TPS1H000AQDGNRQ1 [TI]

具有可调节电流限制的 40V、1Ω、汽车类单通道智能高侧开关 | DGN | 8 | -40 to 125;
TPS1H000AQDGNRQ1
型号: TPS1H000AQDGNRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节电流限制的 40V、1Ω、汽车类单通道智能高侧开关 | DGN | 8 | -40 to 125

开关 驱动 光电二极管 接口集成电路 驱动器
文件: 总33页 (文件大小:2451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
TPS1H000-Q1 40V1Ω 单通道智能高侧开关  
1 特性  
2 应用  
1
符合汽车应用 应用  
具有符合 AEC-Q100 标准的下列结果:  
单通道 LED 驱动器  
单通道高侧中继驱动器  
车身照明  
器件温度 1 级:–40°C 125°C 的环境运行温  
度范围  
高级驾驶员辅助系统 (ADAS) 传感器  
一般电阻、电感和电容负载  
器件人体放电模型 (HBM) 静电防护 (ESD) 分类  
等级 H2  
3 说明  
器件 CDM ESD 分类等级 C4B  
单通道 1000mΩ 智能高侧开关  
宽工作电压:3.4V - 40V  
TPS1H000-Q1 器件是受到全面保护的单通道高侧电源  
开关,具有集成式 1000mNMOS 功率 FET。  
低待机电流:<500nA  
可调节电流限制可通过限制浪涌或过载电流来提高系统  
可靠性。高精度电流限制可增强过载保护,从而简化前  
沿电源设计。除电流限制以外的 其他可配置特性 能够  
在功能、成本和热耗散方面提供相应的设计灵活性。  
可调节电流限制(利用外部电阻器)  
150mA 时:±15%  
300mA 时:±10%  
可配置电流限制后的行为  
该器件支持对数字状态输出进行全面诊断。在开启和关  
闭状态下皆可进行开路负载检测。无论是否具有  
MCU,该器件都能正常运行。独立模式支持在隔离型  
系统中使用此器件。  
保持模式  
闭锁模式(具有可调节的延迟时间)  
自动重试模式  
支持独立操作(无需 MCU)  
器件信息(1)  
保护:  
GND 短路和过载  
器件型号  
封装  
封装尺寸(标称值)  
热关断和热振荡  
TPS1H000-Q1  
HVSSOP (8)  
3.00mm × 3.00mm  
用于电感负载的负电压钳位  
GND 损耗和电池损耗  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
诊断:  
过载和 GND 短路检测  
开路负载和电池短路检测(开启或关闭状态下)  
热关断和热振荡  
典型方框图  
自动重试模式下的电流限制保护  
3.4 V to 40 V  
Supply Voltage  
VS  
Up to 40 V  
Up to 40 V  
LED Strings  
Relays  
IN  
DIAG_EN  
FAULT  
CL  
OUT  
Sub Module:  
Cameras, Sensors  
General Resistive, Capacitive,  
Inductive Loads  
DELAY  
GND  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDO6  
 
 
 
 
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Application ................................................. 22  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 接收文档更新通知 ................................................. 25  
11.2 社区资源................................................................ 25  
11.3 ....................................................................... 25  
11.4 静电放电警告......................................................... 25  
11.5 Glossary................................................................ 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
Changes from Revision B (March 2018) to Revision C  
Page  
已更改 IN is high and DIAG_EN is high to IN is low and DIAG_EN is low in the Standby Mode section .......................... 21  
Changes from Revision A (August 2017) to Revision B  
Page  
Added Footnote 2 to the Electrical Characteristics table........................................................................................................ 6  
已添加 reverse current protection information to the Reverse-Current Protection section .................................................. 19  
Changes from Original (August 2017) to Revision A  
Page  
更改了多处位置:特性应用说明部分中进行了多处更改 ........................................................................................... 1  
Added typical characteristic graphs........................................................................................................................................ 8  
Changed text in the second paragraph of the Overview section ........................................................................................ 10  
Changed the links for references to 2 and 3. ............................................................................................................. 14  
Added a row to 3 ............................................................................................................................................................. 15  
Changed text references to 24 and 25........................................................................................................................ 17  
Added application curves and explanatory text.................................................................................................................... 23  
Changed "ground pad" to "thermal pad" in Layout Guidelines ............................................................................................ 24  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
5 Pin Configuration and Functions  
DGN PowerPAD™ Package  
8-Pin HVSSOP With Exposed Thermal Pad  
Top View  
IN  
DIAG_EN  
FAULT  
CL  
1
2
3
4
8
7
6
5
VS  
OUT  
GND  
Thermal  
Pad  
DELAY  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
4
CL  
O
I/O  
I
Adjustable current limit. Connect to device GND if external current limit is not used.  
Function configuration when in current limit; internal pullup  
Enable the diagnostic function  
DELAY  
DIAG_EN  
FAULT  
GND  
5
2
3
O
I
Open-drain diagnostic status output. Leave floating if not used  
Ground pin  
6
IN  
1
Input control for output activation; internal pulldown  
Output, source of the high-side switch, connected to the load  
Power supply, drain for the high-side switch.  
OUT  
7
O
I
VS  
8
Thermal pad  
Thermal pad. Connect to device GND or leave floating.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
42  
250  
VS  
7
UNIT  
V
Supply voltage VS pin  
Reverse polarity voltage  
Current on GND  
t < 400 ms  
(3)  
t < 1 minute  
t < 2 minutes  
–36  
–100  
–0.3  
–10  
–0.3  
–60  
–0.3  
–30  
–0.3  
V
mA  
V
Voltage on IN and DIAG_EN pins  
Current on IN and DIAG_EN pins  
Voltage on DELAY pin  
Current on DELAY pin  
Voltage on FAULT pin  
Current on FAULT pin  
Voltage on CL pin  
mA  
V
7
mA  
V
10  
7
mA  
V
Current on CL pin  
6
mA  
V
Voltage on OUT pin  
42  
Inductive load switch-off energy dissipation  
single pulse(4)  
40  
mJ  
Operating junction temperature  
Storage temperature, Tstg  
–40  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground.  
(3) Reverse polarity condition: VIN = 0 V, reverse current < IR(2), GND pin 1-kΩ resistor in parallel with diode.  
(4) Test condition: VVS = 13.5 V, L = 300 mH, TJ = 150°C. FR4 2s2p board, 2 × 70-μm Cu, 2 × 35-μm Cu. 600 mm2 thermal pad copper  
area.  
6.2 ESD Ratings  
VALUE  
UNIT  
All pins except VS, OUT,  
and GND  
±2000  
Human-body model (HBM), per AEC  
Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Pins VS, OUT, and GND  
±3000  
±750  
Charged-device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4
NOM  
MAX  
40  
40  
5
UNIT  
V
VS  
Operating voltage  
Voltage on IN and DIAG_EN pins  
Voltage on FAULT pin  
0
V
0
V
Io,nom  
TJ  
Nominal dc load current  
Operating junction temperature  
0
1
A
–40  
150  
°C  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
6.4 Thermal Information  
TPS1H000-Q1  
THERMAL METRIC(1)  
DGN (HVSSOP)  
UNIT  
8 PINS  
49.7  
50.2  
21.4  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
21.5  
7.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
6.5 Electrical Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
OPERATING VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVS(nom)  
VVS(uvr)  
VVS(uvf)  
V(uv,hys)  
Nominal operating voltage  
Undervoltage restart  
4
3.5  
3
40  
4
V
V
V
V
VVS rising  
3.7  
3.2  
0.5  
Undervoltage shutdown  
VVS falling  
3.4  
Undervoltage shutdown, hysteresis  
OPERATING CURRENT  
VVS = 13.5 V, VIN = 5 V, VDIAG_EN  
0 V, IOUT = 0.1 A, ICL = 0.5 A.  
=
I(op) Nominal operating current  
5
0.5  
3
mA  
µA  
VVS = 13.5 V, VIN = VDIAG_EN = VCL  
VOUT = 0 V, TJ = 25 °C  
=
=
I(off)  
Standby current  
VVS = 13.5 V, VIN = VDIAG_EN = VCL  
VOUT = 0 V, TJ = 125 °C  
Standby current with diagnostics  
enabled  
VVS = 13.5 V, VIN = 0 V, VDIAG_EN  
5 V  
=
I(off,diag)  
t(off,deg)  
Ilkg(out)  
3
mA  
ms  
µA  
IN from high to low, if deglitch time≥  
t(off,deg), the device enters into  
standby mode.  
Standby-mode deglitch time(1)  
12.5  
VVS = 13.5 V, VIN = VDIAG_EN = VOUT  
= 0 V  
Output leakage current in off-state  
3
POWER STAGE  
VVS 3.5 V, TJ = 25°C  
VVS 3.5 V, TJ = 150°C  
CL pin connected to GND  
1000  
60%  
rDS(on)  
On-state resistance  
mΩ  
2000  
1.8  
ICL(int)  
Internal current limit  
1
A
Current-limit value percentage during  
thermal shutdown  
ICL(TSD)  
Draintosource voltage internally  
clamped  
VDS(clamp)  
45  
65  
V
OUTPUT DIODE CHARACTERISTICS  
VF  
Drainto-source diode voltage  
IN = 0, IOUT = 0.15 A  
0.3  
0.7  
1
1
V
A
Continuous reverse current from  
source to drain during a short-to-  
battery condition(1)  
IR(1)  
t < 60 s, VIN= 0 V, TJ = 25°C.  
Continuous reverse current from  
source to drain during a reverse-  
polarity condition(1)  
t < 60 s, VIN= 0 V, TJ = 25°C. GND  
pin 1-kΩ resistor in parallel with  
diode.  
IR(2)  
1
A
V
LOGIC INPUT (IN, DIAG_EN)  
VIH Logic high-level voltage  
2
(1) Value specified by design, not subject to production test  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIL  
Logic low-level voltage  
0.8  
400  
850  
V
IN. VIN = 5 V  
150  
350  
Rpd,in  
Logic-pin pulldown resistor  
kΩ  
DIAG_EN. VVS = VDIAG_EN = 5 V  
DIAGNOSTICS  
Loss of ground output leakage  
Ilkg(loss,GND)  
100  
450  
µA  
µs  
current  
VIN = 5 V, VDIAG_EN = 5 V, when IOUT  
td(ol,on)  
Open-load deglitch time in on-state  
< I(ol,on), duration longer than td(ol,on)  
,
200  
1
300  
5
open load is detected.  
VIN = 5 V, VDIAG_EN = 5 V, when IOUT  
Open-load detection threshold in on-  
state  
I(ol,on)  
< I(ol,on), duration longer than td(ol,on)  
,
8
2.6  
mA  
V
open load is detected.  
VIN = 0 V, VDIAG_EN = 5 V, when  
VVS – VOUT < V(ol,off), duration longer  
than td(ol,off), open load is detected.  
Open-load detection threshold in off-  
state  
V(ol,off)  
1.4  
VIN = 0 V, VDIAG_EN = 5 V, when  
VVS – VOUT < V(ol,off), duration longer  
than td(ol,off), open load is detected.  
td(ol,off)  
Open-load deglitch time in off-state  
Off-state output sink current  
200  
–70  
300  
450  
µs  
VIN = 0 V, VDIAG_EN = 5 V, VVS  
VOUT = 13.5 V  
=
I(ol,off)  
µA  
VFAULT  
tFAULT  
T(SD)  
FAULT low output voltage  
IFAULT = 2 mA  
0.2  
V
FAULT signal holding time(1)  
Thermal shutdown threshold(1)  
Thermal shutdown status reset(1)  
Thermal swing shutdown threshold(1)  
8.5  
175  
155  
60  
ms  
°C  
°C  
°C  
T(SD,rst)  
T(sw)  
Hysterisis for resetting the thermal  
shutdown and swing(1)  
T(hys)  
10  
°C  
CURRENT LIMIT AND DELAY CONFIGURATION  
K(CL)  
Current-limit current ratio(1)  
600  
0.8  
Current-limit internal threshold  
voltage(1)  
VCL(th)  
V
I
I
I
limit 0.05 AVVS – VOUT 2.5V  
–20%  
–15%  
20%  
15%  
External current limit accuracy(2)  
limit 0.15 A VVS – VOUT 2.5V  
limit 0.3 A, Ilimit < 1 AVVS – VOUT  
dK(CL)/K(CL) (IOUT – ICL × K(CL)) × 100 / (ICL  
K(CL)  
×
)
–10%  
10%  
2.5V  
Delay pin charging current in latch-off  
mode(1)  
Idl(chg)  
Vdl(th)  
Vdl(ref)  
tdl1  
4.5  
µA  
V
Pulling up threshold in auto-retry  
mode  
2.7  
Internal reference voltage in latch-off  
mode  
Internal fixed delay time(1)  
1.45  
400  
V
300  
500  
µs  
ms  
Adjustable delay time by external  
capacitor on DELAY pin(1)  
Connect with 3.3 uF capacitor as the  
maximum value.  
tdl2  
1000  
IN low to high, VDIAG_EN = 5 V, the  
deglitch time from IN rising edge to  
FAULT reporting out.  
300  
80  
500  
180  
(1)  
tCL(deg)  
Deglitch time when current limit  
µs  
IN keeps high, VDIAG_EN = 5 V, the  
deglitch time from CL start-point to  
FAULT reporting out.  
thic(on)  
thic(off)  
On-time when in auto-retry mode(1)  
Off-time when in auto-retry mode(1)  
35  
40  
1
45  
ms  
s
0.8  
1.2  
(2) External current limit accuracy is only applicable to overload conditions greater than 1.5 x the current limit setting  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
6.6 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Turnon delay time, IN rising edge to VVS = 13.5 V, VDIAG_EN = 5 V, IOUT  
10% of VOUT = 0.1 A  
td(on)  
20  
50  
90  
µs  
Turnoff delay time, IN falling edge to VVS = 13.5 V, VDIAG_EN = 5 V, IOUT  
td(off)  
20  
0.1  
0.3  
50  
90  
0.6  
0.9  
µs  
90% of VOUT  
= 0.1 A  
Slew rate on, VOUT from 10% to  
90%  
VVS = 13.5 V, VDIAG_EN = 5 V, IOUT  
= 0.1 A  
dV/dt(on)  
dV/dt(off)  
V/µs  
V/µs  
VVS = 13.5 V, VDIAG_EN = 5 V, IOUT  
= 0.1 A  
Slew rate off, VOUTfrom 90% to 10%  
VIN  
90%  
90%  
dV/dt(off)  
dV/dt(on)  
VOUT  
td(on)  
10%  
10%  
td(off)  
1. Output Delay Characteristics  
Open Load  
Open Load  
IN  
FAULT  
td(ol,off)  
td(ol,on)  
2. Open-Load Blanking-Time Characteristic  
版权 © 2017–2019, Texas Instruments Incorporated  
7
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VVS Rising  
VVS Falling  
IN High  
IN Low  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D001  
D002  
3. UVLO Voltage Threshold  
4. IN Voltage Threshold  
1.7  
1
0.9  
0.8  
0.7  
0.6  
DIAG_EN High  
DIAG_EN Low  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D003  
D004  
5. DIAG_EN Voltage Threshold  
6. Body-Diode Forward Voltage  
55  
54  
53  
52  
51  
50  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
rDS(on)_3.5V  
rDS(on)_13.5V  
rDS(on)_40V  
0.9  
0.8  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D005  
D006  
7. Drain-to-Source Clamp Voltage  
8. FET On-Resistance  
8
版权 © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
Typical Characteristics (接下页)  
-1.5  
3.5  
3
-2  
-2.5  
-3  
2.5  
2
-3.5  
-4  
1.5  
1
-4.5  
-5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D007  
D008  
IOUT = 50 mA  
IOUT = 150 mA  
9. Current-Limit Accuracy at 50 mA  
10. Current-Limit Accuracy at 150 mA  
3
2.5  
2
0
-0.5  
-1  
-1.5  
-2  
1.5  
1
-2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D009  
D010  
IOUT = 300 mA  
11. Current-Limit Accuracy at 300 mA  
IOUT = 1 A  
12. Current-Limit Accuracy at 1 A  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS1H000-Q1 device is a smart high-side switch, with an internal charge pump and single-channel  
integrated NMOS power FET. The adjustable current-limit function greatly improves the reliability of the  
whole system. Full diagnostic features enable intelligent control of the load.  
The external high-accuracy current limit allows setting the current-limit value for the application. When  
overcurrent occurs, the device improves system reliability by clamping the inrush current effectively. The  
TPS1H000-Q1 device can also save system cost by reducing the size of PCB traces and connectors, and  
the capacity of the preceding power stage. The TPS1H000-Q1 device allows three modes when a current  
limit occurs. Through the configuration on the DELAY pin, users can set the output to any of three modes:  
hold the current consistently, latch off immediately, or retry automatically. The configurable behaviors during  
current limit provide design flexibility that considers functionality, cost, and thermal dissipation.  
The TPS1H000-Q1 device supports full diagnostics with the digital status output. High-accuracy and low-  
threshold open-load detection enables real-time on-state monitoring. The TPS1H000-Q1 device also  
supports operation without an MCU, the standalone mode, which allows the system to implement the full  
functionality locally.  
The TPS1H000-Q1 device is a smart high-side switch for a wide variety of resistive, inductive, and capacitive  
loads, including LEDs, relays, and sub-modules.  
7.2 Functional Block Diagram  
VS  
VDS Clamp  
Internal Reference  
Charge Pump  
Gate Driver  
IN  
DIAG_EN  
FAULT  
Diagnostics  
& Protection  
Thermal Monitor  
OUT  
ON/OFF State  
Open Load Detection  
Short to GND & Overload  
Current Limit  
GND  
CL  
DELAY  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
7.3 Feature Description  
7.3.1 Current Limit  
A high-accuracy current limit allows high reliability of the design. It protects the load and the power supply from  
overstressing during short-circuit-to-GND or power-up conditions. The current limit can also save system cost by  
reducing the size of PCB traces and connectors, and the capacity of the preceding power stage.  
When a current-limit threshold is reached, a closed loop activates immediately. The output current is clamped at  
the set value, and a fault is reported out. The device heats up due to the high power dissipation on the power  
FET.  
The device has two current-limit thresholds.  
Internal current limit – The internal current limit is fixed at ICL(int). Tie the CL pin directly to the device GND for  
large-transient-current applications.  
External adjustable current limit – An external resistor is used to set the current-limit threshold. Use 公式 1 to  
calculate R(CL). VCL(th) is the internal band-gap voltage. K(CL) is the ratio of the output current and the current-  
limit set value. K(CL) is constant across temperature and supply voltage. The external adjustable current limit  
allows the flexibility to set the current-limit value by application.  
V
ìK  
CL(th)  
(CL)  
R
=
CL  
I
OUT  
(1)  
Note that if using a GND network which causes a level shift between the device GND and board GND, the CL  
pin must be connected to the device GND.  
For better protection from a hard short-to-GND condition (when the IN pin is enabled, a short to GND occurs  
suddenly), the device implements a fast-trip protection to turn off the output before the current-limit closed loop is  
set up. The fast-trip response time is less than 1 µs, typically. With this fast response, the device can achieve  
better inrush current-suppression performance.  
vs  
IOUT/K(CL)  
Internal Current Limit  
-
+
-
+
+
IOUT  
VCL(th)  
OUT  
External Current Limit  
-
+
VCL(th)  
CL  
13. Current Limit  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
 
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 DELAY Pin Configuration  
When a current limit occurs, the TPS1H000-Q1 device supports three different behaviors of the output.  
1. Current Limit Configurations  
DELAY  
CONFIGURATION  
MODE  
OUTPUT CURRENT BEHAVIOR  
FAULT RECOVERY  
When hitting a current limit, the output current  
holds at the setting current. The device enters into  
FAULT clears when IN turns low for  
duration longer than tFAULT OR when the  
current limit is removed when IN is high.  
a
Connect to GND  
directly  
Holding  
thermal shutdown mode when TJ > T(SD)  
.
When hitting a current limit, the output current  
holds at the setting current, but latches off after a  
preset DELAY time (tdl1+ tdl2). tdl1 is the default  
delay time; tdl2 is a capacitor-configurable delay  
time.  
Connect to GND  
through a capacitor  
FAULT clears when IN turns low for a  
duration longer than tFAULT.  
Latch-off  
The output stays latched off regardless of whether  
the current limit is removed. The output recovers  
only when IN is toggling.  
When hitting a current limit, the output current  
holds at the setting current, but periodically comes  
FAULT clears when IN turns low for  
duration longer than tFAULT OR when the  
current limit is removed for thic(on)  
a
Auto-retry  
External pullup  
on for thic(on) and turns off for thic(off)  
.
7.3.2.1 Holding Mode  
Holding mode is active when the DELAY pin connects to GND directly. When hitting a current limit, the output  
current holds at the setting current. The device enters into thermal shutdown mode when TJ > T(SD)  
.
DELAY  
TPS1H000-Q1  
14. Holding Mode Connection  
I
OUT  
t
CL(deg)  
Holding the current  
VFAULT  
Current Limit  
15. Holding Mode Example  
7.3.2.2 Latch-Off Mode  
Latch-off mode is active when the DELAY pin connects to GND through a capacitor. When hitting a current limit,  
the output current holds at the setting current, but latches off after a preset DELAY time (tdl1+ tdl2). tdl1 is the  
default delay time, tdl2 is a configurable delay time set by a capacitor. The output stays latched off regardless of  
whether the current limit is removed. The output recovers only when IN is toggling.  
tdl2 can be calculated by 公式 2. The Idl(chg)is the device charging current in latch-off mode, Vdl(ref) is the internal  
reference voltage in latch off mode, tdl2 is the user-setting delay time, and CDELAY is the capacitor connected on  
the DELAY pin.  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
Idl chg ì t dl2  
(
)
CDELAY  
=
Vdl ref  
(
)
(2)  
DELAY  
TPS1H000-Q1  
16. Latch-Off-Mode Connection  
I
OUT  
tdl2  
t
CL(deg) tdl1  
Latch off  
VFAULT  
Current Limit  
17. Latch-Off-Mode Example  
7.3.2.3 Auto-Retry Mode  
Auto-retry mode is active when the DELAY pin is externally pulled up. The pullup voltage must be higher than  
Vdl(th). When hitting the current limit, the output current holds at the setting current, but periodically comes on for  
thic(on) and turns off for thic(off)  
.
DELAY  
TPS1H000-Q1  
18. Auto-Retry-Mode Connection  
I
OUT  
tCL(deg)  
tCL(deg)  
thic(on)  
thic(on)  
t
hic(off)  
thic(off)  
VFAULT  
Current Limit  
19. Auto-Retry-Mode Example  
7.3.3 Standalone Operation  
In a typical application, the TPS1H000-Q1 device is controlled by a microcontroller. The device also supports  
standalone operation. IN and DIAG_EN have a 40-V maximum dc rating, and can be connected to the VS pin  
directly. In auto-retry mode, the DELAY pin can also be connected to the VS pin through a 100-kΩ resistor.  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
3.4V - 40V  
VS  
IN  
8
7
6
5
1
2
3
DIAG_EN  
OUT  
GND  
Load  
Tab  
FAULT  
CL  
DELAY  
4
20. Standalone Operation in Latch-Off Mode  
3.4V - 40V  
VS  
IN  
8
7
6
5
1
2
3
DIAG_EN  
OUT  
GND  
Load  
Tab  
FAULT  
CL  
DELAY  
4
21. Standalone Operation in Auto-Retry Mode  
7.3.4 Fault Truth Table  
The DIAG_EN pin enables or disables the diagnostic functions. If multiple devices are used, but the ADC  
resource is limited in the microcontroller, the microcontroller can use GPIOs to set DIAG_EN high to enable the  
diagnostics of one device while disabling the diagnostics of the other devices by setting DIAG_EN low. In  
addition, the device can keep the power consumption to a minimum by setting DIAG_EN and IN low.  
2 applies when the DIAG_EN pin is enabled. 3 applies when the DIAG_EN pin is disabled.  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
2. Fault Truth Table  
CONDITION  
IN  
L
OUT  
CRITERION  
FAULT  
FAULT RECOVERY  
L
H
L
H
H
L
Normal  
H
H
Overload or short to GND  
Current limit triggered.  
See 1.  
FAULT clears when IN turns low  
for a duration longer than tFAULT  
OR FAULT clears when the open  
load is removed.  
.
H
L(1)  
H
H
H
IOUT < l(ol,on)  
L
L
L
Open load or short to  
battery  
FAULT clears when IN is toggling  
OR FAULT clears when the open  
load is removed.  
VVS – VOUT < V(ol,off)  
FAULT clears when IN turns low  
for a duration longer than tFAULT.  
OR FAULT clears when thermal  
shutdown quits.  
Thermal shutdown  
triggered  
Thermal shutdown  
Thermal swing  
FAULT clears when IN turns low  
for a duration longer than tFAULT  
OR FAULT clears when thermal  
swing quits.  
.
H
Thermal swing triggered  
L
(1) An external pullup is required for open-load detection.  
3. DIAG_EN Disabled Condition  
DIAG_EN  
IN  
PROTECTIONS AND DIAGNOSTICS  
Diagnostics disabled, full protections  
Diagnostics disabled, no protection  
ON  
LOW  
OFF  
7.3.5 Full Diagnostics  
7.3.5.1 Short-to-GND and Overload Detection  
When the output is on, a short to GND or an overload condition causes overcurrent. If the overcurrent triggers  
either the internal or external current-limit threshold, a fault condition is reported out as FAULT pin = low.  
7.3.5.2 Open-Load Detection  
7.3.5.2.1 Output On  
When the output is on, if the current flowing through the output IOUT < l(ol,on), the device recognizes an open-load  
fault. For open-load detection in output on, no external circuitry is required.  
7.3.5.2.2 Output Off  
When the output is off, if a load is connected, the output is pulled down to GND. But if an open load occurs, the  
output voltage is close to the supply voltage (VVS – VOUT < V(ol,off)), and the device recognizes an open-load fault.  
There is always a leakage current I(ol,off) present on the output due to the internal logic control path or external  
humidity, corrosion, and so forth. So an external pullup resistor is recommended to offset the leakage current  
when an open load is detected. The recommended pullup resistance is 15 kΩ.  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
Open Load Detection in Off-State  
V(ol,off)  
Vds  
R(pullup)  
Load  
22. Open-Load Detection in Output Off  
7.3.5.3 Short-to-Battery Detection  
Short-to-battery has the same detection mechanism and behavior as open-load detection, in both the on-state  
and off-state.  
7.3.5.4 Thermal Fault Detection  
To protect the device in severe power stressing cases, the device implements two types of thermal fault  
detection, absolute temperature protection (thermal shutdown) and dynamic temperature protection (thermal  
swing).  
Thermal behaviors after Short to GND  
IN  
T(SD)  
TJ  
T(hys)  
T(SD,rst)  
T(hys)  
T(SW)  
ICL  
ICL(TSD)  
IOUT  
FAULT  
23. Thermal Behavior Diagram  
7.3.5.4.1 Thermal Shutdown  
Thermal shutdown is active when the absolute temperature TJ > T(SD). When thermal shutdown occurs, the  
output turns off.  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
7.3.5.4.2 Thermal Swing  
Thermal swing activates when the power FET temperature is increasing sharply, that is, when ΔT = T(FET)  
T(Logic) > T(sw), then the output turns off. The output automatically recovers and the fault signal clears when ΔT =  
T(FET) – T(Logic) < T(sw) – T(hys). The thermal swing function improves the device reliability when subjected to  
repetitive fast thermal variation.  
7.3.5.4.3 Fault Report Holding  
When using PWM dimming, FAULT is easily cleared by the PWM falling edge. Even if the fault condition remains  
all the time, FAULT is discontinuous. To avoid this unexpected fault report behavior, the device implements fault-  
report holding time. 24 shows a typical issue when PWM dimming, the FAULT is cleared unexpectedly even  
when the short-to-GND still exists. The TPS1H000-Q1 device with fault-report holding function allows the right  
behavior as shown in 25.  
Short-to-GND  
IN  
Fault cleared  
FAULT  
24. Without Fault-Report Holding  
Short-to-GND  
IN  
Fault not cleared  
t < tFAULT  
FAULT  
25. With Fault-Report Holding  
7.3.6 Full Protections  
7.3.6.1 UVLO Protection  
The device monitors the supply voltage, VVS, to prevent unpredicted behaviors when VVS is too low. When VVS  
falls down to VVS(uvf), the device shuts down. When VVS rises up to VVS(uvr), the device turns on.  
7.3.6.2 Inductive Load Switching Off Clamp  
When switching an inductive load off, the inductive reactance tends to pull the output voltage negative. Excessive  
negative voltage could cause the power FET to break down. To protect the power FET, an internal clamp  
between drain and source is implemented, namely VDS(clamp)  
.
版权 © 2017–2019, Texas Instruments Incorporated  
17  
 
 
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
VS  
VDS(clamp)  
-
L
OUT  
R
GND  
+
26. Drain-to-Source Clamping Structure  
IN  
VVS  
VOUT  
VDS(clamp)  
IOUT  
t(decay)  
27. Inductive-Load Switching-Off Diagram  
7.3.6.3 Loss-of-GND Protection  
When loss of GND occurs, the output is shut down regardless of whether the IN pin is high or low. The device  
can protect against two ground-loss conditions, loss of device GND and loss of module GND.  
7.3.6.4 Loss-of-Power-Supply Protection  
When loss of supply occurs, the output is shut down regardless of whether the IN pin is high or low. For a  
resistive or a capacitive load, loss of supply has no risk. But for a charged inductive load, the current is driven  
from all the logic control pins to maintain the inductance current. To protect the system in this condition, TI  
recommends protection with an external free-wheeling diode.  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
Vs  
VS  
IOs  
MCU  
High-side Switch  
OUT  
D
L
28. Protection for Loss of Power Supply  
7.3.6.5 Reverse-Current Protection  
Reverse current occurs in two conditions: short to supply and reverse polarity.  
When a short to the supply occurs, there is only reverse current through the body diode. IR(1) specifies the  
limit of the reverse current.  
In a reverse-polarity condition, there are reverse currents through the body diode and the device GND pin.  
IR(2) specifies the limit of the reverse current.  
To protect the device, TI recommends two types of external circuitry.  
Adding a blocking diode (method 1). Both the device and load are protected when in reverse polarity.  
Adding a GND network (method 2). The reverse current through the device GND is blocked. The reverse  
current through the FET is limited by the load itself. TI recommends a resistor in parallel with the diode as a  
GND network. The recommended configuration is a 1-kΩ resistor in parallel with a >100-mA diode. The  
reverse current protection diode in the GND network forward voltage should be less than 0.6 V in any  
circumstances. In addition a minimum resistance of 4.7 K is recommended on the I/O pins.  
Load  
29. Reverse-Current External Protection, Method 1  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
Load  
30. Reverse-Current External Protection, Method 2  
7.3.6.6 MCU I/O Protection  
TI recommends series resistors to protect the microcontroller, for example, 4.7-kΩ when using a 3.3-V  
microcontroller and 10-kΩ for a 5-V microcontroller.  
IOs  
MCU  
TPS1H000-Q1  
Load  
31. MCU I/O External Protection  
7.4 Device Functional Modes  
7.4.1 Working Modes  
The device has three working modes, the normal mode, the standby mode, and the standby mode with  
diagnostics, as shown in 32.  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
Device Functional Modes (接下页)  
Standby Mode  
(IN low, DIAG_EN low)  
DIAG_EN low  
AND  
IN high to low  
AND  
DIAG_EN high to low  
t > t(off,deg)  
IN low to high  
DIAG_EN low to high  
Standby Mode  
With DIAG  
IN low to high  
Normal Mode  
(IN high)  
(IN low, DIAG_EN high)  
IN high to low  
AND  
DIAG_EN high  
AND  
t > t(off,deg)  
32. Working Modes  
7.4.1.1 Normal Mode  
When IN is high, the device enters normal mode.  
7.4.1.2 Standby Mode  
When IN is low and DIAG_EN is low, the device enters standby mode with ultralow power consumption.  
7.4.1.3 Standby Mode With Diagnostics  
When IN is low and DIAG_EN is high, the device enters standby mode with diagnostics. The device still supports  
open-load and short-to-battery detection even when IN is low.  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS1H000-Q1 device is a smart high-side switch, with an internal charge pump and single-channel  
integrated NMOS power FET. The adjustable current-limit function greatly improves the reliability of the whole  
system. Full diagnostic features enable intelligent control of the load. The TPS1H000-Q1 device can be used for  
a wide variety of resistive, inductive, and capacitive loads, including LEDs, relays, and sub-modules.  
8.2 Typical Application  
33 shows an example of how to design the external circuitry parameters.  
Supply Voltage  
R(SER)  
VS  
IN  
R(SER)  
General Resistive, Capacitive,  
Inductive Loads  
DIAG_EN  
OUT  
3.3/5V  
R(pullup)  
MCU  
R(SER)  
FAULT  
DELAY  
C(DELAY)  
GND  
CL  
R(CL)  
33. Typical Application Circuitry  
8.2.1 Design Requirements  
VVS range from 6 V to 18 V  
Nominal current of 100 mA  
Expected current limit value of 500 mA  
Thermal sensitive system, when current limit occurs, the output latches off after 0.2 s. The 0.2 s is to ensure  
the safe start-up for a capacitive load, clamping the inrush current but without latch-off during start-up.  
Full diagnostics with 5-V MCU, including on-state open-load detection, short-to-GND or overcurrent detection,  
and thermal shutdown detection  
8.2.2 Detailed Design Procedure  
To set the adjustable current limit value at 500 mA, calculate R(CL) as follows:  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
Typical Application (接下页)  
VCL(th) ìK(CL)  
0.8ì 600  
R(CL)  
=
=
= 960  
IOUT  
0.5  
(3)  
(4)  
To set the adjustable latch-off delay at 0.2 s, calculate C(DELAY) as follows:  
tdl = tCL(deg) + tdl1 + tdl2 = 0.2 ö tdl2  
Idl(chg) ì tdl2  
4.5ì0.2  
1.45  
CDELAY  
=
=
ì10-6 = 0.62 mF  
Vdl(ref)  
TI recommends R(SER) = 10 kΩ for a 5-V MCU, and R(pullup) = 10 kΩ as the pullup resistor.  
8.2.3 Application Curves  
The following curves are test examples of hard short conditions. The load is 0.1 A and the current limit value is  
0.5 A. 34 shows a waveform of the latch-off mode. 35 shows a waveform of the auto-retry mode.  
Load = 0.1 A  
Current limit = 0.5  
A
Load = 0.1 A  
Current limit = 0.5  
A
34. Hard-Short Condition in Latch-Off Mode  
35. Hard-Short Condition in Auto-Retry Mode  
9 Power Supply Recommendations  
The device can be used for both 12-V and 24-V applications. The normal power supply connection is a 12-V or  
24-V system.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
TPS1H000-Q1  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
To prevent thermal shutdown, TJ must be less than 175°C. If the output current is very high, the power  
dissipation may be large. However, the PCB layout is very important. Good PCB design can optimize heat  
transfer, which is absolutely essential for the long-term reliability of the device.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-  
flow path from the package to the ambient is through the copper on the PCB. Maximum copper is extremely  
important when there are not any heat sinks attached to the PCB on the other side of the board opposite the  
package.  
Add as many thermal vias as possible directly under the package thermal pad to optimize the thermal  
conductivity of the board.  
All thermal vias should either be plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
10.2 Layout Example  
1
8
VS  
OUT  
GND  
IN  
2
3
7
6
DIAG_EN  
Thermal Pad  
FAULT  
CL  
4
5
DELAY  
36. Layout Example  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS1H000-Q1  
www.ti.com.cn  
ZHCSH03C AUGUST 2017REVISED JUNE 2019  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS1H000AQDGNRQ1  
ACTIVE  
HVSSOP  
DGN  
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
17SX  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS1H000AQDGNRQ1 HVSSOP DGN  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HVSSOP DGN  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
TPS1H000AQDGNRQ1  
8
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DGN 8  
3 x 3, 0.65 mm pitch  
PowerPAD VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225482/A  
www.ti.com  
PACKAGE OUTLINE  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE PACKAGE  
C
5.05  
4.75  
TYP  
A
0.1 C  
SEATING  
PLANE  
PIN 1 INDEX AREA  
6X 0.65  
8
1
2X  
3.1  
2.9  
1.95  
NOTE 3  
4
5
0.38  
8X  
0.25  
3.1  
2.9  
0.13  
C A B  
B
NOTE 4  
0.23  
0.13  
SEE DETAIL A  
EXPOSED THERMAL PAD  
4
5
0.25  
GAGE PLANE  
2.15  
1.95  
9
1.1 MAX  
8
0.15  
0.05  
1
0.7  
0.4  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1.846  
1.646  
4225480/B 12/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(2)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(1.57)  
SOLDER MASK  
DEFINED PAD  
SYMM  
8X (1.4)  
(R0.05) TYP  
8
8X (0.45)  
1
(3)  
NOTE 9  
SYMM  
(1.89)  
9
(1.22)  
6X (0.65)  
5
4
(
0.2) TYP  
VIA  
SEE DETAILS  
(0.55)  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225480/B 12/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(1.57)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
(R0.05) TYP  
8X (1.4)  
8
1
8X (0.45)  
(1.89)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
6X (0.65)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
(4.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD 9:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
1.76 X 2.11  
1.57 X 1.89 (SHOWN)  
1.43 X 1.73  
0.125  
0.15  
0.175  
1.33 X 1.60  
4225480/B 12/2022  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS1H100-Q1

具有可调节电流限制的 40V、100mΩ、汽车类单通道智能高侧开关
TI

TPS1H100AQPWPRQ1

具有可调节电流限制的 40V、100mΩ、汽车类单通道智能高侧开关 | PWP | 14 | -40 to 125
TI

TPS1H100BQPWPRQ1

具有可调节电流限制的 40V、100mΩ、汽车类单通道智能高侧开关 | PWP | 14 | -40 to 125
TI

TPS1H200A-Q1

具有可调节电流限制的 40V、200mΩ、汽车类单通道智能高侧开关
TI

TPS1H200AQDGNRQ1

具有可调节电流限制的 40V、200mΩ、汽车类单通道智能高侧开关 | DGN | 8 | -40 to 125
TI

TPS1HA08-Q1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关
TI

TPS1HA08AQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08BQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08CQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08DQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08EQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HB08-Q1

具有可调节电流限制的 40V、8mΩ、汽车类单通道智能高侧开关
TI