TPL5110QDDCRQ1 [TI]

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

| DDC | 6 | -40 to 125;
TPL5110QDDCRQ1
型号: TPL5110QDDCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

| DDC | 6 | -40 to 125

驱动 驱动器
文件: 总30页 (文件大小:1925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPL5110-Q1  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
用于电源门控的毫微级功耗系统计时TPL5110-Q1 AEC-Q100  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
– 器件温度等1-40°C 125°C 环境工作温度  
范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C5  
提供功能安全  
TPL5110-Q1 毫微级计时器是一种集成了 MOSFET 驱  
动器且通过 AEC-Q100 认证的低功耗计时器非常适  
合占空比或电池供电型应用中的电源门控。TPL5110-  
Q1 的电流消耗仅为 35nA可用于支持电源线路并  
大幅降低系统睡眠期间的总待机电流。利用这一节能特  
性可以明显缩小电池尺寸使得 TPL5111 成为能量采  
集或无线传感器应用的理想选择。TPL5110-Q1 可提供  
100ms 7200s 的可选计时间隔适用于电源门控应  
用。此外TPL5110-Q1 还具有独特的单次触发功能,  
计时器可仅在一个周期内为 MOSFET 电。  
TPL5110-Q1 6 SOT23 封装。  
可帮助进行功能安全系统设计的文档  
• 电压2.5V 电流消耗35nA典型值)  
• 电源电压范围1.8V 5.5V  
• 可选计时间隔100ms 7200s  
• 计时器精度1%典型值)  
• 可通过电阻选择时间间隔  
• 手动MOSFET 上电  
• 单次触发功能  
TPL5x10Q AEC-Q100 毫微级功耗系统计时  
:  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TPL5110-Q1  
封装  
SOT23 (6)  
3.00mm x 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
TPL5010-Q1具备可编程延迟范围的看门狗功  
µC  
VOUT  
TPL5110-Q1具有可编程延迟范围和单次触发  
特性MOS 驱动器  
TPL5110-Q1  
EN/  
ONE_SHOT  
VIN  
VDD  
VDD  
Battery  
POWER MANAGEMENT  
GND  
DRV  
DELAY/  
M_DRV  
DONE  
GPIO  
2 应用  
REXT  
GND  
GND  
• 电动汽车  
• 电池供电型系统  
• 离合器执行器电路  
• 车门把手电路  
• 智能钥匙  
简化版应用原理图  
• 远程电流传感器  
• 入侵者检测  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS681  
 
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
Table of Contents  
7.4 Device Functional Modes............................................9  
7.5 Programming.............................................................11  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Typical Application.................................................... 17  
9 Power Supply Recommendations................................18  
10 Layout...........................................................................19  
10.1 Layout Guidelines................................................... 19  
10.2 Layout Example...................................................... 19  
11 Device and Documentation Support..........................20  
11.1 接收文档更新通知................................................... 20  
11.2 支持资源..................................................................20  
11.3 Trademarks............................................................. 20  
11.4 Electrostatic Discharge Caution..............................20  
11.5 术语表..................................................................... 20  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Ratings..............................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
Information.................................................................... 21  
4 Revision History  
Changes from Revision * (February 2017) to Revision A (September 2021)  
Page  
• 向部分添加了功能安全要点........................................................................................................................ 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
Device Comparison Table  
5-1. TPL5x10Q Family of AEC-Q100 Nano- Power System Timers  
PART NUMBER  
SUPPLY CURRENT (Typ)  
SPECIAL FEATURES  
Low Power Timer  
Watchdog Function  
Programmable Delay Range  
Manual Reset  
TPL5010-Q1  
35 nA  
Low Power Timer  
MOS-Driver  
TPL5110-Q1  
35 nA  
Programmable Delay Range  
Manual Reset  
One-Shot Feature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPL5110-Q1  
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
5 Pin Configuration and Functions  
TPL5110-Q1  
EN/  
ONE_SHOT  
1
2
3
VDD  
6
5
4
GND  
DRV  
DELAY/  
M_DRV  
DONE  
5-1. SOT-23 6-Lead DDC Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
APPLICATION INFORMATION  
NO.  
1
NAME  
VDD  
P
G
I
Supply voltage  
Ground  
2
GND  
3
DELAY/  
M_DRV  
Time interval set and manual  
MOSFET Power ON  
Resistance between this pin and GND is used to  
select the time interval. The manual MOSFET power  
ON switch is also connected to this pin.  
4
5
6
DONE  
DRV  
I
O
I
Logic Input for watchdog  
functionality  
Digital signal driven by the µC to indicate successful  
processing.  
Power Gating output signal  
generated every tIP  
The Gate of the MOSFET is connected to this pin.  
When DRV = LOW, the MOSFET is ON.  
EN/  
ONE_SHOT  
Selector of mode of operation  
When EN/ONE_SHOT = HIGH, the TPL5110-Q1  
works as a TIMER. When EN/ONE_SHOT = LOW,  
the TPL5110-Q1 turns on the MOSFET one time for  
the programmed time interval. The next power on of  
the MOSFET is enabled by the manual power ON.  
(1) G= Ground, P= Power, O= Output, I= Input.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-5  
MAX  
6.0  
UNIT  
V
Supply voltage (VDD-GND)  
Input voltage at any pin(3)  
Input Current on any pin  
Storage temperature, Tstg  
Junction temperature, TJ(2)  
VDD + 0.3  
+5  
V
mA  
°C  
-65  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The maximum power dissipation is a function of TJ(MAX), θJA, and the ambient temperature, TA. The maximum allowable power  
dissipation at any ambient temperature is PDMAX = (TJ(MAX) - TA)/ θJA. All numbers apply for packages soldered directly onto a PC  
board.  
(3) The voltage between any two pins should not exceed 6V.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human Body Model, per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with ANSI/ESDA/JADEC JS-001 specification.  
6.3 Recommended Operating Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
MAX  
5.5  
UNIT  
V
Supply Voltage (VDD-GND)  
Temperature Range  
125  
°C  
40  
6.4 Thermal Information  
TPL5110-Q1  
THERMAL METRIC(1)  
SOT-23  
6 PINS  
163  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26  
57  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.5  
57  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPL5110-Q1  
 
 
 
 
 
 
 
 
 
 
TPL5110-Q1  
www.ti.com.cn  
MAX(2) UNIT  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
6.5 Electrical Characteristics  
Specifications are for TA= 25°C, VDD-GND=2.5 V, unless otherwise stated.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3)  
POWER SUPPLY  
IDD  
Supply current(4)  
Operation mode  
35  
50  
nA  
µA  
Digital conversion of external resistance  
(Rext)  
200  
400  
TIMER  
tIP  
Time interval Period(5)  
1650 selectable Time Min time interval  
100  
7200  
±0.6%  
±25  
ms  
s
intervals  
Max time interval  
Time interval Setting Accuracy(7)  
Excluding the precision of Rext  
Time interval Setting Accuracy over  
supply voltage  
ppm/V  
1.8V VDD 5.5V  
tOSC  
Oscillator Accuracy  
0.5%  
0.5%  
Oscillator Accuracy over  
temperature(5)  
150  
ppm/°C  
%/V  
40°C TA125°C  
1.8V VDD 5.5V  
Oscillator Accuracy over supply  
voltage(5)  
±0.4  
Oscillator Accuracy over life time(6)  
Minimum DONE Pulse width (5)  
DRV Pulse width  
±0.24%  
100  
tDONE  
tDRV  
ns  
DONE signal not received  
tIP–  
50ms  
t_Rext  
Time to convert Rext (5)  
100  
ms  
DIGITAL LOGIC LEVELS  
VIH  
Minimum Logic High Threshold  
DONE pin  
0.7xVDD  
0.3xVDD  
V
V
VIL  
Maximum Logic Low Threshold  
DONE pin  
Iout = 100 µA  
Iout = 1 mA  
V
V
V
V
V
VDD0.3  
VDD0.7  
VOH  
Logic output High Level DRV pin  
Logic output Low Level DRV pin  
0.3  
0.7  
Iout = 100 µA  
Iout = 1 mA  
VOL  
VIHM_DRV  
Minimum Logic High Threshold  
DELAY/M_DRV pin (5)  
1.5  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the  
electrical tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits  
beyond which the device may be permanently degraded, either mechanically or electrically.  
(2) Limits are specified by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are specified through  
correlations using statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped  
production material.  
(4) The supply current excludes load and pull-up resistor current. Input pins are at GND or VDD.  
(5) This parameter is specified by design and/or characterization and is not tested in production.  
(6) Operational life time test procedure equivalent to10 years.  
(7) The accuracy for time interval settings below 1second is ±100ms.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
 
 
 
 
 
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
6.6 Timing Requirements  
MIN(3)  
NOM(4)  
50  
MAX(3) UNIT  
trDRV  
tfDRV  
Rise Time DRV(2)  
Fall Time DRV(2)  
DONE to DRV delay  
Capacitive load 50 pF  
Capacitive load 50 pF  
Min delay(1)  
ns  
ns  
ns  
50  
tDDONE  
100  
tDRV  
20  
Max delay (1)  
tM_DRV  
tDB  
Minimum Valid manual MOSFET  
Power ON  
Observation time 30ms  
ms  
ms  
De-bounce manual MOSFET Power  
ON  
20  
(1) from DRV falling edge.  
(2) This parameter is specified by design and/or characterization and is not tested in production.  
(3) Limits are specified by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are specified through  
correlations using statistical quality control (SQC) method.  
(4) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped  
production material.  
VDD  
EN/  
ONE_SHOT  
ttDDONE  
t
tDONE  
DONE  
t tDRV  
t
t tDRV + tDBt  
trDRV  
t tIPt  
DRV  
tfDRV  
t tIP  
t
tR_EXT  
DELAY/  
M_DRV  
ttM_DRV  
6-1. TPL5110-Q1 Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPL5110-Q1  
 
 
 
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
6.7 Typical Characteristics  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
TA= -40°C  
TA= 25°C  
VDD= 1.8V  
VDD= 2.5V  
VDD= 3.3V  
VDD= 5.5V  
90  
80  
70  
60  
50  
40  
30  
20  
TA= 70°C  
TA= 105°C  
TA = 125°C  
1.5  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
Supply Voltage (V)  
D00  
Temperature (°C)  
.
.
6-2. IDD vs. VDD  
6-3. IDD vs. Temperature  
2
1.5  
1
2
1.5  
1
TA= -40°C  
VDD= 1.8V  
VDD= 2.5V  
VDD= 3.3V  
VDD= 5.5V  
TA= 25°C  
TA= 70°C  
TA= 105°C  
TA= 125°C  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
1.5  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
Supply Voltage (V)  
Temperature (°C)  
A.  
.
.
6-4. Oscillator Accuracy vs. VDD  
6-5. Oscillator Accuracy vs. Temperature  
1000  
100  
10  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
POR  
REXT READING  
1
TIMER MODE  
0.1  
0.01  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
-1  
-0.8  
-0.6  
-0.4  
-0.2  
0
0.2  
0.4  
0.6  
0.8  
Time (s)  
Accuracy (%)  
.
.
number of observations >20000  
1s < tIP 7200s  
6-7. Time Interval Setting Accuracy  
6-6. IDD vs. Time  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
7 Detailed Description  
7.1 Overview  
The TPL5110-Q1 is a timer with power gating feature. It is ideal for use in power-cycled applications and  
provides selectable timing from 100ms to 7200s.  
Once configured in timer mode (EN/ONE_SHOT= HIGH) the TPL5110-Q1 periodically sends out a DRV signal to  
a MOSFET to turn on the µC. If the µC replies with a DONE signal within the programmed time interval (tDRV) the  
TPL5110-Q1 turns off the µC, otherwise the TPL5110-Q1 keeps the µC in the on state for a time equal to tDRV  
.
The TPL5110-Q1 can work also in a one-shot mode (EN/ONE_SHOT= LOW). In this mode the DRV signal is  
sent out just one time at the power on of the TPL5110-Q1 to turn on the µC. If the µC replies with a DONE signal  
within the programmed time interval (tDRV) the TPL5110-Q1 turns off the µC, otherwise the TPL5110-Q1 keeps  
the µC in the on state for a time equal to tDRV  
.
7.2 Functional Block Diagram  
VDD  
EN/  
ONE_SHOT  
LOW FREQUENCY  
OSCILLATOR  
FREQUENCY  
DIVIDER  
LOGIC  
CONTROL  
DRV  
DONE  
DELAY/  
M_DRV  
DECODER  
&
MANUAL RESET  
DETECTOR  
GND  
7.3 Feature Description  
The TPL5110-Q1 implements a periodical power gating feature or one shot power gating according to the EN/  
ONE_SHOT voltage. A manual MOSFET Power ON function is realized by momentarily pulling the DELAY/  
M_DRV pin to VDD.  
7.3.1 DRV  
The gate of the MOSFET is connected to the DRV pin. When DRV= LOW, the MOSFET is turned ON. The pulse  
generated at DRV is equal to the selected time interval period, minus 50ms. It is shorter in the case of a DONE  
signal received from the µC. If the DONE signal is not received within the programmed time interval (minus  
50ms), the DRV signal will be high for the last 50ms of the time interval in order to turn off the MOSFET before  
the next cycle starts.  
The default value (after resistance reading) is HIGH. The signal is sent out from the TPL5110-Q1 when the  
programmed time interval starts. When the DRV is LOW, the manual power ON signal is ignored.  
7.3.2 DONE  
The DONE pin is driven by a µC to signal that the µC is working properly. The TPL5110-Q1 recognizes a valid  
DONE signal as a low to high transition; if two or more DONE signals are received within the time interval, only  
the first DONE signal is processed. The minimum DONE signal pulse length is 100ns. When the TPL5110-Q1  
receives the DONE signal it asserts DRV logic HIGH.  
7.4 Device Functional Modes  
7.4.1 Start-Up  
During start-up, after POR, the TPL5110-Q1 executes a one-time measurement of the resistance attached to the  
DELAY/M_DRV pin in order to determine the desired time interval for DRV. This measurement interval is tR_EXT  
.
During this measurement a constant current is temporarily flowing into REXT  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPL5110-Q1  
 
 
 
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
Once the reading of the external resistance is completed the TPL5110-Q1 enters automatically in one of the 2  
modes according to the EN/ONE_SHOT value. The EN/ONE_SHOT pin must be hard wired to GND or VDD  
according to the required mode of operation.  
ttIPt  
ttIPt  
ttDRV  
t
FORCED  
DRV RISING  
DRV  
MISSED  
DONE  
DONE  
EN/  
ONE_SHOT  
DELAY/  
M_DRV  
RESISTANCE  
READING  
POR  
7-1. Start-Up - Timer Mode  
7.4.2 Timer Mode  
During timer mode (EN/ONE_SHOT = HIGH), the TPL5110-Q1 asserts periodic DRV pulses according to the  
programmed time interval. The length of the DRV pulses is set by the receiving of a DONE pulse from the uC.  
See 7-1.  
7.4.3 One-Shot Mode  
During one-shot mode (EN/ONE_SHOT = LOW), the TPL5110-Q1 generates just one pulse at the DRV pin  
which lasts according to the programmed time interval. In one-shot mode, other DRV pulses can be triggered  
using the DELAY/M_DRV pin. If a valid manual power ON occurs when EN/ONE_SHOT is LOW, the TPL5110-  
Q1 generates just one pulse at the DRV pin. The duration of the pulse is set by the programmed time interval.  
Also in this case, if a DONE signal is received within the programmed time interval (minus 50ms), the MOSFET  
connected to the DRV pin is turned off. See 7-2 and 7-3.  
ttIP  
t
DRV  
DONE  
EN/  
ONE_SHOT  
DELAY/  
M_DRV  
RESISTANCE  
READING  
POR  
7-2. Start-Up One-Shot Mode, (DONE Received Within tIP)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
ttIPt  
ttDRV  
t
FORCED  
DRV RISING  
DRV  
MISSED  
DONE  
DONE  
EN/  
ONE_SHOT  
DELAY/  
M_DRV  
RESISTANCE  
READING  
POR  
7-3. Start-Up One-Shot Mode, (No DONE Received Within tIP)  
7.5 Programming  
7.5.1 Configuring the Time Interval with the DELAY/M_DRV Pin  
The time interval between 2 adjacent DRV pulses (falling edges, in timer mode) is selectable through an external  
resistance (REXT) between the DELAY/M_DRV pin and ground. The resistance (REXT) must be in the range  
between 500Ωand 170kΩ. At least a 1% precision resistance is recommended. See section 7.5.3 on how to  
set the time interval using REXT  
.
7.5.2 Manual MOSFET Power ON Applied to the DELAY/M_DRV Pin  
If VDD is connected to the DELAY/M_DRV pin, the TPL5110-Q1 recognizes this as a manual MOSFET Power  
ON condition. In this case the time interval is not set. If the manual MOSFET Power ON is asserted during the  
POR or during the reading procedure, the reading procedure is aborted and is re-started as soon as the manual  
MOSFET Power ON switch is released. A pulse on the DELAY/M_DRV pin is recognized as a valid manual  
MOSFET Power ON only if it lasts at least 20ms (observation time is 30ms). The manual MOSFET Power ON  
may be implemented using a switch (momentary mechanical action).  
If the DRV is already LOW (MOSFET ON) the manual MOSFET Power ON is ignored.  
ttIPt  
ttIPt  
DRV  
DONE  
EN/  
ONE_SHOT  
ttM_DRV  
t
ttM_DRV  
t
ttDB  
t
ttM_DRVt  
DELAY/  
M_DRV  
IGNORED M_DRV  
DRV ALREADY LOW  
VALID M_DRV  
NOT VALID M_DRV  
7-4. Manual MOSFET Power ON in Timer Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPL5110-Q1  
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
ttIPt  
DRV  
DONE  
EN/  
ONE_SHOT  
ttM_DRV  
t
ttDB  
t
ttM_DRVt  
DELAY/  
M_DRV  
VALID M_DRV  
NOT VALID M_DRV  
7-5. Manual MOSFET Power ON in One-Shot Mode  
7.5.2.1 DELAY/M_DRV  
A resistance in the range between 500Ωand 170kΩmust to be connected to the DELAY/M_DRV pin in order to  
select a valid time interval. At the POR and during the reading of the resistance, the DELAY/M_DRV is  
connected to an analog signal chain through a mux. After the reading of the resistance, the analog circuit is  
switched off and the DELAY/M_DRV is connected to a digital circuit.  
In this state, a logic HIGH applied to the DELAY/M_DRV pin is interpreted by the TPL5110-Q1 as a manual  
power ON. The manual power ON detection is provided with a de-bounce feature (on both edges) which makes  
the TPL5110-Q1 insensitive to the glitches on the DELAY/M_DRV.  
The M_DRV must stay high for at least 20ms to be valid. Once a valid signal at DELAY/M_DRV is understood as  
a manual power on, the DRV signal will be asserted in the next 10ms. Its duration will be according to the  
programmed time interval (minus 50ms), or less if the DONE is received.  
A manual power ON signal resets all the counters. The counters will restart as soon as a valid manual power ON  
signal is recognized and the signal at DELAY/M_DRV pin is asserted LOW. Due to the asynchronous nature of  
the manual power ON signal and its arbitrary duration, the LOW status of the DRV signal may be affected by an  
uncertainty of about ±5ms.  
An extended assertion of a logic HIGH at the DELAY/M_DRV pin will turn on the MOSFET for a time longer than  
the programmed time interval. DONE signals received while the DELAY/M_DRV is HIGH are ignored. If the DRV  
is already LOW (MOSFET ON) the manual power ON is ignored.  
7.5.2.2 Circuitry  
The manual Power ON may be implemented using a switch (momentary mechanical action). The TPL5110-Q1  
offers 2 possible approaches according to the power consumption constraints of the application.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
µC  
VOUT  
VIN  
TPL5110-Q1  
EN/  
ONE_SHOT  
VDD  
VDD  
Battery  
POWER MANAGEMENT  
GND  
DRV  
DELAY/  
M_DRV  
DONE  
GPIO  
REXT  
GND  
GND  
7-6. Manual MOSFET Power ON with SPST Switch  
For use cases that do not require the lowest power consumption, using a single pole single throw switch may  
offer a lower cost solution. The DELAY/M_DRV pin may be directly connected to VDD with REXT in the circuit.  
The current drawn from the supply voltage during the manual power ON is given by VDD/REXT  
.
µC  
VOUT  
TPL5110-Q1  
EN/  
ONE_SHOT  
VIN  
VDD  
VDD  
Battery  
POWER MANAGEMENT  
GND  
DRV  
DELAY/  
M_DRV  
DONE  
GPIO  
REXT  
GND  
GND  
7-7. Manual MOSFET Power ON with SPDT Switch  
The manual MOSFET Power ON function may also be asserted by switching DELAY/M_DRV from REXT to VDD  
using a single pole double throw switch, which will provide a lower power solution for the manual power ON,  
because no current flows.  
7.5.3 Selection of the External Resistance  
In order to set the time interval, the external resistance REXT is selected according the following formula:  
2
÷
- b + b - 4a  
2a  
(
c -100 T  
)
REXT =100  
«
÷
(1)  
Where:  
T is the desired time interval in seconds.  
REXT is the resistance value to use in Ω.  
a,b,c are coefficients depending on the range of the time interval.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPL5110-Q1  
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
7-1. Coefficients for 方程1  
Time Interval  
Range (s)  
SET  
a
b
c
1
2
3
4
5
0.2253  
-0.1284  
0.1972  
0.2617  
0.3177  
-20.7654  
46.9861  
570.5679  
-2651.8889  
692.1201  
1 <T5  
5 <T10  
-19.3450  
-56.2407  
-136.2571  
10 <T100  
100 <T1000  
T> 1000  
5957.7934  
34522.4680  
EXAMPLE  
Required time interval: 8s  
The coefficient set to be selected is the number 2. The formula becomes  
2
÷
46.9861- 46.9861 +4*0.1284  
(
-2561.8889-100*8  
)
REXT =100  
«
÷
2*0.1284  
(2)  
The resistance value is 10.18 k.  
The following Look-Up-Tables contain example values of tIP and their corresponding value of REXT  
.
7-2. First 9 Time Intervals  
Parallel of two 1% tolerance resistors,  
tIP (ms)  
Resistance (Ω)  
Closest real value (Ω)  
(kΩ)  
100  
200  
300  
400  
500  
600  
700  
800  
900  
500  
500  
1.0 // 1.0  
-
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4501  
2.43 // 3.92  
-
4.42 // 5.76  
5.36 // 6.81  
4.75 // 13.5  
6.19 // 11.3  
6.19 // 16.5  
7-3. Most Common Time Intervals Between 1s to 2h  
Closest Real Value  
Parallel of Two 1% Tolerance Resistors,  
tIP  
Calculated Resistance (kΩ)  
(kΩ)  
(kΩ)  
1s  
2s  
5.20  
6.79  
5.202  
6.788  
7.628  
8.306  
8.852  
9.223  
9.673  
10.180  
10.68  
11.199  
14.405  
16.778  
18.748  
7.15 // 19.1  
12.4 // 15.0  
12.7// 19.1  
14.7 // 19.1  
16.5 // 19.1  
18.2 // 18.7  
19.1 // 19.6  
11.5 // 8.87  
17.8 // 26.7  
15.0 // 44.2  
16.9 // 97.6  
32.4 // 34.8  
22.6 // 110.0  
3s  
7.64  
4s  
8.30  
5s  
8.85  
6s  
9.27  
7s  
9.71  
8s  
10.18  
10.68  
11.20  
14.41  
16.78  
18.75  
9s  
10s  
20s  
30s  
40s  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
 
TPL5110-Q1  
www.ti.com.cn  
tIP  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
7-3. Most Common Time Intervals Between 1s to 2h (continued)  
Closest Real Value  
Parallel of Two 1% Tolerance Resistors,  
Calculated Resistance (kΩ)  
(kΩ)  
(kΩ)  
50s  
1min  
2min  
3min  
4min  
5min  
6min  
7min  
8min  
9min  
10min  
20min  
30min  
40min  
50min  
1h  
20.047  
22.02  
29.35  
34.73  
39.11  
20.047  
22.021  
29.349  
34.729  
39.097  
42.887  
46.301  
49.392  
52.224  
54.902  
57.437  
77.579  
92.233  
104.625  
115.331  
124.856  
149.398  
170.00  
28.7 // 66.5  
40.2 // 48.7  
35.7 // 165.0  
63.4 // 76.8  
63.4 // 102.0  
54.9 // 196.0  
75.0 // 121.0  
97.6 // 100.0  
88.7 // 127.0  
86.6 // 150.0  
107.0 // 124.0  
140.0 // 174.0  
182.0 // 187.0  
130.0 // 536.00  
150.0 // 499.00  
221.0 // 287.00  
165.0 // 1580.0  
340.0 // 340.0  
42.90  
46.29  
49.38  
52.24  
54.92  
57.44  
77.57  
92.43  
104.67  
115.33  
124.91  
149.39  
170.00  
1h30min  
2h  
7.5.4 Quantization Error  
The TPL5110-Q1 can generate 1650 discrete timer intervals in the range of 100ms to 7200s. The first 9 intervals  
are multiples of 100ms. The remaining 1641 intervals cover the range between 1s to 7200s. Because they are  
discrete intervals, there is a quantization error associated with each value.  
The quantization error can be evaluated according to the following formula:  
(
TDESIRED -TADC  
)
Err =100  
TDESIRED  
(3)  
Where:  
»
ÿ
Ÿ
1
R D2  
R D  
÷
÷
T ADC = INT  
a
+ b  
+ c  
2
100  
100  
100  
«
(4)  
(5)  
R
»
ÿ
EXT  
R D = INT  
Ÿ
100  
REXT is the resistance calculated with 方程1 and a,b,c are the coefficients of the equation listed in 7-1.  
7.5.5 Error Due to Real External Resistance  
REXT is a theoretical value and may not be available in standard commercial resistor values. It is possible to  
closely approach the theoretical REXT using two or more standard values in parallel. However, standard values  
are characterized by a certain tolerance. This tolerance will affect the accuracy of the time interval.  
The accuracy can be evaluated using the following procedure:  
1. Evaluate the min and max values of REXT (REXT_MIN, REXT_MAX with 方程1 using the selected commercial  
resistance values and their tolerances.  
2. Evaluate the time intervals (TADC_MIN[REXT_MIN], TADC_MAX[REXT_MAX]) with 方程4.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPL5110-Q1  
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
3. Find the errors using 方程3 with TADC_MIN, TADC_MAX  
.
The results of the formula indicate the accuracy of the time interval.  
The example below illustrates the procedure.  
Desired time interval , T_desired = 600s,  
Required REXT, from 方程1, REXT= 57.44kΩ.  
From 7-3, REXT can be built with a parallel combination of two commercial values with 1% tolerance:  
R1=107kΩ, R2=124kΩ. The uncertainty of the equivalent parallel resistance can be found using:  
2
2
u
u
R2  
÷
÷
R1  
uR =R//  
+
//  
R1  
R2  
«
«
(6)  
(7)  
Where uRn (n=1,2) represent the uncertainty of a resistance,  
Tolerance  
uR =Rn  
n
3
The uncertainty of the parallel resistance is 0.82%, meaning the value of REXT may range between REXT_MIN  
56.96 kΩand REXT_MAX = 57.90 kΩ.  
=
=
Using these value of REXT, the digitized timer intervals calculated with 方程式 4 are respectively TADC_MIN  
586.85 s and TADC_MAX = 611.3 s, giving an error range of -1.88% / +2.19%. The asymmetry of the error range is  
due to the quadratic transfer function of the resistance digitizer.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
In battery powered applications one design constraint is the need for low current consumption. The TPL5110-Q1  
is suitable in applications where there is a need to monitor environmental conditions at a fixed time interval.  
Often in these applications a watchdog or other internal timer in a µC is used to implement a wakeup function.  
Typically, the power consumption of these functions is not optimized. Using the TPL5110-Q1 to implement a  
periodical power gating of the µC or of the entire system the current consumption will be only tens of nA.  
8.2 Typical Application  
The TPL5110-Q1 can be used in environment sensor nodes such as humidity and temperature sensor node.  
The sensor node has to measure the humidity and the temperature and transmit the data through a low power  
RF micro such as the CC2531. Since the temperature and the humidity in home application do not change so  
fast, the measurement and the transmission of the data can be done at very low rate, such as every 30 seconds.  
The RF micro should spend most of the time in counting the elapsed time, but using the TPL5110-Q1 it is  
possible to complete turn off the RF micro and extend the battery life. The TPL5110-Q1 will turn on the RF micro  
when the programmed time interval elapses or for debug purpose with the manual MOSFET Power ON switch.  
DC-DC  
BOOST  
VIN  
VOUT  
ENB  
GND  
CC2531  
Rp  
100k  
Rp  
100k  
RF  
TPL5110-Q1  
EN/  
ONE_SHOT  
HDC1000  
VDD  
VDD  
VDD  
GND  
DRV  
SCL  
SDA  
GND  
SCL  
+
DELAY/  
M_DRV  
Lithium  
ion battery  
DONE  
GPIO  
SDA  
GND  
-
8-1. Sensor Node  
8.2.1 Design Requirements  
The Design is driven by the low current consumption constraint. The data are usually acquired on a rate which is  
in the range between 30s and 60s. The highest necessity is the maximization of the battery life. The TPL5110-  
Q1 helps achieve this goal because it allows turning off the RF micro.  
8.2.2 Detailed Design Procedure  
When the focal constraint is the battery life, the selection of a low power voltage regulator and low leakage  
MOSFET to power gate the µC is mandatory. The first step in the design is the calculation of the power  
consumption of each device in the different mode of operations. An example is the HDC1000, in measurement  
mode the RF micro is in normal operation and transmission. The different modes offer the possibility to select the  
appropriate time interval which respect the application constraint and maximize the life of the battery.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPL5110-Q1  
 
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
8.2.3 Application Curve  
Without TPL5110-Q1  
With TPL5110-Q1  
Time  
8-2. Effect of TPL5110-Q1 on Current Consumption  
9 Power Supply Recommendations  
The TPL5110-Q1 requires a voltage supply within 1.8 V and 5.5 V. A multilayer ceramic bypass X7R capacitor of  
0.1μF between VDD and GND pin is recommended.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
10 Layout  
10.1 Layout Guidelines  
The DELAY/M_DRV pin is sensitive to parasitic capacitance. It is suggested that the traces connecting the  
resistance on this pin to GROUND be kept as short as possible to minimize parasitic capacitance. This  
capacitance can affect the initial set up of the time interval. Signal integrity on the DRV pin is also improved by  
keeping the trace length between the TPL5110-Q1 and the gate of the MOSFET short to reduce the parasitic  
capacitance. The EN/ONE_SHOT needs to be tied to GND or VDD with short traces.  
10.2 Layout Example  
10-1. Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPL5110-Q1  
 
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPL5110-Q1  
 
 
 
 
 
 
TPL5110-Q1  
www.ti.com.cn  
ZHCSG15A FEBRUARY 2017 REVISED SEPTEMBER 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPL5110-Q1  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPL5110QDDCRQ1  
TPL5110QDDCTQ1  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
13ZX  
13ZX  
Samples  
Samples  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-May-2022  
OTHER QUALIFIED VERSIONS OF TPL5110-Q1 :  
Catalog : TPL5110  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPL5110QDDCRQ1  
TPL5110QDDCTQ1  
SOT-  
23-THIN  
DDC  
DDC  
6
6
3000  
250  
178.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-  
178.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPL5110QDDCRQ1  
TPL5110QDDCTQ1  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
6
6
3000  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPL5110QDDCTQ1

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

| DDC | 6 | -40 to 125
TI

TPL5111

用于占空比应用电源门控的超低功耗系统计时器 (35nA)
TI

TPL5111DDCR

用于占空比应用电源门控的超低功耗系统计时器 (35nA) | DDC | 6 | -40 to 105
TI

TPL5111DDCT

用于占空比应用电源门控的超低功耗系统计时器 (35nA) | DDC | 6 | -40 to 105
TI

TPL521-2XGRSMT&R

Transistor Output Optocoupler,
ISOCOM

TPL521-4XGB

Transistor Output Optocoupler,
ISOCOM

TPL7407LA

30V、7 通道 NMOS 阵列低侧驱动器
TI

TPL7407LA-Q1

30V、7 通道汽车类 NMOS 阵列低侧驱动器
TI

TPL7407LADR

30V、7 通道 NMOS 阵列低侧驱动器 | D | 16 | -40 to 125
TI

TPL7407LAPWR

30V、7 通道 NMOS 阵列低侧驱动器 | PW | 16 | -40 to 125
TI

TPL7407LAQPWRQ1

30V、7 通道汽车类 NMOS 阵列低侧驱动器 | PW | 16 | -40 to 125
TI

TPL75

TCXO/VC-TCXO, 7.0 x 5.0mm, LVPECL output
ACT