TPS2020IDRQ1 [TI]

低电平有效的汽车类 0.2A 负载、2.7-5.5V、33mΩ USB 电源开关 | D | 8 | -40 to 125;
TPS2020IDRQ1
型号: TPS2020IDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低电平有效的汽车类 0.2A 负载、2.7-5.5V、33mΩ USB 电源开关 | D | 8 | -40 to 125

开关 驱动 电源开关 光电二极管 接口集成电路 驱动器
文件: 总23页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
D
Qualification in Accordance With  
AEC-Q100  
D
Maximum Standby Supply  
Current . . . 10 µA  
D
Qualified for Automotive Applications  
D
D
D
D
No Drain-Source Back-Gate Diode  
Available in 8-pin SOIC Package  
D
Customer-Specific Configuration Control  
Can Be Supported Along With  
Major-Change Approval  
Ambient Temperature Range, 40°C to 85°C  
2-kV Human-Body-Model, 200-V  
Machine-Model ESD Protection  
D
33-m(5-V Input) High-Side MOSFET  
Switch  
D
UL Listed − File No. E169910  
D
D
D
D
D
D
Short-Circuit and Thermal Protection  
Overcurrent Logic Output  
D PACKAGE  
(TOP VIEW)  
Operating Range . . . 2.7 V to 5.5 V  
Logic-Level Enable Input  
GND  
IN  
OUT  
OUT  
OUT  
OC  
1
2
3
4
8
7
6
5
Typical Rise Time . . . 6.1 ms  
Undervoltage Lockout  
IN  
EN  
description  
The TPS202x family of power distribution switches is intended for applications where heavy capacitive loads and  
short circuits are likely to be encountered. These devices are 50-mN-channel MOSFET high-side power switches.  
The switch is controlled by a logic enable compatible with 5-V logic and 3-V logic. Gate drive is provided by an  
internal charge pump designed to control the power-switch rise times and fall times to minimize current surges  
during switching. The charge pump requires no external components and allows operation from supplies as low as  
2.7 V.  
When the output load exceeds the current-limit threshold or a short is present, the TPS202x limits the output current  
to a safe level by switching into a constant-current mode, pulling the overcurrent (OC) logic output low. When  
continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction  
temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal  
shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until  
valid input voltage is present.  
The TPS202x devices differ only in short-circuit current threshold. The TPS2020 limits at 0.3-A load, the TPS2021  
at 0.9-A load, the TPS2022 at 1.5-A load, the TPS2023 at 2.2-A load, and the TPS2024 at 3-A load (see Available  
Options). The TPS202x is available in an 8-pin small-outline integrated-circuit (SOIC) package and operates over  
a junction temperature range of 40°C to 125°C.  
GENERAL SWITCH CATALOG  
33 m, single  
80 m, single  
80 m, dual  
80 m, triple  
80 m, quad  
TPS201xA 0.2 A − 2 A  
TPS2042  
TPS2052  
TPS2046  
TPS2056  
500 mA  
500 mA  
250 mA  
250 mA  
TPS202x  
0.2 A − 2 A  
TPS203x  
0.2 A − 2 A  
260 mΩ  
1.3 Ω  
TPS2014  
TPS2015  
TPS2041  
TPS2051  
TPS2045  
TPS2055  
600 mA  
1 A  
500 mA  
500 mA  
250 mA  
250 mA  
TPS2100/1  
IN1 500 mA  
IN2 10 mA  
TPS2043  
500 mA  
500 mA  
250 mA  
250 mA  
TPS2044  
500 mA  
500 mA  
250 mA  
250 mA  
IN1  
IN2  
TPS2053  
TPS2047  
TPS2057  
TPS2054  
TPS2048  
TPS2058  
OUT  
TPS2102/3/4/5  
IN1 500 mA  
IN2 100 mA  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Contact Texas Instruments for details. Q100 qualification data available on request.  
Copyright 2004, Texas Instruments Incorporated  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢂꢃ  
ꢀꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
AVAILABLE OPTIONS  
PACKAGED  
DEVICES  
RECOMMENDED  
MAXIMUM CONTINUOUS  
LOAD CURRENT  
(A)  
TYPICAL SHORT-CIRCUIT  
CURRENT LIMIT AT 25°C  
(A)  
T
A
ENABLE  
SMALL OUTLINE  
(D)  
0.2  
0.6  
1
0.3  
0.9  
1.5  
2.2  
3
TPS2020IDRQ1  
TPS2021IDRQ1  
TPS2022IDRQ1  
40°C to 85°C Active low  
1.5  
2
TPS2023IDRQ1  
TPS2024IDRQ1  
The D package is taped and reeled as indicated by the R suffix to device type (e.g., TPS2020IDRQ1)  
Product Preview  
TPS2020 functional block diagram  
Power Switch  
CS  
IN  
OUT  
Charge  
Pump  
Current  
Limit  
EN  
Driver  
OC  
UVLO  
Thermal  
Sense  
GND  
Current Sense  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
D
EN  
4
I
I
Enable input. Logic low turns on power switch.  
GND  
IN  
1
Ground  
2, 3  
5
I
Input voltage  
OC  
OUT  
O
O
Overcurrent. Logic output active low  
Power-switch output  
6, 7, 8  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
detailed description  
power switch  
The power switch is an N-channel MOSFET with a maximum on-state resistance of 50 m(V  
= 5 V). Configured  
I(IN)  
as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled.  
charge pump  
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of  
the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires little  
supply current.  
driver  
The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated  
electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall  
times of the output voltage. The rise and fall times are typically in the 2-ms to 9-ms range.  
enable (EN)  
The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce the  
supply current to less than 10 µA when a logic high is present on EN. A logic zero input on EN restores bias to the  
drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic  
levels.  
overcurrent (OC)  
The OC open drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output remains asserted until the overcurrent or overtemperature condition is removed.  
current sense  
A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than  
conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry  
sends a control signal to the driver. The driver, in turn, reduces the gate voltage and drives the power FET into its  
saturation region, which switches the output into a constant current mode and holds the current constant while  
varying the voltage on the load.  
thermal sense  
An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately  
140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately 20°C, the switch  
turns back on. The switch continues to cycle off and on until the fault is removed.  
undervoltage lockout  
A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control  
signal turns off the power switch.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢂꢃ  
ꢀꢁ  
ꢆꢇ  
ꢀꢐ  
ꢌꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range, V  
Output voltage range, V  
Input voltage range, V  
Continuous output current, I  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
I(IN)  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
+ 0.3 V  
O(OUT)  
I(EN)  
I(IN)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . internally limited  
O(OUT)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
J
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Electrostatic discharge (ESD) protection: Human body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200V  
Charged device model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . 750 V  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
D
725 mW  
5.8 mW/°C  
464 mW 377 mW  
recommended operating conditions  
MIN  
2.7  
0
MAX  
5.5  
5.5  
0.2  
0.6  
1
UNIT  
V
V
V
I(IN)  
Input voltage  
V
I(EN)  
TPS2020  
TPS2021  
TPS2022  
TPS2023  
TPS2024  
0
0
0
Continuous output current, I  
A
O
0
1.5  
2
0
Operating virtual junction temperature, T  
−40  
125  
°C  
J
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢎ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
electrical characteristics over recommended operating junction temperature range, V  
rated current, EN = 0 V (unless otherwise noted)  
= 5.5 V, I =  
O
I(IN)  
power switch  
PARAMETER  
MIN  
TYP  
MAX  
43.5  
57.5  
62.5  
48.5  
68.5  
87  
UNIT  
TEST CONDITIONS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 5 V,  
= 5 V,  
= 5 V,  
T = 25°C,  
J
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 1 A  
33  
38  
44  
37  
43  
51  
30  
43  
31  
48  
30  
35  
39  
33  
39  
44  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
T = 85°C,  
J
T = 125°C,  
J
= 3.3 V, T = 25°C,  
J
= 3.3 V, T = 85°C,  
J
= 3.3 V, T = 125°C,  
J
= 5 V,  
= 5 V,  
T = 25°C,  
J
43.5  
62.5  
48.5  
87  
T = 125°C,  
J
= 1 A  
r
Static drain-source on-state resistance  
mΩ  
DS(on)  
= 3.3 V, T = 25°C,  
= 1 A  
J
= 3.3 V, T = 125°C,  
= 1 A  
J
= 5 V,  
= 5 V,  
= 5 V,  
T = 25°C,  
J
= 0.18 A  
= 0.18 A  
= 0.18 A  
= 0.18 A  
= 0.18 A  
= 0.18 A  
34  
T = 85°C,  
J
41  
T = 125°C,  
J
47  
= 3.3 V, T = 25°C,  
37  
J
= 3.3 V, T = 85°C,  
46  
J
= 3.3 V, T = 125°C,  
56  
J
= 5.5 V, T = 25°C,  
J
6.1  
8.6  
3.4  
3
C
= 1 µF,  
R = 10 Ω  
L
L
t
t
Rise time, output  
Fall time, output  
ms  
ms  
r
V
C
= 2.7 V, T = 25°C,  
J
I(IN)  
= 1 µF,  
R = 10 Ω  
L
L
V
C
= 5.5 V, T = 25°C,  
J
I(IN)  
= 1 µF,  
R = 10 Ω  
L
L
f
V
C
= 2.7 V, T = 25°C,  
J
I(IN)  
= 1 µF,  
R = 10 Ω  
L
L
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
enable input (EN)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
High-level input voltage  
2.7 V V  
4.5 V V  
2.7 V V  
5.5 V  
5.5 V  
4.5 V  
2
V
IH  
IL  
I
I(IN)  
I(IN)  
I(IN)  
0.8  
0.5  
0.5  
Low-level input voltage  
Input current  
V
I
EN= 0 V or EN = V  
I(IN)  
0.5  
µA  
ms  
t
t
Turnon time  
Turnoff time  
C
C
= 100 µF, R = 10 Ω  
20  
40  
on  
L
L
L
= 100 µF, R = 10 Ω  
off  
L
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢇꢈ  
ꢂꢃ  
ꢀꢁ  
ꢆꢇ  
ꢌꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
electrical characteristics over recommended operating junction temperature range, V  
rated current, EN = 0 V (unless otherwise noted) (continued)  
= 5.5 V, I =  
O
I(IN)  
current limit  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
0.4  
1.1  
1.8  
2.7  
4.2  
UNIT  
TPS2020  
TPS2021  
TPS2022  
TPS2023  
TPS2024  
0.22  
0.66  
1.1  
0.3  
0.9  
1.5  
2.2  
3
T = 25°C, V = 5.5 V,  
J
I
OUT connected to GND,  
Device enable into short circuit  
I
Short-circuit output current  
A
OS  
1.65  
2
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
T = 25°C  
0.3  
1
10  
J
Supply current, low-level output  
No load on OUT  
No load on OUT  
µA  
EN = V  
I(IN)  
40°C T 125°C  
J
T = 25°C  
J
58  
75  
10  
75  
Supply current, high-level output  
Leakage current  
EN = 0 V  
µA  
µA  
40°C T 125°C  
100  
J
OUT connected to ground EN = V  
I(IN)  
40°C T 125°C  
J
undervoltage lockout  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Low-level input voltage  
Hysteresis  
2
2.5  
T = 25°C  
J
100  
mV  
overcurrent (OC)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4  
1
UNIT  
V
Output low voltage  
I
= 10 mA,  
V
O
OL(OC)  
= 3.3 V  
O
Off-state current  
V
= 5 V,  
V
µA  
O
Specified by design, not production tested.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢎ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
OUT  
t
t
f
r
RL  
CL  
V
90%  
10%  
O(OUT)  
90%  
10%  
TEST CIRCUIT  
50%  
90%  
50%  
V
I(EN)  
t
t
off  
on  
V
O(OUT)  
10%  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuit and Voltage Waveforms  
Table of Timing Diagrams  
FIGURE  
Turnon Delay and Rise TIme  
Turnoff Delay and Fall Time  
2
3
4
5
6
Turnon Delay and Rise TIme with 1-µF Load  
Turnoff Delay and Rise TIme with 1-µF Load  
Device Enabled into Short  
7, 8, 9,  
10, 11  
TPS2020, TPS2021, TPS2022, TPS2023, and TPS2024, Ramped Load on Enabled Device  
TPS2024, Inrush Current  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
7.9-Load Connected to an Enabled TPS2020 Device  
3.7-Load Connected to an Enabled TPS2020 Device  
3.7-Load Connected to an Enabled TPS2021 Device  
2.6-Load Connected to an Enabled TPS2021 Device  
2.6-Load Connected to an Enabled TPS2022 Device  
1.2-Load Connected to an Enabled TPS2022 Device  
1.2-Load Connected to an Enabled TPS2023 Device  
0.9-Load Connected to an Enabled TPS2023 Device  
0.9-Load Connected to an Enabled TPS2024 Device  
0.5-Load Connected to an Enabled TPS2024 Device  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢂꢃ  
ꢌꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
I(EN)  
V
I(EN)  
V
R
T
A
= 5 V  
I(IN)  
= 27 Ω  
L
= 25°C  
V
(2 V/div)  
V
(2 V/div)  
O(OUT)  
O(OUT)  
V
R
T
A
= 5 V  
= 27 Ω  
= 25°C  
IN  
L
V
V
O(OUT)  
O(OUT)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18  
20  
t − Time − ms  
t − Time − ms  
Figure 3. Turnoff Delay and Fall Time  
Figure 2. Turnon Delay and Rise Time  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
I(EN)  
V
I(EN)  
V
(2 V/div)  
O(OUT)  
V
(2 V/div)  
O(OUT)  
V
C
R
= 5 V  
= 1 µF  
= 27 Ω  
= 25°C  
I(IN)  
L
L
V
C
R
= 5 V  
= 1 µF  
= 27 Ω  
= 25°C  
I(IN)  
L
L
V
V
O(OUT)  
O(OUT)  
T
A
T
A
0
2
4
6
8
10 12 14 16 18  
20  
0
2
4
6
8
10 12 14 16 18  
20  
t − Time − ms  
t − Time − ms  
Figure 5. Turnoff Delay and Fall Time  
Figure 4. Turnon Delay and Rise Time  
With 1-µF Load  
With 1-µF Load  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢎ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
V
(5 V/div)  
O(OC)  
V
I(EN)  
V
I(EN)  
(5 V/div)  
V
O(OC)  
V
T
A
= 5 V  
= 25°C  
I(IN)  
V
T
A
= 5 V  
= 25°C  
I(IN)  
TPS2024  
TPS2023  
TPS2022  
I
(500 mA/div)  
O(OUT)  
TPS2021  
TPS2020  
I
O(OUT)  
I
O(OUT)  
I
(1 A/div)  
3
O(OUT)  
0
20 40 60 80 100 120 140 160 180 200  
t − Time − ms  
0
1
2
4
5
6
7
8
9
10  
t − Time − ms  
Figure 7. TPS2020, Ramped Load on  
Enabled Device  
Figure 6. Device Enabled Into Short  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
T
A
= 5 V  
I(IN)  
= 25°C  
V
T
A
= 5 V  
I(IN)  
= 25°C  
I
(1 A/div)  
O(OUT)  
I
(1 A/div)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
20 40 60 80 100 120 140 160 180 200  
t − Time − ms  
0
20 40 60 80 100 120 140 160 180 200  
t − Time − ms  
Figure 8. TPS2021, Ramped Load on Enabled  
Device  
Figure 9. TPS2022, Ramped Load on  
Enabled Device  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢇꢈ  
ꢂꢃ  
ꢆꢇ  
ꢀꢐ  
ꢌꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
= 5 V  
I(IN)  
T = 25°C  
A
V
T
A
= 5 V  
= 25°C  
I(IN)  
I
(1 A/div)  
I
(1 A/div)  
O(OUT)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
20 40 60 80 100 120 140 160 180 200  
t − Time − ms  
0
20 40 60 80 100 120 140 160 180 200  
t − Time − ms  
Figure 10. TPS2023, Ramped Load on  
Enabled Device  
Figure 11. TPS2024, Ramped Load on Enabled  
Device  
V
I(EN)  
V
(5 V/div)  
O(OC)  
V
I(EN)  
(5 V/div)  
V
O(OC)  
I
(200 mA/div)  
O(OUT)  
470 µF  
150 µF  
I
(500 mA/div)  
I(IN)  
V
R
T
A
= 5 V  
= 7.9 Ω  
= 25°C  
I(IN)  
L
I
I
O(OUT)  
I(IN)  
R
= 10 Ω  
T = 25°C  
A
L
47 µF  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µs  
t − Time − ms  
Figure 13. 7.9-Load Connected to an Enabled  
Figure 12. TPS2024, Inrush Current  
TPS2020 Device  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢎ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
V
(5 V/div)  
V
(5 V/div)  
O(OC)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
= 5 V  
= 3.7 Ω  
= 25°C  
V
= 5 V  
= 3.7 Ω  
= 25°C  
I(IN)  
L
I(IN)  
L
R
T
R
T
A
A
I
(500 mA/div)  
O(OUT)  
I
(1 A/div)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
50 100 150 200 250 300 350 400 450 500  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
t − Time − µs  
t − Time − µs  
Figure 14. 3.7-Load Connected to an Enabled  
Figure 15. 3.7-Load Connected to an Enabled  
TPS2020 Device  
TPS2021 Device  
V
O(OC)  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
O(OC)  
V
= 5 V  
= 2.6 Ω  
= 25°C  
V
= 5 V  
= 2.6 Ω  
= 25°C  
I(IN)  
L
I(IN)  
L
R
T
R
T
A
A
I
(1 A/div)  
I
(1 A/div)  
O(OUT)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
50 100 150 200 250 300 350 400 450 500  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
t − Time − µs  
t − Time − µs  
Figure 16. 2.6-Load Connected to an Enabled  
Figure 17. 2.6-Load Connected to an Enabled  
TPS2021 Device  
TPS2022 Device  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢇꢈ  
ꢀꢁ  
ꢆꢇ  
ꢌꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
R
T
A
= 5 V  
= 1.2 Ω  
= 25°C  
I(IN)  
L
I
(1 A/div)  
O(OUT)  
I
(2 A/div)  
O(OUT)  
V
R
T
A
= 5 V  
= 1.2 Ω  
= 25°C  
I(IN)  
L
I
I
O(OUT)  
O(OUT)  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
t − Time − µs  
t − Time − µs  
Figure 18. 1.2-Load Connected to an Enabled  
Figure 19. 1.2-Load Connected to an Enabled  
TPS2022 Device  
TPS2023 Device  
V
(5 V/div)  
V
(5 V/div)  
O(OC)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
= 5 V  
= 0.9 Ω  
= 25°C  
V
= 5 V  
= 0.9 Ω  
= 25°C  
I(IN)  
L
I(IN)  
L
R
T
R
T
A
A
I
(2 A/div)  
O(OUT)  
I
(5 A/div)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
t − Time − µs  
t − Time − µs  
Figure 21. 0.9-Load Connected to an Enabled  
Figure 20. 0.9-Load Connected to an Enabled  
TPS2024 Device  
TPS2023 Device  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
V
(5 V/div)  
O(OC)  
V
O(OC)  
V
R
T
A
= 5 V  
= 0.5 Ω  
= 25°C  
I(IN)  
L
I
O(OUT)  
(5 A/div)  
I
O(OUT)  
0
50 100 150 200 250 300 350 400 450 500  
t − Time − µs  
Figure 22. 0.5-Load Connected to an Enabled  
TPS2024 Device  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
23  
t
t
t
t
Turnon delay time  
Turnoff delay time  
Rise time  
vs Output voltage  
vs Input voltage  
d(on)  
24  
d(off)  
vs Load current  
25  
r
f
Fall time  
vs Load current  
26  
Supply current (enabled)  
Supply current (disabled)  
Supply current (enabled)  
Supply current (disabled)  
vs Junction temperature  
vs Junction temperature  
vs Input voltage  
27  
28  
29  
vs Input voltage  
30  
vs Input voltage  
31  
I
Short-circuit current limit  
OS  
vs Junction temperature  
vs Input voltage  
32  
33  
vs Junction temperature  
vs Input voltage  
34  
r
Static drain-source on-state resistance  
Input voltage  
DS(on)  
35  
vs Junction temperature  
Undervoltage lockout  
36  
V
37  
I
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢇꢈ  
ꢂꢃ  
ꢀꢁ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
TURNON DELAY TIME  
vs  
OUTPUT VOLTAGE  
TURNOFF DELAY TIME  
vs  
INPUT VOLTAGE  
7.5  
18  
T
C
= 25°C  
= 1 µF  
A
L
T
C
= 25°C  
= 1 µF  
A
L
7
6.5  
6
17.5  
17  
5.5  
5
4.5  
16.5  
16  
4
3.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V − Input Voltage − V  
I
V − Input Voltage − V  
I
Figure 23  
Figure 24  
RISE TIME  
vs  
LOAD CURRENT  
FALL TIME  
vs  
LOAD CURRENT  
6.5  
3.5  
T
C
= 25°C  
= 1 µF  
A
L
T
C
= 25°C  
= 1 µF  
A
L
3.25  
3
6
5.5  
2.75  
2.5  
5
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
I
L
− Load Current − A  
I
L
− Load Current − A  
Figure 25  
Figure 26  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢎ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
SUPPLY CURRENT (ENABLED)  
vs  
JUNCTION TEMPERATURE  
SUPPLY CURRENT (DISABLED)  
vs  
JUNCTION TEMPERATURE  
75  
65  
5
V
= 5.5 V  
I(IN)  
V
= 5 V  
I(IN)  
V
= 5.5 V  
= 5 V  
I(IN)  
4
3
2
V
I(IN)  
55  
1
V
= 4 V  
I(IN)  
= 3.3 V  
V
= 4 V  
= 3.3 V  
45  
35  
I(IN)  
V
I(IN)  
V
I(IN)  
= 2.7 V  
0
V
= 2.7 V  
I(IN)  
V
I(IN)  
−1  
−50 −25  
0
25  
50  
75  
100 125 150  
−50 −25  
0
25  
50  
75  
100 125 150  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 27  
Figure 28  
SUPPLY CURRENT (ENABLED)  
SUPPLY CURRENT (DISABLED)  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
75  
65  
5
4
3
2
T
= 125°C  
J
T
J
= 125°C  
T
J
= 85°C  
T
J
= 85°C  
55  
1
T
= 25°C  
= 0°C  
J
45  
35  
T
= 25°C  
J
0
T
= 0°C  
J
T
J
T
= −40°C  
J
T
= −40°C  
J
−1  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V − Input Voltage − V  
I
V − Input Voltage − V  
I
Figure 29  
Figure 30  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢇꢈ  
ꢂꢃ  
ꢀꢁ  
ꢆꢇ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
SHORT-CIRCUIT CURRENT LIMIT  
SHORT-CIRCUIT CURRENT LIMIT  
vs  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
3.5  
3.5  
T
A
= 25°C  
TPS2024  
TPS2024  
3
3
2.5  
2.5  
TPS2023  
TPS2022  
TPS2023  
TPS2022  
2
1.5  
1
2
1.5  
1
TPS2021  
TPS2020  
TPS2021  
TPS2020  
0.5  
0
0.5  
0
−50  
−25  
T
0
25  
50  
75  
100  
2
3
4
5
6
− Junction Temperature − °C  
V − Input Voltage − V  
I
J
Figure 31  
Figure 32  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
INPUT VOLTAGE  
60  
JUNCTION TEMPERATURE  
60  
I
O
= 0.18 A  
I
O
= 0.18 A  
50  
40  
50  
40  
T
J
= 125°C  
V = 2.7 V  
I
V = 3.3 V  
I
T
J
= 25°C  
30  
20  
30  
20  
V = 5.5 V  
I
T
= −40°C  
J
2.5  
3
3.5  
4
4.5  
5
5.5  
6
−50 −25  
0
25  
50  
75 100 125 150  
V − Input Voltage − V  
I
T
J
− Junction Temperature − °C  
Figure 33  
Figure 34  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢎ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
JUNCTION TEMPERATURE  
60  
INPUT VOLTAGE  
60  
I
O
= 1.8 A  
I
O
= 1.8 A  
50  
40  
50  
40  
T
J
= 125°C  
V = 3.3 V  
I
V = 4 V  
I
V = 5.5 V  
I
T
J
= 25°C  
T
J
= −40°C  
30  
20  
30  
20  
3
3.5  
4
4.5  
5
5.5  
6
−50 −25  
0
25  
50  
75 100 125 150  
V − Input Voltage − V  
I
T
J
− Junction Temperature − °C  
Figure 35  
Figure 36  
UNDERVOLTAGE LOCKOUT  
2.5  
2.4  
2.3  
Start Threshold  
Stop Threshold  
2.2  
2.1  
2
−50  
0
50  
100  
150  
T
J
− Temperature − °C  
Figure 37  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢃ  
ꢇꢈ  
ꢆꢇ  
ꢄꢃ  
ꢂꢃ  
ꢀꢁ  
ꢆꢇ  
ꢀꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
TPS2024  
2,3  
Power Supply  
2.7 V to 5.5 V  
IN  
6,7,8  
Load  
OUT  
0.1 µF  
10 kΩ  
0.1 µF  
22 µF  
5
4
OC  
EN  
GND  
1
Figure 38. Typical Application  
power-supply considerations  
A 0.01-µF to 0.1-µF ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing  
a high-value electrolytic capacitor on the output and input pins is recommended when the output load is heavy. This  
precaution reduces power supply transients that may cause ringing on the input. Additionally, bypassing the output  
with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to short-circuit transients.  
overcurrent  
A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the  
series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant  
output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present  
long enough to activate thermal limiting.  
Three possible overload conditions can occur. In the first condition, the output has been shorted before the device  
is enabled or before V  
switches into a constant-current output.  
has been applied (see Figure 6). The TPS202x senses the short and immediately  
I(IN)  
In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load  
occurs, high currents may flow for a short time before the current-limit circuit can react (see Figure 13 through  
Figure 22). After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into  
constant-current mode.  
In the third condition, the load has been gradually increased beyond the recommended operating current. The  
current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is  
exceeded (see Figure 7 through Figure 11). The TPS202x is capable of delivering current up to the current-limit  
threshold without damaging the device. Once the threshold has been reached, the device switches into its  
constant-current mode.  
OC response  
The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output remains asserted until the overcurrent or overtemperature condition is removed.  
Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from  
the inrush current flowing through the device, charging the downstream capacitor. An RC filter can be connected  
to the OC pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the  
inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby  
reducing erroneous overcurrent reporting.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢎ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
TPS202x  
GND  
TPS202x  
GND  
V+  
V+  
OUT  
OUT  
OUT  
OC  
OUT  
OUT  
OUT  
OC  
R
pullup  
IN  
IN  
R
pullup  
IN  
IN  
R
filter  
EN  
EN  
C
filter  
Figure 39. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses  
power dissipation and junction temperature  
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass  
large currents. The thermal resistances of these packages are high compared to those of power packages; it is good  
design practice to check power dissipation and junction temperature. The first step is to find r  
voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest  
at the input  
DS(on)  
and read r  
from Figure 33 through Figure 36. Next, calculate the power dissipation using:  
DS(on)  
2
P
+ r  
  I  
D
DS(on)  
Finally, calculate the junction temperature:  
T + P   R ) T  
J
D
qJA  
A
Where:  
T = Ambient Temperature °C  
A
θJA  
R
= Thermal resistance SOIC = 172°C/W  
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient  
to get an acceptable answer.  
thermal protection  
Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended  
periods of time. The faults force the TPS202x into constant current mode, which causes the voltage across the  
high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input  
voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit  
senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit and  
after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in  
this manner until the load fault or input power is removed.  
undervoltage lockout (UVLO)  
An undervoltage lockout ensures that the power switch is in the off state at powerup. Whenever the input voltage  
falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion  
systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep  
the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon  
reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢇꢈ  
ꢀꢁ  
ꢆꢇ  
ꢀꢐ  
ꢌꢐ  
SGLS260C − SEPTEMBER 2004 − REVISED NOVEMBER 2004  
generic hot-plug applications (see Figure 40)  
In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These  
are considered hot-plug applications. Such implementations require the control of current surges seen by the main  
power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp  
the current and voltage being applied to the card, similar to the way in which a power supply normally turns on.  
Because of the controlled rise times and fall times of the TPS202x series, these devices can be used to provide a  
softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS202x also ensures  
the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO  
feature assures a soft start with a controlled rise time for every insertion of the card or module.  
PC Board  
TPS2024  
Power  
Supply  
Block of  
Circuitry  
GND  
OUT  
OUT  
OUT  
OC  
IN  
2.7 V to 5.5 V  
0.1 µF  
1000 µF  
Optimum  
IN  
EN  
Overcurrent Response  
Figure 40. Typical Hot-Plug Implementation  
By placing the TPS202x between the V  
input and the rest of the circuitry, the input power reaches this device first  
CC  
after insertion. The typical rise time of the switch is approximately 9 ms, providing a slow voltage ramp at the output  
of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any  
device.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
TPS2022DRQ1  
TPS2024IDRQ1  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
SOIC  
D
8
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TPS2020P

POWER-DISTRIBUTION SWITCHES
TI

TPS2020P

0.3A BUF OR INV BASED PRPHL DRVR, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
ROCHESTER

TPS2021

POWER-DISTRIBUTION SWITCHES
TI

TPS2021-Q1

POWER-DISTRIBUTION SWITCHES
TI

TPS2021D

POWER-DISTRIBUTION SWITCHES
TI

TPS2021DG4

POWER-DISTRIBUTION SWITCHES
TI

TPS2021DR

POWER-DISTRIBUTION SWITCHES
TI

TPS2021DRG4

POWER-DISTRIBUTION SWITCHES
TI

TPS2021IDRQ1

低电平有效的汽车类 0.6A 负载、2.7-5.5V、33mΩ USB 电源开关 | D | 8 | -40 to 125
TI

TPS2021P

POWER-DISTRIBUTION SWITCHES
TI

TPS2021PE4

POWER-DISTRIBUTION SWITCHES
TI

TPS2022

POWER-DISTRIBUTION SWITCHES
TI