TPIC2050RDFDRG4 [TI]

TPIC2050 具有 3 波束激光二极管驱动器、由串行接口控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75;
TPIC2050RDFDRG4
型号: TPIC2050RDFDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPIC2050 具有 3 波束激光二极管驱动器、由串行接口控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75

电动机控制 电机 驱动 光电二极管 激光二极管 驱动器
文件: 总66页 (文件大小:1280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
TPIC2050 具有 3 波束激光二极管驱动器、由串行接口控制的 9 通道电机驱  
动器  
1 特性  
通道中具有短路保护  
硬件器件禁用引脚,XRSTIN  
1
串行端口数字接口  
具有欠压锁定 (UVLO) 和过压保护 (OVP) 的电  
源监视器  
串行外设接口 (SPI)  
4 线接口:SSZSCLKSIMOSOMI  
最大读写频率 35MHz  
托盘锁定检测  
PREOVP-12V:在 SPM 制动时防止通过电机  
BEMF 进行 12V OVP 检测  
3.3V 数字输入输出 (I/O)  
执行器和电机驱动器  
具有 H 桥输出的脉冲宽度调制 (PWM) 控制  
2 应用  
具有 12 位数模转换器 (DAC) 控制的聚焦/跟踪/  
倾斜执行器驱动器  
光盘驱动器(蓝光碟、DVDCD)  
具有电流模式、10 DAC 控制的滑动电机驱  
动器  
3 说明  
TPIC2050 是一款适用于 12V ODD 的超低噪声电机驱  
动器集成电路 (IC)。该驱动器 IC 9 条通道且由串行  
接口控制,非常适用于驱动主轴电机、滑动电机(适用  
的步进电机)、负载电机以及针对准直透镜的聚焦/跟  
/倾斜执行器和步进电机。  
具有 12 DAC 控制的负载驱动器可选 5V 或  
12V  
具有 8 PWM 控制的步进电机驱动器  
主轴电机驱动器  
0.3Ω 低导通电阻、典型金属氧化物半导体场效  
应晶体管 (MOSFET) 输出  
器件信息(1)  
无传感器:通过电机反电动势 (BEMF) 感测转  
子位置  
器件型号  
TPIC2050  
封装  
封装尺寸(标称值)  
HTSSOP (56)  
6.10mm x 14.00mm  
适用于 10500rpm 转速(假设使用 12 极点电  
机)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
通过串行端口编程设定的 12 位主轴 DAC  
独立的感应位置感测和启动  
ICOM  
TPIC2050  
ISENSE  
自动制动功能,在每种转速下均可选择最佳制动  
模式  
12 V  
MCOM  
5 V  
Motor Drive  
Spindle  
U
V
最大持续电流为 1.5A,不存在散热问题  
3.3 V  
9.5 V  
实用功能  
W
状态锁存器:执行器定时器、SIF 错误、电源监  
视器、热保护和过流保护 (OCP) 故障  
SLED1+  
Motor Drive  
DAC PWM  
SLED1œ  
SLED2+  
SLED2œ  
片上温度计(15°C 165°C)  
SPI  
3 波束激光二极管驱动器  
Controller  
TLT+  
Motor Drive  
DAC PWM  
120mA 电流输出,通过 11 DAC 寄存器或模  
拟输入 (VLDDIN)  
TLTœ  
FCS+  
FCSœ  
TRK+  
TRKœ  
Motor Drive  
DAC PWM  
通过斜率控制电流快速变化  
通过串行位选择光盘 (CD)、数字化视频光盘  
(DVD)、蓝光光盘 (BD) 的输出端口  
VDDDIN  
Motor Drive  
DAC PWM  
Analog  
Input for LDD  
ILDO_BD  
12 V  
5 V  
P5V12L  
TRK+  
保护  
LDD  
Driver  
同步永磁电机 (SPM) 和执行器驱动器上均配有  
独立热保护电路  
Motor Drive  
DAC PWM  
TRKœ  
ILDO_DVD  
ILDO_CD  
LDD  
Driver  
STP1+  
两个警报级别:热保护中的预检测和检测  
Motor Drive  
DAC PWM  
STP1œ  
LDD  
Driver  
ACTTEMP:监视由过去累积的 DAC 值计算得  
出的执行器温度  
STP2+  
STP2œ  
SPM、滑动电机、负载、执行器和步进驱动器  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLIS167  
 
 
 
 
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 23  
8.5 Programming........................................................... 24  
8.6 Register Maps......................................................... 26  
Application and Implementation ........................ 47  
9.1 Application Information............................................ 47  
9.2 Typical Application ................................................. 56  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Serial I/F Write Timing Requirements..................... 11  
7.7 Serial I/F Read Timing Requirements..................... 12  
7.8 Typical Characteristics............................................ 13  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 15  
9
10 Power Supply Recommendations ..................... 58  
11 Layout................................................................... 59  
11.1 Layout Guidelines ................................................. 59  
11.2 Layout Example .................................................... 59  
12 器件和文档支持 ..................................................... 60  
12.1 社区资源................................................................ 60  
12.2 ....................................................................... 60  
12.3 静电放电警告......................................................... 60  
12.4 Glossary................................................................ 60  
13 机械、封装和可订购信息....................................... 60  
8
4 修订历史记录  
日期  
修订版本  
注释  
2015 8 月  
*
最初发布。  
2
版权 © 2015, Texas Instruments Incorporated  
 
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
5 说明 (续)  
主轴电机驱动器部分内置无传感器逻辑,可确保以低噪声启动和运行。启动电路可实现自启动或通过 BEMF 执行位  
置检测,无需使用电机或传感器,例如霍尔器件。由于所有通道的输出级均在高效的 PWM 驱动下工作,因此可通  
PWM 控制实现低功率运行。可以对聚焦/跟踪/倾斜执行器驱动器进行无中性点区域控制。此外,该器件还内置  
有主轴部件输出电流限制电路、热关断电路、滑动结束位置检测电路、准直透镜结束检测电路、执行器保护和三波  
束激光驱动器。新增的内置温度计可测量 IC 温度。  
6 Pin Configuration and Functions  
DFD Package  
56-Pin HTSSOP  
Top View  
1
2
3
4
5
6
7
8
9
SLED1_ P  
SLED1_ N  
P12V_ 3  
SLED2_ P  
SLED2_ N  
PGND_ 2  
C10V  
P5V_ 2 56  
STP2_ N 55  
STP2_ P 54  
STP1_ N  
53  
STP1_ P  
52  
AGND  
51  
ISENSE 50  
MCOM 49  
CP1  
ICOM2  
CP2  
48  
47  
46  
45  
44  
43  
W
P12V_ 2  
V
10 CP3  
11 GPOUT  
12 XFG  
ICOM1  
U
13 RDY  
14 SSZ  
15 SCLK  
P12V_ 1 42  
PGND_ 1 41  
FCS_ N 40  
FCS_ P 39  
TRK_ N 38  
TRK_ P 37  
TLT_ P 36  
TLT_ N 35  
P5V_ 1 34  
16 SIMO  
17 SOMI  
18 SIOV  
19 XRSTIN  
20 TEST1  
21 VLDDIN  
22 CV3P3  
23 AGND/DGND  
24 A9P5V  
25 ILDD_ BD  
26 ILDD_ DVD  
27 ILDD_ CD  
28 CA5V  
33  
32  
TEST3  
TEST2  
P5V12L 31  
LOAD_ N 30  
LOAD_ P 29  
Copyright © 2015, Texas Instruments Incorporated  
3
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SLED1_P  
SLED1_N  
P12V_3  
SLED2_P  
SLED2_N  
PGND_2  
C10V  
NO.  
1
2
OUT  
OUT  
PS  
Sled1 positive output terminal  
Sled1 negative output terminal  
3
Power supply terminal for 12-V drivers output  
Sled2 positive output terminal  
4
OUT  
OUT  
PS  
5
Sled2 negative output terminal  
6
GND terminal for 12-V drivers  
7
MISC  
MISC  
MISC  
MISC  
OUT  
OUT  
OUT  
IN  
Capacitance connection terminal for internal regulator  
Capacitance connection for charge pump  
Capacitance connection for charge pump  
Capacitance connection for charge pump  
General-purpose output (test monitor)  
Motor speed signal output  
CP1  
8
CP2  
9
CP3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GPOUT  
XFG  
RDY  
Device ready signal. Internally pulled up to SIOV  
SIO slave select low active input terminal  
SIO serial clock input terminal  
SSZ  
SCLK  
IN  
SIMO  
IN  
SIO slave input master output terminal  
SIO slave output master input terminal  
Power-supply terminal for serial port. 3.3-V typical  
RESET input terminal to disable the driver IC  
Test pin. Should be open  
SOMI  
OUT  
PS  
SIOV  
XRSTIN  
TEST1  
IN  
MISC  
Laser diode control analog signal input 0 to 3-V terminal. Required to set register when using  
VLDDIN input. Open in case of non-use analog input.  
VLDDIN  
21  
IN  
CV3P3  
22  
23  
24  
25  
26  
27  
MISC  
PS  
Capacitance terminal for internal 3.3-V core (typical 0.1 µF)  
Ground terminal for internal digital and analog  
Power-supply terminal 9.5-V laser diode for BD  
Laser diode for BD output terminal  
AGND/DGND  
A9P5V  
PS  
ILDD_BD  
ILDD_DVD  
ILDD_CD  
OUT  
OUT  
OUT  
Laser diode for DVD output terminal  
Laser diode for CD output terminal  
Capacitance connection terminal for control system power supply. Connect a 0.1-µF  
decoupling capacitor.  
CP5V  
28  
MISC  
LOAD_P  
LOAD_N  
P5V12L  
TEST2  
TEST3  
P5V_1  
TLT_N  
TLT_P  
TRK_P  
TRK_N  
FCS_P  
FCS_N  
PGND_1  
P12V_1  
U
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
OUT  
OUT  
PS  
Load positive output terminal  
Load negative output terminal  
Power-supply terminal (5 or 12 V) for load driver output stages.  
Test pin. Should be open  
MISC  
MISC  
PS  
Test pin. Should be connected to P5V.  
Power-supply terminal for tilt/focus/tracking drivers  
Tilt negative output terminal  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
PS  
Tilt positive output terminal  
Tracking positive output terminal  
Tracking negative output terminal  
Focus positive output terminal  
Focus negative output terminal  
GND terminal for tilt/focus/tracking channel drivers  
Power-supply terminal for 12-V driver output stage  
U-phase output terminal for spindle motor  
Current sense resistor terminal for spindle driver  
V-phase output terminal for spindle motor  
PS  
OUT  
MISC  
OUT  
ICOM1  
V
4
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
P12V_2  
W
NO.  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
PS  
OUT  
MISC  
IN  
Power-supply terminal for 12-V driver output stage  
W-phase output terminal for spindle motor  
Current sense resistor terminal for spindle driver  
Motor center tap connection  
ICOM2  
MCOM  
ISENSE  
AGND  
IN  
Current sense input terminal for spindle drivers  
Ground terminal for internal analog  
PS  
STP1_P  
STP1_N  
STP2_P  
STP2_N  
P5V_2  
OUT  
OUT  
OUT  
OUT  
PS  
STP1 positive output terminal for collimator  
STP1 negative output terminal for collimator  
STP2 positive output terminal for collimator  
STP2 negative output terminal for collimator  
Power supply terminal for 5-V driver output  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
6
UNIT  
5-V supply voltage P5V  
12-V supply voltage P12V  
15  
9.5-V supply voltage A9P5V  
Load supply P5V12 voltage  
15  
V
15  
Spindle output peak voltage  
Spindle output current  
15  
2.5  
Spindle output peak current, (PW 2 ms, Duty 30%)  
Sled output peak current  
3.5  
1.0  
A
Focus/tracking/tilt driver output peak current  
Load driver output peak current  
Laser diode driver output peak current  
Input/output voltage  
1.0  
1.0  
247(2)  
VCC + 0.3  
1344  
75  
mA  
V
–0.3  
–20  
–60  
Power dissipation(3)  
mW  
Operating temperature  
Lead temperature 1.6 mm from case for 10 s  
260  
150  
°C  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The LDD output time of the maximum current should maintain 25% or less of the xsleep total ON time.  
(3) A lower RθJC is attainable if the exposed pad is connected to a large copper ground plane. RθJC and RθJA are values for 56-pin TSSOP  
without a exposed heat slug (HSL) on bottom. Actual thermal resistance would be better than the above values.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
5.0  
MAX  
5.5  
UNIT  
P5V  
Operating supply voltage (apply for P5V)  
P12V  
A9P5V  
Driver 12-V supply voltage (apply for P12V(1)  
)
10.8  
7.65  
4.5  
12.0  
9.5  
13.2  
10.45  
5.5  
Power supply laser diode for BD (apply for A9P5V)  
V
5.0  
P5V12L  
Load operating supply voltage (apply for P5V12L)  
10.8  
3.0  
12.0  
3.3  
13.2  
36  
VSIOV  
Tope  
SIOV voltage  
Operating temperature range  
–20  
30  
25  
75  
°C  
Fck  
SCLK frequency  
33.8688  
35  
MHz  
VSIFH  
VSIFL  
VIHB  
SIMO, SSZ, SCLK pin 'H' level input voltage range  
SIMO, SSZ, SCLK pin 'L' level input voltage range  
XRSTIN pin 'H' level input voltage  
XRSTIN pin 'L' level input voltage range  
Spindle output average current U,V,W Total)  
Spindle output current  
2.2  
SIOV + 0.2  
0.8  
–0.2  
2.2  
V
P5V + 0.1  
0.8  
VILB  
–0.1  
ISPMOA  
ISPMO  
ISLDOA  
IACTOA  
ISTPOA  
0.5  
1.7  
1.7  
A
Sled output average current  
0.25  
0.5  
0.8  
Focus/ tracking/ tilt/ loading output average current  
STP output average current  
0.8  
300  
mA  
(1) (P5V = 4.5 to 5.5 V, P12V = 10.8 to 13.2 V, CATA –20to 75, unless otherwise noted)  
7.4 Thermal Information  
TPIC2050  
THERMAL METRIC(1)  
DFD (HTSSOP)  
UNIT  
56 PINS  
16.7  
0.8  
RθJA  
RθJC  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
5.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
5.1  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
COMMON PART  
ISTBY  
VCV3  
RXM  
Standby supply current  
CV3P3 output voltage  
XRSTIN pulldown resistor  
RDY pullup resistor  
Standby mode  
Iload = 25 mA  
0.6  
3.3  
200  
33  
1.2  
3.4  
mA  
V
3.1  
100  
1.5  
300  
49.5  
0.3  
kΩ  
RRDY  
VRDY  
RXFG  
RDY low level output voltage  
XFG output resistor  
SIOV = 3.3 V, IOL = –100 µA  
V
100  
200  
300  
Ω
SIOV = 3.3 V, XSLEEP = 1, IOH = 100  
µA  
VXFGH  
XFG high-level output voltage  
SIOV – 0.3  
V
SIOV = 3.3 V, XSLEEP = 1, IOL = 100  
µA  
VXFGL  
RGPO  
VGPOH  
XFG low-level output voltage  
GPOUT output resistor  
0.3  
100  
200  
300  
Ω
SIOV = 3.3 V, XSLEEP = 1,  
GPOUT high-level output voltage GPOUT_ENA = 1, GPOUT_HL = 1,  
IOH = 100 µA  
SIOV – 0.3  
V
SIOV = 3.3 V, XSLEEP = 1,  
VGPOL  
GPOUT low-level output voltage  
GPOUT_ENA = 1, GPOUT_HL = 0,  
IOH = 100 µA  
0.3  
Thermal protection on  
temperature  
TTSD  
Design value  
135  
5
150  
15  
165  
25  
°C  
Thermal protection hysteresis  
temperature  
TSDhys  
Vonvcc  
Voffvcc  
Vonvcc  
Voffcc  
P5V reset on voltage  
P5V reset off voltage  
P12V reset on voltage  
P12V reset off voltage  
CV3P3 reset on voltage  
CV3P3 reset off voltage  
3.6  
3.8  
7.9  
8.3  
2.6  
2.7  
3.7  
3.9  
8.4  
8.8  
2.7  
2.8  
3.8  
4.0  
8.9  
9.3  
2.8  
2.9  
V
V
V
V
V
V
VonCV3  
VoffCV3  
OVP predetection voltage  
(spindle)  
VovpPspmOn  
13.4  
14.1  
14.8(1)  
V
VovpPspmOff  
VovpspmOn  
VovpspmOff  
OVP prerelease voltage (spindle)  
OVP detection voltage (spindle)  
OVP release voltage (spindle)  
13.1  
14.2  
13.9  
13.8  
14.9  
14.6  
14.5(1)  
15.6(1)  
15.3(1)  
V
V
V
OVP detection voltage (except  
spindle)  
VovpOn  
VovpOff  
6.0  
5.8  
6.2  
6.0  
6.4(1)  
6.2(1)  
V
V
OVP release voltage (except  
spindle)  
CHARGE PUMP PART  
FCHGP Frequency  
VCHGP Output voltage  
SPINDLE MOTOR DRIVER PART  
XSLEEP = 1  
132.6  
15.6  
156  
179.4  
21.4  
kHz  
V
Ccp1 = Ccp3 = 0.1 µF Io = –1 mA  
18.5  
Total output resistance high side  
+ low side  
RttlSPM  
IOUT = 500 mA  
0.3  
0.6  
Ω
VIsns  
160  
179  
170  
194  
12  
180  
209  
Spindle current limit reference  
voltage  
mV  
bit  
VIsnsP  
ResSPM  
VoutSPM  
For flash peak current detection  
Magnification to 1.0 inputs  
Resolution  
Spindle gain  
12.4  
14.0  
15.6 times  
(1) These value are protection functions only, and stress beyond those listed under Recommended Operating Conditions may cause  
permanent damage to the device.  
Copyright © 2015, Texas Instruments Incorporated  
7
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
12h  
TYP  
52h  
MAX UNIT  
92h  
Forward  
Reverse  
WidDZSPM  
Spindle dead band  
–92h  
–52h  
–12h  
SLED MOTOR DRIVER PART  
Total output resistance high side  
+ low side  
RttlSLD  
P12V = 10.8 to 13.2 V, IO = 500 mA  
1.6  
2.5  
Ω
ResSLD  
Resolution  
10  
+33h  
–33h  
bit  
Forward  
Reverse  
+4h  
+62h  
–4h  
WidDZSLD  
Input dead band  
Sled current gain  
–62h  
P5V = 5 V, P12V = 12 V VSLED =  
7FFh  
GnSLD  
760  
62  
880  
124  
1000  
186  
mA  
mV  
END_DET BEMF threshold  
voltage  
ENDDET_SLCT = 0,  
SLEDENDTH<1:0> = ,SLED Enable  
VthEdetSLD  
FOCUS/TILT/TRACKING DRIVER PART  
Each channel total output  
RttlAct  
P5V = 4.5 V to 5.5 V, IO = 500 mA  
0.7  
12  
0
1.1  
30  
Ω
bit  
resistance high side + low side  
ResACT  
VOfstACT  
GnAct  
Resolution  
Each channel output offset  
voltage  
DAC_code = 000h  
–30  
4.7  
mV  
Each channel voltage gain  
Magnification to 1.0 inputs  
6.0  
7.6 times  
LOAD DRIVER PART  
P5V12L = 4.5 to 5.5 V, IO = 500 mA  
Total output resistance high side  
RttlLOD  
1.2  
1.9  
Ω
P5V12L = 10.8 to 13.2 V, IO = 500  
mA  
+ low side  
Resolution  
Voltage gain  
ResLOD  
GnLOD  
12  
6.0  
bit  
V
P5V12L = 4.5 to 5.5 V  
P5V12L = 10.8 to 13.2 V  
Forward  
4.7  
7.6  
11.1  
14.0  
20h  
17.6  
WidDZLOD  
Dead band  
Reverse  
–21h  
8
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
P5V12L = 5 V, TRAY_LOCKDET[2:0]  
= 1  
80  
100  
100  
150  
150  
200  
200  
250  
250  
300  
300  
300  
300  
400  
400  
120  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 1  
80  
120  
120  
160  
160  
212  
212  
255  
255  
297  
297  
340  
340  
120  
180  
180  
240  
240  
P5V12L = 5 V, TRAY_LOCKDET[2:0]  
= 2  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 2  
P5V12L = 5 V, TRAY_LOCKDET[2:0]  
= 3  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 3  
P5V12L = 5 V, TRAY_LOCKDET[2:0]  
= 4  
287  
mA  
287  
LockDth  
Tray lock detect threshold current  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 4  
P5V12L = 5 V, TRAY_LOCKDET[2:0]  
= 5  
345  
345  
345  
345  
460  
460  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 5  
P5V12L = 5 V, TRAY_LOCKDET[2:0]  
= 6  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 6  
P5V12L = 5 V, TRAY_LOCKDET[2:0]  
= 7  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 7  
STEPPING MOTOR DRIVER PART  
Total output resistance high side  
+ low side  
RttlSTP  
IO = 100 mA  
1.0  
1.5  
Ω
ResSTP  
IocpSTP  
Resolution  
8
850  
1.0  
25  
bit  
mA  
µs  
Overcurrent protection level  
OCP monitor delay time  
OCP hold time  
595  
0.7  
17  
1148(1)  
1.3(1)  
32(1)  
tDlyocpSTP  
thlocpSTP  
ms  
ENDDET_SLCT = 1,  
STPDENDTH<1:0> = 00, STP Enable  
VthEdetSTP  
END_DET threshold level  
19  
39  
59  
mV  
LDD DRIVER PART  
LDD_MSEL:01(CD), 10(DVD) A9P5V  
= 7.65 to 10.45 V  
102  
102  
98  
120  
120  
120  
120  
120  
120  
138  
138  
141  
138  
138  
141  
LDD current gain in digital mode  
VLDD = 0x7FF  
IUP = 00  
LDD_MSEL:11(BD) A9P5V = 8.55 to  
10.45 V  
AV(2)  
mA  
LDD_MSEL:11(BD) A9P5V = 7.65 to  
8.55 V  
LDD_MSEL:01(CD), 10(DVD) A9P5V  
= 7.65 to 10.45 V  
102  
102  
98  
LDD current gain in analog mode  
VLDDIN input voltage = 3 V  
IUP = 00  
LDD_MSEL:11(BD) A9P5V = 8.55 to  
10.45 V  
AV(2)  
mA  
LDD_MSEL:11(BD) A9P5V = 7.65 to  
8.55 V  
(2) ILDD_BD = 4.5 V, ILDD_CD = 2.1 V ILDD_DVD = 2.1 V  
Copyright © 2015, Texas Instruments Incorporated  
9
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
102  
–10  
119  
141  
164  
102  
–10  
119  
141  
164  
98  
TYP  
120  
0
MAX UNIT  
VLDD = 0x7FF, LDD_IUP = 00  
VLDD = 0, LDD_IUP = 00  
138  
10  
LDD current gain by IUP setting  
(digital mode only)  
LDD_MSEL: 01(CD), 10(DVD)  
AV(2)(3)  
AV(2)(3)  
AV(2)(3)  
VLDD = 0x7FF, LDD_IUP = 01  
VLDD = 0x7FF, LDD_IUP = 10  
VLDD = 0x7FF, LDD_IUP = 11  
VLDD = 0x7FF, LDD_IUP = 00  
VLDD = 0, LDD_IUP = 00  
149  
177  
206  
120  
0
178  
212  
247  
138  
10  
mA  
mA  
mA  
LDD current gain by IUP setting  
(digital mode only)  
LDD_MSEL:11(BD) at A9P5V =  
8.55 to 10.45 V  
VLDD = 0x7FF, LDD_IUP = 01  
VLDD = 0x7FF, LDD_IUP = 10  
VLDD = 0x7FF, LDD_IUP = 011  
VLDD = 0x7FF, LDD_IUP = 00  
VLDD = 0, LDD_IUP = 00  
149  
177  
206  
120  
0
178  
212  
247  
141  
10  
LDD current gain by IUP setting  
(digital mode only)  
LDD_MSEL:11(BD) at A9P5V =  
7.65 to 8.55 V  
–10  
114  
136  
158  
VLDD = 0x7FF, LDD_IUP = 01  
VLDD = 0x7FF, LDD_IUP = 10  
VLDD = 0x7FF, LDD_IUP = 11  
P5V = 4.5 V to 5.5 V, A9P5V = 9.5 V  
149  
177  
206  
11  
183  
217  
253  
ResLDD  
tr  
LDD current gain  
Rise time of ILDD  
bit  
µs  
P5V = 5 V VLDDIN = 0 0x7FF  
162  
162  
203  
203  
243  
243  
120 mA  
P5V = 5 V VLDDIN = 0x7FF 0  
tf  
Fall time of ILDD  
50 mA  
IZ  
VLDDIN input impedance  
100  
140  
200  
200  
300  
260  
kΩ  
mV  
bit  
LDDdbA  
LDDdbA  
Low voltage dead band  
0x3F  
THERMOMETER PART  
ResTEMP  
Resolution  
6
15  
bit  
°C  
CHIPTEMP[5:0] = 00  
CHIPTEMP[5:0] = 3Fh  
8
22  
Trng  
Temperature range  
Update cycle  
155  
165  
10  
175  
FTEMP  
kHz  
ACTUATOR PROTECTION  
tintACTTEMP Update cycle  
SERIAL PORT VOLTAGE LEVELS  
26  
ms  
SOMI  
SOMI  
SIMO  
SIMO  
tSIMO  
High-level output voltage, VOH  
IOH = 1 mA  
IOL = 1 mA  
80% SIOV  
70% SIOV  
V
V
Low-level output voltage, VOL  
High-level input voltage, VIH  
Low-level input voltage, VIL  
Input rise/fall time  
20% SIOV  
V
20% SIOV  
3.5  
V
20% 80% SIOV  
ns  
ns  
kΩ  
kΩ  
tSOMI  
Output rise/fall time(4)  
Cload = 30 pF, 20% 80% SIOV  
10  
RSCLK  
RSSZ  
Internal pulldown resistance  
Internal pullup resistance  
100  
100  
200  
200  
300  
300  
(3) LDD_IUP settings are only for digital mode.  
(4) Specified by design  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
7.6 Serial I/F Write Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
ƒck  
tckl  
SCLK clock frequency  
SCLK low time  
SIOV = 3.3 V  
35  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
SIMO setup time (Write)  
SIMO hold time (Write)  
11  
7
ns  
tds  
ns  
tdh  
7
ns  
Tsl  
SSZ  
Fck  
Tsens  
Tsenh  
SCLK  
Tckl  
Tckh  
SIMO  
SOMI  
Tds  
Tdh  
Hi-Z  
Figure 1. Serial Port Write Timing  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
7.7 Serial I/F Read Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
ƒck  
tckl  
SCLK clock frequency  
SCLK low time  
SIOV = 3.3 V  
35  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
SIMO setup time (Write)  
SIMO hold time (Write)  
SOMI delay time (Read)  
SOMI hold time (Read)  
11  
7
ns  
tds  
ns  
tdh  
7
ns  
trdly  
tsendl  
CLOAD = 10 pF, SIOV = 3.3 V  
CLOAD = 10 pF, SIOV = 3.3 V  
2
9
9
ns  
2
ns  
CLOAD = 10 pF, SIOV = 3.3 V from SSZ rise to  
SOMI HIZ  
trls  
SOMI release time (Read)  
0
9
ns  
Tsl  
SSZ  
Tsenh  
Fck  
Tsens  
SCLK  
Trls  
Tdh  
Tds  
Tckh Tckl  
SIMO  
R
SOMI  
Hi-Z  
Trdly  
Tsendl  
Figure 2. Serial Port Read Timings  
Tsl  
SSZ  
Tsenh  
Fck  
Tsens  
SCLK  
Tdh  
Tds  
Tckh Tck l  
SIMO  
R
Trls  
SOMI  
Hi-Z  
Trdly  
Tsendl  
Figure 3. Serial Port Read Timings (Advanced Read Mode)  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
7.8 Typical Characteristics  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
STP1+  
STP2+  
STP1œ  
STP2œ  
-2047  
-1535  
-1023  
-511  
1
513  
1025  
1537  
2049  
D001  
-2047  
-1535  
-1023  
-511  
1
513  
1025  
1537  
2049  
D002  
DAC Code  
DAC Code  
Figure 4. STP1 Driver: DAC Code vs Output On Duty  
Figure 5. STP2 Driver: DAC Code vs Output On Duty  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
TPIC2050 is very-low noise type motor driver IC suitable for 12V ODD. The 9-channels driver IC controlled by  
serial I/F is optimum for driving a spindle motor, a sled motor (stepping motor applicable), a load motor, and  
Focus / Tracking / Tilt actuators and stepping motor for collimator lens. This IC’s integrated current sense  
resistance which measures SPM current then it is able to reduce drive system cost in drastically. The spindle  
motor driver part builds in the sensor less logic which attained low noise-operation at the time of starting and run.  
In order to carry out self-starting by the starting circuit and to perform position detection by BEMF of a motor,  
sensors, such as a Hall device, are not needed. As the output stage of all channels works in efficient PWM  
driving, it is possible to attain low power operation by PWM control. Dead zone less control is possible for a  
Focus / Tracking / Tilt actuator driver. In addition, the spindle part output current limiting circuit, the thermal shut  
down circuit, the sled end detection circuit, collimator lens end detection circuit, actuator protection.  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.2 Functional Block Diagram  
P12V  
0.1u  
P5V  
P12V  
0.1u  
ICOM1  
ICOM2  
Charge  
pum p  
19V  
XSLEEP  
SIOV  
0.1  
SPM  
Current lim it  
ISENSE  
MCOM  
XFG  
XFG  
XSLEEP  
SPM Logic  
DAC PW M  
BEMF  
detector  
On chip  
therm om eter  
SPM_ ENA  
U
1k  
SIOV  
TEMPMON_ENA  
pre- power  
driver FET  
V
SSZ  
SCLK  
SIMO  
SSZ  
W
SCLK  
SIMO  
SLED1+  
SLED1-  
SIOV  
DAC  
PW M  
pre- power  
driver FET  
SOMI  
SIOV  
SOM I  
SOMI_HIZ  
SLD_ ENA  
SLD_ ENA  
F/B  
3.3V  
SLED END  
detection  
Digital core  
ENDDET  
SIOV  
GPOUT  
XRSTIN  
GPOUT  
SLED2+  
SLED2-  
GPOUT_ENA  
DAC  
PW M  
pre- power  
driver FET  
RESETIN  
F/B  
TLT+  
TLT-  
DAC  
PW M  
pre- power  
driver FET  
A5V  
TLT_ ENA  
F/B  
CV3P3V  
int3.3V  
Regulator  
DIFF_ TLT  
0.1u  
FCS+  
FCS-  
SIOV  
DAC  
PW M  
pre- power  
driver FET  
F/B  
RDY  
power  
m onitor  
RDY  
P12V  
P5V  
TRK+  
pre- power  
driver FET  
TRK-  
F/B  
P5V12L  
P12V  
P5V  
DAC  
PW M  
TRK_ ENA  
LOAD+  
LOAD-  
pre- power  
driver FET  
LOAD_ ENA  
P12V  
F/B  
int10V  
Regulator  
TRAY Lock  
detection  
C10V  
CA5V  
ENDDET  
0.1u  
0.1u  
P5V  
STP1+  
DAC  
PW M  
Analog  
5V  
pre- power  
driver FET  
STP_ ENA  
STP1-  
STP2+  
VLDDIN  
DAC  
VLDDIN  
DAC  
PW M  
pre- power  
driver FET  
LDD_AMODE  
ILDD_ DVD  
V/I  
V/I  
STP2-  
STEP END  
detection  
ILDD_ CD  
ILDD_ BD  
ENDDET  
LD  
select  
ENDDET_ ENA  
V/I  
ENDDET  
LDD_MSEL  
ENDDET_ SEL[1:0]  
A9P5V  
10u  
TPIC2050  
9.5V  
AGND/DGND  
PGND_ 1-2  
AGND  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Protect Functions  
The TPIC2050 has five protection features to protect target equipment: overvoltage protection (OVP), short-  
circuit protection (SCP), overcurrent protection (OCP), thermal protection (TSD), and actuator temperature  
protection (ACTTIMER).  
8.3.1.1 OVP  
OVP function protects the unit from the supplying high voltage. When the supply voltage exceeds 6.2 V (for  
P5V), all driver output goes to Hi-Z. The SPM, sled, and load channels go to Hi-Z when P12V is over 14.9 V.  
When power supply exceeds 14.1 V, the SPM channel enters short brake mode. This operation occurs after a  
rise in voltage in the motor BEMF. Regardless of the input voltage of the P5V12L, the load channel becomes Hi-  
Z when OVP_P5V or OVP_P12V. When the supply voltage falls below 6 V, all outputs start to operate again  
(14.6 V for 12-V driver channel). The OVP and POR (RDY) functions do not interlock. This function is intended to  
protect the device in the evaluation stage as a temporary and back-up solution.  
8.3.1.2 OCP and SCP  
The OCP and SCP protect the device from a breakdown caused by a large current. The OCP is provided only for  
the step channel, and SCP is provided for all driver channels other than the LDD driver. Table 1 indicates each  
behavior.  
Table 1. Protection Threshold Table  
BLOCK  
FUNCTION  
DETECTION CURRENT  
DETECT TIME  
HI-Z HOLD TIME  
STEP driver  
OCP  
850 mA  
1 µs  
25 ms  
STEP driver (low-side FET only)  
SPM driver  
Monitor driver output voltage  
High-side FET output V = GND  
Low-side FET output V = Supply V  
Sled driver  
SCP  
0.8 to 1.6 µs  
1.6 ms  
Load driver  
Actuator driver  
When a large current is detected on each block, the device puts the output FET to Hi-Z.  
When OCP or SCP occurs, it returns automatically after the set Hi-Z hold time expires. The OCPSCPERR  
(REG7F) and OCP, SCP flags (REG7B) are set at detection.  
8.3.1.2.1 OCP for Step Driver  
The STP1 and STP2 channels have current trip function. The output of the STEP channel is changed to Hi-Z if  
the current exceeds the current limit threshold (850 mA typical). When the trip period (25 ms) expires, the trip  
state is automatically released.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
detect1us  
STEP load-I  
850mA  
0mA  
Hi-Z  
Hi-Z  
STEP+ voltage  
STEP- voltage  
RDY  
25ms  
Figure 6. Overcurrent Protection Step  
8.3.1.2.2 SCP  
The SCP function monitors the output voltage of the high-side and low-side FET of the output driver, and when  
the setting voltage is not outputted, it recognizes it as 'SCP' and changes the output to Hi-Z. It automatically  
returns to the original state after 1.6 ms.  
VDAC set  
Driver current  
Hi-Z  
Hi-Z  
detect1.6us  
Drivervoltage  
1.6m s  
RDY  
Figure 7. Example of SCP (Driver Short to GND)  
8.3.1.3 Thermal Protection (TSD)  
The TSD is a protection function which intercepts an output and suspends an operation when the IC temperature  
exceeds a maximum permissible safe temperature. TSD creates an output Hi-Z when the temperature rises up  
and a threshold value is exceeded. The two levels for the threshold are alert and trip. An alarm is given by status  
register TSD_FAULT_ on Alert level at 135°C. If the temperature continues to rise, the register TSD_ is set at  
150°C and the driver output changes to Hi-Z. If the temperature falls and reaches 135°C, it outputs again. The  
TPIC2050 has 11 temperature sensors in each circuit block. The particular sensor assigned to the appropriate  
status flag is listed in Table 2.  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
Table 2. Thermal Sensor Assignment  
CIRCUIT  
U
ALERT (°C)  
135  
TRIP (°C)  
150  
RELEASE (°C)  
ALERT FLAG  
TRIP FLAG  
TSD_SPM  
TSD_SPM  
TSD_SPM  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_LDD  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_LDD  
V
135  
150  
W
135  
150  
TLT  
135  
150  
FCS  
TRK  
SLED1  
SLED2  
STP  
LOAD  
LDD  
135  
150  
135  
150  
135  
150  
135  
150  
135  
150  
135  
150  
135  
150  
8.3.1.4 Actuator Temperature Protection (ACTTIMER)  
The TPIC2050 has an actuator protect function, ACTTIMER. This function sets the actuator channel output to Hi-  
Z when the actuator coil current exceeds a specific value. This new protection calculates heat accumulation and  
judges appropriately. When this function operates, the LDD and load driver channel outputs are Hi-Z, and the  
spindle channel is forced to auto short brake, stopping the disc motor.  
The user can know if protection occurred by checking the Fault register ACTTIMER_FAULT (REG7F) and  
ACT_TIMER_PROT (REG78). ACTTIMER_FAULT sets a character of advance notice, before detecting  
ACT_TIMER_PROT. After an ACT_TIMER_PROT is set, even if the temperature falls, it does not automatically  
release protection. The user must clear the flag by setting the RST_ERR_FLAG (REG77) or setting 0 to  
ACTTEMPTH (REG72). The ACTTIMER function is disabled by setting H to ACTPROT_OFF (REG72) or setting  
0 to ACTTEMPTH (REG72). To acquire the optimal value for ACTTEMPTH, set the device into the condition of  
the detection level and read the value of ACTTEMP, as the present value can be read from ACTTEMP (REG78).  
The ACTTEMP data is updated on the register in ACTPROT_OFF = 0 and ACTTEMPTH > 0.  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
RST_ ERR_ FLAG  
ACTTIMER_ FAULT  
ACT_ TIMER_ PROT  
ACTTEMPTH  
ACTTEMPTH-1  
ACTTEMPcount  
Hi-Z  
Hi-Z  
FCS+ , TRK+ , TLT+  
FCS-, TRK-, TLT-  
Sled1+ , Sled2+  
Sled1-, Sled2-  
Step1+ ,Step2+  
Step1-,Step2-  
Load+  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Load-  
Motor rpm  
0
auto short brake  
XFG  
disable 300m s  
Figure 8. Actuator Temperature Protections  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.3.1.5 Prevent OVP 12 V (PREOVP-12V)  
When using the power supply unit without current-sinking capability for 12-V supply, the P12V voltage goes up  
with the motor BEMF at slowdown. As a result, 12-V OVP is detected if this voltage exceeds the threshold value.  
To prevent this detection, the TPIC2050 provides a PREOVP-12V function. The SPM driver output is forced into  
three-phase short brake mode if P12V is over the threshold voltage. The PREOVP-12V function is disabled by  
OVPPRE12V_OFF = 1 (REG6B[0]).  
OVP_12V Hi  
OVP_12V Lo  
OVPPRE_12V Hi  
OVPPRE_12V Lo  
P12V voltage  
Motorrpm  
3phase short brake  
OVPPRE_ 12V  
OVP_ 12V  
Figure 9. OVPPRE_12V  
8.3.2 DAC Type  
The TPIC2050 has nine channel drivers and one LDD driver. Each channel is assigned to the most suitable DAC  
engine with a different type. ACT (focus/tracking/tilt) has a 12-bit DAC. Upper 8 (MSB sign bit) are converted one  
at a time in 5 MHz, and LSB 4 bits are output in sequence with a 1.25 MHz PWM. SPIN and Load DAC have the  
same types and sampling rate of 312 kHz. The SPM channel has x14 gain, and other channels (except for SLED  
and STP) have x6 gain. The DAC for STP is 8-bits resolution output with 40-kHz PWM, and no feedback. The  
gain for STP is x5 relative to P5V voltage. Table 3 shows the configuration of each driver.  
Table 3. DAC Type  
FCS/TRK/TLT  
SLED  
SPIN  
LOAD  
STP  
LDD  
Resolution  
Type  
12 bit  
10 bit  
12 bit  
12 bit  
8 bit  
11 bit  
10-bit voltage  
DAC  
8-bit over  
sampling  
8-bit over  
sampling  
1-bit direct duty  
PWM  
11-bit voltage  
DAC  
8-bit oversampling  
1.25M / 10 bit  
312K / 12 bit  
Sampling  
312K  
312K  
40 kHz  
About 156 kHz  
(variable)  
PWM frequency  
Out range  
312 kHz  
±6 V  
156 kHz  
±14 V  
312 kHz  
±6 V  
40 kHz  
±880 mA  
±(P5V*1)  
0 to 120 mA  
No F/B  
Power supply  
compensation  
Voltage F/B  
shared with TRK  
Direct PWM no  
F/B  
Feedback  
Voltage F/B  
Current F/B  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.3.3 Example of 12-Bit DAC Sampling Rate for FCS/TRK/TLT  
The input data is separated in the upper 8 bits and the lower 4 bits. Upper 8 bits (MSB sign 1 bit) are put into an  
8-bit current DAC in every 5 MHz. The lower 4 bits are put into one bit current DAC in sequence, from the upper  
to lower bit. This is a one bit DAC output with PWM in 1.25 MHz. At any PWM duty, 100%, 75%, 50%, 25% or  
0% is summed in 8-bit current DAC every 1.25 MHz. Therefore, it takes 3.2 µs for all lower 4 bits to sum to the  
PWM output. As a result, 12-bit data is sampled in every PWM cycle. An example of the sampling rate for  
FCS/TRK/TLT is in Figure 10.  
WriteDAC  
5 MHz  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1.25 MHz  
625 KHz  
312 KHz  
PWM duty  
10bit  
10bit  
10bit  
10bit  
11bit  
11bit  
12bit  
LSB 4bit width  
12bit DAC(8bit DAC+ 4bit PWM DAC) output  
one PWM cycle (312 KHz = 3.2us)  
Figure 10. Example of 12-Bit DAC Conversion Time (FCS/TRK/TLT)  
8.3.4 Digital Input Coding  
The output voltage (current) is commanded via programming to the DAC. All of the DAC input format is 12 bit in  
complement of 2's, though some DAC has a low resolution. When 12 bits data is inputted as 8-bits DAC, the  
TPIC2050 recognizes four subordinate position bits (LSB) as 0. To arrange for 12-bit DAC format, the DSP  
should shift 8-bit or 10-bit data to an appropriate bit position. The full scale is ±1.0 V, and the driver gain is set to  
6 or 14. The output voltage (Vout) is given by the following equation:  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
6.0  
Vout = DACcode ì  
2048  
14.0  
VSPMout = DACcode ì  
2048  
Calculation by fixed point number :  
Vdac = 1.0 ì bit[10] ì 0.51 + bit[9] ì 0.52 + bit[8] ì 0.53 + ... + bit[0] ì 0.511  
(
)
Vdac = (œ1.0) ì bit[10] ì 0.51 + bit[9] ì 0.52 + bit[8] ì 0.53 + ... + bit[0] ì 0.511 + 0.512  
(
)
Vout = Vdac ì 6.0 (V)  
VSPMout = Vdac ì 14.0 (V)  
STPVout = Vdac ì (P5V) (V)  
SLEDIout = Vdac ì 0.88 (A)  
where  
bit[11:0] is the digital input value, range 000000000000b to 111111111111b  
(1)  
Table 4. DAC Format  
ANALOG OUTPUT ANALOG OUTPUT  
LSB  
MSB DIGITAL INPUT (BIN)  
HEX  
DEC  
VDAC  
(5 V)  
–5.997  
–5.997  
–0.003  
0.000  
0.003  
5.994  
5.997  
(12 V)  
–13.993  
–13.993  
–0.007  
0.000  
1000_0000_0000  
1000_0000_0001  
1111_1111_1111  
0000_0000_0000  
0000_0000_0001  
0111_1111_1110  
0111_1111_1111  
0x800  
0x801  
0xFFF  
0x000  
0x001  
0x7FE  
0x7FF  
–2048  
–2047  
–1  
–0.9995  
–0.9995  
–0.0005  
0
0
1
0.0005  
0.9990  
0.9995  
0.007  
2046  
2047  
13.986  
13.993  
Analog output(V)  
+ 6.0 / + 14.0  
VDAC  
+ 1.000  
+ 5.0 / + 12.0  
*
800h  
7FFh  
DACcode  
000  
-5.0 / -12.0  
-6.0 / -14.0  
*
-1.000  
*follow ing P5V, P12Vinputvoltage  
Figure 11. Output Voltage vs DAC Code  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.4 Device Functional Modes  
8.4.1 Differential Tilt Mode  
The TPIC2050 supports differential tilt mode, which outputs the value calculated from focus and tilt. Focus and tilt  
can be set in differential mode by DIFF_TLT (REG74) = 1. Because focus and tilt are updated at the same time,  
the update interval of tilt can be thinned out. Output data changes after writing the VFCS data; therefore, write  
VFCS data when setting VTLT. In differential mode, the output value is calculated as follows:  
FCS_OUT = (VFCS + VTLT) × 6  
TLT_OUT = (VFCS – VTLT) × 6  
(2)  
(3)  
8.4.2 Power-On Reset (POR)  
8.4.2.1 RDY (Power Ready)  
The TPIC2050 prepares the RDY pin to show a power status to the host controller. A device sets RDY output to  
high (= POR) if the supply voltage and internal regulator voltage reach a rated value. All registers initialize at the  
time of the POR operation. Figure 12 shows the behavior of RDY.  
RDY : High  
(Write data)  
Registerreset  
Registervalid data  
XRSTIN= L(*1)  
or RST_ REGS= 1  
P5V > 3.9V  
CV3P3 > 2.8V  
P5V < 3.7V  
&
orCV3P3< 2.7 V  
or SIOV < 2.0V  
or P12V < 8.4V  
& SIOV> 2.1V  
& P12V> 8.8V  
RDY : Low  
(*1)TheperiodofXRSTINcannotbecommunicatedwithdevice.  
Figure 12. RDY Pin Behavior  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.5 Programming  
8.5.1 Serial Port Functional Description  
The serial communication of the TPIC2050 is based on an SPI communications protocol. The TPIC2050 is put  
on the slave side. All 16-bit transmission data is effective in SSZ = L period.  
The bit stream sent through SIMO from a master (DSP) is latched to an internal shift register by the rising edge  
of SCLK. All the data is transmitted in a 16-bit command and data format. A format has two types of data, 8 bits  
and 12 bits in length. To access specific registers, an address and R/W flag are specified as a command part. In  
addition, 12-bit data does not have an R/W flag in the packet, because the DAC registers(= 12-bit data form)  
are Write only. A transfer packet (command and data) is transmitted sequentially from MSB to LSB. A packet is  
distinguished in MSB by 2 bits of command. In the case of 11, it handles a packet for control register access, and  
the other is processed as a packet for a DAC data setting.  
The four kinds of serial-data communication packets are:  
Write 12 bits DAC data (MSB two bit 11)  
Write 8 bits control register (MSB two bit = 11)  
Read 8 bits control register (MSB two bit = 11)  
Write 12 bits focus DAC data + Read 8 bits status register at the same time (MSB two bit 11)  
8.5.2 Write Operation  
For write operations, the DSP transmits 16-bit (command + address + data) data in order from MSB. Only the 16-  
bit data, which means 16 SCLK sent from the master during SSZ = L, becomes effective. If more than 17 or less  
than 15 SCLK pulses are received during the time that SSZ is low, the whole packet is ignored. For all valid write  
operations, the data of the shift register is latched into its designated internal register at the rising edge of the  
16th SCLK. All internal register bits, except indicated otherwise, are reset to their default states upon power-on  
reset.  
SSZ  
SCLK  
SIMO  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SOMI  
Hi-Z  
Figure 13. Write 12-Bits DAC Data  
SSZ  
SCLK  
SIMO  
SOMI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
W
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Figure 14. Write 8-Bits Control Register  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
Programming (continued)  
8.5.3 Read Operation  
The DSP sends an 8-bit header through SIMO to perform a Read operation. The TPIC2050 starts to drive the  
SOMI line upon the eighth falling edge of SCLK and shifts out eight data bits. The master DSP inputs 8-bit data  
from SOMI after the ninth rising edge of SCLK. ꢀ  
SSZ  
SCLK  
SIMO  
SOMI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Figure 15. Read 8-Bits Control Register  
8.5.4 Write and Read Operation  
Optionally, the master DSP can read the Status register while writing the 12 bits DAC (Focus DAC) packet. This  
is enabled by setting the bit RDSTAT_ON_VFCS (REG74) = H.  
SSZ  
SCLK  
SIMO  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
SOMI  
Hi-Z  
Figure 16. Write 12-Bits Focus DAC Data + Read 8-Bits Status Data  
Copyright © 2015, Texas Instruments Incorporated  
25  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6 Register Maps  
All registers are in WRITE-protect mode after XRSTIN release. WRITE_ENA bit (REG76) = 1 is required before  
writing data in the register.  
8.6.1 Register State Transition  
version data  
Device Pow er On  
(REG7E)  
POR  
Registerinitialized  
P5V < 3.7V  
or CV3P3 < 2.7V  
orSIOV< 2.0V  
P5V < 2.0V  
or C V3P3 < 2.0V  
orRST_ ERR_ FLAG= 1  
or P12V < 8.4V  
or P5V > 6.3V  
or P12V > 14.5V  
or SIF_ TIMEOUT_ ERR= 1  
orRST_ REGS= 1  
orXRSTIN= L  
W RITE_ ENABLE= 0  
orXSLEEP= 0  
XRSTIN= H  
P5V < 3.7V  
or CV3P3 < 2.7V  
orSIOV< 2.0V  
or P12V < 8.4V  
or P5V > 6.3V  
or P12V > 14.5V  
orXRSTIN= L  
VDAC Reg data  
(REG01-0A)  
Control Reg data  
REG70-77,7C  
REG78[4:0]  
REG7F[7,6,0]  
REG6C-6F  
or SIF_ TIMEOUT_ ERR= 1  
orRST_ REGS= 1  
Initial(000)  
Vxxx W rite  
RST_ INDAC= 1  
or XXX_ ENA= 0  
Error latched Reg data  
(REG78[5],79,7A,7B,7F[5:1])  
SPM option Reg  
set Value  
REG61-62  
(REG6X_ W rite= 1)  
(error occur)  
Register valid data  
Theregister contents are not affected.  
Figure 17. Register Behavior  
26  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
Register Maps (continued)  
8.6.2 DAC Register (12-Bit Write Only)  
Two different forms apply to the 12-bit DAC registers. The forms can be selected by setting VDAC_MAPSW  
(REG74h).  
Table 5. DAC Register (VDAC_MAPSW = 0)  
Reg  
Name  
11  
10  
9
8
7
6
5
4
3
2
1
0
00h  
N/A  
N/A  
VTLT  
[11]  
VTLT  
[10]  
VTLT  
[9]  
VTLT  
[8]  
VTLT  
[7]  
01h  
02h  
03h  
VTLT  
VFCS  
VTRK  
VTLT[6] VTLT[5] VTLT[4]  
VFCS[6] VFCS[5] VFCS[4]  
VTRK[6] VTRK[5] VTRK[4]  
VTLT[3]  
VFCS[3]  
VTRK[3]  
VSLD1[3]  
VSLD2[3]  
VTLT[2]  
VFCS[2]  
VTRK[2]  
VSLD1[2]  
VSLD2[2]  
VTLT[1]  
VFCS[1]  
VTLT[0]  
VFCS[0]  
VFCS  
[11]  
VFCS  
[10]  
VFCS  
[9]  
VFCS  
[8]  
VFCS  
[7]  
VTRK  
[11]  
VTRK  
[10]  
VTRK  
[9]  
VTRK  
[8]  
VTRK  
[7]  
VTRK[1]  
VTRK[0]  
VSLD1 VSLD1 VSLD1 VSLD1 VSLD1 VSLD1  
[11] [10] [9] [8] [7] [6]  
VSLD1  
[5]  
VSLD1  
[4]  
04h VSLD1  
05h VSLD2  
06h VSTP1  
07h VSTP2  
VSLD1[1](1)  
VSLD2[1](1)  
VSTP1[1](1)  
VSTP2[1](1)  
VSPM[1]  
VSLD1[0](1)  
VSLD2[0](1)  
VSTP1[0](1)  
VSTP2[0](1)  
VSPM[0]  
VSLD2 VSLD2 VSLD2 VSLD2 VSLD2 VSLD2  
[11] [10] [9] [8] [7] [6]  
VSLD2  
[5]  
VSLD2  
[4]  
VSTP1 VSTP1 VSTP1 VSTP1 VSTP1 VSTP1  
[11] [10] [9] [8] [7] [6]  
VSTP1  
[5]  
VSTP1  
[4]  
VSTP1[3](1) VSTP1[2](1)  
VSTP2[3](1) VSTP2[2](1)  
VSTP2 VSTP2 VSTP2 VSTP2 VSTP2 VSTP2  
[11] [10] [9] [8] [7] [6]  
VSTP2  
[5]  
VSTP2  
[4]  
VSPM VSPM VSPM VSPM VSPM  
[11] [10] [9] [8] [7]  
08h  
VSPM  
VSPM[6] VSPM[5] VSPM[4]  
VSPM[3]  
VLOAD[3]  
VLDD[3]  
VSPM[2]  
VLOAD[2]  
VLDD[2]  
VLOAD VLOAD VLOAD VLOAD VLOAD VLOAD  
[11]  
VLOAD  
[5]  
VLOAD  
[4]  
09h VLOAD  
VLOAD[1]  
VLDD[1]  
VLOAD[0]  
VLDD[0]  
[10]  
[9]  
[8]  
[7]  
[6]  
VLDD  
[11]  
VLDD  
[10]  
VLDD  
[9]  
VLDD  
[8]  
VLDD  
[7]  
0Ah  
0Bh  
VLDD  
N/A  
VLDD[6] VLDD[5] VLDD[4]  
N/A  
(1) TPIC2050 processes as 0 even if set to 1  
Table 6. DAC Register (VDAC_MAPSW = 1)  
Reg  
Name  
11  
10  
9
8
7
6
5
4
3
2
1
0
00h  
N/A  
N/A  
VTRK  
[11]  
VTRK  
[10]  
01h  
02h  
03h  
04h  
05h  
06h  
VTRK  
VFCS  
VTLT  
VTRK[9] VTRK[8] VTRK[7] VTRK[6] VTRK[5] VTRK[4] VTRK[3] VTRK[2] VTRK[1]  
VFCS[9] VFCS[8] VFCS[7] VFCS[6] VFCS[5] VFCS[4] VFCS[3] VFCS[2] VFCS[1]  
VTRK[0]  
VFCS[0]  
VTLT[0]  
VFCS  
[11]  
VFCS  
[10]  
VTLT  
[11]  
VTLT  
[10]  
VTLT[9]  
VTLT[8]  
VTLT[7]  
VTLT[6]  
VTLT[5]  
VTLT[4]  
VTLT[3]  
VTLT[2]  
VTLT[1]  
VSLD1  
[11]  
VSLD1  
[10]  
VSLD1  
[9]  
VSLD1  
[8]  
VSLD1  
[7]  
VSLD1  
[6]  
VSLD1  
[5]  
VSLD1  
[4]  
VSLD1  
[3]  
VSLD1  
[2]  
VSLD1  
[1](1)  
VSLD1  
[0](1)  
VSLD1  
VSLD2  
VSPM  
VSLD2  
[11]  
VSLD2  
[10]  
VSLD2  
[9]  
VSLD2  
[8]  
VSLD2  
[7]  
VSLD2  
[6]  
VSLD2  
[5]  
VSLD2  
[4]  
VSLD2  
[3]  
VSLD2  
[2]  
VSLD2  
[1](1)  
VSLD2  
[0](1)  
VSPM  
[11]  
VSPM  
[10]  
VSPM[9] VSPM[8] VSPM[7] VSPM[6] VSPM[5] VSPM[4] VSPM[3] VSPM[2] VSPM[1]  
VSPM[0]  
VLDD[0]  
VLDD  
[11]  
VLDD  
[10]  
07h  
08h  
09h  
VLDD  
N/A  
VLDD[9] VLDD[8] VLDD[7] VLDD[6] VLDD[5] VLDD[4] VLDD[3] VLDD[2] VLDD[1]  
N/A  
VLOAD  
[11]  
VLOAD  
[10]  
VLOAD  
[9]  
VLOAD  
[8]  
VLOAD  
[7]  
VLOAD  
[6]  
VLOAD  
[5]  
VLOAD  
[4]  
VLOAD  
N/A  
N/A  
N/A  
VSTP1  
[11]  
VSTP1  
[10]  
VSTP1  
[9]  
VSTP1  
[8]  
VSTP1  
[7]  
VSTP1  
[6]  
VSTP1  
[5]  
VSTP1  
[4]  
0Ah  
0Bh  
VSTP1  
VSTP2  
VSTP2  
[11]  
VSTP2  
[10]  
VSTP2  
[9]  
VSTP2  
[8]  
VSTP2  
[7]  
VSTP2  
[6]  
VSTP2  
[5]  
VSTP2  
[4]  
(1) TPIC2050 processes as 0 even if set to 1  
Copyright © 2015, Texas Instruments Incorporated  
27  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.3 Control Register (8-Bit Read/Write)  
Table 7. Control Register (8-Bit Read/Write)  
Reg  
Name  
F
7
6
5
4
3
2
1
0
70h  
DriverEna  
R/W  
TLT_ENA  
FCS_ENA  
TRK_ENA  
SPM_ENA  
SLD_ENA  
STP_ENA  
LOAD_ENA  
XSLEEP  
ENDDET  
_ENA  
TEMPMON  
_ENA  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
FuncEna  
ACTCfg  
Parm0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
TI Rsvd  
ENDDET_SEL  
LDD_ENA  
LDD_MSEL  
P12VMUTE  
_NORST  
ACTPROT  
_OFF  
RSTIN_OFF  
ACTTEMPTH  
SLEDEND  
_HZTIME  
STPEND  
_HZTIME  
SIF_TIMEOUT_TH  
SLDENDTH  
STPENDTH  
LDD_AMOD  
E
STATUS  
_ON_VFCS  
VSLD2  
_POL  
VSTP2  
_POL  
ADVANCE  
_RD  
VDAC  
_MAPSW  
SIFCfg  
DIFF_TLT  
SOMI_HIZ  
SPM_FAST SPM_SLNT  
SPM  
_HIZMODE  
Parm1  
TRAY_LOCKDET  
TI Reserved  
TI Reserved  
_BRK  
_BRK  
WRITE  
_ENABLE  
REG6X  
_Write  
WriteEna  
ClrReg  
RST_ERR  
_FLAG  
RST_INDAC RST_REGS  
TI Reserved  
TI Reserved  
ACTTEMP  
ACT_TIMER  
_PROT  
ActTemp  
UVLOMon  
R
UVLO  
_INT3P3  
UVLO  
_P12V  
R
TI Reserved  
TSD  
UVLO_P5V  
UVLO_SIOV OVP_P5V  
OVP_P12V  
TSD  
_FAULT  
_ACT  
TSD  
_FAULT  
_LDD  
TSD  
_LDD  
7Ah  
TSDMon  
R
TI Rsvd  
_FAULT  
_SPM  
TI Rsvd  
TSD_SPM  
TSD_ACT  
SCP_ACT  
7Bh  
7Ch  
OCPMon  
TempMon  
R
R
TI Reserved  
OCP_STP  
SCP_SPM  
SCP_SLED SCP_LOAD  
CHIPTEMP  
SCP_STP  
CHIPTEMP  
_STATUS  
7Dh  
7Eh  
Protect  
Version  
R
R
TI Reserved  
Version  
SIF  
_TIMEOUT  
ERR  
ACTTIMER  
_FAULT  
OCPSCPER  
R
7Fh  
60h  
61h  
Status  
Protect  
SPM1  
R
ENDDET  
TI Rsvd  
PWRERR  
TSDERR  
TSDFAULT  
FG  
R/W  
R/W  
TI Reserved  
TI Reserved  
OVP  
_SBRAKE  
_OFF  
PWMmaxDu  
ty_R_SEL1  
SBRAKE  
_ON  
TI Reserved  
PWMmaxDu  
ty_R_SEL0  
62h  
SPM2  
R/W  
TI Reserved  
63h  
64h  
65h  
66h  
67h  
68h  
Protect  
Protect  
Protect  
Protect  
Protect  
Protect  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TI Reserved  
TI Reserved  
TI Reserved  
TI Reserved  
TI Reserved  
TI Reserved  
SCP_SPM  
_OFF  
SCP_SLED SCP_LOAD  
SCP_ACT  
_OFF  
SCP_STP  
_OFF  
OCP_STP  
_OFF  
OVPPRE12  
V_OFF  
6Bh  
DisProt  
R/W  
TI Rsvd  
_OFF  
_OFF  
STP_WIND  
_HIZ  
STP  
_WIND_H  
6Ch  
6Dh  
6Eh  
STPCfg  
Protect  
UtilCfg  
R/W  
R/W  
R/W  
TI Reserved  
LDD_IUP  
TI Reserved  
TI Rsvd  
GPOUT  
_ENA  
GPOUT_HL  
TI Reserved  
SIF_TIMEO  
UTERR_MO  
N
ACTTIMER  
_FLT_MON  
ENDDET  
_MON  
PWRERR  
_MON  
TSDERR  
_MON  
OCPERR  
_MON  
TSDFAULT  
_MON  
6Fh  
MonitorSet  
R/W  
TI Rsvd  
VTRK and VLOAD are exclusive, using same DAC circuit block.  
28  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4 Detailed Description of Registers  
8.6.4.1 REG01 12-Bit DAC for Tilt (offset = 01h) [reset = ]  
(VDAC_MAPSW = 0)  
Figure 18. REG01 12-Bit DAC for Tilt  
11  
10  
9
8
VTLT  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTLT  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. REG01 12-Bit DAC for Tilt Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VTLT  
W
0h  
Digital input code for tilt  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by differential tilt mode (REG74[7])  
TLT_OUT = VTLT × (6.0 / 2048) (DIFF_TLT = 0)  
TLT_OUT = (VFCS – VTLT) × (6.0 / 2048) (DIFF_TLT = 1)  
TLT_OUT should be changed after writing VFCS.  
In DIFF_TLT mode (DIFF_TLT  
changed after writing VFCS.  
= 1), TLT_OUT should be  
8.6.4.2 REG02 12-Bit DAC for Focus (offset = 02h) [reset = ]  
(VDAC_MAPSW=0)  
Figure 19. REG02 12-Bit DAC for Focus  
11  
10  
9
8
VFCS  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VFCS  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. REG02 12-Bit DAC for Focus Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VFCS  
W
0h  
Digital input code for focus  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by differential tilt mode (REG74[7])  
FCS_OUT = VFCS × (6.0 / 2048) (DIFF_TLT = 0)  
FCS_OUT = (VFCS + VTLT) × (6.0 / 2048) (DIFF_TLT = 1)  
Copyright © 2015, Texas Instruments Incorporated  
29  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.3 REG03 12-Bit DAC for Tracking (offset = 03h) [reset = ]  
(VDAC_MAPSW=0)  
Figure 20. REG03 12-Bit DAC for Tracking  
11  
10  
9
8
VTRK  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTRK  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. REG03 12-Bit DAC for Tracking Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VTRK  
W
0h  
Digital input code for tracking  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
TRK_OUT = VTRK × (6.0 / 2048)  
8.6.4.4 REG04 12-Bit DAC for Sled1 (offset = 04h) [reset = ]  
(VDAC_MAPSW=0)  
Figure 21. REG04 12-Bit DAC for Sled1  
11  
10  
9
8
VSLD1  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD1  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. REG04 12-Bit DAC for Sled1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VSLD1  
W
0h  
Digital input code for Sled1.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD1[1:0], handled with zero.  
SLD1_OUT = VSLD1 × (880 mA / 2048)  
30  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.5 REG05 12-Bit DAC for Sled2 (offset = 05h) [reset = ]  
(VDAC_MAPSW=0)  
Figure 22. REG05 12-Bit DAC for Sled2  
11  
10  
9
8
VSLD2  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD2  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. REG05 12-Bit DAC for Sled2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VSLD2  
W
0h  
Digital input code for Sled2.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD2[1:0], are handled with zero.  
SLD2_OUT = VSLD2 × (880 mA/2048)  
8.6.4.6 REG06 12-Bit DAC for Stepping1 (offset = 06h) [reset = ]  
(VDAC_MAPSW = 0)  
Figure 23. REG06 12-Bit DAC for Stepping1  
11  
10  
9
8
VSTP1  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSTP1  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. REG06 12-Bit DAC for Stepping1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VSTP1  
W
0h  
Digital input code for Stepping1  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Although VSTP1 is 12-bit width, MSB 8 bits is effective.  
Four bits on LSB, VSTP1[3:0], are handled with zero.  
VSTP1_OUT = VSTP1 × (P5V / 2048)  
Copyright © 2015, Texas Instruments Incorporated  
31  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.7 REG07 12-Bit DAC for Stepping2 (offset = 07h) [reset = ]  
(VDAC_MAPSW=0)  
Figure 24. REG07 12-Bit DAC for Stepping2  
11  
10  
9
8
VSTP2  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSTP2  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. REG07 12-Bit DAC for Stepping2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VSTP2  
W
0h  
Digital input code for Stepping2  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Although VSTP2 is 12-bit width, MSB 8 bits is effective.  
Four bits on LSB, VSTP2[3:0], are handled with zero.  
VSTP2_OUT = VSTP2 × (P5V / 2048)  
8.6.4.8 REG08 12-Bit DAC for Spindle (offset = 08h) [reset = ]  
(VDAC_MAPSW = 0)  
Figure 25. REG08 12-Bit DAC for Spindle  
11  
10  
9
8
VSPM  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSPM  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. REG08 12-Bit DAC for Spindle Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VSPM  
W
0h  
Digital input code for Spindle  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
SPM_OUT = VSPM × (14.0 / 2048)  
32  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.9 REG09 12-Bit DAC for Load (offset = 09h) [reset = ]  
(VDAC_MAPSW = 0)  
Figure 26. REG09 12-Bit DAC for Load  
11  
10  
9
8
VLOAD  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VLOAD  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. REG09 12-Bit DAC for Load Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VLOAD  
W
0h  
Digital input code for Load.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
LOAD_OUT = VLOAD × (6.0 / 2048) at P5V12L = 5.0 V  
LOAD_OUT = VLOAD × (14.0/2048) at P5V12L = 12.0 V  
8.6.4.10 REG0A 12-Bit DAC for Laser Diode Driver (offset = 0Ah) [reset = ]  
(VDAC_MAPSW = 0)  
Figure 27. REG0A 12-Bit DAC for Laser Diode Driver  
11  
10  
9
8
VLDD  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VLDD  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. REG0A 12-Bit DAC for Laser Diode Driver Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
11-0  
VLDD  
W
0h  
Digital input code for VLDD.  
Since VLDD is 11 bit length, VLDD[11] should be set 0.  
Binary format 0x000 to 0x7ff(+2047)  
LDD_OUT = VLDD × (120 mA / 2048)  
MSB (bit 11) is secured in order to unite with other 12-bit form.  
Copyright © 2015, Texas Instruments Incorporated  
33  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.11 REG70 8-Bit Control Register for DriverEna (offset = 70h) [reset = ]  
Figure 28. REG70 8-Bit Control Register for DriverEna  
7
6
5
4
3
2
1
0
TLT_ENA  
rw-0  
FCS_ENA  
rw-0  
TRK_ENA  
rw-0  
SPM_ENA  
rw-0  
SLD_ENA  
rw-0  
STP_ENA  
rw-0  
LOAD_ENA  
rw-0  
XSLEEP  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. REG70 8-Bit Control Register for DriverEna Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
TLT_ENA  
FCS_ENA  
TRK_ENA  
SPM_ENA  
SLD_ENA  
STP_ENA  
LOAD_ENA  
1h = Tilt enable (with XSLEEP = 1)  
1h = Focus enable (with XSLEEP = 1)  
1h = Track enable (with XSLEEP = 1)  
1h = Spindle enable (with XSLEEP = 1)  
1h = Sled enable (with XSLEEP = 1)  
1h = Step enable (with XSLEEP = 1)  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
1
0h  
1h = LOAD enable (with XSLEEP = 1)  
Track (bit5:TRK_ENA) will be disabled at LOAD_ENA = 1  
because of sharing the DAC PWM module. Load priority is  
higher than TRK_ENA.  
0
XSLEEP  
RW  
0h  
1h = Operation mode (need 1 ms)  
0h = Power save mode  
Charge pump enable bit  
All driver enable bit (Bit[7:1]) change disabled and output  
change to Hi-Z (regardless of setting xxx_ENA bit is 1) when  
setting XSLEEP to 0. Therefore, set 1 to XSLEEP before setting  
each enable bits.  
8.6.4.12 REG71 8-Bit Control Register for FuncEna (offset = 71h) [reset = ]  
Figure 29. REG71 8-Bit Control Register for FuncEna  
7
6
5
4
3
2
1
0
TI reserved  
ENDDET_ENA  
ENDDET_SEL  
LDD_ENA  
LDD_MSEL  
rw-0  
TEMPMON  
_ENA  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. REG71 8-Bit Control Register for FuncEna Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
ENDDET_ENA  
6
RW  
0h  
1h = Use sled/step_End, load tray lock detection enable (with  
STP_ENA = 1, or SLD_ENA = 1, or LOAD_ENA = 1)  
5-4  
ENDDET_SEL  
RW  
0h  
00 : Sled end detection monitor  
01 : Step end detection monitor  
10 : Load tray lock detection monitor  
1h = LDD enable (with XSLEEP = 1)  
3
LDD_ENA  
RW  
RW  
0h  
0h  
2-1  
LDD_MSEL  
Laser diode driver output selection  
00: No select  
01: CD  
10: DVD  
11: BD  
0
TEMPMON_ENA  
RW  
0h  
1h = Enable chip temperature monitoring (with XSLEEP = 1)  
34  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.13 REG72 8-Bit Control Register for ACTCfg (offset = 72h) [reset = ]  
Figure 30. REG72 8-Bit Control Register for ACTCfg  
7
6
5
4
3
2
1
0
P12VMUTE  
_NORST  
RSTIN_OFF  
ACTPROT  
_OFF  
ACTTEMPTH  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. REG72 8-Bit Control Register for ACTCfg Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
P12VMUTE_NORST  
RW  
0h  
0h = System reset at P12V low voltage  
1h = Output High-Z only at P12V low voltage detection  
6
5
RSTIN_OFF  
RW  
RW  
RW  
0h  
0h  
0h  
0h = XRSTIN input enable  
1h = Ignored XRSTIN pin input (do not reset device when  
XRSTIN = L)  
ACTPROT_OFF  
ACTTEMPTH  
0h = Actuator protection ON  
1h = Actuator fault monitor disable (no protection for ACT  
channel)  
4-0  
Actuator thermal protection (= ACT Timer) threshold level  
ACT Timer Protection enable except ACTTEMPTH[4:0] = 0x00  
ACTTEMPTH = 0x00 equal to ACTPROT_OFF = 1  
By writing value 0x00, ACTTIMER_PROT flag is cleared.  
Copyright © 2015, Texas Instruments Incorporated  
35  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.14 REG73 8-Bit Control Register for Parm0 (offset = 73h) [reset = ]  
Figure 31. REG73 8-Bit Control Register for Parm0  
7
6
5
4
3
2
1
0
SIF_TIMEOUT_TH  
SLEDEND  
_HZTIME  
SLDENDTH  
rw-0  
STPEND  
_HZTIME  
STPENDTH  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. REG73 8-Bit Control Register for Parm0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SIF_TIMEOUT_TH  
RW  
0h  
Watch dog timer for serial communication  
0h = disable  
1h = 1 ms  
2h = 100 µs  
3h = 10 µs  
Set SIF_TIMEOUTERR (REG7D) if communication is  
suspended for this time period. Reset register processing is  
performed if a SIF_TIMEOUTERR occurs.  
5
SLEDEND_HZTIME  
SLDENDTH  
RW  
RW  
0h  
0h  
Time window for sled end detection.  
0h = 400 µs  
1h = 200 µs  
Note: Need to recycle SLD_ENDDET_ENA = 0 1 after writing  
this bit.  
4-3  
Sled end detection sensibility setting. Detection threshold for  
motor BEMF  
00: 124 mV  
01: 168 mV  
11: 73 mVꢀ  
10: 0 mV  
2
STPEND_HZTIME  
STPENDTH  
RW  
RW  
0h  
0h  
Step High-Z detection period in end detection  
0h = 400 µs  
1h = 200 µs  
Note: Need to recycle STP_ENDDET_ENA = 0 1 after writing  
this bit.  
1-0  
Step end detection sensibility setting  
00: 39 mV  
01: 60 mV  
11: 19 mV  
10: 0 mV  
36  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.15 REG74 8-Bit Control Register for SIFCfg (offset = 74h) [reset = ]  
Figure 32. REG74 8-Bit Control Register for SIFCfg  
7
6
5
4
3
2
1
0
DIFF_TLT  
LDD_AMODE  
RDSTAT  
VSLD2_POL  
VSTP2_POL  
ADVANCE_RD  
SOMI_HIZ  
VDAC_MAPSW  
_ON_VFCS  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. REG74 8-Bit Control Register for SIFCfg Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIFF_TLT  
RW  
0h  
1h = Differential tilt mode enable (with TLT_ENA = FCS_ENA =  
1)  
Differential tilt mode (DIFF_TLT = 1), DAC value setting as  
follows  
FCS_OUT = (VFCS + VTLT) × 6 / 2048  
TLT_OUT = (VFCS – VTLT) × 6 / 2048  
In DIFF_TLT mode (DIFF_TLT  
changed after writing VFCS.  
= 1), TLT_OUT should be  
6
5
LDD_AMODE  
RW  
RW  
0h  
0h  
Setting LDD analog mode  
0h = VLDD set by VDAC register (REG0A)  
1h = VLDD set by voltage input via VLDDIN pin  
RDSTAT_ON_VFCS  
Set Read status data (REG7F) at VFCS write command  
(REG02)  
1h = Enable Write and Read mode  
(Write 12 bits Focus DAC data + Read 8 bits status data)  
Change direction of SLED rotation  
4
3
2
VSLD2_POL  
VSTP2_POL  
ADVANCE_RD  
RW  
RW  
RW  
0h  
0h  
0h  
Change direction of STEP rotation  
0h = Normal read timing  
1h = Read timing is advanced half clock cycle  
1
0
SOMI_HIZ  
RW  
RW  
0h  
0h  
0h = SOMI line High-Z at bus idling time.  
1h = SOMI line pull down at bus idling time.  
VDAC_MAPSW  
1h = Change channel assignments of DAC register (REG01~0A)  
Copyright © 2015, Texas Instruments Incorporated  
37  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.16 REG75 8-Bit Control Register for Parm1 (offset = 75h) [reset = ]  
Figure 33. REG75 8-Bit Control Register for Parm1  
7
6
5
4
3
2
1
0
TRAY_LOCKDET  
TI reserved  
rw-0  
SPM_FAST  
_BRK  
SPM_SLNT  
_BRK  
SPM  
_HIZMODE  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. REG75 8-Bit Control Register for Parm1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
TRAY_LOCKDET  
RW  
0H  
Load tray locking detection control  
0h = Disable detection  
1-7: Detection threshold  
1h = 100 mA  
2h = 150 mA  
3h = 200 mA  
4h = 250 mA  
5h = 300 mA  
6h = 350 mA  
7h = 400 mA  
4-3  
2
Reserved  
RW  
RW  
0h  
0h  
SPM_FAST_BRK  
Fast brake mode selection  
0h = Normal brake mode perform auto short brake sequence in  
specific speed  
1h = No short brake under 5500 rpm  
1
0
SPM_SLNT_BRK  
SPM_HIZMODE  
RW  
RW  
0h  
0h  
Silent brake mode selection  
0h = Normal brake mode  
1h = No active brake under 5500 rpm  
Active brake mode is not performed inputting any value into  
VSPIN.  
Spindle output Hi-Z mode  
0h = Normal operation  
1h = Spindle output (UVW) put Hi-Z (use for test purpose)  
8.6.4.17 REG76 8-Bit Control Register for WriteEna (offset = 76h) [reset = ]  
Figure 34. REG76 8-Bit Control Register for WriteEna  
7
6
5
4
3
2
1
0
WRITE  
_ENABLE  
TI reserved  
rw-0  
REG6X_Write  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. REG76 8-Bit Control Register for WriteEna Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WRITE_ENABLE  
RW  
0h  
0h = Register Write disable except REG76  
1h = Write enable for registers REG01~09, REG70~7F  
6-1  
0
Reserved  
RW  
RW  
0h  
0h  
REG6X_Write  
0h = Disable Write access REG6X bank  
1h = Enable Write access REG6X bank  
38  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.18 REG77 8-Bit Control Register for ClrReg (offset = 77h) [reset = ]  
Figure 35. REG77 8-Bit Control Register for ClrReg  
7
6
5
4
3
2
1
0
RST_INDAC  
RST_REGS  
RST_ERR  
_FLAG  
TI reserved  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. REG77 8-Bit Control Register for ClrReg Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RST_INDAC  
W
0h  
1h = Reset all 12-bit input DAC register (REG01~09)  
*Self clear bit  
6
5
RST_REGS  
RST_ERR_FLAG  
Reserved  
W
W
W
0h  
0h  
0h  
1h = Reset all 8-bit R/W Registers (REG70h~77h, 60h-6Fh)  
*Self clear bit  
1h = Reset Fault Flag Latch (REG7F, REG79~REG7D)  
*Self clear bit  
4-0  
8.6.4.19 REG78 8-Bit Control Register for ActTemp (offset = 78h) [reset = ]  
Figure 36. REG78 8-Bit Control Register for ActTemp  
7
6
5
4
3
2
1
0
TI reserved  
r-0  
ACT_TIMER  
_PROT  
ACTTEMP  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. REG78 8-Bit Control Register for ActTemp Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
ACT_TIMER_PROT  
R
0h  
ACT timer protection flag  
1h = ACT timer protection has detected and latched.  
(ACTTEMP > ACTTEMPTH)  
This bit holds data after temperature change to low since this is  
latch bit. Also driver output keep Hi-Z until setting  
a
RST_ERR_FLAG or ACTTEMPTH = 0.  
4-0  
ACTTEMP  
R
0h  
An integrated value of ACT_TIMER counters at present  
Copyright © 2015, Texas Instruments Incorporated  
39  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.20 REG79 8-Bit Control Register for UVLOMon (offset = 79h) [reset = ]  
Figure 37. REG79 8-Bit Control Register for UVLOMon  
7
6
5
UVLO_P5V  
r-0  
4
UVLO_INT3P3  
r-0  
3
UVLO_P12V  
r-0  
2
UVLO_SIOV  
r-0  
1
OVP_P5V  
r-0  
0
OVP_P12V  
r-0  
TI Reserved  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. REG79 8-Bit Control Register for UVLOMon Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
(1)  
5
UVLO_P5V  
UVLO_INT3P3  
UVLO_P12V  
UVLO_SIOV  
OVP_P5V  
OVP_P12V  
R
0h  
UVLO flag for detection Low P5V supply  
4
R
0h  
UVLO flag for detection Low internal 3.3 V regulator(1)  
(1)  
3
R
0h  
UVLO flag for detection Low P12V supply  
(1)  
2
R
0h  
UVLO flag for detection Low SIOV supply  
(1)  
1
R
0h  
Overvoltage protection flag for P5V supply  
(1)  
0
R
0h  
Overvoltage protection flag for P12V supply  
(1) Latched first reset event only. Cleared by RST_ERR_FLG (REG77)  
8.6.4.21 REG7A 8-Bit Control Register for TSDMon (offset = 7Ah) [reset = ]  
Figure 38. REG7A 8-Bit Control Register for TSDMon  
7
6
5
4
3
2
1
0
TI reserved  
TSD_FAULT  
_SPM  
TSD_FAULT  
_ACT  
TSD_FAULT  
_LDD  
TI reserved  
TSD_SPM  
TSD_ACT  
TSD_ LDD  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. REG7A 8-Bit Control Register for TSDMon Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
6
TSD_FAULT_SPM  
TSD_FAULT_ACT  
R
0h  
Pre alert of thermal protection of Spindle block(1)  
5
R
0h  
Pre alert of thermal protection of focus, track, tilt, sled1, sled2,  
step1, step2, load(1)  
4
3
2
TSD_FAULT_LDD  
Reserved  
R
R
R
0h  
0h  
0h  
Prealert of thermal protection of LDD(1)  
Thermal protection flag for Spindle(1)  
SPM output Hi-Z until temperature falls on release level  
1h = Detect (latch)  
TSD_SPM  
1
0
TSD_ACT  
TSD_ LDD  
R
R
0h  
0h  
Thermal protection flag for focus, track, tilt, sled1, sled2, step1,  
step2, load(1)  
Actuator output Hi-Z until temperature falls on release level  
1h = Detect (latch)  
Thermal protection flag for LDD(1)  
LDD output Hi-Z until temperature falls on release level  
1h = Detect (latch)  
(1) Cleared by RST_ERR_FLAG bit (REG77)  
40  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.22 REG7B 8-Bit Control Register for OCPMon (offset = 7Bh) [reset = ]  
Figure 39. REG7B 8-Bit Control Register for OCPMon  
7
6
5
4
SCP_SPM  
r-0  
3
SCP_SLED  
r-0  
2
SCP_LOAD  
r-0  
1
0
TI reserved  
OCP_STP  
SCP_ACT  
r-0  
SCP_STP  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. REG7B 8-Bit Control Register for OCPMon Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
OCP_STP  
SCP_SPM  
SCP_SLED  
SCP_LOAD  
SCP_ACT  
SCP_STP  
R
0h  
Overcurrent protection flag bit for step block(1)  
Short protection flag bit for spindle block(1)  
Short protection flag bit for sled block(1)  
Short protection flag bit for load block(1)  
Short protection flag bit for actuator block(1)  
Short protection flag bit for step block(1)  
4
R
0h  
3
R
0h  
2
R
0h  
1
R
0h  
0
R
0h  
(1) Cleared by RST_ERR_FLAG bit (REG77)  
8.6.4.23 REG7C 8-Bit Control Register for TempMon (offset = 7Ch) [reset = ]  
Figure 40. REG7C 8-Bit Control Register for TempMon  
7
6
5
4
3
2
1
0
TI Reserved  
CHIPTEMP  
_STATUS  
CHIPTEMP  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. REG7C 8-Bit Control Register for TempMon Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CHIPTEMP_STATUS  
R
0h  
1h = New data CHIPTEMP[5:0] is updated It will be cleared after  
reading.  
5-0  
CHIPTEMP  
R
0h  
Chip temperature monitor (2.38°/LSB)  
15(0) to 165(63) degrees.  
For monitoring, TEMPMON_ENA = 1 and XSLEEP = 1 is  
required  
8.6.4.24 REG7E 8-Bit Control Register for Version (offset = 7Eh) [reset = ]  
Figure 41. REG7E 8-Bit Control Register for Version  
7
6
5
4
3
2
1
0
Version  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. REG7E 8-Bit Control Register for Version Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Version  
R
0h  
Version[7:4] = Revision number of TPIC2050  
Version[3:0] = Option  
Copyright © 2015, Texas Instruments Incorporated  
41  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.25 REG7F 8-Bit Control Register for Status (offset = 7Fh) [reset = ]  
Figure 42. REG7F 8-Bit Control Register for Status  
7
6
5
4
3
2
1
0
ACTTIMER  
_FAULT  
ENDDET  
SIF_TIMEOUT  
ERR  
PWRERR  
TSDERR  
OCPERR  
TSDFAULT  
FG  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. REG7F 8-Bit Control Register for Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ACTTIMER_FAULT  
R
0h  
Status flag of ACTTIMER protection  
1h  
= Prealert of ACTTIMER protection. It is close to the  
threshold level. The user can get the current ACTTIMER value  
in REG78.  
Both this bit and ACT_TIMER_PROT (REG78) are set when  
over the threshold.  
6
5
ENDDET  
R
R
0h  
0h  
Status flag of END detection  
1h  
= End position detected (not latch bit) for step/sled.  
(ENDDET_SEL = 10)  
Load motor current exceeds threshold at using load tray lock  
detection. (ENDDET_SEL = 10)  
SIF_TIMEOUTERR  
Error flag of serial interface watch dog timer  
1h = SIF communication was interrupted, expired watch dog  
timer  
4
3
2
1
0
PWRERR  
TSDERR  
OCPERR  
TSDFAULT  
FG  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Error flag of power  
1h = Voltage problem occurred, details in REG79  
Error flag of any overthermal protections  
1h = Dispatched thermal protection, details in REG7A  
Error flag of any short-circuit protection  
1h = Dispatched SCP, details in REG7Bh  
Warning of TSD of any thermal protection  
1h = Detect pre thermal protection, details in REG7A  
FG signal. Spindle rotation pulse for speed monitor  
42  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.26 REG61 8-Bit Control Register for SPM1 (offset = 61h) [reset = ]  
Figure 43. REG61 8-Bit Control Register for SPM1  
7
6
5
4
3
2
1
0
PWMmaxDuty  
_R_SEL1  
TI reserved  
OVP_SBRAKE  
_OFF  
TI reserved  
rw-0  
SBRAKE_ON  
TI reserved  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. REG61 8-Bit Control Register for SPM1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWMmaxDuty_R_SEL1  
RW  
0h  
PWM duty maximum setting in active brake mode (upper bit of  
PWMmaxDuty_R_SEL[1:0])  
00: Maximum PWM duty 12.5%  
01: Maximum PWM duty 25%  
10: Maximum PWM duty 37.5%  
11: Maximum PWM duty 37.5%  
(TI recommends to set to 0X in case of use in no-disk, because  
it may not stop in a specific motor setting 37.5%.)  
6
5
Reserved  
RW  
RW  
0h  
0h  
OVP_SBRAKE_OFF  
Select short brake mode of P12V pre-OVP  
0h = 3-phase short brake mode  
1h = 2-phase short brake mode  
4-3  
2
Reserved  
RW  
RW  
0h  
0h  
SBRAKE_ON  
Force short brake  
0h = No brake  
1h = Perform 3-phase short brake in any state  
1-0  
Reserved  
RW  
0h  
8.6.4.27 REG62 8-Bit Control Register for SPM2 (offset = 62h) [reset = ]  
Figure 44. REG62 8-Bit Control Register for SPM2  
7
6
5
4
3
2
1
0
TI reserved  
rw-0  
PWMmaxDuty  
_R_SEL0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. REG62 8-Bit Control Register for SPM2 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
PWMmaxDuty_R_SEL0  
RW  
0h  
PWM duty maximum setting in active brake mode (lower bit of  
PWMmaxDuty_R_SEL[1:0])  
Copyright © 2015, Texas Instruments Incorporated  
43  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.28 REG6B 8-Bit Control Register for DisProt (offset = 6Bh) [reset = ]  
Figure 45. REG6B 8-Bit Control Register for DisProt  
7
6
5
4
3
2
1
0
SCP_SPM  
_OFF  
SCP_SLED  
_OFF  
SCP_LOAD  
_OFF  
SCP_ACT  
_OFF  
SCP_STP_OFF  
OCP_STP  
_OFF  
TI reserved  
OVPPRE12V  
_OFF  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. REG6B 8-Bit Control Register for DisProt Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCP_SPM_OFF  
RW  
0h  
Control bit of short-circuit protection function for spindle block  
0h = Enable SCP function  
1h = Disable SCP function  
Caution(1): TI recommends using it only for test purposes.  
6
5
4
3
2
SCP_SLED_OFF  
SCP_LOAD_OFF  
SCP_ACT_OFF  
SCP_STP_OFF  
OCP_STP_OFF  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
For sled driver block  
Caution(1): TI recommends using it only for test purposes.  
For load driver block  
Caution(1): TI recommends using it only for test purposes.  
For actuator driver block  
Caution(1): TI recommends using it only for test purposes.  
For step driver block  
Caution(1): TI recommends using it only for test purposes.  
Control bit of overcurrent protection function for stepper block  
0h = Enable OCP function  
1h = Disable OCP function  
Caution(1): TI recommends using it only for test purpose.  
1
0
Reserved  
RW  
RW  
0h  
0h  
OVPPRE12V_OFF  
Disable short brake function at P12V pre-OVP condition.  
0h = Enable function which perform short brake at 12-V pre-  
OVP  
1h = Disable short brake at 12-V pre-OVP  
TI recommend to set to 0  
(1) CAUTION: Device will be fatally damaged if short circuit occurs in the xxx_OFF = 1.  
44  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
8.6.4.29 REG6C 8-Bit Control Register for STPCfg (offset = 6Ch) [reset = ]  
Figure 46. REG6C 8-Bit Control Register for STPCfg  
7
6
5
4
3
2
1
0
TI Reserved  
LDD_IUP  
TI Reserved  
STP_WIND  
_HIZ  
STP_WIND_H  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. REG6C 8-Bit Control Register for STPCfg Field Descriptions  
Bit  
7-5  
4-3  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
LDD_IUP  
RW  
0h  
Extend LDD maximum current  
00: 120 mA  
01: 1.24× an initial value  
10: 1.48× an initial value (*1)  
11: 1.72× an initial value (*2)  
*1) The LDD output time of the maximum current should maintain 50% or  
less of the xsleep total ON time.  
*2) The LDD output time of the maximum current should maintain 25% or  
less of the xsleep total ON time.  
2
1
Reserved  
RW  
RW  
0h  
0h  
STP_WIND_HIZ  
0h = Normal end detection  
1h = When detecting BEMF, set STP1 and STP2 FET Hi-Z to reduce  
mutual noise.  
0
STP_WIND_H  
RW  
0h  
0h = Normal end detection  
1h = When detecting BEMF, set driving phase to Hi (detecting phase Hi-Z)  
to reduce mutual noise.  
8.6.4.30 REG6E 8-Bit Control Register for UtilCfg (offset = 6Eh) [reset = ]  
Figure 47. REG6E 8-Bit Control Register for UtilCfg  
7
6
5
4
3
2
1
0
GPOUT_HL  
rw-0  
GPOUT_ENA  
rw-0  
TI reserved  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. REG6E 8-Bit Control Register for UtilCfg Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPOUT_HL  
RW  
0h  
GPOUT (general-purpose output) pin output selection  
0h = Low output  
1h = High output  
Valid only if REG6F = 00h  
6
GPOUT_ENA  
Reserved  
RW  
RW  
0h  
0h  
Enable monitor signal output to GPOUT pin  
0h = No signal output, Hi-Z  
1h = Output signal selected in REG6F with CMOS output  
Output is logical OR when selected two more signals  
5-0  
Copyright © 2015, Texas Instruments Incorporated  
45  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
8.6.4.31 REG6F 8-Bit Control Register for MonitorSet (offset = 6Fh) [reset = ]  
Figure 48. REG6F 8-Bit Control Register for MonitorSet  
7
6
5
4
3
2
1
0
ACTTIMER  
_FLT_MON  
ENDDET  
_MON  
SIF  
_TIMEOUTER  
R
PWRERR  
_MON  
TSDERR_MON  
OCPERR  
_MON  
TSDFAULT  
_MON  
TI Rsvd  
_MON  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. REG6F 8-Bit Control Register for MonitorSet Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
ACTTIMER_FLT_MON  
MONITOR_MON  
SIF_TIMEOUTERR_MON  
PWRERR_MON  
TSDERR_MON  
SCPERR_MON  
TSDFAULT_MON  
Reserved  
1h = ACTTIMER fault output to GPOUT pin  
1h = ENDDET monitor output to GPOUT pin  
1h = SIF timeout monitor output to GPOUT pin  
1h = PWRERR monitor output to GPOUT pin  
1h = TSDERR fault output to GPOUT pin  
1h = OCPERR fault output to GPOUT pin  
1h = TSDFAULT fault output to GPOUT pin  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
1
0h  
0
0h  
46  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Voltage Monitoring  
Power faults are reported in the UVLOMon register. Each UVLOMon bit initializes to 0 upon a cold power up.  
After a fault is detected, the appropriate fault bit is latched high. Writing to the RST_ERRFLG (REG77) clears all  
UVLOMon bits. Table 39 summarizes the power device faults and actions.  
Table 39. Power Fault Monitor  
DRIVER OUTPUT AT DETECTION  
LATCHED  
REGISTER  
CRITERI  
A
FAULT TYPE  
POR  
SPM  
SLED  
LOAD  
STEP  
ACT  
LDD  
P5V under  
voltage  
UVLO_P5V  
UVLO_INT3P3  
UVLO_P12V  
Yes  
Yes  
<3.7 V  
<2.7 V  
<8.4 V  
Hi-Z  
Hi-Z  
Hi-Z  
Internal 3.3-V  
under voltage  
P12V under  
voltage  
Yes(1)  
Yes  
SIOV under  
voltage  
UVLO_SIOV  
OVP_P5V  
<2.0 V  
>6.2 V  
>14.9 V  
Hi-Z  
Hi-Z  
P5V over voltage  
P12V over  
voltage  
OVP_P12V  
Hi-Z  
(1) P12VMUTE_NORST = 0: force POR, P12VMUTE_NORST=1: no POR  
9.1.2 Spindle Motor Driver Operating Sequence  
When the VSPM is set to a positive DAC code, it enters into acceleration mode. Initial position sense (IS) mode  
then operates, as the start-up circuits offer the start-up pattern sequence to the driver, then switch to spin-up  
mode by detecting the rotor position using the BEMF signal from the spindle motor coil.  
The spin-down and brake function are also controlled by the DAC value VSPM. When it has set the brake  
command to the VSPM, the driver goes into active-brake mode, then switches to short-brake mode in slow  
revolution speed, and then stops automatically. EXOR of a three-phase signal comprises the FG signal and is  
output from the XFG pin as shown in Figure 49.  
Copyright © 2015, Texas Instruments Incorporated  
47  
 
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
RDY  
XRSTIN  
WRITE_ENABLE  
XSLEEP  
SPM_ENA  
VSPM  
XFG  
VSPM[11:0] > 0  
VSPM[11:0] < 0  
0
brake  
speed  
>15ms  
release  
300ms  
260rpm  
time  
Figure 49. Spindle Operating Sequence  
Use the down-edge of the FG signal for monitoring FG frequency.  
Short brake mode asserts after 300 ms if the FG signal stays L-level in deceleration.  
This value is the nominal number of using a 12-poles motor.  
The internal circuit starts 800 µs (typical) after the RDY pin changes to 'H'.Recommended marginal delay value  
is 1 ms.  
9.1.3 Auto Short Brake Function  
The TPIC2050 provides an auto short brake function that selects a brake mode automatically by motor speed.  
Auto short brake includes two modes: short brake and active brake. If a value of 0xF90 or less is set to the  
VSPM, the brake mode automatically changes at rotation speed. This function enables low-power consumption  
and silent braking. Figure 50 shows the relation between brake mode and speed. The over-speed protect  
function suspends the SPM driver output at 15000 or more revolutions.  
48  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
Table 40. Brake Mode  
APPROXIMATE ROTATION SPEED (RPM)(1)  
11500 TO 5600 5600 TO 4000  
2-phase short brake  
Active brake  
VSPM[11:0]  
MODE  
11500  
4000 TO 0  
0x000 to 0xFDD  
0xFDC to 0xF90  
Manual  
Manual  
3-phase short  
Brake(2)  
0xF8F to 0xADB  
0xADA to 0x800  
Auto short  
Auto short  
Free run  
Free run  
Active brake  
Active brake  
3-phase short brake(3)  
(1) Typical value using a 12-pole motor  
(2) Active brake is chosen when it does not exceed 6400 rpm once from a rotation start.  
(3) Active brake is chosen when it does not exceed 4600 rpm once from a rotation start.  
rpm  
Hi-Z (over speed protecion)  
15600  
Free run  
*1  
11500  
3-phase short  
2-phase  
short  
auto  
5600  
4000  
*1  
auto  
Active  
( selectable 3-phaseshort )  
0
800h  
ADBh  
F90h FDDh 000  
VSPM[11:0]  
Each threshold value has hysteresis.  
Brake mode will change to specific mode at the threshold speed after it reaches a speed about 15% higher than a  
threshold speed.  
NOTE: These speed values are the nominal number of using a 12-pole motor. In applying to a 16-pole motor, the rotation  
speed becomes 75% of indicated rpm values.  
Figure 50. Brake Mode Selection  
Copyright © 2015, Texas Instruments Incorporated  
49  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
9.1.4 Spindle PWM Control  
The output PWM duty of the spindle is controlled by the DAC code (VSPM). The gain in acceleration setting is  
always 14 times, but the maximum output is restricted to P12V voltage. A dead band with an output = 0 exists in  
the width between ±0x52 focusing on zero.  
PW M outputduty  
100%  
output (V)  
P12V  
(PWMmax  
Duty_R_SEL)  
37.5%  
dead band  
duty= 0%  
25.0%  
12.5%  
speed up  
slow down  
0%  
800h  
FAEh  
000  
52h  
7FFh  
VSPM[11:0]  
Figure 51. Spindle PWM Control  
9.1.5 Spindle Driver Current Limiting Circuit  
The current limit circuit monitors the RCS voltage at the ICOM pin and limits the output current by reducing the  
PWM duty when detecting overcurrent conditions.  
9.1.6 Sled Driver Part  
The sled driver outputs the PWM pulse set as DAC code (VSLDx) with current feedback. The maximum output is  
restricted to 880 mA at 0x7FF and 0x800. A dead band with an output = 0 exists in the width of ±0x33 focusing  
on zero.  
outputcurrent  
reverse  
forw ard  
880m A  
dead band  
ISLEDxP  
= ISLEDxN  
ISLEDxP < ISLEDxN  
ISLEDxP > ISLEDxN  
0
FCDh  
33h  
800h  
000  
7FFh  
VSLDx[11:0]  
Figure 52. Sled Output Current  
50  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
Both outputs of SLED1/2 are 'H' when the input code is in the dead band.  
9.1.7 Stepping Driver Part  
The step driver outputs the PWM pulse, set as an 8-bit DAC code (VSTPx) using VSTP[11:4]. There is no  
feedback monitor for output. The pulse width is output according to the P5V power supply voltage.  
outputPW M duty  
flow STPxNSTPxP  
flow STPxPSTPxN  
100%  
dutySTPxN  
dutySTPxP  
0%  
FF0h  
020h  
800h  
000  
VSTPx[11:4]  
Figure 53. Step Output Duty  
7F0h  
9.1.8 Focus/Track/Tilt Driver Part  
PW M output duty  
100%  
P5V  
reverse  
forw ard  
ACT+ < ACT-  
ACT+ > ACT-  
0%  
800h  
000  
7FFh  
ACT(FCS/TRK/TLT)[11:0]  
Figure 54. FCS/TRK/TLT Output Duty  
9.1.9 Load Driver Part  
The load driver outputs the voltage with the voltage feedback corresponding to the input DAC value. This  
channel has power voltage compensation, and is thus suited for slot-in type load control. This channel becomes  
active exclusively to other actuator channels. The load driver is shared with the TRK driver.  
Copyright © 2015, Texas Instruments Incorporated  
51  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
PW M output duty  
reverse  
forw ard  
P5V/P12V  
100%  
deadband  
LOAD+  
= LOAD-  
LOAD+<LOAD-  
LOAD+>LOAD-  
0%  
800h  
FE0h 000 01Fh  
VLOAD[11:0]  
7FFh  
Figure 55. Load Output Duty  
9.1.10 End Detect Function  
This device has end position detection for the sled and collimator lens. This function eliminates the position  
switch at the PUH inner and collimator lens end positions. This function is enabled by ENDDET_ENA = 1, setting  
the object actuator (ENDDET_SEL = 00: for sled / ENDDET_SEL = 01: for step). When this function is enabled,  
internal logic detects the sled out zero-cross point, then the internal BEMF detect circuit measures the BEMF  
level of the stepping motor. There are four threshold levels. If the BEMF is lower than the selected threshold, the  
device recognizes the motor at stop and sets the ENDDET bit to 1. The ENDDET bit is then cleared at the BEMF  
voltage exceed threshold.  
ENDDET_ ENA= 1,ENDDET_ SEL= 00  
1
ENDDET  
I SLEDx  
Sled m otor  
BEMF  
deadend  
Figure 56. Timing of Sled End Detection  
For the purpose of getting the correct stepping motor BEMF, choose a control frequency higher than 110 Hz (440  
pps). This control frequency depends on the stepping motor characteristics.  
52  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
ENDDET_ ENA= 1,ENDDET_ SEL= 01  
1
ENDDET  
STP1  
STP2  
Step m otor  
BEMF  
deadend  
Figure 57. Timing of Step End Detection  
The recommended control speed is around 1200 pps for getting the correct BEMF level. This depends on the  
stepping motor characteristic. Evaluate your condition appropriately.  
9.1.11 Load Tray Lock Detect Function  
The tray lock detect function detects an inserted obstacle when the tray opens and closes, using the load motor  
BEMF. Adjusting TRAY_LOCKDET [2:0] (REG75) by the characteristic of a motor is required for an optimal  
threshold level. The designer can set a threshold level from 100 to 400 mA, with a 50-mA step, using  
TRAY_LOCKDET.  
Observe the lock detection by reading the ENDDET (REG7F) flag where ENDDET_SEL = 2 or 3 is set.  
ENDDET_ ENA= 1,ENDDET_ SEL= 10  
1
ENDDET  
threshold  
(TRAY_ LOCKDET)  
(forward)  
Load m otor  
current (filtered)  
stop  
(reverse)  
Figure 58. Load Tray Lock Detect  
9.1.12 Three-Beam Laser Diode Driver  
The device has a circuit for the three-beam laser diode drivers containing Blu-ray™. The output is chosen with  
LDD_MSEL (REG71), and the LD drive current is outputted by input 11-bit DAC code to VLDD[10:0] and  
VLDDIN with analog input. The change in analog mode and digital mode is set up by LDD_AMODE (REG74).  
The MSB of VLDD is the sign bit and is ignored if it set to 1. All output, including BD, DVD, and CD, has an  
internal pulldown 3 kΩ.  
The mode change delay circuit and LVP are integrated to prevent a rush of current when the mode changes.  
When the LDD mode is changed, VLDD<10:0> is cleared to 0 to prevent the selected laser diode from breaking,  
as LDD sets the current value according to each kind.  
Copyright © 2015, Texas Instruments Incorporated  
53  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
Table 41. LDD Mode  
LDD_MSEL[1:0]  
ENABLE  
BD  
CURRENT OUTPUT  
11  
10  
01  
ILDD_BD  
ILDD_DVD  
ILDD_CD  
DVD  
CD  
ILDD_ xxx  
sourcecurrent  
120m A  
slope: 120mA / 0x7FF  
120mA/3.0V  
50m A  
0m A  
1.0 /0x2AA  
2.0 /0x554  
3.0 /0x7FF  
200mV / 0x3F  
VLDDIN [V] / VLDD[11:0]  
Figure 59. VLDD vs Output Average Current  
9.1.13 Monitor Signal on GPOUT  
The device can output a specific signal to the GPOUT pin. To output a signal, choose a signal from REG6F by  
enabling it first, then enabling GPOUT_ENA. When two or more signals are set for GPOUT, the output is a  
logical sum.  
9.1.14 Example Timing of Target Control System  
The TPIC2050 is designed to meet the requirements for updating control data in 400 kHz. Table 42 lists  
examples of the control system parameters. It takes 0.51 µs to transmit a 16-bit data packet to the TPIC2050  
with a 35-MHz SCLK. Therefore, DSP can be sent in four packets at a 400-kHz interval. If the SCLK is lower  
than 28.8 MHz, the user must reduce the packet quantity to less than three. For example, the Focus/Truck  
command updates every 2.5 µs (400 kHz), and is able to send another two kinds of packets in this same slot.  
Figure 60 shows an example of the control timing when using the TPIC2050.  
Table 42. Example Timing of Target Control System  
SIGNAL  
Focus  
Track  
Tilt  
BIT  
12  
12  
12  
10  
10  
12  
12  
8
UPDATE CYCLE (kHz)  
400  
400  
100  
100  
100  
100  
Sled1  
Sled2  
Spindle  
Load  
Step1  
Step2  
40  
8
40  
54  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
312KHz /3.2us(PW M 1cycle)  
Track  
Focus  
Tilt  
R
R
R
R
R
Sled1  
Sled2  
SPM  
Load  
Step1  
Step2  
400KHz / 2.5us  
Control  
register  
100KHz /10us (1control cycle)  
PWM cycle  
DACcommand  
RDACcommand w/statusread  
Control register command  
0.51us(SCLK:35MHz) for data transmit  
Figure 60. Example DAC Control  
Copyright © 2015, Texas Instruments Incorporated  
55  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
9.2 Typical Application  
P12V  
P5V  
10uF  
0.1uF  
1
2
3
4
5
6
7
8
9
SLED1_ P  
SLED1_ N  
P12V_ 3  
SLED2_ P  
SLED2_ N  
PGND_ 2  
C10V  
P5V_ 2 56  
STP2_ N 55  
STP2_ P 54  
10uF  
0.1uF  
SLED COIL1  
Step COIL2  
Step COIL1  
STP1_ N  
53  
STP1_ P  
52  
SLED COIL2  
0.1uF  
AGND  
51  
ISENSE 50  
MCOM 49  
RCS 0.1  
CP1  
0.1uF  
0.1uF  
ICOM2  
CP2  
48  
47  
46  
45  
44  
43  
Rdump 1K  
W
P12V_ 2  
V
10 CP3  
GPOUT  
XFG  
11 GPOUT  
12 XFG  
Rdump 1K  
Rdump 1K  
READY  
SSZ  
ICOM1  
U
13 RDY  
14 SSZ  
SCLK  
SIMO  
SOMI  
15 SCLK  
P12V_ 1 42  
PGND_ 1 41  
FCS_ N 40  
FCS_ P 39  
TRK_ N 38  
TRK_ P 37  
TLT_ P 36  
TLT_ N 35  
P5V_ 1 34  
TEST3 33  
16 SIMO  
17 SOMI  
FOCUS COIL  
3.3V  
18 SIOV  
RESETIN  
19 XRSTIN  
20 TEST1  
21 VLDDIN  
22 CV3P3  
23 AGND/DGND  
24 A9P5V  
25 ILDD_ BD  
26 ILDD_ DVD  
27 ILDD_ CD  
28 CA5V  
TRACKING COIL  
TILT COIL  
(open)  
VLDDIN  
0.1uF  
High Frequency Current  
Superimposition Modules  
9.5V  
10uF  
32  
(open)  
TEST2  
ILDD_ BD  
ILDD_ DVD  
P5V12L 31  
LOAD_ N 30  
LOAD_ P 29  
ILDD_ CD  
0.1uF  
CLOAD_ N  
CLOAD_ P  
0.1uF  
Figure 61. Example Application Circuit  
9.2.1 Design Requirements  
To begin the design process, determine the following:  
1. Motor configuration: The user can use all motor channels or part of them.  
2. Usage for ILDD: BD, DVD, or CD  
3. RDY pin can be connected to Host CPU, then Host CPU can know the power supply status of TPIC2050.  
9.2.2 Detailed Design Procedure  
After power up on 5-V and 12-V supply, register can be changed following way and enabling motors.  
1. Set WRITE_ENABLE = 1 on REG76 via SPI.  
2. Set XSLEEP = 1 at REG70  
3. Enable motor channel by ENA_XXX bits on REG70  
4. Change the DAC settings for the motor on REG01-0B. Then, output channels start driving load.  
56  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
Typical Application (continued)  
9.2.3 Application Curves  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
TRK+  
TRKœ  
Load+  
Loadœ  
-2047 -1535 -1023 -511  
1
513 1025 1537 2049  
-2047 -1535 -1023 -511  
1
513 1025 1537 2049  
DAC Code  
DAC Code  
D003  
D004  
Figure 62. TRK Driver: DAC Code vs Output On Duty  
Figure 63. Load Driver: DAC Code vs Output On Duty  
Copyright © 2015, Texas Instruments Incorporated  
57  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
10 Power Supply Recommendations  
All driver channels should only be operated after the required power is supplied and stable.  
To calculate the spindle motor driver overcurrent limit (ILimit), use Equation 4.  
ILimit = Internal REF voltage / RCS = 194 mV / 0.1 Ω ≈ 1940 mA  
(4)  
The capacity of the decoupling capacitor requires a value over 10 μF to reduce the influence of the PWM  
switching noise. The P5V pin must connect to a filter of 1 μF. Place a bypass capacitor (about 0.1 µF) near the  
power pin P5V, P5V12L, or P12V) for PWM switching noise reduction on the power and GND lines.  
The current flow to the driver circuits depends on the pattern layout, line impedance, and noise influence from  
the supply line.  
58  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2050  
www.ti.com.cn  
ZHCSEQ5 AUGUST 2015  
11 Layout  
11.1 Layout Guidelines  
1. CV3P3V, CA5V, and C10V requires external capacitor. Because these are reference voltage for device,  
locate the capacitor as close to device as possible. Keep away from noise source.  
2. SCLK ground shielding is recommended.  
11.2 Layout Example  
Ço atÜ  
Ço 3.3-ë supply  
Ço atÜ  
GPOUT  
Ço atÜ  
XFG  
RDY  
SSZ  
Db5 {hield  
SCLK  
Ço atÜ  
Db5 {hield  
SIMO  
SOMI  
Ço atÜ  
SIOV  
XRTIN  
Ço atÜ  
Ço 3.3-ë supply  
Ço atÜ  
Db5  
A. GND shield is recommended for SCLK.  
Figure 64. Layout Example Between TPIC2050 and MPU  
版权 © 2015, Texas Instruments Incorporated  
59  
TPIC2050  
ZHCSEQ5 AUGUST 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
E2E is a trademark of Texas Instruments.  
Blu-ray is a trademark of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
60  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPIC2050RDFDRG4  
ACTIVE  
HTSSOP  
DFD  
56  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-20 to 75  
2050  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPIC2060A

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器
TI

TPIC2060ADFDRG4

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75
TI

TPIC2101

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101D

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101DG4

Single Phase Low-Side Pre-FET Driver 14-SOIC -40 to 125
TI

TPIC2101DR

Single Phase Low-Side Pre-FET Driver 14-SOIC
TI

TPIC2101N

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101_12

DC BRUSH MOTOR CONTROLLER
TI

TPIC2202

2-CHANNEL COMMON-SOURCE POWER DMOS ARRAY
TI

TPIC2202KC

2-CHANNEL COMMON-SOURCE POWER DMOS ARRAY
TI

TPIC2202KC

7.5A, 60V, 0.125ohm, 2 CHANNEL, N-CHANNEL, Si, POWER, MOSFET
ROCHESTER

TPIC2301

3-CHANNEL COMMON-SOURCE POWER DMOS ARRAY
TI