TPD3S714-Q1 [TI]

汽车类 USB 0.55A 固定电流限制和 VBUS/D+/D- VBATT 短路保护;
TPD3S714-Q1
型号: TPD3S714-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 USB 0.55A 固定电流限制和 VBUS/D+/D- VBATT 短路保护

文件: 总33页 (文件大小:3536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPD3S714-Q1
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
具有电池短路和其他短路保护功能的 TPD3S714-Q1 汽车 USB 2.0 接口保护器件  
1 项目符号  
3 说明  
符合 AEC-Q100 标准1 )  
– 工作温度范围40°C +125°C  
提供功能安全  
TPD3S714-Q1 一款单芯片解决方案为汽车  
USB 集线器、音响主机、后座娱乐系统、远程信息处  
理和媒体接口应用中 USB 连接器的 VBUS 和数据线路  
提供电池短路保护、短路保护以及 ESD 保护。集成的  
数据开关提供了出色的带宽能够在 USB 发生电池短  
路时更大限度地减少信号衰减。高达 1GHz 的带宽可  
利用汽车 USB 环境中常见的长系留线缆来实现干净的  
USB 2.0 高速 (480Mbps) 眼图。  
– 可帮助进行功能安全系统设计的文档  
VBUS_CON 引脚上具有电池短路保护高达 18V)  
和接地短路保护  
VD+ VD– 引脚上具有电池短路保护高达  
18VVBUS 短路保护  
VBUS_CONVD+ VD– 上提供  
IEC 61000-4-2 ESD 保护  
±8kV 接触放电  
电 池 短 路 保 护 可 隔 离 内 部 系 统 电 路 防 止 其 受 到  
V
BUS_CONVD+ VD– 引脚上任何过压情况的影  
响。在这些引脚上TPD3S714-Q1 能够针对热插拔和  
直流事件处理高达 18V 的过压情况。过压保护电路可  
提供业界最可靠的电池短路隔离能够关闭开关并保护  
上 游 收 发 器 免 受 有 害 电 压 和 电 流 尖 峰 的 影 响 。  
VBUS_CON 引脚还提供了一个最高限值为 0.5A 的精确  
限流负载开关。过流保护会自动限制电流以便在发生  
接地短路时防止上游电源轨发生压降。此外该器件还  
VBUS_CONVD+ VD– 引脚上集成了系统级 IEC  
61000-4-2 ISO 10605 ESD 保护功能无需使用高  
电压、低容值的外部 ESD 二极管  
±15kV 气隙放电  
VBUS_CONVD+ VD– 引脚上具有 ISO 10605  
330pF330Ω ESD 保护  
±8kV 接触放电  
±15kV 气隙放电  
RON nFET VBUS 开关典型值为 63mΩ)  
高速数据开关3dB 时的带宽为 1GHz)  
断续电流限制  
550mA 过流限制最小值)  
快速过压响应时间  
器件信息 (1)  
封装尺寸标称值)  
器件型号  
封装  
SSOP (16)  
2µs 典型值VBUS 开关)  
200ns 典型值数据开关)  
集成输入使能适用于 VBUSVD+ VD–  
故障输出信号  
TPD3S714-Q1  
4.90mm × 3.90mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
5 V  
热关断特性  
VBUS_SYS  
VBUS_CON  
VBUS  
100 µF  
7 V  
1 µF  
100 V  
X7R  
10 kΩ  
16 引脚 SSOP 封装 (4.9mm × 3.9mm)  
FLT  
USB  
Transceiver  
Dœ  
Dœ  
VDt  
VD+  
GND  
2 应用  
10 nH  
10 nH  
D+  
D+  
EN  
USB2.0  
CMC  
终端设备  
From Processor  
3.3 V  
GND  
– 音响主机  
– 后座娱乐系统  
– 远程信息处理  
USB 集线器  
– 导航模块  
– 媒体接口  
接口  
VIN  
TPD3S714-Q1  
1 µF  
7 V  
Copyright © 2016, Texas Instruments Incorporated  
典型应用原理图  
USB 2.0  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCG4  
 
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................16  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Application.................................................... 17  
10 Power Supply Recommendations..............................20  
10.1 VBUS Path................................................................20  
10.2 VIN Pin.....................................................................20  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Documentation Support.......................................... 22  
12.2 Receiving Notification of Documentation Updates..22  
12.3 Support Resources................................................. 22  
12.4 Trademarks.............................................................22  
12.5 Electrostatic Discharge Caution..............................22  
12.6 Glossary..................................................................22  
13 Mechanical, Packaging, and Orderable  
1 项目符号............................................................................ 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD RatingsAEC Specification...............................4  
6.3 ESD RatingsIEC Specification................................ 4  
6.4 ESD RatingsISO Specification................................ 4  
6.5 Recommended Operating Conditions.........................4  
6.6 Thermal Information....................................................5  
6.7 Electrical Characteristics.............................................5  
6.8 Timing Requirements..................................................8  
6.9 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................12  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................14  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (August 2017) to Revision C (August 2020)  
Page  
更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
特性 部分添加了功能安全链接........................................................................................................................ 1  
Changes from Revision A (April 2016) to Revision B (August 2017)  
Page  
Updated ESD Protection on VBUS_CON, VD+, VDsection.............................................................................15  
Changes from Revision * (January 2016) to Revision A (April 2016)  
Page  
更新了典型应用原理图7-1 7-2 .......................................................................................................... 1  
更新了{4}{5}电气特性{6}{7} ............................................................................................................................ 1  
电池短路容差 添加了内容................................................................................................................................1  
更新了典型特性 中具有更准确数据的 IEC 波形图.............................................................................................. 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC  
1
2
3
4
5
6
7
8
16  
NC  
V
V
V
15  
14  
13  
12  
11  
10  
9
BUS_CON  
BUS_SYS  
V
BUS_CON  
GND  
BUS_SYS  
GND  
GND  
EN  
VD–  
VD+  
D-  
FLT  
D+  
V
IN  
5-1. DBQ Package 16-Pin SSOP Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
2
NC  
NC  
O
No connect, leave floating or connect to ground. Do not connect to VBUS_CON  
Connect to USB connector VBUS_CON; provides IEC 61000-4-2 ESD protection  
VBUS_CON  
3
4
GND  
VD–  
VD+  
D–  
Ground  
I/O  
I/O  
I/O  
I/O  
I
Connect to PCB ground plane  
5
Connect to USB connector D; provides IEC 61000-4-2 ESD protection  
Connect to USB connector D+; provides IEC 61000-4-2 ESD protection  
Connect to internal Dtransceiver  
6
7
8
VD+  
VIN  
Connect to internal D+ transceiver  
9
Connect to 3.3-V I/O. Controls the OVP threshold for VD+/VD–  
Open-Drain fault pin. Refer device description for operation  
10  
FLT  
O
Enable Active-Low Input. Drive EN low to enable the device. Drive EN high to disable the  
device  
11  
EN  
I
12  
13  
14  
15  
16  
GND  
Ground  
Connect to PCB ground plane  
VBUS_SYS  
NC  
I
Connect to internal VBUS plane  
NC  
No connect, leave floating or connect to ground. Do not connect to VBUS_CON  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPD3S714-Q1  
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
VBUS_CON  
VBUS_SYS  
VD+, VD–  
D+, D–  
VIN  
Supply voltage from USB connector  
Internal supply DC voltage rail on the PCB  
Voltage range from connector-side USB data lines  
Voltage range for internal USB data lines  
Voltage range for VIN supply input  
Voltage on enable pin  
18  
6
V
18  
V
VIN + 0.3  
V
4
7
V
EN  
V
TA  
Operating free air temperature  
125  
150  
°C  
°C  
40  
65  
TSTG  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
6.2 ESD RatingsAEC Specification  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD RatingsIEC Specification  
VALUE  
UNIT  
Contact discharge(1)  
Air-gap discharge(1)  
±8000  
IEC 61000-4-2, VBUS_CON, VD  
+, VDpins  
V(ESD)  
Electrostatic discharge  
V
±15000  
(1) See the ESD System Test Setup diagram for details on system level ESD testing setup.  
6.4 ESD RatingsISO Specification  
VALUE  
±8000  
UNIT  
Contact discharge(1)  
ISO 10605 (330 pF, 330 Ω),  
VBUS_CON, VD+, VDpins  
V(ESD)  
Electrostatic discharge  
V
Air-gap discharge(1)  
±15000  
(1) See the ESD System Test Setup diagram for details on system level ESD testing setup.  
6.5 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VBUS_CON  
VBUS_SYS  
VD+, VD–  
D+, D–  
VIN  
Supply voltage from USB connector  
Internal supply DC voltage rail on the PCB  
Voltage range from connector-side USB data lines  
Voltage range for internal USB data lines  
Voltage range for VIN supply  
5.25  
5.25  
4.75  
V
0
0
3
VIN + 0.3  
VIN + 0.3  
3.6  
V
V
V
IBUS  
Current through VBUS switch  
500  
mA  
V
EN  
Voltage range for enable  
0
5.9  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.5 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
µF  
CSYS  
CLOAD  
CVIN  
Input capacitance(1)  
Output load capacitance(1)  
VIN capacitance(1)  
VBUS_SYS pin  
VBUS_CON pin  
VIN pin  
100  
1
1
µF  
µF  
(1) See 9-1 for configuration details  
6.6 Thermal Information  
TPD3S714-Q1  
THERMAL METRIC(1)  
DBQ (SSOP)  
16 PINS  
98.8  
UNIT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
48  
θJCtop  
θJB  
Junction-to-board thermal resistance  
41.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.5  
ψJT  
41.2  
ψJB  
N/A  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.7 Electrical Characteristics  
over operating free-air temperature range, EN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON = float (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT CONSUMPTION  
IVBUS_SLEEP  
IVBUS  
VBUS sleep current consumption  
VBUS operating current consumption  
Leakage current for VIN  
Measured at VBUS_SYS pin, EN = 5 V  
Measured at VBUS_SYS pin  
45  
285  
12  
150  
380  
25  
µA  
µA  
µA  
IVIN  
Measured at VIN pin, VIN = 3.6 V  
Leakage through VBUS while shorted to battery  
and powered on  
Measured flowing in to VBUS_SYS pin, VBUS_SYS  
= 5 V, VBUS_CON = 18 V  
ION(LEAK)  
IOFF(LEAK)  
120  
50  
µA  
µA  
Leakage through VBUS while shorted to battery  
and unpowered  
Measured flowing out of VBUS_SYS pin,  
VBUS_SYS = 0 V, VBUS_CON = 18 V  
Measured flowing in to VD+ or VDpins,  
VBUS_SYS = 0 V, VD+ or VD= 18 V, VIN = 0 V,  
D+/D= 0 V  
Leakage into data path while shorted to battery  
and unpowered  
IVD(OFF_LEAK)  
80  
80  
µA  
µA  
Measured flowing in to VD+ or VDpins,  
VBUS_SYS = 5 V, VD+ or VD= 18 V, D+/D=  
0 V  
Leakage into data path while shorted to battery  
and powered on  
IVD(ON_LEAK)  
VIN PIN  
Undervoltage lockout rising for  
VIN  
Ramp VIN down until FLT is deasserted, EN = 5  
V
VUVLO(RISING)  
2.6  
2.5  
2.7  
2.6  
2.9  
2.8  
VIN  
V
Undervoltage lockout falling  
for VIN  
VUVLO(FALLING)  
EN, FLT PINS  
VIH  
Ramp VIN until FLT is asserted, EN = 5 V  
Set EN = 0 V; Sweep EN to 1.4 V; Measure  
when FLT is asserted  
High-level input voltage  
Low-level input voltage  
EN  
EN  
1.2  
V
V
Set EN = 3.3 V; Sweep EN from 3.3 V to 0.5 V;  
Measure when FLT is deasserted  
VIL  
0.8  
IIL  
Input leakage current  
EN  
V(EN) = 3.3 V ; Measure Current into EN pin  
IOL = 3 mA  
1
µA  
V
VOL  
Low-level output voltage  
FLT  
0.4  
OCP CIRCUITVBUS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPD3S714-Q1  
 
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range, EN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON = float (unless  
otherwise noted)  
PARAMETER  
Overcurrent limit  
OVERTEMPERATURE PROTECTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Progressively load VBUS_CON until device  
asserts FLT  
ILIM  
VBUS  
550  
700  
850  
mA  
The rising overtemperature protection shutdown VBUS_SYS = 5 V, EN = 0 V, No Load on  
TSD(RISING)  
150  
125  
10  
165  
130  
35  
180  
140  
55  
threshold  
VBUS_CON, TA stepped up until FLT is asserted  
VBUS_SYS = 5 V, EN = 0 V, No Load on  
VBUS_CON, TA stepped down from TSD(RISING)  
until FLT is deasserted  
The falling overtemperature protection shutdown  
threshold  
TSD(FALLING)  
The overtemperature protection shutdown  
threshold hysteresis  
TSD(HYST)  
TSD(RISING) TSD(FALLING)  
OVP CIRCUITVBUS  
Input overvoltage protection  
VBUS_CON  
Increase VBUS_CON from 5 V to 7 V. Measure  
when FLT is asserted  
VOVP(RISING)  
5.4  
5.6  
50  
5.8  
V
mV  
V
threshold  
Difference between rising and falling OVP  
thresholds on VBUS_CON  
VHYS(OVP)  
Hysteresis on OVP  
VBUS_CON  
VBUS_CON  
VBUS_SYS  
VBUS_SYS  
VBUS_SYS  
Input overvoltage protection  
threshold  
Decrease VBUS_CON from 7 V to 5 V. Measure  
when FLT is deasserted  
TOVP(FALLING)  
5.36  
3.1  
50  
5.74  
3.6  
Undervoltage lockout rising for  
VBUS_SYS  
VUVLO(SYS_RISING)  
VHYS(UVLO_SYS)  
VUVLO(SYS_FALLING)  
VBUS_SYS voltage rising from 0 V to 5 V  
3.3  
75  
V
Difference between rising and falling UVLO  
thresholds on VBUS_SYS  
VBUS_SYS UVLO hysteresis  
100  
3.5  
mV  
V
Undervoltage lockout falling  
for VBUS_SYS  
VBUS_SYS voltage falling from 7 V to 3 V  
3
3.2  
Increase VBUS_CON voltage from 0 V until the  
device transitions from the short-circuit to over-  
current mode of operation  
Short-to-ground comparator  
rising threshold  
VSHRT(RISING)  
VBUS_CON  
2.5  
2.4  
2.6  
2.7  
2.6  
V
V
Set VBUS_SYS = 5 V; VIN = 3.3 V; EN = 0 V;  
Decrease VBUS_CON voltage from 5 V until the  
device transitions from the overcurrent to short-  
circuit mode of operation  
Short-to-ground comparator  
falling threshold  
VSHRT(FALLING)  
VBUS_CON  
2.5  
Short-to-ground comparator  
hysteresis  
Difference between VSHRT(RISING) and  
VSHRT(FALLING)  
VSHRT(HYST)  
ISHRT  
VBUS_CON  
VBUS_CON  
100  
150  
125  
150  
350  
mV  
mA  
Short-to-ground current  
source  
Current sourced from VBUS_SYS when device is  
in short-circuit mode  
OVP CIRCUITVD+/VD–  
Increase VD+ or VD(with D+ and D) from  
3.3 V to 4.5 V. Measure the value at which FLT  
is asserted  
Input overvoltage protection  
threshold  
VIN  
0.6  
+
VIN +  
0.8  
VOVP(RISING)  
VIN + 1  
V
mV  
V
VD+/VD–  
VD+/VD–  
VD+/VD–  
Difference between rising and falling OVP  
thresholds on VD+/VD–  
VHYS(OVP)  
Hysteresis on OVP  
50  
Decrease VD+ or VD(with D+ or D) from  
4.5 V to 2 V. Measure the value at FLT is  
deasserted  
Input overvoltage protection  
threshold  
VIN  
0.525  
+
VIN  
+
VIN +  
0.975  
VOVP(FALLING)  
0.75  
SHORT-TO-BATTERY  
VBUS hotplug short-to-battery  
Charge battery-equivalent capacitor to test  
voltage then discharge to pin under test  
through a 1-meter, 18-gauge wire. (See 7-1  
for more details)  
V(VBUS_STB)  
VBUS_CON  
18  
18  
V
V
tolerance  
Data line hotplug short-to-  
battery tolerance  
V(DATA_STB)  
VD+/VD–  
DATA LINE SWITCHESVD+ to D+ or VDto D–  
Capacitance of D+/Dswitches when enabled  
- measure on connector side across bias  
voltage 0 V to 0.4 V  
CON  
Equivalent on capacitance  
On resistance  
6.2  
4
pF  
Ω
Ω
Measure resistance between D+ and VD+ or  
Dand VD, voltage between 0 and 0.4 V  
RON  
6.5  
1
Measure resistance between D+ and VD+ or  
Dand VD, sweep voltage between 0 V and  
0.4 V  
RON(Flat)  
On resistance flatness  
0.2  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range, EN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON = float (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measure S21 bandwidth from D+ to VD+ or D–  
BWON  
860  
MHz  
On bandwidth (3 dB)  
to VDwith voltage swing = 400 mVpp, VCM  
=
0.2 V  
Measure SDD21 bandwidth from D+ to VD+ and  
Dto VDwith voltage swing = 800 mVpp  
differential, VCM = 0.2 V  
BWON_DIFF  
1050  
MHz  
dB  
On bandwidth (3 dB)  
Measure S21 bandwidth from D+ to VDor  
Dto VD+ with voltage swing = 400 mVpp. Be  
sure to terminate open sides to 50 ohms. f =  
480 MHz  
Xtalk  
Crosstalk  
34  
nFET SWITCHVBus  
R(DISCHARGE) Output discharge resistance  
RON Switch ON resistance  
EN = 5 V, Set VBUS_CON = 5 V and measure  
current flow to ground  
12500  
150  
VBUS_CON = 5 V, IOUT = 0.5 A  
63  
mΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPD3S714-Q1  
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.8 Timing Requirements  
over operating free-air temperature range, EN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON = float (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
ENABLE PIN  
tON  
Enable on time  
Time between enable device until FLT deasserts  
13  
ms  
OVERCURRENT PROTECTION  
Time from overcurrent condition until FLT assertion and  
VBUS FET turnoff  
tBLANK  
tRETRY  
tRECV  
Overcurrent blanking time  
2
ms  
ms  
ms  
Time from overcurrent FET shut off until FET turns back  
on  
Overcurrent retry time  
100  
8
Time from end of tRETRY until FLT deassertion if  
overcurrent condition is removed  
Overcurrent recovery time  
OVERVOLTAGE PROTECTION  
tOVP_response  
tOVP_response  
Measured from OVP Condition to FET turnoff  
Measured from OVP Condition to FET turnoff  
2
4
4
µs  
ns  
OVP response time VBUS  
OVP response time data  
switches  
200  
SHORT-TO-GROUND PROTECTION  
tSHRT Short to ground response time  
CLOAD = 0 uF, Time from short condition until current falls  
below 120% of ISHRT  
2
µs  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.9 Typical Characteristics  
120  
100  
80  
60  
40  
20  
0
40  
20  
VD-  
D-  
VD-  
D-  
0
-20  
-40  
-60  
-80  
-100  
-20  
-15  
-15  
0
15 30 45 60 75 90 105 120 135 150  
Time (ns)  
0
15  
30  
Time (ns)  
45  
60  
75  
90  
D002  
D001  
6-2. 8-kV IEC Contact Waveform  
6-1. 8-kV IEC Contact Waveform  
1.00  
8
Vbus_con  
0.75  
0.50  
7
6
5
4
3
2
1
0
EN  
FLT  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
VD-  
VD+  
25  
0
5
10  
15  
20  
0
5
10  
15  
20  
œ5  
Time (ms)  
Voltage (V)  
C004  
C003  
6-4. VBUS tON Time  
6-3. Data Line I-V Curve  
6
5
4
3
2
1
0
125  
100  
75  
50  
25  
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C005  
C006  
6-5. VD± Short-to-5 V (while Enabled) Across  
6-6. VD± Short-to-5 V (while Unpowered) Across  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPD3S714-Q1  
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
100  
80  
6
5
4
3
2
1
0
60  
40  
-40C  
25C  
85C  
20  
Powered, Enabled  
Unpowered  
80 100  
125C  
0
0
20  
40  
60  
120  
0
0.1  
0.2  
0.3  
0.4  
œ40  
œ20  
Temperature (°C)  
Bias Voltage (V)  
C007  
C008  
6-7. VD± Short-to-18 V Across Temperature  
6-8. Data Switch RON vs Bias Voltage  
8
7
6
5
4
3
2
1
0
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
8
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Vbus_con  
FLT  
Vbus_con  
FLT  
I_Vbus_sys  
7
6
5
4
3
2
1
0
I_Vbus_sys  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
0
0.2  
0.4  
0.6  
0.8 1  
Time (ms)  
1.2  
1.4  
1.6  
1.8  
C010  
D009  
6-10. Overcurrent tBLANK_RETRY Response  
6-9. Overcurrent tBLANK Response Waveform  
Waveform  
50  
40  
10  
8
8
Vbus_con  
I_Vbus_con  
Vbus_sys  
FLT  
Vbus_con  
I_Vbus_con  
Vbus_sys  
FLT  
7
6
30  
6
5
20  
4
4
3
10  
2
2
0
0
1
œ10  
œ20  
-2  
-4  
0
œ1  
œ2  
0
5
10  
15  
20  
25  
30  
Time (µs)  
C012  
0
5
10  
15  
20  
25  
30  
35  
40  
Time (µs)  
6-12. VBUS Short-to-18 V Response Waveform  
C011  
6-11. VBUS Short-to-Ground Response Waveform  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
12  
10  
8
12  
10  
8
25  
20  
15  
10  
5
12.5  
VD-  
I_VD-  
FLT  
D-  
VD-  
I_VD-  
FLT  
D-  
10  
7.5  
5
6
6
4
4
2.5  
0
2
2
0
0
0
-2.5  
œ2  
-2  
œ5  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Time (µs)  
Time (µs)  
C014  
C013  
6-14. Data Switch Short-to-18 V Response  
6-13. Data Switch Short-to-5 V Response  
Waveform  
Waveform  
6-15. USB2.0 Eye Diagram (No TPD3S714-Q1)  
6-16. USB2.0 Eye Diagram (With TPD3S714-Q1)  
0
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ6  
œ3  
œ6  
œ9  
œ12  
1.E+07  
1.E+08  
1.E+09  
1.E+07  
1.E+08  
1.E+09  
Frequency (Hz)  
Frequency (Hz)  
C015  
C016  
6-17. Data Switch Differential Bandwidth  
6-18. Data Switch Single-Ended Bandwidth  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPD3S714-Q1  
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
0
œ10  
œ20  
œ30  
œ40  
œ50  
D- to VD+  
D+ to VD-  
œ60  
0.E+00  
1.E+09  
2.E+09  
3.E+09  
Frequency (Hz)  
C017  
6-19. Data Switch Crosstalk  
7 Parameter Measurement Information  
5 V  
VBUS_SYS  
VBUS_CON  
100 µF  
7 V  
1 µF  
100 V  
X7R  
10 kΩ  
FLT  
VDt  
Dœ  
10 nH  
10 nH  
45 Ω  
VD+  
D+  
EN  
USB2.0  
CMC  
45 Ω  
1 m cable  
GND  
STB  
Strike  
Output  
From GPIO  
DC Power  
Supply  
VIN  
3.3 V  
TPD3S714-Q1  
22 mF  
35 V  
1 µF  
7 V  
STB Test Aparatus  
Copyright © 2016, Texas Instruments Incorporated  
7-1. Short-to-Battery System Test Setup  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
5 V  
VBUS_SYS  
VBUS_CON  
100 µF  
7 V  
1 µF  
100 V  
X7R  
10 kΩ  
FLT  
VDt  
VD+  
GND  
Dœ  
10 nH  
10 nH  
45 Ω  
D+  
USB2.0  
CMC  
45 Ω  
EN  
VIN  
From GPIO  
3.3 V  
TPD3S714-Q1  
1 µF  
7 V  
Copyright © 2016, Texas Instruments  
Incorporated  
7-2. ESD System Test Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPD3S714-Q1  
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPD3S714-Q1 provides a single-chip ESD protection and overvoltage protection solution for automotive  
USB interfaces. It offers short to battery protection up to 18 V and short to ground protection on VBUS_CON. The  
TPD3S714-Q1 also provides a FLT pin that indicates to the system if a fault condition has occurred. The  
TPD3S714-Q1 offers ESD clamps on the VBUS_CON, VD+, and VDpins, thus eliminating the need for external  
TVS clamp circuits in the application.  
The TPD3S714-Q1 has internal circuitry that controls the turnon of the internal nFET switches. An internal  
oscillator controls the timers that enable the switches and resets the open-drain FLT output. If VBUS_CON is less  
than VOVP, the switches are enabled. After an internal delay, the charge-pump starts-up, turns on the internal  
nFET switch through a soft start. Once the nFET is completely turned ON, TPD3S714-Q1 releases FLT pin to  
HIGH. At any time, if any of the external pins rise above VOVP, FLT pin is pulled LOW. The nFET switches are  
turned OFF.  
8.2 Functional Block Diagram  
BUS_CON  
BUS_SYS  
ESD  
Clamp  
Short-  
to-  
UVLO  
+
Ground  
Detection  
Overcurrent  
Detection  
Control  
Logic  
FLT  
EN  
Overvoltage  
Protection  
VIN  
VD+  
D+  
ESD Clamps  
VDœ  
Dœ  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 AEC-Q100 Qualified  
The TPD3S714-Q1 is an automotive qualified device according to the AEC-Q100 standards. This device is  
qualified to operate from 40 to +125°C ambient temperature.  
8.3.2 Short-to-Battery and Short-to-Ground Protection on VBUS_CON  
The VBUS_CON pin is protected against shorts to battery and shorts to ground.  
Once a voltage on VBUS_CON is detected as too low (below the VSHRT threshold) after the device is enabled, the  
device enters short-circuit protection mode and assert FLT. It sources the ISHRT current until it detects the  
voltage rising above the VSHRT threshold, where it resumes standard operating mode and deassert FLT.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
Once a voltage above the VOVP threshold is detected by the device, it shuts off all FETs and asserts a fault on  
the FLT pin. Once the excessive voltage is removed, the device automatically re-enables and FLT deasserts  
(see the Timing Requirements table for more details).  
8.3.3 Short-to-Battery and Short-to-VBUS Protection on VD+, VD–  
The VD+ and VDpins are protected against shorts to battery and shorts to bus. The OVP threshold on the VD  
+ and VDpins is low enough that it protects against shorts to VBUS  
.
Once a voltage above the VOVP threshold is detected by the device, it shuts off all FETs and asserts a fault on  
the FLT pin. Once the excessive voltage is removed, the device automatically re-enables and FLT deasserts.  
8.3.4 ESD Protection on VBUS_CON, VD+, VD–  
The protected pins (VBUS_CON, VD+, VD) are tested to pass the IEC 61000-4-2 ESD standard up to Level 4  
ESD protection. Additionally, these pins are tested against ISO 10605 with the 330-pF, 330-Ω equivalent  
network. This guarantees passing of at least ±8-kV contact discharge and ±15-kV air gap discharge according to  
both standards using test setup shown in 7-2.  
8.3.5 Low RON nFET VBUS Switch  
The VBUS switch has a low RON that provides minimal voltage droop from system to connector. Typical  
resistance is 63 mΩ and is specified for 150 mΩ at 125°C ambient temperature.  
8.3.6 High Speed Data Switches  
The D+ and Dswitches have a very low capacitance and a high bandwidth (1-GHz typical), allowing for a  
clean USB 2.0 eye diagram.  
8.3.7 Hiccup Current Limit  
The VBUS path of this device has an integrated overcurrent protection circuit. Above the overcurrent threshold  
(550-mA minimum), the device goes into a fault state where it limits current to the threshold. After a short  
blanking time, the device cycles on and off to try to check if the connected device is still in overcurrent.  
8.3.8 Fast Overvoltage Response Time  
The overvoltage FETs are designed to have a fast turnoff time to protect the upstream SoC as quickly as  
possible. Typical response time for complete turnoff is 2 µs for the VBUS path and 200 ns for the data path.  
8.3.9 Integrated Input Enable  
The TPD3S714-Q1 has an enable input to turn on and off the device. The EN pin disables and enables the VBUS  
and data paths.  
8.3.10 Fault Output Signal  
The TPD3S714-Q1 has a fault pin, FLT that indicates when there is any sort of fault condition because of OVP,  
OCP, or short-circuit.  
8.3.11 Thermal Shutdown Feature  
In the event that the device exceeds the maximum allowable junction temperature, it shuts down the device to  
prevent damage to itself and indicate via the fault pin.  
8.3.12 16-pin SSOP Package  
This device is packaged in a standard 16-pin SSOP leaded package.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPD3S714-Q1  
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Normal Operation  
The TPD3S714-Q1 operates normally (all FETs on) when enabled, both VBUS_SYS and VIN are above their UVLO  
thresholds, and the device is not in any fault conditions.  
8.4.2 Overvoltage Condition  
When the VD+, VD, or VBUS_CON pins exceed their OVP threshold, the device enters the overvoltage state. All  
FETs are disabled and the FLT pin is asserted. Once the protected pins drop below their OVP threshold, the  
device automatically turns back on.  
8.4.3 Overcurrent Condition  
When the current through the VBUS path exceeds the ILIM current threshold, the device enters into the  
overcurrent state. The TPD3S714-Q1 limits current to the ILIM threshold by dropping voltage across the VBUS  
FET to maintain constant current. Once it continues to sense an overcurrent condition for the blanking time  
tBLANK, the device disables itself for the retry time, tRETRY and then retry automatically for the retry time,  
tBLANK_RETRY. In the event that the current is below the overcurrent threshold, the device deasserts fault and  
resumes normal operation.  
8.4.4 Short-Circuit Condition  
When the voltage on the VBUS_CON side drops below the VSHRT threshold while enabled, the TPD3S714-Q1  
enters the short-circuit mode. It sources a constant current of ISHRT until it rises above the VSHRT threshold. Once  
that occurs, the device automatically re-enters normal operation and deasserts fault.  
8.4.5 Device Logic Tables  
8-1 shows the TPD3S714-Q1 VBUS Logic Table.  
8-1. TPD3S714-Q1 VBUS Logic Table  
VOLTAGE CONDITION  
CURRENT CONDITION  
COMMENT  
VBUS_CON  
VBUS_SYS  
EN  
CURRENT FLOW  
FLT PIN  
X
<UVLO  
X
No Flow  
Switch off because of UVLO  
High-Z  
<OVP and  
>VSHRT  
Current flows through the switch, normal host  
mode  
>UVLO  
>UVLO  
>UVLO  
Low  
High  
Low  
VBUS_SYS to VBUS_CON  
No Flow  
High-Z  
Low  
X
Switch off  
Current flow through switch, device detects short  
circuit, current limited to ISHRT  
<VSHRT  
VBUS_SYS to VBUS_CON  
Low  
Device switches off because of overcurrent limit,  
auto-retrys until <OCP or thermal shutdown  
conditions occur  
X
X
Low  
>OCP  
Low  
>OVP  
X
>UVLO  
X
Low  
X
No Flow  
No Flow  
Switch off because of OVP  
Thermal Shutdown Condition  
Low  
Low  
8-2 shows the TPD3S714-Q1 Data Line Logic Table  
8-2. TPD3S714-Q1 Data Line Logic Table  
VOLTAGE CONDITION  
CURRENT CONDITION  
EN  
Low  
High  
Low  
X
SWITCHES ON?  
COMMENT  
FLT PIN  
High-Z  
Low  
VD+/VD–  
<OVP  
X
Yes  
No  
No  
No  
Device operates normally, data transfer can occur  
Switches off  
>OVP  
X
Switches off because of OVP limit  
Thermal Shutdown Condition  
Low  
Low  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPD3S714-Q1 offers fully featured automotive USB2.0 protection including short-to-battery, overcurrent,  
and ESD protection. Care must be taken during the implementation to make sure the device provides adequate  
protection to the system.  
9.2 Typical Application  
9-1 shows a fully featured USB2.0 high speed port, with an 18-V short-to-battery requirement on the  
connector side.  
5 V  
VBUS_SYS  
VBUS_CON  
VBUS  
100 µF  
7 V  
1 µF  
100 V  
X7R  
10 kΩ  
FLT  
USB  
Transceiver  
Dœ  
Dœ  
VDt  
VD+  
GND  
10 nH  
10 nH  
D+  
D+  
EN  
USB2.0  
CMC  
From Processor  
3.3 V  
GND  
VIN  
TPD3S714-Q1  
1 µF  
7 V  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Typical Application Configuration for TPD3S714-Q1  
9.2.1 Design Requirements  
For this design example, the input parameters shown in 9-1 are used:  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
18 V  
Short-to-battery tolerance on VD+, VD, VBUS_CON  
Maximum current in normal operation on VBUS  
USB data rate  
500 mA  
480 Mbps  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPD3S714-Q1  
 
 
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
To begin the design process, the designer must know the following parameters:  
Short-to-Battery tolerance on connector pins  
Maximum current in normal operation on VBUS  
USB Data Rate  
9.2.2.1 Short-to-Battery Tolerance  
The TPD3S714-Q1 is capable of handling up to 18-V DC on the VD+, VD, and VBUS_CON pins. In the event of  
a short-to-battery on VBUS_CON, significant ringing is expected because of the hot plug-like nature of the short-to-  
battery event. In typical ceramic capacitor configurations, a standard RLC response is expected which results in  
a ringing of nearly two times the applied DC voltage. The TPD3S714-Q1 is capable of withstanding the transient  
ringing from hot plug-like events, assuming some precautions are taken.  
Careful capacitor selection on the VBUS_CON pin must be observed. A capacitor with a low derating percentage  
under the applied voltages must be used to prevent excess ringing. In the example, a 1-µF 100-V tolerant  
ceramic X7R capacitor is used. It is best practice to carefully select the capacitors used in this circuit to prevent  
derating-based voltage spikes under hot plug events. See the application example graphs, 9-4 and 9-5 to  
compare ringing of a 100-V capacitor to a 50-V capacitor. 9-6 shows the 100-V capacitor with the TPD3S714-  
Q1 installed.  
Another alternative to a high rated ceramic capacitor is to implement either a standard R-C snubber circuit, or a  
small external TVS diode. Depending on the short-to-battery tolerance needed, no special precautions may be  
needed.  
For more information on this topic, see the white paper Designing USB for short-to-battery tolerance in  
automotive environments.  
9.2.2.2 Maximum Current on VBUS  
The TPD3S714-Q1 is capable of operating up to 5500 mA of current (minimum) until going into current limit  
mode. In this example, the maximum current for USB2.0 of 500 mA has been chosen.  
9.2.2.3 USB Data Rate  
The TPD3S714-Q1 is capable of operating at the maximum USB2.0 High Speed data rate of 480 Mbps because  
of the high data switch bandwidth of 1 GHz (typical). In this design example the maximum data rate of 480 Mbps  
has been chosen.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9.2.3 Application Curves  
9-2. USB2.0 Eye Diagram (Board Only, Through 9-3. USB2.0 Eye Diagram (System from Typical  
Path) Application Schematic)  
60  
40  
Voltage  
Current  
Voltage  
Current  
50  
30  
40  
20  
30  
20  
10  
10  
0
0
œ10  
œ20  
œ10  
œ20  
0
10  
20  
30  
Time (µs)  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
œ10  
œ10  
Time (µs)  
C018  
C019  
9-4. 50-V, 1-µF X7R Ceramic Shorted to 18-V  
9-5. 100-V, 1-µF X7R Ceramic Shorted to 18 V  
(Not Recommended)  
40  
30  
Voltage  
Current  
20  
10  
0
œ10  
œ20  
0
10  
20  
30  
40  
50  
60  
70  
œ10  
Time (µs)  
C020  
9-6. TPD3S714-Q1 and 100-V, 1-µF X7R Shorted to 18 V (Powered Off)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPD3S714-Q1  
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 VBUS Path  
The VBUS_SYS pins provide power to the chip and supply current through the load switch to VBUS_CON. A 100-µF  
bulk capacitor is recommended on VBUS_SYS to supply the USB port and maintain compliance. A 1-µF capacitor  
is recommended on the VBUS_CON pin with adequate voltage rating to tolerate short-to-battery conditions. A  
supply voltage above the UVLO threshold for VBUS_SYS must be supplied for the device to power on.  
10.2 VIN Pin  
The VIN pin provides a voltage reference for the data switch OVP level as well as a bypass for ESD clamping. A  
1-µF capacitor must be placed as close to the pin as possible and the supply must be set to be above the UVLO  
threshold for VIN.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Proper routing and placement maintains signal integrity for high-speed signals. The following guidelines apply to  
the TPD3S714-Q1:  
Place the bypass capacitors as close as possible to the VIN, VBUS_SYS, and VBUS_CON pins. Capacitors must  
be attached to a solid ground. This minimizes voltage disturbances during transient events such as short-to-  
battery, ESD, or overcurrent conditions.  
High speed traces (data switch path) must be routed as straight as possible and any sharp bends must be  
minimized.  
Our standard ESD recommendations apply to the VD+, VD, and VBUS_CON pins as well:  
The optimum placement is as close to the connector as possible.  
EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces,  
resulting in early system failures.  
The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away  
from the protected traces which are between the TVS and the connector.  
Route the protected traces as straight as possible.  
Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded  
corners with the largest radii possible.  
Electric fields tend to build up on corners, increasing EMI coupling.  
11.2 Layout Example  
11-1 shows a full layout for a standard USB2.0 port. A common mode choke and inductors are used on the  
high speed data lines, and the requisite bypassing caps are placed on VBUS_CON, VBUS_SYS, and VIN.  
VBUS  
N.C.  
N.C.  
VBUS_CON  
VBUS_SYS  
VBUS_CON  
GND  
VD-  
VBUS_SYS  
D-  
GND  
GND  
EN  
TPD3S714-Q1  
VD+  
D-  
To Processor  
FLT  
VIN  
To Transceiver  
D+  
D+  
Legend  
Pin to GND  
GND  
VIA to 3.3V Plane  
To Transceiver  
To Transceiver  
USB2.0 Connector  
VIA to 5V Plane  
VIA to GND Plane  
11-1. Typical Layout Example for TPD3S714-Q1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPD3S714-Q1  
 
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
TPD3S714-Q1EVM Users Guide  
Reading and Understanding an ESD Protection Datasheet  
ESD Layout Guide  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
 
 
 
 
 
 
 
 
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPD3S714-Q1  
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPD3S714-Q1  
TPD3S714-Q1  
ZHCSEZ9C JANUARY 2016 REVISED AUGUST 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPD3S714-Q1  
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将独自承担以下全部责任(1) 针对您的应用选择合适的 TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于开发本资源所述的使用 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三  
方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 () TI.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方  
式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020德州仪器 (TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPD3S714QDBQRQ1  
ACTIVE  
SSOP  
DBQ  
16  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
RJ714Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPD3S714QDBQRQ1  
SSOP  
DBQ  
16  
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DBQ 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TPD3S714QDBQRQ1  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPD3S714QDBQRQ1

Automotive USB 0.55-A fixed current limit and  VBUS/D+/D- short-to-VBATT protection | DBQ | 16 | -40 to 125
TI

TPD3S716-Q1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护
TI

TPD3S716QDBQRQ1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护 | DBQ | 16 | -40 to 125
TI

TPD4001K

IC BUF OR INV BASED PRPHL DRVR, PSFM12, F-12, Peripheral Driver
TOSHIBA

TPD4005K

IC,MOTOR CONTROLLER,BIPOLAR,ZIP,18PIN
TOSHIBA

TPD4006KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 1 A, PZFM23, HEAT SINK, ZIP-23, Motion Control Electronics
TOSHIBA

TPD4008K

DC Motor Controller/Driver
ETC

TPD4008KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 1 A, PZFM23, HEAT SINK, ZIP-23, Motion Control Electronics
TOSHIBA

TPD4011K

MOTOR CONTROLLER
ETC

TPD4011KLBF

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4011KLBR

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4102K

TOSHIBA Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA