are both connected to the vehicle battery and power up at the  
same time.  
7.3.7.1.1 Power-Up Sequence  
At power-up, the STANDBY pin is recommended to be kept low till all three power supply rails (VBAT, PVDD,  
DVDD) are within the Recommended Operating Conditions.  
7.3.7.1.2 Power-Down Sequence  
To power-down the device, first set the STANDBY pin low for at least 10ms before removing PVDD, VBAT or  
DVDD. After 10ms, the power supplies can be removed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.3.8 Device Initialization and Power-On-Reset (POR)  
When the system first powers up, or when the DVDD voltage momentarily drops below the POR threshold, the  
devices initializes.  
During device initialization all I2C registers are be set to default values.  
The FAULT Pin is activated and taken low.  
The I2C device address is determined from the pull-up resistor on the FAULT pin. See I2C Address Selection  
for details.  
Once the device finished initialization, the open drain FAULT pin is released.  
7-4 shows the time from DVDD voltage crossing the POR threshold to release of the FAULT pin is  
approximately 10 ms.  
After the initialization, bit 4 of the Power Fault Memory Register indicates that the device went through a POR  
cycle. Reading this I2C register clears the fault signaling bit.  
PVDD  
VBAT  
5.0V  
4.2V  
GVDD  
VPOR_SET  
DVDD  
POR  
/FAULT  
I2C Ready  
I2C  
/STANDBY  
AVDD  
tSTART  
POR  
STANDBY  
WAIT  
20ms  
DC DIAG  
TDC_DIAG  
AC DIAG  
PLAY  
TAC_DIAG  
(Disabled by default)  
7-4. Typical Initialization Sequence and Timing  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.3.9 Protection and Monitoring  
7.3.9.1 Over Current Protection  
If the output load current reaches over current shutdown threshold, ISD, such as during an output short to GND  
or power supply, then an Over Current Shut Down (OCSD) Event occurs which limits the peak current and shuts  
down the affected channel. There are four programmable OC levels that determine ISD. These can be set in  
Miscellaneous Control Register 1. The time to shutdown the channel varies depending on the severity of the  
short condition. The channel is placed into the PROTECTIVE SHUTDOWN State, the output stage is high  
impedance.  
Based on the default configuration a fault signal is generated which by default generates an active low signal at  
the FAULT Pin.  
7.3.9.2 DC Detect  
The device monitors the DC offset continuously during normal operation at the output of the amplifier. If a  
channel's DC offset exceeds the DCFAULT threshold, that channel triggers a DC Fault Event and is placed in the  
PROTECTIVE SHUTDOWN State. This puts the output stage in high impedance.  
By default, when a DC Fault Event occurs, a fault signal generates an active low signal on the FAULT Pin.  
7.3.9.3 Load Current Limit  
Under normal operation, during high level music playback, it is possible that dynamic load currents can rise  
beyond the maximum load current, ILIM, of the device. In these cases, the device dynamically limits the current  
into the load.  
Each channel is independently monitored and limited. For each of the four over current (OC) levels that can be  
set in Miscellaneous Control Register 1, there is a corresponding ILIM as shown in Specifications.  
If the load current limit is active for at least 50% of a 200 ms window, the device generates a Load Current  
Warning Event for the affected channel.  
In case the load current warning event is active continuously for 800 ms the device generates a Load Current  
Fault Event and the channel is placed in the PROTECTIVE SHUTDOWN State. This puts the output stage is  
high impedance.  
If OC level 4 is configured in Miscellaneous Control Register 1, the device will also generate a Load Current  
Fault Event in case the load current limiter is active consecutively for more than 10 ms.  
By default, a fault signal generates an active low signal on the FAULT Pin for when an OC event occurs.  
7.3.9.4 Clip Detect  
Each channel of the device monitors the output signal for situations at which the output voltage saturates and in  
response can create a Clip Warning Event. Configuring the Clip Detect Signal Configuration Register can enable  
clip detect, set the threshold at which clipping is detected to either 1%, 2%, 5% or 10%, and allows for mapping  
channel groups to signals. Setting up GPIO Configuration Register or FAULT Pin Configuration Register to  
output either Clip Detect Signal Group 1 or Clip Detect Signal Group 2 routes the signal through either Fault,  
GPIO1 or GPIO2 of the TPA6304-Q1.  
7.3.9.5 Temperature Protection and Monitoring  
The device monitors temperature with five temperature sensors. Every output channel has one temperature  
sensor in close proximity to monitor the temperature of it's respective channel. An additional sensor is located in  
a global position on the die, so it better represents the actual die junction temperature. Based on these sensors  
warning and fault signals can be generated. A Thermal Gain Foldback scheme is available that autonomously  
regulates audio gain and consequently limit die temperature.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPA6304-Q1  
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
FETs  
OT1  
OT2  
OT3  
OT4  
CH1  
CH2  
CH3  
CH4  
FETs  
FETs  
FETs  
OTGlobal  
7-5. Temperature Sensor Locations Within the Device  
7.3.9.5.1 Over Temperature Shutdown (OTSD)  
The temperature threshold for global OTSD and the threshold for over temperature shutdown generated by the  
output channels, OTSD(i), are set to fixed values. Refer to Specifications for nominal temperature and recovery  
hysteresis values.  
If the global junction temperature rises above the OTSD threshold, all channels are placed into a protective  
shutdown state. If the junction temperature of a channel rises above the OTSD threshold the affected channel is  
put into a protective shutdown state. and an Over Temperature Shut Down (OTSD) Event is created. If over  
temperature auto recovery is enabled, the effected channels recover the state they were in before OTSD  
occurred once temperatures have cooled down below respective thresholds. The tolerance of the warning levels  
and OTSD temperatures track each other.  
By default, a fault signal generates an active low signal on the FAULT Pin for when an OTSD even occurs.  
7.3.9.5.2 Over Temperature Warning (OTW)  
The temperature threshold for global OTW has four levels and can be configured in Miscellaneous Control  
Register 1. The OTW generated by the output channels, OTW(i), are set to a fixed value. Refer to Specifications  
for nominal temperature and recovery hysteresis values.  
During operation when the device heats up and crosses the threshold a global Over Temperature Warning Event  
is generated. Similarly, if the temperature at a channel raises above the threshold an Over Temperature Warning  
Event for that channel is generated. While the device continues to operate, the OTW information enables higher  
level software to make decisions to optimize thermal system performance.  
Based on the default configuration a Warning Signal is generated. As described in the Warning Signal section  
the signal can either be polled via I2C register or a hardware signal can be generated by use of a GPIO Pin or  
FAULT Pin.  
7.3.9.5.3 Thermal Gain Foldback (TGFB)  
The TGFB circuitry is designed to protect the TPA6304-Q1 from reaching excessive die temperatures. By  
default, the TGFB is enabled and the device automatically reduces the gain and thereby output power when  
either the global Over Temperature Warning Event (OTW) or any channel Over Temperature Warning Event,  
OTW(i) is active. Simultaneously on all channels, the gain is stepped down in 0.5 dB steps with a max  
attenuation of 12 dB. The gain increases as the temperature is reduced by the same gain step. The attack and  
release time of the TGFB can be programmed.  
The Thermal Gain Foldback Control Register controls whether TGFB is enabled, the rate of gain reduction  
(attack) and the rate of gain increase or recovery (release). Pop free gain changes are controlled by enabling a  
zero crossing detector. The zero crossing has a wait time before the gain can change. By default, TGFB and  
zero crossing detector are enabled with a wait time of 20 µs. Zero Crossing behavior can be adjusted in the  
Thermal Gain Foldback Control Register. When Thermal Gain Foldback is engaged, that is when the gain is  
lower than 0 dB a Thermal Gain Foldback Warning Event is created.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
input signal  
attack time  
release time  
output signal  
7-6. Thermal Foldback Attack and Release  
7.3.9.6 Power Failures  
The power supplies VBAT and PVDD are monitored for under-voltage and over-voltage events as described in  
section Power Fault Events. This automatically engages shutdown and protects the device. VBAT and PVDD  
safe operating voltage ranges can be found in the Recommended Operating Conditions table.  
The device will shutdown if DVDD supply falls below VPOR_OFF. The DVDD POR fault event is described in  
section Power Fault Events.  
7.3.9.7 Load Dump Protection  
When supply voltages at the VBAT and PVDD pins rise, over voltage shutdown as described in section Power  
Fault Events engages and protects the device. The device can withstand 40 V load dump voltage spikes.  
7.3.10 Hardware Control Pins  
In addition to a STANDBY control pin and a FAULT status pin the device features the two general purpose IO  
pins GPIO1 and GPIO2. Each GPIO Pin can be configured as WARNING status pin, MUTE control pin, Sync  
Out or Sync In pin. For a complete list of pin configuration options please see Fault Pin Configuration Options  
and GPIO Pin Options.  
7.3.10.1 FAULT Pin  
By default, the FAULT pin is configured to output the Fault Signal as active low signal under any of the following  
conditions:  
Immediately following a power on reset (POR) until the device is ready to communicate via I2C  
DC fault  
Over current shutdown  
Load current fault  
Over temperature shutdown  
Configuration of the Fault Signal in Fault Signal Configuration Register 1 and Fault Signal Configuration Register  
2 allows the fine tuning of the device response to fault events.  
After power up, once I2C communication is established the FAULT pin can be reconfigured to have different  
behavior. This does not affect the reporting register content of faults or the protection of the device.  
7-2. Fault Pin Configuration Options  
Name  
Fault  
Description  
Setup Code  
0000  
FAULT pin outputs Fault Signal, active low  
(default)  
Warning  
FAULT pin outputs Warning Signal, active low  
0001  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7-2. Fault Pin Configuration Options (continued)  
Name  
Description  
Setup Code  
Clip Detect Group 1  
Clip Detect Group 2  
FAULT pin outputs Clip Detect Signal Group 1, active high  
FAULT pin outputs Clip Detect Signal Group 2, active high  
0010  
0011  
7.3.10.2 STANDBY Pin  
The STANDBY pin is active low. The device is in a low current mode on the PVDD and VBAT pins while the  
output pins are placed into a Hi-Z state. All internal analog biases disabled. In STANDBY and while DVDD is  
present, the I2C bus is active and the internal registers are active.  
Internally this pin is connected to DVSS with a 100 kΩpull-down resistor.  
By default, the pin is configured in three level standby mode (TLSBY).  
It is possible to communicate via I2C while STANDBY pin is low and the STANDBY pin functionality can be set to  
two level mode by updating the TLSBY value of Micellaneous Control Register 4 during power up sequence.  
7-3. Two Level Mode  
Input voltage at STANDBY pin  
Device mode  
Standby  
Play  
GND  
DVDD  
7-4. Three Level Mode  
Input voltage at STANDBY pin  
Voltage Threshold  
Device mode  
Standby  
Mute  
GND  
<0.5V  
DVDD/2  
DVDD  
DVDD/2 +/- 0.5V  
DVDD - 0.5V  
Play  
7.3.10.3 GPIO Pins  
By default the two GPIO pins of the TPA6304-Q1 are in Hi-Z mode. During the initialization period of the system,  
when the device gets configured via GPIO Configuration Register, the function of the GPIO can be configured.  
7-5. GPIO Pin Options  
Functionality  
Hi-Z  
Mode  
Off  
Description  
Setup Code  
0000  
Pin continuously is in Hi-Z mode  
(default)  
WARNING  
FAULT  
Open Drain Output  
Open Drain Output  
Output Buffer  
Output Buffer  
Output Buffer  
Output Buffer  
Output Buffer  
Input  
Warning Signal drives active low output  
Fault Signal drives active low output  
Clip Detect Signal Group 1 drives output  
Clip Detect Signal Group 2 drives output  
Modulator frequency drives output  
Pin continuously drives logic high output  
Pin continuously drives logic low output  
Input signal drives modulator  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
Clip Detect Group 1  
Clip Detect Group 2  
Sync Output  
H
L
Sync Input  
MUTE  
Input  
Active low input mutes the device  
7.3.10.4 WARNING  
The device does not have a dedicated WARNING status pin. Either GPIO1 or GPIO2 can be configured as  
WARNING pin via GPIO Configuration Register. Once configured, the GPIO outputs the warning signal as active  
low signal.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
The Warning Signal section holds details on configuration options and default settings of the warning signal.  
7.3.10.5 MUTE  
The device does not have a dedicated MUTE control pin. Either GPIO1 or GPIO2 can be configured as MUTE  
pin via GPIO Configuration Register. Once configured the GPIO is active low input and is used for hardware  
control of the mute and un-mute function for all channels. When the input signal is set low, all channels stop  
switching and are set to Hi-Z mode. All internal analog circuitry is biased and enabled, and the input ac-coupling  
capacitors are charged.  
The hardware MUTE function is ORed with the I2C MUTE function. If either function is set, the MUTE function is  
asserted.  
7.4 Device Functional Modes  
7.4.1 Internal Reporting Signals  
To support software driver development, the TPA6304-Q1 allows the flexible configuration of internal fault,  
warning, and clip detect signals. These signals, where applicable, can be configured based on current device  
status registers or events stored in memory registers. Finally, these signals can be configured and routed to the  
Fault, GPIO1, or GPIO2 pins for signaling purposes. For details on configuration and routing, see the Fault,  
Warning and Clip Detect Signal Creation and Configuration section.  
7.4.1.1 Fault Signal  
Automotive systems have a high demand on gathering device information in case of unexpected conditions. The  
Fault Signal Configuration Register 1 and Fault Signal Configuration Register 2 of the TPA6304-Q1 allow for a  
flexible configuration of information necessary for higher level system software to effectively control the system.  
The Fault Signal can be configured to be active in response to the following Fault Events:  
Over current shutdown, typically caused by shorts to power or short to ground (latched)  
Shutdown due to DC detection (latched)  
Load current failures, typically caused by shorted load (latched)  
Power failures (latched or non-latched)  
Over-temperature failures (latched or non-latched)  
Clock sync failures, if the device is in clock slave mode (latched or non-latched)  
Channel 1, 2, 3 or 4 in protective shutdown state  
Incomplete diagnostics  
Warning Signal being active  
The Fault Signal, by default, gets routed to a GPIO Pin to create a HW signal. Its state can be polled by I2C read  
at any time from OTSD CS Fault Status Register.  
7.4.1.2 Warning Signal  
The Warning Signal can be configured to be active in response to following Warning Events:  
Over-temperature warning (latched or non-latched)  
Thermal Gain Foldback being activated (latched or non-latched)  
Load current warning (latched)  
Power failures (latched or non-latched)  
Over temperature failures (latched or non-latched)  
Clip Detect (latched or non-latched)  
Incomplete diagnostics  
Clock sync failures, if the device is in clock secondary mode (latched or non-latched)  
By default, the Warning Signal is active in response to latched over temperature warning events.  
The Warning Signal can be routed to a GPIO Pin to create a HW signal or its state can be polled by I2C read at  
any time from OTSD CS Fault Status Register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPA6304-Q1  
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.4.1.3 Clip Detect Signal  
The clip detect signal can be routed out of the TPA6304-Q1 to support hardware control loops that limit THD in  
the event of excessively large audio signals. Two independent clip detect signals can be generated. The clip  
detect signal is based on clip detect warning events.  
Section Clip Detect describes the circumstances under which the device creates clip detect warning signals.  
Each output channel independently creates a clip detect warning signal.  
Clip Detect Signal Group 1 can be configured in the Clip Detect Signal Configuration Register to be active when  
either CH1 or CH2 create a clip detect warning, CH3 or CH4 create a clip detect warning, or any of the four  
channels creates a clip detect warning.  
Clip Detect Signal Group 2 can be configured in the same way as Clip Detect Signal Group 1.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
From channel status (cleared by ”clear fault‘)  
Any ”101‘ channel state  
0x1Db6  
Channel Over Current  
and DC Detection Fault  
Memory  
Any OC Fault latched  
0x1Db1  
4
4
0xF, 7:4  
0xF, 3:0  
Any DC Fault latched  
0x1Db2  
Any Power Fault latched  
0x1Fb3  
Power Fault Memory  
0x10, 5:0  
Any Power Fault latched  
0x1Db3  
6
Any Power Fault  
0x20b3  
Power Fault Status  
0x11, 7:5, 3:0  
Any Power Fault  
0x1Eb3  
7
5
Any OT Fault latched  
0x1Fb4  
Temperature (OTSD)  
and Clock Sync Fault  
Memory  
Any OT Fault latched  
0x1Db4  
0x12, 4:0  
0x12, 5  
Sync Clock Fault latched  
0x1Db5  
Sync Clock Fault latched  
0x1Fb5  
13  
12  
Any OT Fault  
0x20b4  
Temperature (OTSD)  
and Clock Sync Fault  
Status  
Any OT Fault  
0x1Eb4  
5
0x13, 4:0  
0x13, 5  
Sync Clock Fault  
0x1Eb5  
Sync Clock Fault  
0x20b5  
Channel Load Current  
Fault Memory  
Any DC Diag Fault  
0x20b0  
Any DC Diag Fault  
0x1Eb0  
4
0x14, 3:0  
0x13b6  
Any Load Current  
Fault latched  
0x1Db0  
Fault Signal  
Channel Load Current  
Warning Memory  
Any Load Current  
Warning latched  
0x1Fb0  
4
5
0x15, 3:0  
Warning Signal active  
0x1Eb6  
Temperature (OTW) and  
Thermal Gain Foldback  
Warning Memory  
Any OT Warning latched  
0x1Fb2  
0x16, 4:0  
FaultZ  
GPIO1  
0x16, 5  
0x13b7  
Thermal Foldback  
activation latched  
0x1Fb1  
Warning Signal  
Temperature (OTW) and  
Thermal Gain Foldback  
Warning Status  
PIN  
MUX  
Any OT Warning  
0x20b2  
5
0x17, 4:0  
Fault Signal Configuration  
Register 1: 0x1D  
Register 2: 0x1E  
GPIO2  
0x17, 5  
Thermal Foldback active  
0x20b1  
Channel Clip Detect  
Warning Memory  
0x21b0  
0x21b2  
0x21b1  
0x21b3  
4
Clip Detect Signal Group 1  
0x18, 3:0  
Any Clip detect latched  
0x1Fb6  
Channel Clip Detect  
Warning Status  
CH1 0x19, 3  
CH2 0x19, 2  
CH3 0x19, 1  
CH4 0x19, 0  
Clip Detect Signal Group 2  
Warning Signal Configuration  
Register 1: 0x1F  
Register 2: 0x20  
Clip Detect Configuration  
Register: 0x21  
7-7. Fault, Warning and Clip Detect Signal Creation and Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.4.2 Device States and Flags  
7.4.2.1 Audio Channel States  
Every audio channel has its set of states that carefully control the set up and shut down procedure of an audio  
path from source to load. These states are listed in Audio Channel States, Channel states get reported in  
Channel State Report CH1, CH2 Register and Channel State Report CH3, CH4 Register.  
7-6. Audio Channel States  
STATE NAME  
DIAG  
OUTPUT FETS  
OSCILLATOR  
Stopped  
Active  
I2C  
Hi-Z  
Active  
Active  
Active  
Active  
Active  
Active  
Hi-Z  
Hi-Z  
MUTE  
Hi-Z  
Switching with audio  
Hi-Z  
Active  
PLAY  
Active  
PSD  
Active  
PSD_AR  
Hi-Z  
Active  
7.4.2.1.1 PROTECTIVE SHUTDOWN with AUTO RECOVERY State  
If one or more channels of the device are in PLAY state the device may need to take protective actions and  
shutdown one or more audio channels. The output FETs of the affected channels are turned off and the output  
pins are high impedance. Once the cause for the protective shutdown is no longer present, the device resumes  
back to PLAY. The reported state for affected channels is PROTECTIVE SHUTDOWN with AUTO RECOVERY  
Possible reason for individual channels to enter this state is:  
Channel over temperature shutdown (OTSD(i))  
Possible reasons for all channels to enter this state are:  
Power failures  
Invalid Clock  
Global over temperature shutdown (OTSD)  
The following registers hold all information necessary to identify the reason for the device being in this state:  
Temperature (OTSD) and Clock Sync Fault Status Register  
Power Fault Status Register  
7.4.2.1.2 PROTECTIVE SHUTDOWN State  
If one or more channels of the device are in PLAY state the device may need to take protective actions and  
shutdown one or more audio channels. The output FETs of the affected channels is turned off and the output  
pins are high impedance. The reported state for affected channels is PROTECTIVE SHUTDOWN  
Possible reasons for individual channels to enter this state are:  
Over Current Shutdown  
Load Current Fault  
DC fault  
Channel over temperature shutdown (OTSD(i))  
Possible reason for all channels to enter this state is:  
Global over temperature shutdown (OTSD)  
The following registers hold all information necessary to identify the reason for the device being in this state:  
Temperature (OTSD) and Clock Sync Fault Status Register  
Channel Over Current and DC Detection Fault Memory Register  
Channel Load Current Fault Memory Register  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.4.2.1.2.1 Clear Fault  
备注  
If one or more channels are in PROTECTIVE SHUTDOWN State, the channel faults only recover after  
setting the CLEAR FAULT bit in the Miscellaneous Control Register 3.  
This clears the faults and set channels into Hi-Z mode.  
7.4.2.2 Status and Memory Registers  
7.4.2.2.1 Status Registers  
The device reports device states and environmental information by means of status and reporting registers. The  
following set of registers, at any time, hold the full set of device status:  
Channel State Report CH1, CH2 Register  
Channel State Report CH3, CH4 Register  
Power Fault Status Register  
Temperature (OTSD) and Clock Sync Fault Status Register  
Temperature (OTW) and Thermal Gain Foldback Warning Status Register  
Thermal Gain Foldback Status Register  
Interrupt driven signaling to the controlling host device is supported by creation of events. Events can be  
configured to create Warning Signal and Fault Signal.  
Alternatively software can routinely read this set of registers to gather device status (polling mode).  
7.4.2.2.2 Memory Registers  
The device provides a set of memory registers which latch events. This allows software drivers to properly  
analyze fault situations.  
The following set of memory registers is available:  
Channel Over Current and DC Detection Fault Memory Register  
Power Fault Memory Register  
Temperature (OTSD) and Clock Sync Fault Memory Register  
Channel Load Current Fault Memory Register  
Channel Load Current Warning Memory Register  
Temperature (OTW) and Thermal Gain Foldback Warning Memory Register  
Channel Clip Detect Warning Memory Register  
The memory registers, for example, support the following scenarios:  
The output pin of the device gets shorted to ground, the device reacts immediately and goes into  
PROTECTIVE SHUTDOWN State. The software device driver may want to identify why the device is in  
protective shutdown mode and reads the registers described in the PROTECTIVE SHUTDOWN State  
section.  
The digital power rail just came up or dropped below POR levels. The device resets all settings and indicates  
that in the Power Fault Memory Register with the DVDD POR STORED bit set.  
The device heated up and temporarily reducing audio gain. Software can check whether this situation has  
happened since the last read of Temperature (OTW) and Thermal Gain Foldback Warning Memory Register.  
备注  
Memory registers only provide information to the controlling host. Reading the memory register clears  
the content. The status of the device does not change by reading the memory registers.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.4.3 Fault Events  
7.4.3.1 Overview  
The device creates fault events as outlined in Details On Generated Fault Events.  
7-7. Details On Generated Fault Events  
Channel  
Required User  
Response  
Current status (non-  
latched) reported in  
Event latched and  
Fault Event  
Typical Reason  
Status  
reported in 2  
Reporting 1  
VBAT Over  
Voltage Fault  
Apply VBAT within  
spec  
VBAT above limit  
VBAT below limit  
PVDD above limit  
'100'  
VBAT Under  
Voltage Fault  
Apply VBAT within  
spec  
PROTECTIVE  
SHUTDOWN  
with AUTO  
RECOVERY  
State  
Power Fault Status  
Register  
PVDD Over  
Voltage Fault  
Apply PVDD within  
spec  
Power Fault Memory  
Register  
PVDD Under  
Voltage Fault  
Apply PVDD within  
spec  
PVDD below limit  
GVDD Fault  
GVDD regulator fault  
DVDD voltage  
dropped below POR  
limit or initial device  
startup  
'001'  
Hi-Z State  
Write initial device  
DVDD POR  
N/A  
configuration via I2C  
Over  
Temperature SD  
- Channel  
Channel temperature  
above limit  
'101'  
Temperature (OTSD) and Temperature (OTSD) and  
PROTECTIVE  
SHUTDOWN  
State  
Clear Fault  
Clear Fault  
Clock Sync Fault Status  
Register  
Clock Sync Fault Memory  
Register  
Over  
Temperature SD  
- Global  
Die temperature  
above limit  
Over Current  
Shut Down  
(OCSD) Event  
Short to ground or  
short to power  
Channel Over Current and  
DC Detection Fault  
Memory Register  
'101'  
PROTECTIVE  
SHUTDOWN  
State  
DC voltage at device  
input  
N/A  
DC Fault Event  
Load Current  
Fault Event  
Channel Load Current  
Fault Memory Register  
Shorted load  
'100'  
PROTECTIVE  
SHUTDOWN Apply sync clock signal  
with AUTO  
RECOVERY  
State  
Missing clock signal  
while device set up  
as clock slave  
Temperature (OTSD) and Temperature (OTSD) and  
Invalid Clock  
Fault Event  
Clock Sync Fault Status  
Register  
Clock Sync Fault Memory  
Register  
within nominal range  
If 'OTSD auto recovery' is enabled in Miscellaneous Control Register 3:  
Over  
Temperature  
SD- Channel  
'100'  
Channel temperature  
above limit  
PROTECTIVE  
SHUTDOWN  
with AUTO  
RECOVERY  
State  
Temperature (OTSD) and Temperature (OTSD) and  
Cool down device  
Clock Sync Fault Status  
Register  
Clock Sync Fault Memory  
Register  
Over  
Temperature SD  
- Global  
Die temperature  
above limit  
7.4.3.2 Power Fault Events  
Current status of power fault events is reported in Power Fault Status Register and latched events are reported  
in Power Fault Memory Register  
1
See Channel State Report CH1, CH2 Register and Channel State Report CH3, CH4 Register for details.  
Reading the memory register clears its content. This does not clear fault conditions.  
2
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.4.3.2.1 DVDD POR  
When DVDD falls below VPOR_OFF the device shuts down. All channels are brought into Hi-Z State and I2C  
communication terminates. When DVDD comes back up above VPOR_SET or when the device gets first powered  
up and DVDD rises above VPOR_SET the device initiates a Power-On-Reset routine. During this routine all  
registers and device states are set to default values. It is intended behavior that Power Fault Memory Register  
reports "DVDD power on reset event stored" after power up.  
As DVDD POR is a transient event it is not reported in the Power Fault Status register.  
7.4.3.2.2 VBAT Over Voltage Fault  
When the VBAT supply rail rises above nominal range a VBAT Over Voltage Fault event is created and the  
device enters into PROTECTIVE SHUTDOWN with AUTO RECOVERY State. Once VBAT falls back down into  
nominal range, the fault event is cleared.  
7.4.3.2.3 VBAT Under Voltage Fault  
When the VBAT supply rail falls below nominal range a VBAT Over Voltage Fault event is created and the device  
enters into PROTECTIVE SHUTDOWN with AUTO RECOVERY State. Once VBAT rises back up into nominal  
range, the fault event is cleared.  
7.4.3.2.4 PVDD Over Voltage Fault  
When the PVDD supply rail rises above nominal range a PVDD Over Voltage Fault event is created and the  
device enters into PROTECTIVE SHUTDOWN with AUTO RECOVERY State. Once PVDD falls back down into  
nominal range, the fault event is cleared.  
7.4.3.2.5 PVDD Under Voltage Fault  
When the VBAT supply rail falls below nominal range a PVDD Under Voltage Fault event is created and the  
device enters into PROTECTIVE SHUTDOWN with AUTO RECOVERY State. Once PVDD rises back up into  
nominal range, the fault event is cleared.  
7.4.3.2.6 GVDD Fault  
This fault indicates a fault condition of the internal gate drive circuitry.  
7.4.3.3 Over Temperature Shut Down (OTSD) Event  
Section Over Temperature Shutdown describes the circumstances under which the device creates an OTSD  
event.  
Current status of over termperature is reported in Temperature (OTSD) and Clock Sync Fault Status Register  
and latched events are reported in Temperature (OTSD) and Clock Sync Fault Memory Register  
By default, if temperatures rise above the OTSD threshold the device is in PROTECTIVE SHUTDOWN State.  
Setting the 'OTSD auto recovery' bit in Miscellaneous Control Register 3 configures the device to be in  
PROTECTIVE SHUTDOWN with AUTO RECOVERY State while temperatures are above OTSD thresholds.  
7.4.3.4 Over Current Shut Down (OCSD) Event  
Section Over current protection describes the circumstances under which the device creates an OCSD event.  
As Over Current Shut Down (OCSD) Event is a transient event it is not reported in a status register. The latched  
OCSD events are reported in Channel Over Current and DC Detection Fault Memory Register. Affected  
channels are in PROTECTIVE SHUTDOWN State.  
Over Current Shut Down (OCSD) Event also triggers when Load Current Fault Event triggers.  
7.4.3.5 DC Fault Event  
The DC Detect section describes the circumstances under which the device creates a DC fault event.  
As DC Fault Event is a transient event it does not report in a status register. The latched DC fault events are  
reported in Channel Over Current and DC Detection Fault Memory Register. Affected channels are in  
PROTECTIVE SHUTDOWN State.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPA6304-Q1  
 
 
 
 
 
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.4.3.6 Load Current Fault Event  
The Load Current Limit section describes the circumstances under which the device creates a load current fault  
event. This is a transient event that only lasts for a limited time. The device latches the event in Channel Load  
Current Fault Memory Register.  
7.4.3.7 Invalid Clock Fault Event  
The Clock Synchronization section describes how two devices operate with synchronized clocks. The device in  
clock slave mode receives a sync clock. If this sync clock is out of nominal frequency range or suddenly stops,  
an Invalid Clock Fault Event is created and the device gracefully tranistions to the PROTECTIVE SHUTDOWN  
with AUTO RECOVERY State. Once sync clock comes back into nominal frequency range the fault events are  
cleared and the device auto recovers.  
Current status is reported in Temperature (OTSD) and Clock Sync Fault Status Register and the latched event is  
reported in Temperature (OTSD) and Clock Sync Fault Memory Register.  
7.4.4 Warning Events  
7.4.4.1 Overview  
The device creates warning events as outlined in 7-8.  
7-8. Details On Generated Warning Events  
Current status (non-latched)  
Warning Event  
Typical Reason  
Event latched and reported in  
reported in  
Over Temperature -  
Channel  
Channel temperature above  
warning threshold  
Over Temperature -  
Global  
Die temperature above warning Temperature (OTW) and Thermal Gain Temperature (OTW) and Thermal Gain  
threshold  
Foldback Warning Status Register  
Foldback Warning Memory Register  
Thermal Gain Foldback Die temperature above  
active  
threshold and TGFB enabled  
Peak current into load reaches  
maximum  
Channel Load Current Warning  
Memory Register  
Load Current - Channel  
N/A  
Channel Clip Detect Warning Status  
Register  
Channel Clip Detect Warning Memory  
Register  
Clip Warning Event  
Output voltage saturation  
7.4.4.2 Over Temperature Warning Event  
Section Over Temperature Shutdown describes the circumstances under which the device creates an Over  
Temperature Warning event.  
Thermal Gain Foldback, when enabled, responds to over temperature warning events.  
Current status is reported in Temperature (OTW) and Thermal Gain Foldback Warning Status Register and  
latched events are reported in Temperature (OTW) and Thermal Gain Foldback Warning Memory Register.  
7.4.4.3 Thermal Gain Foldback Warning Event  
When Thermal Gain Foldback is enabled and if it has reduced the gain below 0 dB due to high temperature, the  
device creates a thermal gain foldback warning event. Once the temperature decreases and the gain foldback  
circuitry releases the gain back up to 0 dB, this warning is cleared. Current status is reported in Temperature  
(OTW) and Thermal Gain Foldback Warning Status Register and latched events are reported in Temperature  
(OTW) and Thermal Gain Foldback Warning Memory Register.  
7.4.4.4 Load Current Warning Event  
Section Load current limit describes the circumstances under which the device creates a load current warning  
event. The device latches the event in Channel Load Current Warning Memory Register. As this is a transient  
event it is not reported in a status register.  
7.4.4.5 Clip Warning Event  
Section Clip Detect describes the circumstances under which the device creates a clip warning event.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
 
 
 
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
Current clip warning status is reported in Channel Clip Detect Warning Status Register and latched events are  
reported in Channel Clip Detect Warning Memory Register.  
7.5 Programming  
7.5.1 I2C Serial Communication Bus  
The device communicates with the system processor via the I2C serial communication bus as an I2C slave-only  
device. The processor can poll the device via I2C to determine the operating status, configure settings, or run  
diagnostics. For a complete list and description of all I2C controls, see the Register Maps section.  
7.5.1.1 I2C Address Selection  
The device supports two I2C addresses, so up to two devices can be used together in a system with no  
additional bus switching hardware. The pull up resistor connected to the device FAULT pin and DVDD  
determines the I2C address during power up. If two devices are present in a system their FAULT pin outputs  
must not be shared in order for the I2C address detection circuitry to operate correctly. The slave addresses of  
the device are listed in I2C Addresses.  
7-9. I2C Addresses  
FAULT pin pull up  
resistor value  
I2C Write  
I2C Read  
DESCRIPTION  
Device 0  
Device 1  
0x58  
0x5A  
0x59  
0x5B  
Floating  
47k  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPA6304-Q1  
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.5.2 I2C Bus Protocol  
The device has a bidirectional serial control interface that is compatible with the Inter IC (I2C) bus protocol and  
supports 100 and 400-kbps data transfer rates for random and sequential write and read operations. This is a  
slave-only device that does not support a multimaster bus environment or wait-state insertion. The control  
interface is used to program the registers of the device and to read device status.  
The I2C bus uses two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data are transferred in byte (8-  
bit) format with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is  
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master  
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.  
The bus uses transitions on the data terminal (SDA) while the clock is HIGH to indicate a start and stop  
conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop.  
Normal data bit transitions must occur within the low time of the clock period. The master generates the 7-bit  
slave address and the read/write (R/W) bit to open communication with another device and then wait for an  
acknowledge condition. The device holds SDA LOW during the acknowledge-clock period to indicate an  
acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device is  
addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same signals  
via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for the SDA and  
SCL signals to set the HIGH level for the bus. There is no limit on the number of bytes that can be transmitted  
between start and stop conditions. When the last word transfers, the master generates a stop condition to  
release the bus.  
R/  
W
8-Bit Register Data for  
Address (N)  
8-Bit Register Data for  
Address (N)  
7-Bit Slave Address  
A
8-Bit Register Address (N)  
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
7-8. Typical I2C Sequence  
t
t
t
r
t
f
w(H)  
w(L)  
SCL  
t
t
h1  
su1  
SDA  
7-9. SCL and SDA Timing  
Use the I2C ADDRx pins to program the device slave address. Read and write data can be transmitted using  
single-byte or multiple-byte data transfers.  
7.5.2.1 Random Write  
As shown in Random Write Transfer, a single-byte data-write transfer begins with the master device transmitting  
a start condition followed by the I2C device address and the read/write bit. The read/write bit determines the  
direction of the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I2C  
device address and the read/write bit, the device responds with an acknowledge bit. Next, the master transmits  
the address byte or bytes corresponding to the internal memory address being accessed. After receiving the  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
address byte, the device again responds with an acknowledge bit. Next, the master device transmits the data  
byte to be written to the memory address being accessed. After receiving the data byte, the device again  
responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-  
byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
ACK  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
7-10. Random Write Transfer  
7.5.2.2 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the master to the device as shown in . After receiving each data byte, the device responds with an  
acknowledge bit and the I2C subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
R/W ACK  
A4 A3  
A0  
ACK  
ACK  
ACK  
ACK  
D0  
A6  
A1  
A7  
A6  
A5  
A1  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
7-11. Sequential Write Transfer  
7.5.2.3 Random Read  
As shown in , a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. For the data-read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory  
address to be read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the  
device responds with an acknowledge bit. In addition, after sending the internal memory address byte or bytes,  
the master device transmits another start condition followed by the address and the read/write bit again. This  
time the read/write bit is a 1, indicating a read transfer. After receiving the address and the read/write bit, the  
device again responds with an acknowledge bit. Next, the device transmits the data byte from the memory  
address being read. After receiving the data byte, the master device transmits a not-acknowledge followed by a  
stop condition to complete the single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
Subaddress  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Data Byte  
7-12. Random Read Transfer  
7.5.2.4 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are  
transmitted by the device to the master device as shown in . Except for the last data byte, the master device  
responds with an acknowledge bit after receiving each data byte and automatically increments the I2C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
subaddress by one. After receiving the last data byte, the master device transmits a not-acknowledge followed  
by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
7-13. Sequential Read Transfer  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6 Register Maps  
7.6.1 Registers  
7-10 lists all registers, their functionality and default values. All register offset addresses not listed in 7-10  
should be considered as reserved locations and the register contents should not be modified.  
7-10. Register Map  
Offset  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
Acronym  
Register Name  
Section  
7.6.1.2  
7.6.1.3  
7.6.1.4  
7.6.1.5  
7.6.1.6  
7.6.1.7  
7.6.1.8  
7.6.1.9  
7.6.1.10  
7.6.1.11  
7.6.1.12  
7.6.1.13  
Mode Control  
Mode Control Register  
Misc Control 1  
Misc Control 2  
Channel State Control  
DC LDG Ctrl 1  
DC LDG Ctrl 2  
DC LDG Ctrl 3  
DC LDG Ctrl 4  
DC LDG Ctrl 5  
DC LDG Rprt CH12  
DC LDG Rprt CH34  
DC LDG Rprt LO  
Miscellaneous Control Register 1  
Miscellaneous Control Register 2  
Channel State Control Register  
DC Load Diagnostics Control Register 1  
DC Load Diagnostic Control Register 2  
DC Load Diagnostic Control Register 3  
DC Load Diagnostic Control Register 4  
DC Load Diagnostic Control Register 5  
DC Load Diagnostic Report CH1, CH2 Register  
DC Load Diagnostic Report CH3, CH4 Register  
DC Load Diagnostic Report Lineout Loads  
Register  
0xD  
0xE  
0xF  
Channel State Rprt CH12  
Channel State Rprt CH34  
Ch OC DC Fault Mem  
Channel State Report CH1, CH2 Register  
Channel State Report CH3, CH4 Register  
7.6.1.14  
7.6.1.15  
7.6.1.16  
Channel Over Current and DC Detection Fault  
Memory Register  
0x10  
0x11  
0x12  
Power_Fault_Mem  
Power Fault Status  
OTSD CS Fault Mem  
Power Fault Memory Register  
Power Fault Status Register  
7.6.1.17  
7.6.1.18  
7.6.1.19  
Temperature (OTSD) and Clock Sync Fault  
Memory Register  
0x13  
OTSD CS Fault Status  
Temperature (OTSD) and Clock Sync Fault Status  
Register  
7.6.1.20  
0x14  
0x15  
0x16  
Ch Current Fault Mem  
Ch Current Warn Mem  
OTW TGFB Warn Mem  
Channel Load Current Fault Memory Register  
Channel Load Current Warning Memory Register  
7.6.1.21  
7.6.1.22  
7.6.1.23  
Temperature (OTW) and Thermal Gain Foldback  
Warning Memory Register  
0x17  
OTW TGFB Warn Status  
Temperature (OTW) and Thermal Gain Foldback  
Warning Status Register  
7.6.1.24  
0x18  
0x19  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
Ch ClipDet Warn Mem  
Ch ClipDet Warn Status  
TGFB Status  
Channel Clip Detect Warning Memory Register  
Channel Clip Detect Warning Status Register  
Thermal Gain Foldback Status Register  
Fault Signal Configuration Register 1  
Fault Signal Configuration Register 2  
Warning Signal Configuration Register 1  
Warning Signal Configuration Register 2  
Clip Detect Signal Configuration Register  
Fault Pin Configuration Register  
7.6.1.25  
7.6.1.26  
7.6.1.27  
7.6.1.28  
7.6.1.29  
7.6.1.30  
7.6.1.31  
7.6.1.32  
7.6.1.33  
7.6.1.34  
7.6.1.35  
7.6.1.36  
Fault Sig Conf 1  
Fault Sig Conf 2  
Warn Sig Conf 1  
Warn Sig Conf 2  
Clip Det Sig Conf  
Fault Pin Conf  
GPIO Conf  
GPIO Pin Configuration Register  
AC LDG Ctrl 1  
AC Load Diagnostic Control Register 1  
AC Load Diagnostic Control Register 2  
AC LDG Ctrl 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPA6304-Q1  
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7-10. Register Map (continued)  
Offset  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
Acronym  
Register Name  
Section  
TWEETER DET THRESH  
AC LDG Rprt CH1 R  
AC LDG Rprt CH1 I  
AC LDG Rprt CH2 R  
AC LDG Rprt CH2 I  
AC LDG Rprt CH3 R  
AC LDG Rprt CH3 I  
AC LDG Rprt CH4 R  
AC LDG Rprt CH4 I  
TWEETER DET  
Misc Control 3  
Tweeter Detection Threshold  
AC Load Diagnostic Report R CH1  
AC Load Diagnostic Report I CH1  
AC Load Diagnostic Report R CH2  
AC Load Diagnostic Report I CH2  
AC Load Diagnostic Report R CH3  
AC Load Diagnostic Report I CH3  
AC Load Diagnostic Report R CH4  
AC Load Diagnostic Report I CH  
Tweeter Detection  
7.6.1.37  
7.6.1.38  
7.6.1.39  
7.6.1.40  
7.6.1.41  
7.6.1.42  
7.6.1.43  
7.6.1.44  
7.6.1.45  
7.6.1.46  
7.6.1.47  
7.6.1.48  
7.6.1.49  
7.6.1.50  
7.6.1.51  
7.6.1.52  
7.6.1.53  
7.6.1.54  
7.6.1.55  
7.6.1.56  
Miscellaneous Control Register 3  
Revision ID  
REVID  
TGFB Ctrl  
Thermal Gain Foldback Control Register  
AC Load Diagnostic Frequency Control Register  
Sync Pin Control Register  
AC LDG FREQ Ctrl  
SYNC Ctrl  
Misc Control 4  
Miscellaneous Control Register 4  
Spread Spectrum Control Register 1  
Spread Spectrum Control Register 2  
PWM Phase Control Register 1  
PWM Phase Control Register 2  
SS Control 1  
SS Control 2  
PWM Phase Ctrl 1  
PWM Phase Ctrl 2  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.1 Mode Control Register (Offset = 0x1) [reset = 0x00]  
Return to the 7-10.  
7-14. Mode Control Register  
7
6
5
4
3
2
1
0
RESET  
W-0b  
PWM MODE  
R/W-0b  
PBTL_34  
R/W-0b  
PBTL_12  
R/W-0b  
CH1 LO MODE CH2 LO MODE CH3 LO MODE CH4 LO MODE  
R/W-0b R/W-0b R/W-0b R/W-0b  
7-11. Mode Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
W
0b  
0: Normal Operation  
1: Soft reset, will auto clear  
6
5
4
3
2
1
0
PWM MODE  
PBTL_34  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0: BD Mode  
1: 1SPW Mode  
0: BTL mode  
1: PBTL mode of Channel 3 and Channel 4  
PBTL_12  
0: BTL mode  
1: PBTL mode of Channel 1 and Channel 2  
CH1 LO MODE  
CH2 LO MODE  
CH3 LO MODE  
CH4 LO MODE  
0: Channel 1 is in normal / speaker mode  
1: Channel 1 is in line output mode  
0: Channel 2 is in normal / speaker mode  
1: Channel 1 is in line output mode  
0: Channel 3 is in normal / speaker mode  
1: Channel 1 is in line output mode  
0: Channel 4 is in normal / speaker mode  
1: Channel 1 is in line output mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.2 Misc Control 1 Register (Offset = 0x2) [reset = 0x10]  
Return to the 7-10.  
7-15. Misc Control 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
PI Control  
R/W-0b  
OTW CONTROL  
R/W-1b  
OC CONTROL  
R/W-0b  
RESERVED  
R/W-0b  
7-12. Misc Control 1 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0b  
6
PI Control  
0b  
0: Disable Pulse Injection Mode  
1: Enable Pulse Injection Mode  
5-4  
3-2  
OTW CONTROL  
R/W  
1b  
00: Global over temperature warning set to 140 °C  
01: Global over temperature warning set to 130 °C  
10: Global over temperature warning set to 120 °C  
11:Global over temperature warning set to 110 °C  
OC CONTROL  
RESERVED  
R/W  
0b  
See electrical characteristics table for details  
00: OC Level 1  
01: OC Level 2  
10: OC Level 3  
11: OC Level 4  
1-0  
R/W  
0b  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.3 Misc Control 2 Register (Offset = 0x3) [reset = 0xFF]  
Return to the 7-10.  
7-16. Misc Control 2 Register  
7
6
5
4
3
2
1
0
CH1 GAIN  
R/W-11b  
CH2 GAIN  
R/W-11b  
CH3 GAIN  
R/W-11b  
CH4 GAIN  
R/W-11b  
7-13. Misc Control 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
CH1 GAIN  
R/W  
11b  
00: 10dB  
01: 16dB  
10: 22dB  
11: 28dB  
CH2 GAIN  
CH3 GAIN  
CH4 GAIN  
R/W  
R/W  
R/W  
11b  
11b  
11b  
00: 10dB  
01: 16dB  
10: 22dB  
11: 28dB  
00: 10dB  
01: 16dB  
10: 22dB  
11: 28dB  
00: 10dB  
01: 16dB  
10: 22dB  
11: 28dB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.4 Channel State Control Register (Offset = 0x4) [reset = 0x55]  
Return to the 7-10.  
7-17. Channel State Control Register  
7
6
5
4
3
2
1
0
CH1 STATE CONTROL  
R/W-1b  
CH2 STATE CONTROL  
R/W-1b  
CH3 STATE CONTROL  
R/W-1b  
CH4 STATE CONTROL  
R/W-1b  
7-14. Channel State Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CH1 STATE CONTROL  
R/W  
1b  
00: Set channel state to PLAY  
01: Set channel state to HI-Z  
10: Set channel state to MUTE  
11: Set channel to start DC load diagnostic  
5-4  
3-2  
1-0  
CH2 STATE CONTROL  
CH3 STATE CONTROL  
CH4 STATE CONTROL  
R/W  
R/W  
R/W  
1b  
1b  
1b  
00: Set channel state to PLAY  
01: Set channel state to HI-Z  
10: Set channel state to MUTE  
11: Set channel to start DC load diagnostic  
00: Set channel state to PLAY  
01: Set channel state to HI-Z  
10: Set channel state to MUTE  
11: Set channel to start DC load diagnostic  
00: Set channel state to PLAY  
01: Set channel state to HI-Z  
10: Set channel state to MUTE  
11: Set channel to start DC load diagnostic  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.5 DC LDG Ctrl 1 Register (Offset = 0x5) [reset = 0x00]  
Return to the 7-10.  
7-18. DC LDG Ctrl 1 Register  
7
6
5
4
3
2
1
0
LDG ABORT  
LDG BUFFER WAIT TIME  
RESERVED  
R/W-0b  
LDG WAIT  
BYPASS  
LDG SLOL  
DISABLE  
LDG BYPASS  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-15. DC LDG Ctrl 1 Register Field Descriptions  
Bit  
Field  
LDG ABORT  
Type  
Reset  
Description  
7
R/W  
0b  
0: Normal operation  
1: Abort DC load diagnostic  
6-5  
LDG BUFFER WAIT TIME R/W  
0b  
00: Buffer wait time 1ms  
01: Buffer wait time 2ms  
10: Buffer wait time 5ms  
11: Buffer wait time 10ms  
4-3  
2
RESERVED  
R/W  
R/W  
0b  
0b  
LDG WAIT BYPASS  
0: Enable the waiting loop at the end of shorted / open load  
detection  
1: Bypass the waiting loop at the end of shorted / open load  
detection  
1
0
LDG SLOL DISABLE  
LDG BYPASS  
R/W  
R/W  
0b  
0b  
0: Shorted load and open load detection are enabled  
1: Shorted load, open load and line out out detection are disabled  
0: Automatic DC diagnostic when leaving Hi-Z mode and after  
channel fault  
1: DC diagnostic will not run automatically  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.6 DC LDG Ctrl 2 Register (Offset = 0x6) [reset = 0x00]  
Return to the 7-10.  
7-19. DC LDG Ctrl 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
LDG S2PS2G  
AVG TIME  
LDG SLOL AVG TIME  
R/W-0b  
LDG LO  
ENABLE CH1  
LDG LO  
ENABLE CH2  
LDG LO  
ENABLE CH3  
LDG LO  
ENABLE CH4  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-16. DC LDG Ctrl 2 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0b  
6
LDG S2PS2G AVG TIME R/W  
0b  
Averaging time for Short-to-Power and Short-to-Ground  
measurement  
0: 0.2 ms  
1: 0.7 ms  
5-4  
LDG SLOL AVG TIME  
R/W  
0b  
Averaging time for shorted load and open load measurements:  
00: Same averaging time as selected for Short-to-Power and  
Short-to-Ground in bit 6 of this register  
01: 10.7 ms  
10: 21.3 ms  
11: 42.7 ms  
3
2
1
0
LDG LO ENABLE CH1  
LDG LO ENABLE CH2  
LDG LO ENABLE CH3  
LDG LO ENABLE CH4  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0: Disable DC Load Diagnostics to check for line-out load on  
CH1  
1: Enable DC Load Diagnostics to check for line-out load on CH1  
0: Disable DC Load Diagnostics to check for line-out load on  
CH2  
1: Enable DC Load Diagnostics to check for line-out load on CH2  
0: Disable DC Load Diagnostics to check for line-out load on  
CH3  
1: Enable DC Load Diagnostics to check for line-out load on CH3  
0: Disable DC Load Diagnostics to check for line-out load on  
CH4  
1: Enable DC Load Diagnostics to check for line-out load on CH4  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.7 DC LDG Ctrl 3 Register (Offset = 0x7) [reset = 0x00]  
Return to the 7-10.  
7-20. DC LDG Ctrl 3 Register  
7
6
5
4
3
2
1
0
LDG RAMP 2  
R/W-0b  
LDG SETTLING 2  
R/W-0b  
LDG RAMP 1  
R/W-0b  
LDG SETTLING 1  
R/W-0b  
7-17. DC LDG Ctrl 3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
LDG RAMP 2  
R/W  
0b  
Ramp time, shorted load and open load diagnostics  
00: 15 ms  
01: 30 ms  
10: 10 ms  
11: 20 ms  
LDG SETTLING 2  
LDG RAMP 1  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Settling time, shorted load and open load diagnostics  
00: 10 ms  
01: 5 ms  
10: 20 ms  
11: 15 ms  
Ramp time, short-to-power and short-to-ground diagnostics  
00: 5 ms  
01: 2.5 ms  
10: 10 ms  
11: 15 ms  
LDG SETTLING 1  
Settling time, short-to-power and short-to-ground diagnostics  
00: 10ms  
01: 5 ms  
10: 20 ms  
11: 30 ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.8 DC LDG Ctrl 4 Register (Offset = 0x8) [reset = 0x11]  
Return to the 7-10.  
7-21. DC LDG Ctrl 4 Register  
7
6
5
4
3
2
1
0
CH1 DC LDG SL  
R/W-1b  
CH2 DC LDG SL  
R/W-1b  
7-18. DC LDG Ctrl 4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH1 DC LDG SL  
R/W  
1b  
Channel 1 DC load diagnostic shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
3-0  
CH2 DC LDG SL  
R/W  
1b  
Channel 2 DC load diagnostic shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.9 DC LDG Ctrl 5 Register (Offset = 0x9) [reset = 0x11]  
Return to the 7-10.  
7-22. DC LDG Ctrl 5 Register  
7
6
5
4
3
2
1
0
CH3 DC LDG SL  
R/W-1b  
CH4 DC LDG SL  
R/W-1b  
7-19. DC LDG Ctrl 5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH3 DC LDG SL  
R/W  
1b  
Channel 3 DC load diagnostic shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
3-0  
CH4 DC LDG SL  
R/W  
1b  
Channel 4 DC load diagnostic shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.10 DC LDG Rprt CH12 Register (Offset = 0xA) [reset = 0x00]  
Return to the 7-10.  
7-23. DC LDG Rprt CH12 Register  
7
6
5
4
3
2
1
0
CH1 S2G  
R-0b  
CH1 S2P  
R-0b  
CH1 OL  
R-0b  
CH1 SL  
R-0b  
CH2 S2G  
R-0b  
CH2 S2P  
R-0b  
CH2 OL  
R-0b  
CH2 SL  
R-0b  
7-20. DC LDG Rprt CH12 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1 S2G  
CH1 S2P  
CH1 OL  
CH1 SL  
R
0b  
0: No short-to-GND detected on channel 1  
1: Short-to-GND detected on channel 1  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0: No short-to-power detected on channel 1  
1: Short-to-power detected on channel 1  
0: No open load detected on channel 1  
1: Open load detected on channel 1  
0: No shorted load detected on channel 1  
1: Shorted load detected on channel 1  
CH2 S2G  
CH2 S2P  
CH2 OL  
CH2 SL  
0: No short-to-GND detected on channel 2  
1: Short-to-GND detected on channel 2  
0: No short-to-power detected on channel 2  
1: Short-to-power detected on channel 2  
0: No open load detected on channel 2  
1: Open load detected on channel 2  
0: No shorted load detected on channel 2  
1: Shorted load detected on channel 2  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.11 DC LDG Rprt CH34 Register (Offset = 0xB) [reset = 0x00]  
Return to the 7-10.  
7-24. DC LDG Rprt CH34 Register  
7
6
5
4
3
2
1
0
CH3 S2G  
R-0b  
CH3 S2P  
R-0b  
CH3 OL  
R-0b  
CH3 SL  
R-0b  
CH4 S2G  
R-0b  
CH4 S2P  
R-0b  
CH4 OL  
R-0b  
CH4 SL  
R-0b  
7-21. DC LDG Rprt CH34 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH3 S2G  
CH3 S2P  
CH3 OL  
CH3 SL  
R
0b  
0: No short-to-GND detected on channel 3  
1: Short-to-GND detected on channel 3  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0: No short-to-power detected on channel 3  
1: Short-to-power detected on channel 3  
0: No open load detected on channel 3  
1: Open load detected on channel 3  
0: No shorted load detected on channel 3  
1: Shorted load detected on channel 3  
CH4 S2G  
CH4 S2P  
CH4 OL  
CH4 SL  
0: No short-to-GND detected on channel 4  
1: Short-to-GND detected on channel 4  
0: No short-to-power detected on channel 4  
1: Short-to-power detected on channel 4  
0: No open load detected on channel 4  
1: Open load detected on channel 4  
0: No shorted load detected on channel 4  
1: Shorted load detected on channel 4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.12 DC LDG Rprt LO Register (Offset = 0xC) [reset = 0x00]  
Return to the 7-10.  
7-25. DC LDG Rprt LO Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH1 LO LDG  
R-0b  
CH2 LO LDG  
R-0b  
CH3 LO LDG  
R-0b  
CH4 LO LDG  
R-0b  
7-22. DC LDG Rprt LO Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
CH1 LO LDG  
R
0b  
R
0b  
0: No line output detected on channel 1  
1: Line output detected on channel 1  
2
1
0
CH2 LO LDG  
CH3 LO LDG  
CH4 LO LDG  
R
R
R
0b  
0b  
0b  
0: No line output detected on channel 2  
1: Line output detected on channel 2  
0: No line output detected on channel 3  
1: Line output detected on channel 3  
0: No line output detected on channel 4  
1: Line output detected on channel 4  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.13 Channel State Rprt CH12 Register (Offset = 0xD) [reset = 0x24]  
Return to the 7-10.  
7-26. Channel State Rprt CH12 Register  
7
6
5
4
3
2
1
0
CH1 STATE REPORT  
CH2 STATE REPORT  
CH1 LDG  
STATE  
CH2 LDG  
STATE  
REPORT  
REPORT  
R-1b  
R-1b  
R-0b  
R-0b  
7-23. Channel State Rprt CH12 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
CH1 STATE REPORT  
R
1b  
Channel 1 is in state:  
101: PSD (protective shutdown)  
100: PSD_AR (protective shutdown, will auto recover)  
011: DIAG  
010: MUTE  
001: HI-Z  
000: PLAY  
4-2  
CH2 STATE REPORT  
R
1b  
Channel 2 is in state:  
101: PSD (protective shutdown)  
100: PSD_AR (protective shutdown, will auto recover)  
011: DIAG  
010: MUTE  
001: HI-Z  
000: PLAY  
1
0
CH1 LDG STATE  
REPORT  
R
R
0b  
0b  
0: DC Load Diagnostic did not complete without faults on  
channel 1  
1: DC Load Diagnostic completed without faults on channel 1  
CH2 LDG STATE  
REPORT  
0: DC Load Diagnostic did not complete without faults on  
channel 2  
1: DC Load Diagnostic completed without faults on channel 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.14 Channel State Rprt CH34 Register (Offset = 0xE) [reset = 0x24]  
Return to the 7-10.  
7-27. Channel State Rprt CH34 Register  
7
6
5
4
3
2
1
0
CH3 STATE REPORT  
CH4 STATE REPORT  
CH3 LDG  
STATE  
CH4 LDG  
STATE  
REPORT  
REPORT  
R-1b  
R-1b  
R-0b  
R-0b  
7-24. Channel State Rprt CH34 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
CH3 STATE REPORT  
R
1b  
Channel 3 is in state:  
101: PSD (protective shutdown)  
100: PSD_AR (protective shutdown, will auto recover)  
011: DIAG  
010: MUTE  
001: HI-Z  
000: PLAY  
4-2  
CH4 STATE REPORT  
R
1b  
Channel 4 is in state:  
101: PSD (protective shutdown)  
100: PSD_AR (protective shutdown, will auto recover)  
011: DIAG  
010: MUTE  
001: HI-Z  
000: PLAY  
1
0
CH3 LDG STATE  
REPORT  
R
R
0b  
0b  
0: DC Load Diagnostic did not complete without faults on  
channel 3  
1: DC Load Diagnostic completed without faults on channel 3  
CH4 LDG STATE  
REPORT  
0: DC Load Diagnostic did not complete without faults on  
channel 4  
1: DC Load Diagnostic completed without faults on channel 4  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.15 Ch OC DC Fault Mem Register (Offset = 0xF) [reset = 0x00]  
Register clears to 0x0 upon reading.  
For channel restart, DC and/or OC fault needs to be cleared by writing to register 0x30.  
Return to the 7-10.  
7-28. Ch OC DC Fault Mem Register  
7
6
5
4
3
2
1
0
CH1 OC FAULT CH2 OC FAULT CH3 OC FAULT CH4 OC FAULT CH1 DC FAULT CH2 DC FAULT CH3 DC FAULT CH4 DC FAULT  
STORED  
STORED  
STORED  
STORED  
STORED  
STORED  
STORED  
STORED  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
7-25. Ch OC DC Fault Mem Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1 OC FAULT STORED  
CH2 OC FAULT STORED  
CH3 OC FAULT STORED  
CH4 OC FAULT STORED  
CH1 DC FAULT STORED  
CH2 DC FAULT STORED  
CH3 DC FAULT STORED  
CH4 DC FAULT STORED  
R
0b  
0: No channel 1 over current fault event stored  
1: Channel 1 over current fault event stored  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0: No channel 2 over current fault event stored  
1: Channel 2 over current fault event stored  
0: No channel 3 over current fault event stored  
1: Channel 3 over current fault event stored  
0: No channel 4 over current fault event stored  
1: Channel 4 over current fault event stored  
0: No channel 1 DC fault event stored  
1: Channel 1 DC fault event stored  
0: No channel 2 DC fault event stored  
1: Channel 2 DC fault event stored  
0: No channel 3 DC fault event stored  
1: Channel 3 DC fault event stored  
0: No channel 4 DC fault event stored  
1: Channel 4 DC fault event stored  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.16 Power_Fault_Mem Register (Offset = 0x10) [reset = 0x00]  
Register clears to 0x0 upon reading.  
Return to the 7-10.  
7-29. Power_Fault_Mem Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
GVDD FAULT  
STORED  
DVDD POR  
STORED  
PVDD OV  
STORED  
VBAT OV  
STORED  
PVDD UV  
STORED  
VBAT UV  
STORED  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
7-26. Power_Fault_Mem Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0b  
GVDD FAULT STORED  
R
0b  
0: No GVDD regulator fault event stored  
1: GVDD regulator fault event stored  
4
3
2
1
0
DVDD POR STORED  
PVDD OV STORED  
VBAT OV STORED  
PVDD UV STORED  
VBAT UV STORED  
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0: No DVDD power on reset event stored  
1: DVDD power on reset event stored  
0: No PVDD over voltage event stored  
1: PVDD over voltage event stored  
0: No VBAT over voltage event stored  
1: VBAT over voltage event stored  
0: No PVDD under voltage event stored  
1: PVDD under voltage event detected and stored  
0: No VBAT under voltage event stored  
1: VBAT under voltage event stored  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.17 Power Fault Status Register (Offset = 0x11) [reset = 0x00]  
Return to the 7-10.  
7-30. Power Fault Status Register  
7
6
5
4
3
2
1
0
GLOBAL  
WARNING  
GLOBAL  
FAULT  
GVDD FAULT  
RESERVED  
PVDD OV  
VBAT OV  
PVDD UV  
VBAT UV  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
7-27. Power Fault Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL WARNING  
R
0b  
0: No warning  
1: If any warning active in device, regardless of warning signal  
configuration  
6
5
GLOBAL FAULT  
GVDD FAULT  
R
R
0b  
0b  
0: No fault  
1: If any fault active in device, regardless of fault signal configuration  
0: No GVDD regulator fault detected  
1: GVDD regulator fault detected  
4
3
RESERVED  
PVDD OV  
R
R
0b  
0b  
0: PVDD supply voltage is not above OV threshold  
1: PVDD supply voltage is above OV threshold  
2
1
0
VBAT OV  
PVDD UV  
VBAT UV  
R
R
R
0b  
0b  
0b  
0: VBAT supply voltage is not above OV threshold  
1: VBAT supply voltage is above OV threshold  
0: PVDD supply voltage is not below UV threshold  
1:PVDD supply voltage is below UV threshold  
0: VBAT supply voltage is not below UV threshold  
1: VBAT supply voltage is below UV threshold  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.18 OTSD CS Fault Mem Register (Offset = 0x12) [reset = 0x00]  
Return to the 7-10.  
7-31. OTSD CS Fault Mem Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
INVALID  
CLOCK  
STORED  
OTSD STORED  
CH1 OTSD  
STORED  
CH2 OTSD  
STORED  
CH3 OTSD  
STORED  
CH4 OTSD  
STORED  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
7-28. OTSD CS Fault Mem Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0b  
INVALID CLOCK  
STORED  
R
0b  
Only applies if device is configured in clock slave mode:  
0: No clock synchronization fault event stored  
1:Clock synchronization fault event stored  
4
3
2
1
0
OTSD STORED  
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0: No global over temperature shutdown event stored  
1:Global over temperature shutdown event stored  
CH1 OTSD STORED  
CH2 OTSD STORED  
CH3 OTSD STORED  
CH4 OTSD STORED  
0: No channel 1 over temperature shutdown event stored  
1: Channel 1 over temperature shutdown event stored  
0: No channel 2 over temperature shutdown event stored  
1: Channel 2 over temperature shutdown event stored  
0: No channel 3 over temperature shutdown event stored  
1: Channel 3 over temperature shutdown event stored  
0: No channel 4 over temperature shutdown event stored  
1: Channel 4 over temperature shutdown event stored  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.19 OTSD CS Fault Status Register (Offset = 0x13) [reset = 0x00]  
Return to the 7-10.  
7-32. OTSD CS Fault Status Register  
7
6
5
4
3
2
1
0
WARNING  
SIGNAL  
FAULT SIGNAL  
INVALID  
CLOCK  
OTSD  
CH1 OTSD  
CH2 OTSD  
CH3 OTSD  
CH4 OTSD  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
7-29. OTSD CS Fault Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WARNING SIGNAL  
R
0b  
0: If internal warning signal is not active  
1: If internal warning signal is active (configured by warning signal  
configuration registers)  
6
5
FAULT SIGNAL  
INVALID CLOCK  
R
R
0b  
0b  
0: If internal fault signal is not active  
1: If internal fault signal is active (configured by fault signal  
configuration registers)  
Only applies if device is configured in clock slave mode:  
0: No Synchronization clock error detected  
1: Synchronization clock error detected  
4
3
2
1
0
OTSD  
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0: Global die temperature is not above OTSD threshold  
1: Global die temperature is above OTSD threshold  
CH1 OTSD  
CH2 OTSD  
CH3 OTSD  
CH4 OTSD  
0: Channel 1 temperature is not above OTSD threshold  
1: Channel 1 temperature is above OTSD threshold  
0: Channel 2 temperature is not above OTSD threshold  
1: Channel 2 temperature is above OTSD threshold  
0: Channel 3 temperature is not above OTSD threshold  
1: Channel 3 temperature is above OTSD threshold  
0: Channel 4 temperature is not above OTSD threshold  
1: Channel 4 temperature is above OTSD threshold  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.20 Ch Current Fault Mem Register (Offset = 0x14) [reset = 0x00]  
Register clears to 0x0 upon reading.  
To restart the channel, the load current faults need to be cleared by writing to Register 0x30.  
Return to the 7-10.  
7-33. Ch Current Fault Mem Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH1 I-LIMIT  
FAULT  
STORED  
CH2 I-LIMIT  
FAULT  
STORED  
CH3 I-LIMIT  
FAULT  
STORED  
CH4 I-LIMIT  
FAULT  
STORED  
R-0b  
R-0b  
R-0b  
R-0b  
7-30. Ch Current Fault Mem Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0b  
CH1 I-LIMIT FAULT  
STORED  
R
0b  
0: No channel 1 load current fault event stored  
1: Channel 1 load current fault event stored  
2
1
0
CH2 I-LIMIT FAULT  
STORED  
R
R
R
0b  
0b  
0b  
0: No channel 2 load current fault event stored  
1: Channel 2 load current fault event stored  
CH3 I-LIMIT FAULT  
STORED  
0: No Channel 3 load current fault event stored  
1: Channel 3 load current fault event stored  
CH4 I-LIMIT FAULT  
STORED  
0: No channel 4 load current fault event stored  
1: Channel 4 load current fault event stored  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.21 Ch Current Warn Mem Register (Offset = 0x15) [reset = 0x00]  
Register clears to 0x0 upon reading.  
Return to the 7-10.  
7-34. Ch Current Warn Mem Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH1 I-LIMIT  
WARN  
STORED  
CH2 I-LIMIT  
WARN  
STORED  
CH3 I-LIMIT  
WARN  
STORED  
CH4 I-LIMIT  
WARN  
STORED  
R-0b  
R-0b  
R-0b  
R-0b  
7-31. Ch Current Warn Mem Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0b  
CH1 I-LIMIT WARN  
STORED  
R
0b  
0: No channel 1 load current warning event stored  
1: Channel 1 load current warning event stored  
2
1
0
CH2 I-LIMIT WARN  
STORED  
R
R
R
0b  
0b  
0b  
0: No channel 2 load current warning event stored  
1: Channel 2 load current warning event stored  
CH3 I-LIMIT WARN  
STORED  
0: No channel 3 load current warning event stored  
1: Channel 3 load current warning event stored  
CH4 I-LIMIT WARN  
STORED  
0: No channel 4 load current warning event stored  
1: Channel 4 load current warning event stored  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.22 OTW TGFB Warn Mem Register (Offset = 0x16) [reset = 0x00]  
Register clears to 0x0 upon reading.  
Return to the 7-10.  
7-35. OTW TGFB Warn Mem Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
TGFBW  
STORED  
OTW STORED  
CH1 OTW  
STORED  
CH2 OTW  
STORED  
CH3 OTW  
STORED  
CH4 OTW  
STORED  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
7-32. OTW TGFB Warn Mem Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0b  
TGFBW STORED  
R
0b  
0: No thermal gain fold back activation event stored  
1: Thermal gain fold back activation event stored  
4
3
2
1
0
OTW STORED  
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0: No global over temperature warning event stored  
1:Global over temperature warning event stored  
CH1 OTW STORED  
CH2 OTW STORED  
CH3 OTW STORED  
CH4 OTW STORED  
0: No channel 1 over temperature warning event stored  
1: Channel 1 over temperature warning event stored  
0: No channel 2 over temperature warning event stored  
1: Channel 2 over temperature warning event stored  
0: No channel 3 over temperature warning event stored  
1: Channel 3 over temperature warning event stored  
0: No channel 4 over temperature warning event stored  
1: Channel 4 over temperature warning event stored  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.23 OTW TGFB Warn Status Register (Offset = 0x17) [reset = 0x00]  
Return to the 7-10.  
7-36. OTW TGFB Warn Status Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
TGFBW  
R-0b  
OTW  
R-0b  
CH1 OTW  
R-0b  
CH2 OTW  
R-0b  
CH3 OTW  
R-0b  
CH4 OTW  
R-0b  
7-33. OTW TGFB Warn Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
TGFBW  
R
0b  
R
0b  
0: Thermal gain fold back is not activated  
1: Thermal gain fold back is activated  
4
3
2
1
0
OTW  
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0: Global die temperature is not above OTW threshold  
1: Global die temperature is above OTW threshold  
CH1 OTW  
CH2 OTW  
CH3 OTW  
CH4 OTW  
0: Channel 1 temperature is not above OTW threshold  
1: Channel 1 temperature is above OTW threshold  
0: Channel 2 temperature is not above OTW threshold  
1: Channel 2 temperature is above OTW threshold  
0: Channel 3 temperature is not above OTW threshold  
1: Channel 3 temperature is above OTW threshold  
0: Channel 4 temperature is not above OTW threshold  
1: Channel 4 temperature is above OTW threshold  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.24 Ch ClipDet Warn Mem Register (Offset = 0x18) [reset = 0x00]  
Register clears to 0x0 upon reading.  
Return to the 7-10.  
7-37. Ch ClipDet Warn Mem Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH1 CLIP  
STORED  
CH2 CLIP  
STORED  
CH3 CLIP  
STORED  
CH4 CLIP  
STORED  
R-0b  
R-0b  
R-0b  
R-0b  
7-34. Ch ClipDet Warn Mem Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0b  
CH1 CLIP STORED  
R
0b  
0: No channel 1 clipping event stored  
1: Channel 1 clipping event stored  
2
1
0
CH2 CLIP STORED  
CH3 CLIP STORED  
CH4 CLIP STORED  
R
R
R
0b  
0b  
0b  
0: No channel 2 clipping event stored  
1: Channel 2 clipping event stored  
0: No channel 3 clipping event stored  
1: Channel 3 clipping event stored  
0: No channel 4 clipping event stored  
1: Channel 4 clipping event stored  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.25 Ch ClipDet Warn Status Register (Offset = 0x19) [reset = 0x00]  
Return to the 7-10.  
7-38. Ch ClipDet Warn Status Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH1 CLIP  
R-0b  
CH2 CLIP  
R-0b  
CH3 CLIP  
R-0b  
CH4 CLIP  
R-0b  
7-35. Ch ClipDet Warn Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
CH1 CLIP  
R
0b  
R
0b  
0: Channel 1 clipping is not present or not above clip detect  
threshold  
1: Channel 1 clipping is above clip detect threshold  
2
1
0
CH2 CLIP  
CH3 CLIP  
CH4 CLIP  
R
R
R
0b  
0b  
0b  
0: Channel 2 clipping is not present or not above clip detect  
threshold  
1: Channel 2 clipping is above clip detect threshold  
0: Channel 3 clipping is not present or not above clip detect  
threshold  
1: Channel 3 clipping is above clip detect threshold  
0: Channel 4 clipping is not present or not above clip detect  
threshold  
1: Channel 4 clipping is above clip detect threshold  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.26 TGFB Status Register (Offset = 0x1C) [reset = 0x00]  
Return to the 7-10.  
7-39. TGFB Status Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
TGFB GAIN  
R-0b  
7-36. TGFB Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
TGFB GAIN  
R
0b  
R
0b  
Gain set by thermal gain foldback control in response to die  
temperature is:  
00000: 0 dB  
00001: -0.5 dB  
00010: -1 dB  
.  
10111: - 11.5 dB  
11000: - 12 dB  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.27 Fault Sig Conf 1 Register (Offset = 0x1D) [reset = 0x17]  
Return to the 7-10.  
7-40. Fault Sig Conf 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
FAULT ON  
PROTECTIVE  
SHUTDOWN  
FAULT ON  
INVALID  
CLOCK  
FAULT ON  
OTSD STORED POWER FAULT  
STORED  
FAULT ON  
FAULT ON DC FAULT ON OC  
FAULT ON  
ILIMIT  
STORED  
STORED  
R/W-1b  
STORED  
STORED  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-1b  
7-37. Fault Sig Conf 1 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0b  
6
FAULT ON PROTECTIVE R/W  
SHUTDOWN  
0b  
0: Fault signal is not activated by any CH[1..4] STATE REPORT =  
'101'  
1: If any CH[1..4] STATE REPORT = '101', fault signal is active  
5
4
FAULT ON INVALID  
CLOCK STORED  
R/W  
R/W  
0b  
1b  
0: Fault signal is not activated by INVALID CLOCK STORED bit  
1: If INVALID CLOCK STORED bit is set, fault signal is active  
FAULT ON OTSD  
STORED  
0: Fault signal is not activated by any CH[1..4] OTSD STORED bit or  
OTSD STORED bit  
1: If any CH[1..4] OTSD STORED bit or OTSD STORED bit is set,  
fault signal is active  
3
FAULT ON POWER  
FAULT STORED  
R/W  
R/W  
0b  
0: Fault Signal is not activated by any stored bit in "Power Fault  
Memory Register"  
1: If VBAT UV STORED bit, VBAT OV STORED bit, PVDD UV  
STORED bit, PVDD OV STORED bit, DVDD POR STORED bit, or  
GVDD FAULT STORED bit is set, fault signal is active.  
2
1
0
FAULT ON DC STORED  
1b  
1b  
1b  
0: Fault signal is not activated by any CH[1..4] DC FAULT STORED  
bit  
1: If any CH[1..4] DC FAULT STORED bit is set, fault signal is  
active  
FAULT ON OC STORED R/W  
0: Fault signal is not activated by any CH[1..4] OC FAULT STORED  
bit  
1: If any CH[1..4] OC FAULT STORED bit is set, fault signal is  
active  
FAULT ON ILIMIT  
STORED  
R/W  
0: Fault signal is not activated by any CH[1..4] I-LIMIT FAULT  
STORED bit  
1: If any CH[1..4] I-LIMIT FAULT STORED bit is set, fault signal is  
active  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.28 Fault Sig Conf 2 Register (Offset = 0x1E) [reset = 0x00]  
Return to the 7-10.  
7-41. Fault Sig Conf 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
FAULT ON  
WARN  
FAULT ON  
INVALID  
CLOCK  
FAULT ON  
OTSD  
FAULT ON  
POWER FAULT  
RESERVED  
RESERVED  
FAULT ON  
INCOMPLETE  
LDG  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-38. Fault Sig Conf 2 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0b  
6
FAULT ON WARN  
0b  
0: Fault signal is not activated when warning singal is active.  
1: Fault signal is active when warning signal is active  
5
4
FAULT ON INVALID  
CLOCK  
R/W  
R/W  
0b  
0b  
0: Fault signal is not activated by INVALID CLOCK bit  
1: If INVALID CLOCK bit is set, fault signal is active  
FAULT ON OTSD  
0: Fault signal is not activated by any CH[1..4] OTSD bit or  
OTSD  
1: If any CH[1..4] OTSD bit or OTSD bit is set, fault signal is active  
3
FAULT ON POWER  
FAULT  
R/W  
0b  
0: Fault Signal is not activated by any stored bit in "Power Fault  
Status Register"  
1: If VBAT UV bit, VBAT OV bit, PVDD UV bit, PVDD OV bit, or  
GVDD FAULT bit is set, fault signal is active.  
2
1
0
RESERVED  
RESERVED  
R/W  
R/W  
0b  
0b  
0b  
FAULT ON INCOMPLETE R/W  
LDG  
0: Fault signal is not activated by any CH[1..4] LDG STATE  
REPORT bit  
1: If any CH[1..4] LDG STATE REPORT bit is not set, fault signal Is  
active  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.29 Warn Sig Conf 1 Register (Offset = 0x1F) [reset = 0x04]  
Return to the 7-10.  
7-42. Warn Sig Conf 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
WARN ON  
CLIP DET  
STORED  
WARN ON  
INVALID  
CLOCK  
WARN ON  
WARN ON  
WARN ON  
WARN ON  
WARN ON  
ILIMIT  
STORED  
OTSD STORED POWER FAULT OTW STORED TGFB STORED  
STORED  
STORED  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
7-39. Warn Sig Conf 1 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0b  
6
WARN ON CLIP DET  
STORED  
0b  
0: Warning signal is not activated by any CH[1..4] CLIP STORED  
bit  
1: If any CH[1..4] CLIP STORED bit is set, warning signal is active  
5
4
WARN ON INVALID  
CLOCK STORED  
R/W  
R/W  
0b  
0b  
0: Warning signal is not activated by INVALID CLOCK STORED  
bit  
1: If INVALID CLOCK STORED bit is set, warning signal is active  
WARN ON OTSD  
STORED  
0: Warning signal is not activated by any CH[1..4] OTSD  
STORED bit or OTSD STORED  
1: If any CH[1..4] OTSD STORED bit or OTSD STORED bit is set,  
warning signal is active  
3
2
WARN ON POWER  
FAULT STORED  
R/W  
0b  
1b  
0: Warning Signal is not activated by any stored bit in "Power  
Fault Memory Register"  
1: If VBAT UV STORED bit, VBAT OV STORED bit, PVDD UV  
STORED bit, PVDD OV STORED bit, DVDD POR STORED bit, or  
GVDD FAULT STORED bit is set, warning signal is active.  
WARN ON OTW STORED R/W  
0: Warning signal is not activated by any CH[1..4] OTW STORED bit  
or OTW STORED bit  
1: If any CH[1..4] OTW STORED bit or OTW STORED bit is set,  
warning signal is active  
1
0
WARN ON TGFB  
STORED  
R/W  
R/W  
0b  
0b  
0: Warning signal is not activated by TGFBW STORED  
1: Warning signal is active if TGFBW STORED is active  
WARN ON ILIMIT  
STORED  
0: Warning signal is not activated by any CH[1..4] I-LIMIT WARN  
STORED bit  
1: If any CH[1..4] I-LIMIT WARN STORED bit is set, warning signal is  
active  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.30 Warn Sig Conf 2 Register (Offset = 0x20) [reset = 0x00]  
Return to the 7-10.  
7-43. Warn Sig Conf 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
WARN ON  
INVALID  
CLOCK  
WARN ON  
OTSD  
WARN ON  
POWER FAULT  
WARN ON  
OTW  
WARN ON  
TGFB  
WARN ON  
INCOMPLETE  
LDG  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-40. Warn Sig Conf 2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
0b  
WARN ON INVALID  
CLOCK  
0b  
0: Warning signal is not activated by INVALID CLOCK bit  
1: If INVALID CLOCK bit is set, warning signal is active  
4
3
2
WARN ON OTSD  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0: Warning signal is not activated by any CH[1..4] OTSD bit or  
OTSD  
1: If any CH[1..4] OTSD bit or OTSD bit is set, warning signal is  
active  
WARN ON POWER  
FAULT  
0: Warning Signal is not activated by any stored bit in "Power  
Fault Status Register"  
1: If VBAT UV bit, VBAT OV bit, PVDD UV bit, PVDD OV bit, or  
GVDD FAULT bit is set, warning signal is active.  
WARN ON OTW  
0: Warning signal is not activated by any CH[1..4] OTW bit or  
OTW bit  
1: If any CH[1..4] OTW STORED bit or OTW STORED bit is set,  
warning signal is active  
1
0
WARN ON TGFB  
0b  
0b  
0: Warning signal is not activated by TGFBW  
1: Warning signal is active if TGFBW is active  
WARN ON INCOMPLETE R/W  
LDG  
0: Warning signal is not activated by any CH[1..4] LDG STATE  
REPORT bit  
1: If any CH[1..4] LDG STATE REPORT bit is not set, warning signal  
is active  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.31 Clip Det Sig Conf Register (Offset = 0x21) [reset = 0x00]  
Return to the 7-10.  
7-44. Clip Det Sig Conf Register  
7
6
5
4
3
2
1
0
RESERVED  
CLIP DET EN  
CLIP DET LVL  
R/W-0b  
CLIP DET  
CH34 GRP2  
CLIP DET  
CH34 GRP1  
CLIP DET  
CH12 GRP2  
CLIP DET  
CH12 GRP1  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-41. Clip Det Sig Conf Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0b  
6
CLIP DET EN  
0b  
0: Clip detect is disabled  
1: Clip detect is enabled  
5-4  
3
CLIP DET LVL  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
00: 2% THD  
01: 5% THD  
10: 10% THD  
11: 1% THD  
CLIP DET CH34 GRP2  
CLIP DET CH34 GRP1  
CLIP DET CH12 GRP2  
CLIP DET CH12 GRP1  
0: Clip Detect Signal Group 2 is not activated by CH3 CLIP or  
CH4 CLIP  
1: Clip Detect Signal Group 2 is active when CH3 CLIP or CH4 CLIP  
is active  
2
0: Clip Detect Signal Group 1 is not activated by CH3 CLIP or  
CH4 CLIP  
1: Clip Detect Signal Group 1 is active when CH3 CLIP or CH4 CLIP  
is active  
1
0: Clip Detect Signal Group 2 is not activated by CH1 CLIP or  
CH2 CLIP  
1: Clip Detect Signal Group 2 is active when CH1 CLIP or CH2 CLIP  
is active  
0
0: Clip Detect Signal Group 1 is not activated by CH1 CLIP or  
CH2 CLIP  
1: Clip Detect Signal Group 1 is active when CH1 CLIP or CH2 CLIP  
is active  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.32 Fault Pin Conf Register (Offset = 0x22) [reset = 0x00]  
Return to the 7-10.  
7-45. Fault Pin Conf Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
FAULT PIN CONF  
R/W-0b  
7-42. Fault Pin Conf Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3-0  
RESERVED  
0b  
FAULT PIN CONF  
0b  
Fault Pin is set to:  
0000: FaultZ  
Open Drain Output. Active low when fault signal is active.  
0001: WarningZ - Open Drain Output. Active low when warning  
signal is active.  
0010: Clip Detect 1 - Buffer Output. Active high when clip detect  
group 1 signal is active.  
0011: Clip Detect 2 - Buffer Output. Active high when clip detect  
group 2 signal is active.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.33 GPIO Conf Register (Offset = 0x23) [reset = 0x00]  
Return to the 7-10.  
7-46. GPIO Conf Register  
7
6
5
4
3
2
1
0
GPIO2 PIN CONF  
R/W-0b  
GPIO1 PIN CONF  
R/W-0b  
7-43. GPIO Conf Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
GPIO2 PIN CONF  
R/W  
0b  
GPIO 2 pin set to:  
0000: Hi-Z  
0001: WarningZ Pin - Open Drain Output. Active low when warning  
signal is active.  
0010: FaultZ Pin - Open Drain Output. Active low when fault signal is  
active.  
0011: Clip Detect 1 - Buffer Output. Active high when clip detect  
group 1 signal is active.  
0100: Clip Detect 2 - Buffer Output. Active high when clip detect  
group 2 signal is active.  
0101: Sync out - Buffer Output. Sends output stage switching  
frequency  
0110: DVDD (high)  
0111: GND (low)  
1000: Sync in - Input. Accepts switching frequency of clock master  
device  
1001: MuteZ - Input. Low level input will mute the device  
3-0  
GPIO1 PIN CONF  
R/W  
0b  
GPIO 1 pin set to:  
0000: Hi-Z  
0001: WarningZ - Open Drain Output. Active low when warning  
signal is active.  
0010: FaultZ - Open Drain Output. Active low when fault signal is  
active.  
0011: Clip Detect 1 - Buffer Output. Active high when clip detect  
group 1 signal is active.  
0100: Clip Detect 2 - Buffer Output. Active high when clip detect  
group 2 signal is active.  
0101: Sync out - Buffer Output. Sends output stage switching  
frequency  
0110: DVDD (high)  
0111: GND (low)  
1000: Sync in - Input. Accepts switching frequency of clock master  
device  
1001: MuteZ - Input. Low level input will mute the device  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.34 AC LDG Ctrl 1 Register (Offset = 0x24) [reset = 0x00]  
Return to the 7-10.  
7-47. AC LDG Ctrl 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
AC DIAG GAIN CH1 AC DIAG CH2 AC DIAG CH3 AC DIAG CH4 AC DIAG  
START  
START  
START  
START  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-44. AC LDG Ctrl 1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4
RESERVED  
0b  
AC DIAG GAIN  
0b  
0: Gain 1 (0-100 Ω)  
1: Gain 8 (0-12.5 Ω)  
3
2
1
0
CH1 AC DIAG START  
CH2 AC DIAG START  
CH3 AC DIAG START  
CH4 AC DIAG START  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0: Normal operation  
1: Start AC diagnostic on channel 1 once channel is in Hi-Z mode  
0: Normal operation  
1: Start AC diagnostic on channel 2 once channel is in Hi-Z mode  
0: Normal operation  
1: Start AC diagnostic on channel 3 once channel is in Hi-Z mode  
0: Normal operation  
1: Start AC diagnostic on channel 4 once channel is in Hi-Z mode  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.35 AC LDG Ctrl 2 Register (Offset = 0x25) [reset = 0x8]  
Return to the 7-10.  
7-48. AC LDG Ctrl 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
TW DET AVG  
R/W-1b  
RESERVED  
TW DET CALC  
TYPE  
TW DET  
JUDGE  
R/W-0b  
R/W-0b  
R/W-0b  
7-45. AC LDG Ctrl 2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3
RESERVED  
0b  
TW DET AVG  
1b  
0: Fast mode  
1: Normal mode  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
TW DET CALC TYPE  
0: AC pass/fail judgement type 2  
Calculate magnitude of impedance as Re(Z)+0.5*Im(Z)  
1: AC pass/fail judgement type 1  
Calculate magnitude of impedance as Re(Z)  
0
TW DET JUDGE  
R/W  
0b  
0: Enable Tweeter detection judegement  
Calculate magnitude of impedance  
Check whether calculated result is lower than tweeter detection  
threshold value  
If yes, set tweeter detection bit  
1: Disable Tweeter detection calculation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.36 TWEETER DET THRESH Register (Offset = 0x26) [reset = 0x00]  
Return to the 7-10.  
7-49. TWEETER DET THRESH Register  
7
6
5
4
3
2
1
0
TW DET THRESHOLD  
R/W-0b  
7-46. TWEETER DET THRESH Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
TW DET THRESHOLD  
R/W  
0b  
Set the reference value for AC load diag pass/fail judgement.  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.37 AC LDG Rprt CH1 R Register (Offset = 0x27) [reset = 0x00]  
Return to the 7-10.  
7-50. AC LDG Rprt CH1 R Register  
7
6
5
4
3
2
1
0
CH1 AC IMP R  
R-0b  
7-47. AC LDG Rprt CH1 R Register Field Descriptions  
Bit  
7-0  
Field  
CH1 AC IMP R  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the real part of complex impedance  
seen at CH1 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.38 AC LDG Rprt CH1 I Register (Offset = 0x28) [reset = 0x00]  
Return to the 7-10.  
7-51. AC LDG Rprt CH1 I Register  
7
6
5
4
3
2
1
0
CH1 AC IMP I  
R-0b  
7-48. AC LDG Rprt CH1 I Register Field Descriptions  
Bit  
7-0  
Field  
CH1 AC IMP I  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the complement of the imaginary part  
of complex impedance seen at CH1 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.39 AC LDG Rprt CH2 R Register (Offset = 0x29) [reset = 0x00]  
Return to the 7-10.  
7-52. AC LDG Rprt CH2 R Register  
7
6
5
4
3
2
1
0
CH2 AC IMP R  
R-0b  
7-49. AC LDG Rprt CH2 R Register Field Descriptions  
Bit  
7-0  
Field  
CH2 AC IMP R  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the real part of complex impedance  
seen at CH2 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.40 AC LDG Rprt CH2 I Register (Offset = 0x2A) [reset = 0x00]  
Return to the 7-10.  
7-53. AC LDG Rprt CH2 I Register  
7
6
5
4
3
2
1
0
CH2 AC IMP I  
R-0b  
7-50. AC LDG Rprt CH2 I Register Field Descriptions  
Bit  
7-0  
Field  
CH2 AC IMP I  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the complement of the imaginary part  
of complex impedance seen at CH2 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.41 AC LDG Rprt CH3 R Register (Offset = 0x2B) [reset = 0x00]  
Return to the 7-10.  
7-54. AC LDG Rprt CH3 R Register  
7
6
5
4
3
2
1
0
CH3 AC IMP R  
R-0b  
7-51. AC LDG Rprt CH3 R Register Field Descriptions  
Bit  
7-0  
Field  
CH3 AC IMP R  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the real part of complex impedance  
seen at CH3 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.42 AC LDG Rprt CH3 I Register (Offset = 0x2C) [reset = 0x00]  
Return to the 7-10.  
7-55. AC LDG Rprt CH3 I Register  
7
6
5
4
3
2
1
0
CH3 AC IMP I  
R-0b  
7-52. AC LDG Rprt CH3 I Register Field Descriptions  
Bit  
7-0  
Field  
CH3 AC IMP I  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the complement of the imaginary part  
of complex impedance seen at CH3 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.43 AC LDG Rprt CH4 R Register (Offset = 0x2D) [reset = 0x00]  
Return to the 7-10.  
7-56. AC LDG Rprt CH4 R Register  
7
6
5
4
3
2
1
0
CH4 AC IMP R  
R-0b  
7-53. AC LDG Rprt CH4 R Register Field Descriptions  
Bit  
7-0  
Field  
CH4 AC IMP R  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the real part of complex impedance  
seen at CH4 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.44 AC LDG Rprt CH4 I Register (Offset = 0x2E) [reset = 0x00]  
Return to the 7-10.  
7-57. AC LDG Rprt CH4 I Register  
7
6
5
4
3
2
1
0
CH4 AC IMP I  
R-0b  
7-54. AC LDG Rprt CH4 I Register Field Descriptions  
Bit  
7-0  
Field  
CH4 AC IMP I  
Type  
Reset  
Description  
R
0b  
Register value corresponds to the complement of the imaginary part  
of complex impedance seen at CH4 output  
0.8 Ω/code if AC DIAG GAIN = 0  
0.1 Ω/code if AC DIAG GAIN = 1  
See 7.6.1.35  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.45 TWEETER DET Register (Offset = 0x2F) [reset = 0x00]  
Return to the 7-10.  
7-58. TWEETER DET Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH1 TW DET  
R-0b  
CH2 TW DET  
R-0b  
CH3 TW DET  
R-0b  
CH4 TWDET  
R-0b  
7-55. TWEETER DET Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R
0b  
CH1 TW DET  
R
0b  
0: No tweeter detected on channel 1.  
1: Tweeter detected on channel 1.  
2
1
0
CH2 TW DET  
CH3 TW DET  
CH4 TW DET  
R
R
R
0b  
0b  
0b  
0: No tweeter detected on channel 2.  
1: Tweeter detected on channel 2.  
0: No tweeter detected on channel 3.  
1: Tweeter detected on channel 3.  
0: No tweeter detected on channel 4.  
1: Tweeter detected on channel 4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.46 Misc Control 3 Register (Offset = 0x30) [reset = 0x00]  
Return to the 7-10.  
7-59. Misc Control 3 Register  
7
6
5
4
3
2
1
0
CLEAR FAULT  
RESERVED  
PRECHG TIME  
R/W-0b  
OTSD AUTO  
RECOVERY  
RESERVED  
PULL UP  
RESERVED  
W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-56. Misc Control 3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CLEAR FAULT  
W
0b  
0: Normal operation  
1: Clear fault  
6
RESERVED  
R/W  
R/W  
0b  
0b  
5-4  
PRECHG TIME  
Precharge wait time sets the time for AC coupling input caps to settle  
during startup  
0: 20 ms  
1: 15 ms  
2: 40 ms  
3: 50 ms  
3
OTSD AUTO RECOVERY R/W  
0b  
0: Device will not auto recover from over temperature shutdown  
1: Device will auto recover from over temperature shutdown  
2
1
RESERVED  
PULL UP  
R/W  
R/W  
0b  
0b  
Control internal pull-up for GPIO1 and GPIO2 if configured to Open  
Drain Output  
0: Enable internal pull-up  
1: Disable internal pull-up  
0
RESERVED  
R/W  
0b  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.47 REVID Register (Offset = 0x32) [reset = 0x00]  
Return to the 7-10.  
7-60. REVID Register  
7
6
5
4
3
2
1
0
REV ID  
R-0b  
7-57. REVID Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
REV ID  
R
Revision ID  
0x21  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.48 TGFB Ctrl Register (Offset = 0x33) [reset = 0x00]  
Return to the 7-10.  
7-61. TGFB Ctrl Register  
7
6
5
4
3
2
1
0
ZC WAIT TIME  
R/W-0b  
BYPASS  
R/W-0b  
ZC BYPASS  
R/W-0b  
ATTACK  
R/W-0b  
RELEASE  
R/W-0b  
7-58. TGFB Ctrl Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ZC WAIT TIME  
R/W  
0b  
System waits this period for zero crossing, then changes gain  
regardless.  
00: 20 µs  
01: 80 µs  
10: 320 µs  
11: 1280 µs  
5
4
BYPASS  
R/W  
R/W  
0b  
0b  
0: Enable Thermal Gain Foldback  
1: Disable Thermal Gain Foldback  
ZC BYPASS  
0: Enable zero crossing detection  
1: Disable zero crossing detection. Gain changes as soon as thermal  
condition is met without waiting for zero detection.  
3-2  
1-0  
ATTACK  
R/W  
R/W  
0b  
0b  
00: 1 dB / 100ms  
01: 1 dB / 200ms  
10: 1 dB / 400ms  
11: 1 dB / 800ms  
RELEASE  
00: 1 dB / 200ms  
01: 1 dB / 400ms  
10: 1 dB / 800ms  
11: 1 dB / 1600ms  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.49 AC LDG FREQ Ctrl Register (Offset = 0x34) [reset = 0xC8]  
Return to the 7-10.  
7-62. AC LDG FREQ Ctrl Register  
7
6
5
4
3
2
1
0
STIMULUS FREQUENCY (93.75 Hz/bit)  
R/W-11001000b  
7-59. AC LDG FREQ Ctrl Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
STIMULUS FREQUENCY R/W  
(93.75 Hz/bit)  
11001000b 0000 0000: Default. 18.75kHz  
0000 0001: 93.75 Hz  
0000 0010: 187.5 Hz  
.  
1100 1000: 18.75 kHz  
.  
1111 1111: 23.90625 kHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.50 SYNC Ctrl Register (Offset = 0x35) [reset = 0x1]  
Return to the 7-10.  
7-63. SYNC Ctrl Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SYNC ERROR WD  
R/W-0b  
SYNC ERROR  
DET BYPASS  
MASTER  
SLAVE  
R/W-0b  
R/W-1b  
7-60. SYNC Ctrl Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3-2  
RESERVED  
0b  
SYNC ERROR WD  
0b  
SYNC Clock Error watchdog timer.  
For PWM frequency of 2.1MHz or 2.3MHz, timer set to  
00: 2.5µs  
01: 5µs  
10: 7.5µs  
11: 10µs  
For PWM frequency of 384kHz, 460kHz or 576kHz, timer set to  
00: 5µs  
01: 10µs  
10: 15µs  
11: 20µs  
1
0
SYNC ERROR DET  
BYPASS  
R/W  
R/W  
0b  
1b  
0: SYNC Clock Error detection  
1: Clock Error Detection bypassed  
MASTER SLAVE  
0: Slave Mode - GPIO 1 or 2 need to be configured as SYNC IN and  
external clock required  
1: Master Mode - Device generates clock internally  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.51 Misc Control 4 Register (Offset = 0x36) [reset = 0x00]  
Return to the 7-10.  
7-64. Misc Control 4 Register  
7
6
5
4
3
2
1
0
RESERVED  
TLSBY  
SSC4  
SPREAD  
SPECTRUM  
SYNC CLOCK  
PWM FREQUENCY  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-61. Misc Control 4 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0b  
6
TLSBY  
0b  
Three level mode for standby pin  
0: Two level mode  
1: Three level mode with MUTE at mid-voltage level  
5-4  
3
SSC4  
R/W  
R/W  
0b  
0b  
Spread Spectrum Control 4  
SPREAD SPECTRUM  
SYNC CLOCK  
Select whether sync clock input will be spread spectrum modulated  
before setting PWM frequency. Applies if device is set to clock slave  
mode.  
0: Spread spectrum mode applied to clock sync input signal  
1: Spread spectrum mode not applied to clock sync input signal  
2-0  
PWM FREQUENCY  
R/W  
0b  
PWM switching frequency setting:  
000: 2.1 MHz  
001: 2.3 MHz  
010: 576 kHz  
011: 384 kHz  
100: 460 kHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.52 SS Control 1 Register (Offset = 0x37) [reset = 0x22]  
Return to the 7-10.  
7-65. SS Control 1 Register  
7
6
5
4
3
2
1
0
SSC1  
R/W-100010b  
7-62. SS Control 1 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SSC1  
R/W  
100010b  
Spread Spectrum Control 1  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.53 SS Control 2 Register (Offset = 0x38) [reset = 0x80]  
Return to the 7-10.  
7-66. SS Control 2 Register  
7
6
5
4
3
2
1
0
SS ENABLE  
R/W-1b  
RESERVED  
R/W-0b  
SSC3  
SSC2  
R/W-0b  
R/W-0b  
7-63. SS Control 2 Register Field Descriptions  
Bit  
Field  
SS ENABLE  
Type  
Reset  
Description  
7
R/W  
1b  
0: Disable spread spectrum mode  
1: Enable spread spectrum mode  
6
RESERVED  
SSC3  
R/W  
R/W  
R/W  
0b  
0b  
0b  
5-4  
3-0  
Spread Spectrum Control 3  
Spread Spectrum Control 2  
SSC2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.54 PWM Phase Ctrl 1 Register (Offset = 0x39) [reset = 0x40]  
Return to the 7-10.  
7-67. PWM Phase Ctrl 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
PHASE CH2  
R/W-100b  
RESERVED  
R/W-0b  
PHASE SEL  
R/W-0b  
7-64. PWM Phase Ctrl 1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
PHASE CH2  
0b  
6-4  
100b  
Phase offset of Channel 2 vs Channel 1 in manual mode  
000: 0 degree  
001: 45 degree  
010: 90 degree  
011: 135 degree  
100: 180 degree  
101: 225 degree  
110: 270 degree  
111: 315 degree  
3-1  
0
RESERVED  
PHASE SEL  
R/W  
R/W  
0b  
0b  
Adjustment mode for PWM phase of channel 2, 3 and 4 relative to  
channel 1  
0: Manual mode  
1: Automatic mode  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
7.6.1.55 PWM Phase Ctrl 2 Register (Offset = 0x3A) [reset = 0x62]  
Return to the 7-10.  
7-68. PWM Phase Ctrl 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
PHASE CH4  
R/W-110b  
RESERVED  
R/W-0b  
PHASE CH3  
R/W-10b  
7-65. PWM Phase Ctrl 2 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
PHASE CH4  
0b  
6-4  
110b  
Phase offset of Channel 4 vs Channel 1 in manual mode  
000: 0 degree  
001: 45 degree  
010: 90 degree  
011: 135 degree  
100: 180 degree  
101: 225 degree  
110: 270 degree  
111: 315 degree  
3
RESERVED  
PHASE CH3  
R/W  
R/W  
0b  
2-0  
10b  
Phase offset of Channel 3 vs Channel 1 in manual mode  
000: 0 degree  
001: 45 degree  
010: 90 degree  
011: 135 degree  
100: 180 degree  
101: 225 degree  
110: 270 degree  
111: 315 degree  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
8 Application Information Disclaimer  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPA6304-Q1 is a four-channel analog input Class-D audio-amplifier design for use in automotive head units  
and external amplifier modules. The TPA6304-Q1 incorporates the necessary functionality to perform in  
demanding OEM applications.  
8.1.1 AM Radio Avoidance  
AM-radio frequency interference is avoided by setting the switching frequency of the device above the AM band.  
The switching frequency options available for AM avoidance are 2.1 MHz and 2.3 MHz.  
8.1.2 Parallel BTL Operation (PBTL)  
The device has the capability of placing two channels into a parallel configuration that allows for twice the current  
drive capability for low impedance loads. BTL and PBTL modes can be me mixed. Channels 1 and 2 can be  
placed in PBTL, channels 3 and 4 can be placed into PBTL, or both pairs can be placed in PBTL. Follow the  
Typical application schematic for proper input and output connections for PBTL configuration useing both pairs.  
The speaker output connections must be made on the speaker side of the LC filter. The device can drive more  
current with paralleling BTL channels on the load side of the LC output filter. The input connections on channel 2  
and channel 4 should be connected to ground.  
The Mode Control Register has to be set for PBTL operations. Bit 4 sets channels 1 and 2 to PBTL and Bit 5  
sets channels 3 and 4 to PBTL. These bits must only be changed while the STANDBY pin is asserted low.  
Load diagnostics is supported for PBTL channels.  
8.1.3 Reconstruction Filter Design  
The amplifier outputs are driven by high-current LDMOS transistors in an H-bridge configuration. These  
transistors are either fully off or fully on. The result is a square-wave output signal with a duty cycle that is  
proportional to the amplitude of the audio signal. The amplifier outputs require a reconstruction filter that  
comprises a series inductor and a capacitor to ground on each half-bridge output, generally called an LC filter.  
The LC filter attenuates the PWM frequency and reduces electromagnetic emissions, allowing the reconstructed  
audio signal to pass to the speakers. Design of the reconstruction filter significantly affects the audio  
performance of the power amplifier. Therefore, to meet the system THD+N requirements, the selection of the  
inductors used in the output filter should be carefully considered. Refer to the Class-D LC Filter Design,  
SLAA701A, application report for a detailed description of proper component description and design of the LC  
filter based upon the specified load and frequency response.  
The recommended low-pass cutoff frequency of the LC filter is dependent on the selected switching frequency.  
The low-pass cutoff frequency can be as high as 100 kHz for a PWM frequency of 2.1 MHz.  
Certain specifications must be understood for a proper inductor. See the application note TAS6424-Q1 Inductor  
Selection Guide, SLOA242, for information on selection the proper inductor. The inductance value is given at  
zero current, but the inductors do have current through them as the TPA6304-Q1 drives current into the load.  
Use the inductance versus current curve for the inductor to made sure the inductance does not drop below 2 µH  
(for fsw = 2.1 MHz) at the maximum current for the system design during normal operation. The DCR of the  
inductor directly affects the output power of the system design. The lower the DCR, the more power is provided  
to the speakers. The typical inductor DCR for a 4 Ω system is 40 to 50 mΩ and for a 2 Ω system is 15 to 25  
mΩ.  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
8.1.4 Bootstrap Capacitors  
The bootstrap capacitors provide the gate-drive voltage of the upper N-channel FET. These capacitors must be  
sized appropriately for the system specification. For typical applications use 1 µF.  
8.1.5 Line Driver Applications  
In many automotive audio applications, the same head unit must drive either a speaker (with several Ω of  
impedance) or an external amplifier input (with several kilo Ω of impedance). The design is capable of  
supporting both applications and has special line driver gain and diagnostics. Coupled with the high switching  
frequency the device is well suited for this type of application. The line driver mode uses the same signal path as  
the normal speaker output mode with similar audio performance. Set the desired channel in line driver mode via  
the Mode Control Register and the desired gain via the Misc Control 2 Register. The external connected  
amplifier needs to have a differential impedance between 600 Ωand 4.7 kΩfor the DC line diagnostic to detect  
the connected external amplifier. 8-1 shows the recommended external amplifier input configuration, balanced  
capacitor coupled.  
Output Filter  
External Amplifier  
3.3 µH  
1 F  
1 F  
1 nF  
600  
to  
1 F  
4.7 kꢀ  
1 nF  
3.3 µH  
1 F  
100 kꢀ  
100 kꢀ  
8-1. Line Driver External Amplifier Input Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
8.2 Typical Applications  
8.2.1 BTL Application  
8-2 shows the schematic of a typical 4-channel solution for a head-unit application.  
PVDD  
INPUT  
10 F 0.1 F 1 nF  
PVDD  
150 nH  
470 µF  
CHASSIS GND  
1
1 F  
0.1 F  
44  
43  
PVDD  
PVDD  
BST 4P  
OUT 4P  
1 F  
2
3.3 µH  
1 F  
PVDDQ  
10 nF  
3
4
42  
41  
VBAT  
GND  
1 F  
10 nF  
3.3 µH  
GVDD_RET  
OUT_4M  
2.2 F  
5
6
40  
39  
1 F  
1 F  
GVDD  
AVDD  
BST 4M  
BST 3P  
1 F  
7
8
3.3 µH  
38  
37  
36  
35  
34  
AVDD_RET  
IN_REF  
IN_4P  
OUT 3P  
GND  
1 F  
1 F  
10 nF  
10 nF  
2.2 F  
9
3.3 µH  
0.47 F  
0.47 F  
OUT 3M  
BST 3M  
PVDD  
10  
11  
12  
DAC  
1 F  
1 F  
IN_3P  
0.1 F 1 F  
0.47 F  
0.47 F  
IN_2P  
PVDD  
33  
32  
IN_1P  
DVSS  
PVDD  
1 F 13  
BST 2P  
3.3 V  
RPU1 RPU2 RPU3  
3.3 µH  
14  
15  
31  
30  
DVDD  
SCL  
OUT 2P  
GND  
1 F  
10 nF  
10 nF  
1 F  
3.3 µH  
16  
29  
SDA  
OUT 2M  
BST 2M  
17  
18  
28  
27  
1 F  
1 F  
STANDBY  
FAULT  
µC  
BST 1P  
3.3 µH  
19  
20  
21  
26  
25  
24  
GPIO1  
GPIO2  
OUT 1P  
GND  
1 F  
1 F  
10 nF  
10 nF  
3.3 µH  
OUT 1M  
BST 1M  
GND  
22  
23  
1 F  
PVDD  
PVDD  
1 F  
0.1 F  
8-2. Typical 4-Channel BTL Application Schematic  
8.2.1.1 Design Requirements  
This head-unit example is focused on the smallest solution size for 4 times 25 W output power into 4 Ω with a  
battery supply of 14.4 V.  
The switching frequency is set above the AM-band at 2.1 MHz.  
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
The selection of a 2.1 MHz switching frequency enables the use of a small output inductor value of 3.3 µH which  
leads to a very small footprint.  
8.2.1.2 Detailed Hardware Design Procedure  
Use the following procedure for the hardware design:  
Determine the output power that is required into the load. The output power requirement determines the  
required power supply voltage and current. The output reconstruction filter components that are required are  
also driven by the output power.  
With the requirements, adjust the typical application schematic in 8-2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TPA6304-Q1  
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
8.2.2 PBTL Application  
8-3 shows a schematic of a typical 2-channel solution for a head unit or external amplifier application where  
high power into 2 Ωis required.  
PVDD  
INPUT  
10 F 0.1 F 1 nF  
PVDD  
150 nH  
470 µF  
CHASSIS GND  
1
2
1 F  
0.1 F  
44  
43  
PVDD  
PVDD  
BST 4P  
OUT 4P  
1 F  
3.3 H  
3.3 H  
PVDDQ  
3
4
42  
41  
VBAT  
GND  
1 F  
GVDD_RET  
OUT 4M  
2.2 F  
2.2 F  
2.2 F  
5
6
40  
10 nF  
10 nF  
GVDD  
AVDD  
BST 4M  
BST 3P  
39 1 F  
38  
1 F  
7
8
3.3 H  
3.3 H  
AVDD_RET  
IN_REF  
IN_4P  
OUT 3P  
GND  
1 F  
37  
9
36  
OUT 3M  
BST 3M  
PVDD  
1 F  
10  
11  
0.47 F  
35  
DAC  
IN_3P  
0.1 F 1 F  
34  
IN_2P  
PVDD  
12  
0.47 F  
33  
32  
IN_1P  
DVSS  
PVDD  
1 F 13  
BST 2P  
3.3 V  
RPU1 RPU2 RPU3  
1 F  
14  
15  
3.3 H  
31  
DVDD  
SCL  
OUT 2P  
GND  
30  
29  
16  
3.3 H  
2.2 F  
1 F  
1 F  
SDA  
OUT 2M  
BST 2M  
17  
18  
28  
27  
10 nF  
10 nF  
STANDBY  
FAULT  
µC  
2.2 F  
3.3 H  
BST 1P  
19  
20  
21  
26  
25  
24  
23  
GPIO1  
GPIO2  
OUT 1P  
GND  
3.3 H  
OUT 1M  
BST 1M  
GND  
22  
PVDD  
1 F  
PVDD  
1 F  
0.1 F  
8-3. 2-Channel PBTL Application Schematic  
8.2.2.1 Detailed Hardware Design Procedure  
Use the following procedure for the hardware design:  
Determine the output power that is required into the load. The output power requirement determines the  
required power supply voltage and current. The output reconstruction filter components that are required are  
also driven by the output power.  
With the requirements, adjust the typical application schematic in 8-3.  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
9 Power Supply Recommendations  
The TPA6304-Q1 requires a minimum of two power supply rails, PVDD and DVDD, when PVDD and VBAT are  
connected to the same supply. In the case VBAT is different from PVDD, then three power supplies will be  
required. The PVDD supply is the high-current supply that provides power to the output stage. The VBAT supply  
is a lower current rail that provides power to the lower voltage circuitry. The DVDD supply is the 3.3 V logic  
supply and must be maintained in the tolerance as shown in the Recommended Operating Conditions table.  
PVDD  
See Application Diagram for  
PVDD and VBAT External  
Decoupling Recommendations  
Output Stage Power Supply  
+
PVDD  
PVDDQ  
VBAT  
œ
Internal Mixed  
Signal Circuitry  
Gate Drive  
Votlage  
PVDD and VBAT can be  
connected together  
GVDD  
LDO  
2.2 mF  
VBAT  
+
œ
Internal Analog  
Circuitry  
GVDD_RET  
AVDD  
LDO  
1 mF  
DVDD  
Internal Digital  
Circuitry  
AVDD_RET  
+
DVDD  
1 mF  
œ
DVSS  
9-1. Power Supply Block  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
10 Layout  
10.1 Layout Guidelines  
The pinout of the TPA6304-Q1 was selected to provide flow through layout with all high-power connections on  
the right side, and all low-power signals and supply decoupling on left side.  
10.2 shows the area for the components in the application example (see the 8-2 section). This layout  
example is taken from the EVM PCB.  
The TPA6304-Q1 EVM uses a four-layer PCB. The copper thickness was selected as 70 µm to optimize power  
loss.  
The small value of the output filter provides a small size and, in this case, the low height of the inductor enables  
double sided mounting.  
10.1.1 Electrical Connection of Thermal Pad and Heat Sink  
For the DDV package, the heat sink connected to the thermal pad of the device should be connected to GND.  
The thermal pad must not be connected to any other electrical node.  
10.1.2 General Considerations  
The EVM layout is optimized for low noise and EMC performance.  
The TPA6304-Q1 has an exposed thermal pad that is up, away from the PCB. The layout must consider an  
external heat sink.  
Refer to Layout Top Example for the following guidelines:  
A ground plane, A, on the same side as the device pins helps reduce EMI by providing a very-low loop  
impedance for the high-frequency switching current.  
The decoupling capacitors on PVDD, B, are very close to the device with the ground return close to the  
ground pins.  
The ground connections for the capacitors in the LC filter, C, have a direct path back to the device and also  
the ground return for each channel is the shared. This direct path allows for improved common mode EMI  
rejection.  
The traces from the output pins to the inductors, D, should have the shortest trace possible to allow for the  
smallest loop of large switching currents.  
Heat-sink mounting screws, E, should be close to the device to keep the loop short from the package to  
ground.  
Many vias, F, stitching together the ground planes can create a shield to isolate the amplifier and power  
supply.  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
10.2 Layout Example  
A
C
D
F
E
10-1. Layout Top Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPA6304-Q1  
 
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
B
10-2. Layout Bottom Example  
10.3 Thermal Considerations  
The thermally enhanced PowerPAD package has an exposed pad up for connection to a heat sink. The output  
power of any amplifier is determined by the thermal performance of the amplifier as well as limitations placed on  
it by the system, such as the ambient operating temperature. The heat sink absorbs heat from the TPA6304-Q1  
and transfers it to the air. With proper thermal management this process can reach equilibrium and heat can be  
continually transferred from the device. Heat sinks can be smaller than that of classic linear amplifier design  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
because of the excellent efficiency of class-D amplifiers. This device is intended for use with a heat sink,  
therefore, RθJC is used as the thermal resistance from junction to the exposed metal package. This resistance  
dominates the thermal management, so other thermal transfers is not considered. The thermal resistance of  
RθJA (junction to ambient) is required to determine the full thermal solution. The thermal resistance is comprised  
of the following components:  
RθJC of the TPA6304-Q1  
Thermal resistance of the thermal interface material  
Thermal resistance of the heat sink  
The thermal resistance of the thermal interface material can be determined from the manufacturers value for  
the area thermal resistance (expressed in °Cmm2/W) and the area of the exposed metal package. For example,  
a typical, white, thermal grease with a 0.0254 mm (0.001 inch) thick layer is approximately 4.52°C mm2/W. The  
TPA6304-Q1 in the DDV44 package has an exposed area of 28.7 mm2. By dividing the area thermal resistance  
by the exposed metal area determines the thermal resistance for the thermal grease. The thermal resistance of  
the thermal grease is 0.157°C/W  
10-1 lists the modeling parameters for one device on a heat sink. The junction temperature is assumed to be  
115°C while delivering an average power of 10 watts per channel into a 4 Ω load. The thermal-grease example  
previously described is used for the thermal interface material. Use 方程1 to design the thermal system.  
RθJA = RθJC + thermal interface resistance + heat sink resistance  
(1)  
10-1. Thermal Modeling  
Description  
Value  
25°C  
Ambient Temperature  
Average Power to load  
20W (4 x 5W)  
Power dissipation  
Junction Temperature  
6W (See 6-7)  
115°C  
3.6°C (0.6°C/W × 6W)  
0.942°C (0.157°C/W × 6W)  
ΔT inside package  
ΔT through thermal interface material  
Required heat sink thermal resistance  
14.24°C/W ([115°C 25°C 3.6°C 0.942°C] / 6W)  
System thermal resistance to ambient RθJA  
14.99°C/W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPA6304-Q1  
 
 
TPA6304-Q1  
www.ti.com.cn  
ZHCSMX0B SEPTEMBER 2019 REVISED DECEMBER 2020  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
PurePathConsole 3 Graphical Development Suite  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
Burr-Brownand TI E2Eare trademarks of Texas Instruments.  
PurePathis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TPA6304-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA6304QDDVRQ1  
ACTIVE  
HTSSOP  
DDV  
44  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TPA6304  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-May-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA6304QDDVRQ1  
HTSSOP DDV  
44  
2000  
330.0  
24.4  
8.9  
14.7  
1.4  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-May-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DDV 44  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
TPA6304QDDVRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDV0044E  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC SMALL OUTLINE  
8.3  
7.9  
C
TYP  
A
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
0.1 C  
42X 0.635  
44  
1
2X  
14.1  
13.9  
8.00  
7.16  
13.335  
NOTE 3  
EXPOSED  
THERMAL  
PAD  
2X (0.28)  
NOTE 5  
22  
23  
0.27  
0.17  
44X  
2X (0.9)  
NOTE 5  
3.80  
2.96  
0.1  
C A B  
6.2  
6.0  
B
SEE DETAIL A  
(0.15) TYP  
0.25  
GAGE PLANE  
1.2  
1.0  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4224779/A 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDV0044E  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
44X (1.45)  
44X (0.4)  
SEE DETAILS  
SYMM  
1
44  
(R0.05) TYP  
42X (0.635)  
SYMM  
22  
23  
(7.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 7X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
15.000  
4224779/A 01/2019  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDV0044E  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
44X (1.45)  
44X (0.4)  
1
44  
(R0.05) TYP  
42X (0.635)  
SYMM  
45  
22  
23  
SYMM  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 7X  
4224779/A 01/2019  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPA6404-Q1

具有负载突降保护功能的汽车类 45W、2MHz、4 通道、4.5V 至 18V 电源模拟输入 D 类音频放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA6404QDKQRQ1

具有负载突降保护功能的汽车类 45W、2MHz、4 通道、4.5V 至 18V 电源模拟输入 D 类音频放大器 | DKQ | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA68

TRISIL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68

TELECOMMUNICATION PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BL Galaxy Ele

TPA68A-12

90V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68A-12-RL

90V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68A-18

90V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68A-18-RL

90V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68B-12

82V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68B-12-RL

82V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68B-18

82V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TPA68B-18-RL

82V, 30A, SILICON SURGE PROTECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR