TPS2044AD [TI]

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES; 电流限制的配电开关
TPS2044AD
型号: TPS2044AD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
电流限制的配电开关

电源电路 开关 电源管理电路 光电二极管 PC
文件: 总32页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
TPS2042A, TPS2052A  
TPS2041A, TPS2051A  
80-mHigh-Side MOSFET Switch  
D PACKAGE  
(TOP VIEW)  
D PACKAGE  
(TOP VIEW)  
500 mA Continuous Current Per Channel  
Independent Thermal and Short-Circuit  
Protection With Overcurrent Logic Output  
GND  
IN  
OC1  
1
2
3
4
8
7
6
5
GND  
IN  
OUT  
OUT  
OUT  
OC  
1
2
3
4
8
7
6
5
OUT1  
OUT2  
OC2  
Operating Range . . . 2.7 V to 5.5 V  
CMOS- and TTL-Compatible Enable Inputs  
2.5-ms Typical Rise Time  
EN1  
IN  
EN2  
EN  
Undervoltage Lockout  
TPS2043A, TPS2053A  
D PACKAGE  
TPS2044A, TPS2054A  
D PACKAGE  
10 µA Maximum Standby Supply Current  
for Single and Dual (20 µA for Triple and  
Quad)  
(TOP VIEW)  
(TOP VIEW)  
GNDA  
IN1  
OC1  
GNDA  
IN1  
OC1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
OUT1  
OUT2  
OC2  
OUT1  
OUT2  
OC2  
Bidirectional Switch  
EN1  
EN1  
Ambient Temperature Range, 0°C to 85°C  
ESD Protection  
EN2  
EN2  
GNDB  
IN2  
OC3  
GNDB  
IN2  
OC3  
UL Listed – File No. E169910  
11 OUT3  
10 NC  
11 OUT3  
10 OUT4  
EN3  
EN3  
description  
NC  
9
NC  
EN4  
9
OC4  
The TPS2041A through TPS2044A and  
TPS2051AthroughTPS2054Apower-distribution  
switches are intended for applications where  
All enable inputs are active high for the TPS205xA series.  
NC – No connect  
heavy capacitive loads and short circuits are likely to be encountered. These devices incorporate 80-mΩ  
N-channel MOSFET high-side power switches for power-distribution systems that require multiple power  
switches in a single package. Each switch is controlled by an independent logic enable input. Gate drive is  
provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize  
current surges during switching. The charge pump requires no external components and allows operation from  
supplies as low as 2.7 V.  
When the output load exceeds the current-limit threshold or a short is present, these devices limit the output  
current to a safe level by switching into a constant-current mode, pulling the overcurrent (OCx) logic output low.  
When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the  
junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from  
a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch  
remains off until valid input voltage is present. These power-distribution switches are designed to current limit  
at 0.9 A.  
GENERAL SWITCH CATALOG  
80 m, dual  
80 m, quad  
33 m, single  
80 m, single  
80 m, dual  
260 mΩ  
TPS201xA 0.2 A – 2 A  
TPS2042  
TPS2052  
TPS2046  
TPS2056  
500 mA  
500 mA  
250 mA  
250 mA  
80 m, triple  
80 m, quad  
TPS202x  
0.2 A – 2 A  
TPS203x  
0.2 A – 2 A  
TPS2080  
500 mA  
500 mA  
500 mA  
250 mA  
250 mA  
250 mA  
TPS2014  
TPS2015  
TPS2041  
TPS2051  
TPS2045  
TPS2055  
600 mA  
1 A  
500 mA  
500 mA  
250 mA  
250 mA  
TPS2100/1  
TPS2081  
TPS2082  
TPS2090  
TPS2091  
TPS2092  
IN1 500 mA  
IN2 10 mA  
TPS2043 500 mA  
TPS2053 500 mA  
TPS2047 250 mA  
TPS2057 250 mA  
IN1  
IN2  
TPS2085  
500 mA  
500 mA  
500 mA  
250 mA  
TPS2044 500 mA  
TPS2054 500 mA  
TPS2048 250 mA  
TPS2058 250 mA  
OUT  
TPS2086  
TPS2087  
TPS2095  
TPS2102/3/4/5  
IN1 500 mA  
IN2 100 mA  
1.3 Ω  
TPS2096 250 mA  
TPS2097 250 mA  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
AVAILABLE OPTIONS  
RECOMMENDED  
PACKAGED DEVICES  
SOIC  
TYPICAL SHORT-CIRCUIT  
NUMBER OF  
SWITCHES  
MAXIMUM CONTINUOUS  
LOAD CURRENT  
(A)  
CURRENT LIMIT AT 25°C  
T
A
ENABLE  
(A)  
(D)  
Active low  
Active high  
Active low  
Active high  
Active low  
Active high  
Active low  
Active high  
TPS2041AD  
TPS2051AD  
TPS2042AD  
TPS2052AD  
TPS2043AD  
TPS2053AD  
TPS2044AD  
TPS2054AD  
Single  
Dual  
0°C to 85°C  
0.5  
0.9  
Triple  
Quad  
The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2041ADR)  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
functional block diagrams  
TPS2041A  
Power Switch  
CS  
IN  
OUT  
Charge  
Pump  
Current  
Limit  
EN  
Driver  
OC  
UVLO  
Thermal  
Sense  
GND  
Current sense  
Active high for TPS205xA series  
TPS2042A  
OC1  
Thermal  
Sense  
GND  
EN1  
Current  
Limit  
Driver  
Charge  
Pump  
CS  
OUT1  
OUT2  
UVLO  
Power Switch  
IN  
CS  
Charge  
Pump  
Current  
Limit  
Driver  
OC2  
EN2  
Thermal  
Sense  
Current sense  
Active high for TPS205xA series  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
functional block diagrams  
TPS2043A  
OC1  
Thermal  
GNDA  
Sense  
EN1  
Current  
Limit  
Driver  
Charge  
Pump  
CS  
OUT1  
OUT2  
UVLO  
Power Switch  
IN1  
CS  
Charge  
Pump  
Current  
Limit  
Driver  
OC2  
EN2  
Thermal  
Sense  
Power Switch  
CS  
IN2  
OUT3  
Charge  
Pump  
Current  
Limit  
EN3  
Driver  
OC3  
UVLO  
Thermal  
Sense  
GNDB  
Current sense  
Active high for TPS205xA series  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
functional block diagrams  
TPS2044A  
OC1  
Thermal  
Sense  
GNDA  
EN1  
Current  
Driver  
Limit  
Charge  
Pump  
CS  
OUT  
1
UVLO  
Power Switch  
IN1  
CS  
OUT  
2
Charge  
Pump  
Current  
Limit  
Driver  
OC2  
OC3  
EN2  
Thermal  
Sense  
Thermal  
Sense  
GNDB  
EN3  
Current  
Limit  
Driver  
Charge  
Pump  
CS  
OUT3  
OUT4  
UVLO  
Power Switch  
CS  
IN2  
Charge  
Pump  
Current  
Limit  
Driver  
OC4  
EN4  
Thermal  
Sense  
Current sense  
Active high for TPS205xA series  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
Terminal Functions  
TPS2041A and TPS2051A  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
TPS2041A TPS2051A  
EN  
4
4
I
I
Enable input. Logic low turns on power switch.  
EN  
Enable input. Logic high turns on power switch.  
Ground  
GND  
IN  
1
1
I
2, 3  
5
2, 3  
5
I
Input voltage  
OC  
OUT  
O
O
Overcurrent. Logic output active low  
Power-switch output  
6, 7, 8  
6, 7, 8  
TPS2042A and TPS2052A  
TERMINAL  
NO.  
NAME  
I/O  
DESCRIPTION  
TPS2042A TPS2052A  
EN1  
EN2  
EN1  
EN2  
GND  
IN  
3
4
1
2
8
5
7
6
3
4
1
2
8
5
7
6
I
I
Enable input. Logic low turns on power switch, IN-OUT1.  
Enable input. Logic low turns on power switch, IN-OUT2.  
Enable input. Logic high turns on power switch, IN-OUT1.  
Enable input. Logic high turns on power switch, IN-OUT2.  
Ground  
I
I
I
I
Input voltage  
OC1  
OC2  
OUT1  
OUT2  
O
O
O
O
Overcurrent. Logic output active low, for power switch, IN-OUT1  
Overcurrent. Logic output active low, for power switch, IN-OUT2  
Power-switch output  
Power-switch output  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
Terminal Functions (Continued)  
TPS2043A and TPS2053A  
TERMINAL  
NO.  
NAME  
I/O  
DESCRIPTION  
TPS2043A TPS2053A  
EN1  
EN2  
EN3  
EN1  
EN2  
EN3  
GNDA  
GNDB  
IN1  
3
I
I
I
I
I
I
Enable input, logic low turns on power switch, IN1-OUT1.  
Enable input, logic low turns on power switch, IN1-OUT2.  
Enable input, logic low turns on power switch, IN2-OUT3.  
Enable input, logic high turns on power switch, IN1-OUT1.  
Enable input, logic high turns on power switch, IN1-OUT2.  
Enable input, logic high turns on power switch, IN2-OUT3.  
Ground for IN1 switch and circuitry.  
4
7
3
4
1
7
1
5
5
Ground for IN2 switch and circuitry.  
2
2
I
I
Input voltage  
IN2  
6
6
Input voltage  
NC  
8, 9, 10  
16  
13  
12  
15  
14  
11  
8, 9, 10  
16  
13  
12  
15  
14  
11  
No connection  
OC1  
OC2  
OC3  
OUT1  
OUT2  
OUT3  
O
O
O
O
O
O
Overcurrent, logic output active low, IN1-OUT1  
Overcurrent, logic output active low, IN1-OUT2  
Overcurrent, logic output active low, IN2-OUT3  
Power-switch output, IN1-OUT1  
Power-switch output, IN1-OUT2  
Power-switch output, IN2-OUT3  
TPS2044A and TPS2054A  
TERMINAL  
NO.  
NAME  
I/O  
DESCRIPTION  
TPS2044A TPS2054A  
EN1  
3
4
I
I
I
I
I
I
I
I
Enable input. logic low turns on power switch, IN1-OUT1.  
Enable input. Logic low turns on power switch, IN1-OUT2.  
Enable input. Logic low turns on power switch, IN2-OUT3.  
Enable input. Logic low turns on power switch, IN2-OUT4.  
Enable input. Logic high turns on power switch, IN1-OUT1.  
Enable input. Logic high turns on power switch, IN1-OUT2.  
Enable input. Logic high turns on power switch, IN2-OUT3.  
Enable input. Logic high turns on power switch, IN2-OUT4.  
Ground for IN1 switch and circuitry.  
EN2  
EN3  
7
EN4  
8
EN1  
3
EN2  
4
EN3  
7
EN4  
8
GNDA  
GNDB  
IN1  
1
1
5
5
Ground for IN2 switch and circuitry.  
2
2
I
Input voltage  
IN2  
6
6
I
Input voltage  
OC1  
OC2  
OC3  
OC4  
OUT1  
OUT2  
OUT3  
OUT4  
16  
13  
12  
9
16  
13  
12  
9
O
O
O
O
O
O
O
O
Overcurrent. Logic output active low, IN1-OUT1  
Overcurrent. Logic output active low, IN1-OUT2  
Overcurrent. Logic output active low, IN2-OUT3  
Overcurrent. Logic output active low, IN2-OUT4  
Power-switch output, IN1-OUT1  
15  
14  
11  
10  
15  
14  
11  
10  
Power-switch output, IN1-OUT2  
Power-switch output, IN2-OUT3  
Power-switch output, IN2-OUT4  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
detailed description  
power switch  
The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m(V  
= 5 V).  
I(IN)  
Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when  
disabled. The power switch supplies a minimum of 500 mA per switch.  
charge pump  
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate  
of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires  
very little supply current.  
driver  
The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated  
electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and  
fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.  
enable (ENx, ENx)  
Thelogicenabledisablesthepowerswitchandthebiasforthechargepump, driver, andothercircuitrytoreduce  
the supply current. The supply current is reduced to less than 10 µA on the single and dual devices (20 µA on  
the triple and quad devices) when a logic high is present on ENx (TPS204xA ) or a logic low is present on ENx  
(TPS205xA ). A logic zero input on ENx or a logic high on ENx restores bias to the drive and control circuits  
and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.  
overcurrent (OCx)  
The OCx open-drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
current sense  
A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than  
conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry  
sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into  
its saturation region, which switches the output into a constant-current mode and holds the current constant  
while varying the voltage on the load.  
thermal sense  
The TPS204xA and TPS205xA implement a dual-threshold thermal trip to allow fully independent operation of  
the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When  
thedietemperaturerisestoapproximately140°C, theinternalthermalsensecircuitrycheckstodeterminewhich  
power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting  
operationoftheadjacentpowerswitch. Hysteresisisbuiltintothethermalsense, andafterthedevicehascooled  
approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is  
removed. The (OCx) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.  
undervoltage lockout  
A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control  
signal turns off the power switch.  
Product series designations TPS204x and TPS205x refer to devices presented in this data sheet and not necessarily to other TI devices  
numbered in this sequence.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range, V  
Output voltage range, V  
Input voltage range, V  
Continuous output current, I  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
I(IN)  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
+ 0.3 V  
O(OUT)  
I(ENx)  
I(IN)  
or V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
I(ENx)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . internally limited  
O(OUT)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 125°C  
J
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C . . . . . . . . . . . . . . . . . . . . . 2 kV  
Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2 kV  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
D–8  
725 mW  
5.9 mW/°C  
9 mW/°C  
464 mW  
719 mW  
377 mW  
584 mW  
D–16  
1123 mW  
recommended operating conditions  
MIN  
2.7  
0
MAX  
5.5  
UNIT  
V
Input voltage, V  
Input voltage, V  
I(IN)  
or V  
5.5  
V
I(EN)  
I(EN)  
Continuous output current, I  
(per switch)  
Operating virtual junction temperature, T  
0
500  
125  
mA  
°C  
O(OUT)  
0
J
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, V  
= 0 V, V  
= V (unless otherwise noted)  
O
I(EN)  
I(EN)  
I(IN)  
power switch  
TPS204xA  
TPS205xA  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
V
= 5 V, T = 25°C,  
= 0.5 A  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
J
80  
100  
80  
100  
I
O
Static drain-source on-state  
resistance, 5-V operation  
V
= 5 V,  
= 0.5 A  
T = 85°C,  
J
90  
100  
90  
120  
135  
125  
145  
160  
90  
100  
90  
120  
135  
125  
145  
160  
I
O
V
= 5 V,  
= 0.5 A  
T = 125°C,  
J
mΩ  
I
O
r
DS(on)  
V
= 3.3 V,  
= 0.5 A  
T = 25°C,  
J
I
O
Static drain-source on-state  
resistance, 3.3-V operation  
V
= 3.3 V,  
= 0.5 A  
T = 85°C,  
J
110  
120  
2.5  
3
110  
120  
2.5  
3
I
O
V
= 3.3 V,  
= 0.5 A  
T = 125°C,  
J
I
O
V
C
= 5.5 V,  
= 1 µF,  
T = 25°C,  
J
L
R =10 Ω  
L
t
t
Rise time, output  
Fall time, output  
ms  
ms  
r
V
C
= 2.7 V,  
= 1 µF,  
T = 25°C,  
J
L
I(IN)  
R =10 Ω  
L
V
C
= 5.5 V,  
= 1 µF,  
T = 25°C,  
J
L
I(IN)  
L
4.4  
2.5  
4.4  
2.5  
R =10 Ω  
f
V
C
= 2.7 V,  
= 1 µF,  
T = 25°C,  
J
I(IN)  
R =10 Ω  
L
L
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
enable input ENx or ENx  
TPS204xA  
MIN TYP  
TPS205xA  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MAX  
MAX  
V
V
High-level input voltage  
Low-level input voltage  
2.7 V V  
4.5 V V  
5.5 V  
5.5 V  
4.5 V  
2
2
V
V
IH  
I(IN)  
I(IN)  
I(IN)  
0.8  
0.4  
0.5  
0.8  
0.4  
IL  
2.7 VV  
TPS204xA  
TPS205xA  
V
V
= 0 V or V  
= V  
I(IN)  
= 0 V  
–0.5  
I(ENx)  
I(ENx)  
or V  
I
I
Input current  
µA  
= V  
–0.5  
0.5  
20  
40  
I(ENx)  
I(IN)  
I(ENx)  
t
t
Turnon time  
Turnoff time  
C
C
= 100 µF, R =10 Ω  
20  
40  
ms  
on  
L
L
L
= 100 µF, R =10 Ω  
off  
L
current limit  
TPS204xA  
MIN TYP  
TPS205xA  
MIN TYP  
PARAMETER  
UNIT  
TEST CONDITIONS  
MAX  
MAX  
V
= 5 V, OUT connected to GND,  
I(IN)  
Device enabled into short circuit  
I
Short-circuit output current  
0.7  
1
1.3  
0.7  
1
1.3  
A
OS  
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, V  
= 0 V, V  
= V  
(unless otherwise noted) (continued)  
O
I(EN)  
I(EN)  
I(IN)  
supply current (TPS2041A, TPS2051A)  
TPS2041A  
MIN TYP MAX  
TPS2051A  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T = 25°C  
UNIT  
0.025  
1
J
V
V
= V  
I(EN)  
I(IN)  
–40°C T 125°C  
10  
Supply current, low-level No Load  
output  
J
µA  
µA  
on OUT  
T = 25°C  
0.025  
1
J
= 0 V  
= 0 V  
I(EN)  
–40°C T 125°C  
10  
J
T = 25°C  
J
85  
110  
V
V
I(EN)  
–40°C T 125°C  
100  
Supply current,  
high-level output  
No Load  
on OUT  
J
T = 25°C  
85  
110  
J
= V  
= V  
I(EN)  
I(IN)  
–40°C T 125°C  
100  
J
OUT  
connected  
to ground  
V
V
–40°C T 125°C  
100  
0.3  
I(EN)  
I(IN)  
J
Leakage current  
µA  
µA  
= 0 V  
= 0 V  
–40°C T 125°C  
100  
0.3  
I(EN)  
J
V
V
IN = High  
impedance  
I(EN)  
Reverse leakage current  
T = 25°C  
J
= V  
I(EN)  
I(IN)  
supply current (TPS2042A, TPS2052A)  
TPS2042A  
TPS2052A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
T = 25°C  
J
0.025  
1
V
V
= V  
I(IN)  
I(ENx)  
–40°C T 125°C  
10  
Supply current, low-level No Load  
J
µA  
output  
on OUT  
T = 25°C  
J
0.025  
1
= 0 V  
= 0 V  
I(ENx)  
–40°C T 125°C  
10  
J
T = 25°C  
J
85  
110  
V
V
I(ENx)  
–40°C T 125°C  
100  
Supply current,  
high-level output  
No Load  
on OUT  
J
µA  
T = 25°C  
J
85  
110  
= V  
= V  
I(ENx)  
I(IN)  
–40°C T 125°C  
100  
J
OUT  
V
V
–40°C T 125°C  
100  
0.3  
I(ENx)  
I(IN)  
J
Leakage current  
µA  
µA  
connected  
to ground  
= 0 V  
= 0 V  
–40°C T 125°C  
100  
0.3  
I(ENx)  
J
V
V
IN = high  
impedance  
I(EN)  
Reverse leakage current  
T = 25°C  
J
= V  
I(EN)  
I(IN)  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, V  
= 0 V, V  
= V  
(unless otherwise noted) (continued)  
O
I(EN)  
I(EN)  
I(IN)  
supply current (TPS2043A, TPS2053A)  
TPS2043A  
MIN TYP MAX  
TPS2053A  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T = 25°C  
UNIT  
0.05  
2
J
V
= V  
I(ENx)  
I(INx)  
–40°C T 125°C  
20  
Supply current,  
low-level output  
No Load  
on OUTx  
J
µA  
µA  
T = 25°C  
0.05  
2
J
V
= 0 V  
= 0 V  
I(ENx)  
–40°C T 125°C  
20  
J
T = 25°C  
J
160  
200  
200  
V
V
I(ENx)  
–40°C T 125°C  
Supply current,  
high-level output  
No Load  
on OUTx  
J
T = 25°C  
J
160  
200  
200  
= V  
= V  
I(ENx)  
I(INx)  
–40°C T 125°C  
J
V
V
V
V
–40°C T 125°C  
200  
0.3  
OUTx connected  
to ground  
I(ENx)  
I(ENx)  
I(ENx)  
I(ENx)  
I(INx)  
J
Leakage current  
µA  
µA  
= 0 V  
= 0 V  
–40°C T 125°C  
200  
0.3  
J
Reverse leakage  
current  
IN = high  
impedance  
T = 25°C  
J
= V  
I(IN)  
supply current (TPS2044A, TPS2054A)  
TPS2044A  
TPS2054A  
MIN TYP MAX  
PARA-  
METER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
T = 25°C  
J
0.05  
2
V
V
= V  
I(INx)  
I(ENx)  
–40°C T 125°C  
20  
Supply current,  
low-level output  
No Load  
on OUTx  
J
µA  
T = 25°C  
J
0.05  
2
= 0 V  
= 0 V  
I(ENx)  
–40°C T 125°C  
20  
J
T = 25°C  
J
170  
200  
220  
V
V
I(ENx)  
–40°C T 125°C  
Supply current,  
high-level output  
No Load  
on OUTx  
J
µA  
T = 25°C  
J
170  
200  
220  
= V  
= V  
I(ENx)  
I(INx)  
–40°C T 125°C  
J
V
V
V
V
–40°C T 125°C  
200  
0.3  
OUTx connected  
to ground  
I(ENx)  
I(INx)  
J
Leakage current  
µA  
µA  
= 0 V  
= 0 V  
–40°C T 125°C  
200  
0.3  
I(ENx)  
J
Reverse leakage  
current  
IN = high  
impedance  
I(EN)  
I(EN)  
T = 25°C  
J
= V  
I(IN)  
undervoltage lockout  
TPS204xA  
TPS205xA  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
Low-level input voltage  
Hysteresis  
2
2.5  
2
2.5  
V
T = 25°C  
J
100  
100  
mV  
overcurrent OC  
TPS204xA  
TPS205xA  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
Sink current  
V
= 5 V  
10  
0.5  
1
10  
0.5  
1
mA  
V
O
Output low voltage  
I
O
= 5 V,  
V
OL(OC)  
= 3.3 V  
Off-state current  
V
O
= 5 V,  
V
µA  
O
Specified by design, not production tested.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
PARAMETER MEASUREMENT INFORMATION  
OUT  
t
t
f
r
RL  
CL  
V
90%  
10%  
O(OUT)  
90%  
10%  
TEST CIRCUIT  
50%  
90%  
50%  
50%  
50%  
V
V
I(EN)  
I(EN)  
t
t
off  
t
t
on  
off  
on  
90%  
V
V
O(OUT)  
O(OUT)  
10%  
10%  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuit and Voltage Waveforms  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
T
C
= 5 V  
= 25°C  
= 0.1 µF  
= 10 Ω  
V
T
C
= 5 V  
= 25°C  
= 0.1 µF  
= 10 Ω  
I(IN)  
A
L
L
I(IN)  
A
L
L
V
O(OUT)  
(2 V/div)  
V
O(OUT)  
(2 V/div)  
R
R
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
8
9
10  
t – Time – ms  
t – Time – ms  
Figure 2. Turnon Delay and Rise Time  
Figure 3. Turnoff Delay and Fall Time  
with 0.1-µF Load  
with 0.1-µF Load  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
PARAMETER MEASUREMENT INFORMATION  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
= 5 V  
I(IN)  
= 25°C  
V
T
C
= 5 V  
I(IN)  
= 25°C  
T
A
V
A
O(OUT)  
(2 V/div)  
C
R
= 1 µF  
= 10 Ω  
V
L
L
O(OUT)  
(2 V/div)  
= 1 µF  
= 10 Ω  
L
L
R
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
8
9
10  
t – Time – ms  
t – Time – ms  
Figure 4. Turnon Delay and Rise Time  
Figure 5. Turnoff Delay and Fall Time  
with 1-µF Load  
with 1-µF Load  
V
T
A
= 5 V  
I(IN)  
= 25°C  
V
I(EN)  
(5 V/div)  
V
O(OUT)  
(2 V/div)  
V
T
A
= 5 V  
I
I(IN)  
= 25°C  
I
O(OUT)  
O(OUT)  
(0.5 A/div)  
(0.5 A/div)  
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
t – Time – ms  
t – Time – ms  
Figure 6. TPS2051A, Short-Circuit Current,  
Device Enabled into Short  
Figure 7. TPS2051A, Threshold Trip Current  
with Ramped Load on Enabled Device  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
PARAMETER MEASUREMENT INFORMATION  
V
V
I(EN)  
O(OC)  
470 µF  
220 µF  
(5 V/div)  
(5 V/div)  
100 µF  
V
T
R
= 5 V  
V
T
= 5 V  
I(IN)  
= 25°C  
I(IN)  
= 25°C  
I
I
A
O(OUT)  
A
O(OUT)  
= 10 Ω  
Ramp = 1 A/100 ms  
L
(0.5 A/div)  
(0.2 A/div)  
0
20 40 60 80 100 120 140 160 180 200  
t – Time – ms  
0
2
4
6
8
10 12 14 16 18 20  
t – Time – ms  
Figure 8. OC Response With Ramped Load  
on Enabled Device  
Figure 9. Inrush Current with 100-µF, 220-µF  
and 470-µF Load Capacitance  
V
T
= 5 V  
V
T
= 5 V  
I(IN)  
= 25°C  
I(IN)  
= 25°C  
A
A
V
V
O(OC)  
O(OC)  
(5 V/div)  
(5 V/div)  
I
I
O(OUT)  
O(OUT)  
(0.5 A/div)  
(1 A/div)  
0
1000  
2000  
3000  
4000  
5000  
0
200  
400  
600  
800  
1000  
t – Time – µs  
t – Time – µs  
Figure 10. 4-Load Connected to Enabled Device  
Figure 11. 1-Load Connected  
to Enabled Device  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
TURNON DELAY TIME  
vs  
TURNOFF DELAY TIME  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
3.5  
3.2  
2.9  
2.6  
12  
10  
C
R
T
= 1 µF  
= 10 Ω  
= 25°C  
C
R
T
= 1 µF  
= 10 Ω  
= 25°C  
L
L
A
L
L
A
8
6
4
2.3  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 12  
Figure 13  
RISE TIME  
vs  
INPUT VOLTAGE  
FALL TIME  
vs  
INPUT VOLTAGE  
3
2.2  
2.1  
2
C
R
T
= 1 µF  
= 10 Ω  
= 25°C  
C
R
T
= 1 µF  
= 10 Ω  
= 25°C  
L
L
A
L
L
A
2.7  
2.4  
1.9  
1.8  
1.7  
2.1  
1.8  
1.6  
1.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 14  
Figure 15  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT, OUTPUT ENABLED  
SUPPLY CURRENT, OUTPUT DISABLED  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
100  
90  
80  
70  
60  
160  
140  
120  
100  
80  
V
= 5.5 V  
I(IN)  
V
= 5.5 V  
I(IN)  
V
= 5 V  
I(IN)  
V
= 5 V  
I(IN)  
V
I(IN)  
= 4.5 V  
V
= 4.5 V  
I(IN)  
V
I(IN)  
= 3.3 V  
V
= 2.7 V  
I(IN)  
60  
V
= 2.7 V  
I(IN)  
40  
V
I(IN)  
= 3.3 V  
50  
40  
20  
0
–40  
0
25  
85  
125  
–40  
0
25  
85  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 16  
Figure 17  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
INPUT-TO-OUTPUT VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
LOAD CURRENT  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
I
= 0.5 A  
O
T
A
= 25°C  
V
= 3.3 V  
V
= 2.7 V  
I(IN)  
I(IN)  
V
= 2.7 V  
I(IN)  
V
= 4.5 V  
I(IN)  
V
= 3 V  
I(IN)  
V
= 3.3 V  
I(IN)  
V
I(IN)  
= 5 V  
V
= 5 V  
I(IN)  
V
I(IN)  
= 4.5 V  
60  
40  
20  
0
0
25  
85  
125  
100  
200  
300  
– Load Current – A  
400  
500  
T
J
– Junction Temperature – °C  
I
L
Figure 18  
Figure 19  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
THRESHOLD TRIP CURRENT  
vs  
vs  
JUNCTION TEMPERATURE  
INPUT VOLTAGE  
1.2  
1.2  
T
A
= 25°C  
Load Ramp = 1 A/10 ms  
V
I(IN)  
= 5.5 V  
1.1  
1
V
I(IN)  
= 5 V  
1.16  
1.12  
V
I(IN)  
= 4.5 V  
V
= 3.3 V  
I(IN)  
0.9  
0.8  
0.7  
0.6  
V
I(IN)  
= 2.7 V  
1.08  
1.04  
1
–40  
25  
85  
125  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
T
J
– Junction Temperature – °C  
V – Input Voltage – V  
I
Figure 20  
Figure 21  
UNDERVOLTAGE LOCKOUT  
vs  
JUNCTION TEMPERATURE  
CURRENT-LIMIT RESPONSE  
vs  
PEAK CURRENT  
2.35  
2.3  
250  
V
T
A
= 5 V  
I(IN)  
= 25°C  
Start Threshold  
Stop Threshold  
200  
150  
2.25  
2.2  
100  
50  
0
2.15  
2.1  
0
2.5  
5
7.5  
10  
12.5  
–40  
0
25  
85  
125  
T
J
– Junction Temperature – °C  
Peak Current – A  
Figure 22  
Figure 23  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
TPS2041A  
2,3  
Power Supply  
2.7 V to 5.5 V  
IN  
6,7,8  
Load  
OUT  
0.1 µF  
0.1 µF  
22 µF  
5
4
OC  
EN  
GND  
1
Figure 24. Typical Application (Example, TPS2041A)  
power-supply considerations  
A 0.01-µF to 0.1-µF ceramic bypass capacitor between INx and GND, close to the device, is recommended.  
Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy.  
This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing  
the output with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to short-circuit  
transients.  
overcurrent  
A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do  
not increase the series resistance of the current path. When an overcurrent condition is detected, the device  
maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs  
only if the fault is present long enough to activate thermal limiting.  
Three possible overload conditions can occur. In the first condition, the output has been shorted before the  
device is enabled or before V  
short and immediately switch into a constant-current output.  
has been applied (see Figure 6). The TPS204xA and TPS205xA sense the  
I(IN)  
In the second condition, a short or an overload occurs while the device is enabled. At the instant the overload  
occurs, very high currents may flow for a short time before the current-limit circuit can react. After the  
current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into  
constant-current mode.  
In the third condition, the load has been gradually increased beyond the recommended operating current. The  
current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is  
exceeded (see Figure 7). The TPS204xA and TPS205xA are capable of delivering current up to the current-limit  
threshold without damaging the device. Once the threshold has been reached, the device switches into its  
constant-current mode.  
OC response  
The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
Connectingaheavycapacitiveloadtoanenableddevicecancausemomentaryfalseovercurrentreportingfrom  
the inrush current flowing through the device, charging the downstream capacitor. The TPS204xA and  
TPS205xA family of devices are designed to reduce false overcurrent reporting. An internal overcurrent  
transient filter eliminates the need for external components to remove unwanted pulses. Using low-ESR  
electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events  
by providing a low-impedance energy source, also reducing erroneous overcurrent reporting.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
TPS2041A  
V+  
GND  
OUT  
OUT  
OUT  
OC  
IN  
R
pullup  
IN  
EN  
Figure 25. Typical Circuit for OC Pin (Example, TPS2041A)  
power dissipation and junction temperature  
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass  
large currents. The thermal resistances of these packages are high compared to those of power packages; it  
is good design practice to check power dissipation and junction temperature. Begin by determining the r  
of the N-channel MOSFET relative to the input voltage and operating temperature. As an initial estimate, use  
DS(on)  
the highest operating ambient temperature of interest and read r  
power dissipation per switch can be calcultaed by:  
from Figure 18. Using this value, the  
DS(on)  
2
P
r
I
D
DS(on)  
Depending on which device is being used, multiply this number by the number of switches being used. This step  
will render the total power dissipation from the N-channel MOSFETs.  
Finally, calculate the junction temperature:  
T
P
R
T
J
D
JA  
A
Where:  
T = Ambient Temperature °C  
A
θJA  
R
= Thermal resistance SOIC = 172°C/W (for 8 pin), 111°C/W (for 16 pin)  
P = Total power dissipation based on number of switches being used.  
D
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally  
sufficient to get a reasonable answer.  
thermal protection  
Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for  
extended periods of time. The faults force the TPS204xA and TPS205xA into constant-current mode, which  
causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across  
the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high  
levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built  
into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back  
on. The switch continues to cycle in this manner until the load fault or input power is removed.  
The TPS204xA and TPS205xA implement a dual thermal trip to allow fully independent operation of the power  
distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die  
temperature rises to approximately 140°C, the internal thermal sense circuitry checks which power switch is  
in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation  
of the adjacent power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach  
160°C, both switches turn off. The OC open-drain output is asserted (active low) when overtemperature or  
overcurrent occurs.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
undervoltage lockout (UVLO)  
Anundervoltagelockoutensuresthatthepowerswitchisintheoffstateatpowerup. Whenevertheinputvoltage  
falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of  
hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The  
UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if  
the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce  
EMI and voltage overshoots.  
universal serial bus (USB) applications  
The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for  
low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB  
interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for  
differential data, and two lines are provided for 5-V power distribution.  
USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power  
is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V  
from the 5-V input or its own internal power supply.  
The USB specification defines the following five classes of devices, each differentiated by power-consumption  
requirements:  
Hosts/self-powered hubs (SPH)  
Bus-powered hubs (BPH)  
Low-power, bus-powered functions  
High-power, bus-powered functions  
Self-powered functions  
Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS204xA and  
TPS205xA can provide power-distribution solutions for many of these classes of devices.  
host/self-powered and bus-powered hubs  
Hosts and self-powered hubs have a local power supply that powers the embedded functions and the  
downstream ports (see Figures 26 and 27). This power supply must provide from 5.25 V to 4.75 V to the board  
side of the downstream connection under full-load and no-load conditions. Hosts and SPHs are required to have  
current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop  
PCs, monitors, printers, and stand-alone hubs.  
Power Supply  
Downstream  
USB Ports  
3.3 V 5 V  
TPS2041A  
D+  
D–  
2, 3  
0.1 µF  
IN  
7
V
BUS  
OUT  
0.1 µF  
120 µF  
GND  
5
4
OC  
EN  
USB  
Control  
GND  
Figure 26. Typical One-Port Solution  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
Downstream  
USB Ports  
D+  
D–  
Power Supply  
3.3 V  
5 V  
V
BUS  
+
TPS2044A  
33 µF  
GND  
2
IN1  
IN2  
15  
OUT1  
6
D+  
0.1 µF  
D–  
V
14  
11  
OUT2  
OUT3  
BUS  
+
33 µF  
GND  
11  
OC1  
EN1  
OC2  
EN2  
OC3  
EN3  
OC4  
EN4  
3
D+  
D–  
13  
4
USB  
Controller  
V
BUS  
+
12  
7
33 µF  
10  
GND  
OUT4  
9
D+  
8
D–  
V
GNDA GNDB  
BUS  
+
33 µF  
GND  
1
5
Figure 27. Typical Four-Port USB Host/Self-Powered Hub  
Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs  
are required to power up with less than one unit load. The BPH usually has one embedded function, and power  
is always available to the controller of the hub. If the embedded function and hub require more than 100 mA  
on powerup, the power to the embedded function may need to be kept off until enumeration is completed. This  
can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching  
the embedded function is not necessary if the aggregate power draw for the function and controller is less than  
one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the  
embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
low-power bus-powered functions and high-power bus-powered functions  
Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power  
functions always draw less than 100 mA; high-power functions must draw less than 100 mA at power up and  
can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of  
44 and 10 µF at power up, the device must implement inrush current limiting (see Figure 28).  
Power Supply  
D+  
3.3 V  
TPS2041A  
D–  
2,3  
V
IN  
BUS  
GND  
6, 7, 8  
10 µF  
0.1 µF  
Internal  
Function  
OUT  
0.1 µF  
10 µF  
5
4
OC  
EN  
USB  
Control  
GND  
1
Figure 28. High-Power Bus-Powered Function (Example, TPS2041A)  
USB power-distribution requirements  
USB can be implemented in several ways, and, regardless of the type of USB device being developed, several  
power-distribution features must be implemented.  
Hosts/self-powered hubs must:  
Current-limit downstream ports  
Report overcurrent conditions on USB V  
BUS  
Bus-powered hubs must:  
Enable/disable power to downstream ports  
Power up at <100 mA  
Limit inrush current (<44 and 10 µF)  
Functions must:  
Limit inrush currents  
Power up at <100 mA  
The feature set of the TPS204xA and TPS205xA allows them to meet each of these requirements. The  
integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level  
enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as  
the input ports for bus-power functions (see Figures 29 through 32).  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
TUSB2040  
Hub Controller  
SN75240  
BUSPWR  
GANGED  
Tie to TPS2041A EN Input  
Downstream  
Ports  
Upstream  
Port  
A
B
C
D
DP1  
DM1  
D +  
D –  
DP0  
DM0  
D +  
D –  
Ferrite Beads  
A
B
C
D
GND  
5 V  
GND  
SN75240  
DP2  
DM2  
TPS2041A  
33 µF  
5 V Power  
Supply  
OC  
IN  
EN  
DP3  
DM3  
5 V  
OUT  
D +  
D –  
A
B
C
D
1 µF  
Ferrite Beads  
TPS76333  
IN  
SN75240  
GND  
DP4  
DM4  
0.1 µF  
4.7 µF  
V
3.3 V  
GND  
5 V  
CC  
4.7 µF  
TPS2041A  
PWRON1  
EN  
OC  
IN  
GND  
33 µF  
OVRCUR1  
0.1 µF  
0.1 µF  
0.1 µF  
OUT  
D +  
D –  
TPS2041A  
48-MHz  
Crystal  
PWRON2  
EN  
OC  
IN  
XTAL1  
XTAL2  
Ferrite Beads  
OVRCUR2  
GND  
5 V  
OUT  
Tuning  
Circuit  
TPS2041A  
PWRON3  
EN  
OC  
IN  
33 µF  
OVRCUR3  
OCSOFF  
GND  
OUT  
D +  
D –  
TPS2041A  
Ferrite Beads  
PWRON4  
EN  
OC  
IN  
GND  
5 V  
OVRCUR4  
0.1 µF  
OUT  
33 µF  
USB rev 1.1 requires 120 µF per hub.  
Figure 29. Hybrid Self/Bus-Powered Hub Implementation, TPS2041A  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
TUSB2040  
Hub Controller  
SN75240  
BUSPWR  
GANGED  
Tie to TPS2042A EN Input  
Downstream  
Ports  
Upstream  
Port  
A
B
C
D
DP1  
DM1  
D +  
D –  
DP0  
DM0  
D +  
D –  
Ferrite Beads  
A
B
C
D
GND  
5 V  
GND  
SN75240  
DP2  
DM2  
TPS2041A  
33 µF  
5 V Power  
Supply  
OC  
IN  
EN  
DP3  
DM3  
5 V  
OUT  
D +  
D –  
A
B
C
D
1 µF  
Ferrite Beads  
TPS76333  
IN  
SN75240  
GND  
DP4  
DM4  
0.1 µF  
4.7 µF  
V
3.3 V  
GND  
5 V  
CC  
4.7 µF  
TPS2042A  
PWRON1  
GND  
EN1  
OUT1  
OUT2  
33 µF  
OC1  
OVRCUR1  
PWRON2  
OVRCUR2  
EN2  
OC2  
D +  
D –  
IN  
48-MHz  
Crystal  
XTAL1  
XTAL2  
Ferrite Beads  
0.1 µF  
GND  
5 V  
TPS2042A  
Tuning  
Circuit  
EN1  
OC1  
PWRON3  
OUT1  
OUT2  
OVRCUR3  
33 µF  
PWRON4  
EN2  
OC2  
OCSOFF  
GND  
OVRCUR4  
IN  
D +  
D –  
0.1 µF  
Ferrite Beads  
GND  
5 V  
33 µF  
USB rev 1.1 requires 120 µF per hub.  
Figure 30. Hybrid Self/Bus-Powered Hub Implementation, TPS2042A  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
TUSB2040  
Hub Controller  
1/2 SN75240  
BUSPWR  
GANGED  
Tie to TPS2043A EN Input  
Downstream  
Ports  
Upstream  
Port  
A
B
C
D
DP1  
DM1  
D +  
D –  
DP0  
DM0  
D +  
D –  
Ferrite Beads  
A
B
C
D
GND  
5 V  
GND  
SN75240  
DP2  
DM2  
TPS2041A  
47 µF  
5 V Power  
Supply  
OC  
IN  
EN  
DP3  
DM3  
5 V  
OUT  
D +  
D –  
A
B
C
D
1 µF  
Ferrite Beads  
TPS76333  
IN  
1/2 SN75240  
GND  
DP4  
DM4  
0.1 µF  
4.7 µF  
V
3.3 V  
GND  
5 V  
CC  
4.7 µF  
TPS2043A  
PWRON1  
GND  
EN1  
OC1  
OUT1  
OUT2  
47 µF  
OVRCUR1  
PWRON2  
OVRCUR2  
EN2  
OC2  
D +  
D –  
IN1  
48-MHz  
Crystal  
XTAL1  
XTAL2  
Ferrite Beads  
0.1 µF  
GND  
5 V  
Tuning  
Circuit  
EN3  
OC3  
PWRON3  
OUT3  
IN2  
OVRCUR3  
47 µF  
OCSOFF  
GND  
0.1 µF  
GNDA  
GNDB  
USB rev 1.1 requires 120 µF per hub.  
Figure 31. Hybrid Self/Bus-Powered Hub Implementation, TPS2043A  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
TUSB2040  
Hub Controller  
SN75240  
BUSPWR  
GANGED  
Tie to TPS2041 EN Input  
Downstream  
Ports  
Upstream  
Port  
A
B
C
D
DP1  
DM1  
D +  
D –  
DP0  
DM0  
D +  
D –  
Ferrite Beads  
A
B
C
D
GND  
5 V  
GND  
SN75240  
DP2  
DM2  
TPS2041A  
33 µF  
5 V Power  
Supply  
OC  
IN  
EN  
DP3  
DM3  
5 V  
OUT  
D +  
D –  
A
B
C
D
1 µF  
Ferrite Beads  
TPS76333  
IN  
SN75240  
GND  
DP4  
DM4  
0.1 µF  
4.7 µF  
V
3.3 V  
GND  
5 V  
CC  
4.7 µF  
TPS2044A  
PWRON1  
GND  
EN1  
OC1  
OUT1  
OUT2  
33 µF  
OVRCUR1  
PWRON2  
OVRCUR2  
EN2  
OC2  
D +  
D –  
IN1  
48-MHz  
Crystal  
XTAL1  
XTAL2  
Ferrite Beads  
0.1 µF  
GND  
5 V  
Tuning  
Circuit  
EN3  
OC3  
PWRON3  
OUT3  
OUT4  
OVRCUR3  
33 µF  
PWRON4  
EN4  
OC4  
OCSOFF  
GND  
OVRCUR4  
IN2  
D +  
D –  
0.1 µF  
Ferrite Beads  
GNDA  
GNDB  
GND  
5 V  
33 µF  
USB rev 1.1 requires 120 µF per hub.  
Figure 32. Hybrid Self/Bus-Powered Hub Implementation, TPS2044A  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
APPLICATION INFORMATION  
generic hot-plug applications (see Figure 33)  
In many applications it may be necessary to remove modules or pc boards while the main unit is still operating.  
These are considered hot-plug applications. Such implementations require the control of current surges seen  
by the main power supply and the card being inserted. The most effective way to control these surges is to limit  
and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply  
normally turns on. Due to the controlled rise times and fall times of the TPS204xA and TPS205xA, these devices  
can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature  
of the TPS204xA and TPS205xA also ensures the switch will be off after the card has been removed, and the  
switch will be off during the next insertion. The UVLO feature insures a soft start with a controlled rise time for  
every insertion of the card or module.  
PC Board  
TPS2041A  
Power  
Supply  
Block of  
Circuitry  
GND  
IN  
OUT  
OUT  
OUT  
OC  
2.7 V to 5.5 V  
0.1 µF  
1000 µF  
Optimum  
IN  
EN  
Overcurrent Response  
Figure 33. Typical Hot-Plug Implementation (Example, TPS2041A)  
By placing the TPS204xA and TPS205xA between the V input and the rest of the circuitry, the input power  
CC  
will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing  
a slow voltage ramp at the output of the device. This implementation controls system surge currents and  
provides a hot-plugging mechanism for any device.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2041A, TPS2042A, TPS2043A, TPS2044A  
TPS2051A, TPS2052A, TPS2053A, TPS2054A  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS247 – SEPTEMBER 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
TPS2041AD  
Status (1)  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2041ADG4  
TPS2041ADR  
TPS2041ADRG4  
TPS2042AD  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2042ADG4  
TPS2042ADR  
TPS2042ADRG4  
TPS2043AD  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
16  
16  
16  
16  
16  
16  
16  
8
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2043ADG4  
TPS2043ADR  
TPS2043ADRG4  
TPS2044AD  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2044ADR  
TPS2044ADRG4  
TPS2051AD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2051ADR  
TPS2051ADRG4  
TPS2052AD  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2052ADG4  
TPS2052ADR  
TPS2052ADRG4  
TPS2053AD  
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2053ADR  
TPS2053ADRG4  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2005  
Orderable Device  
TPS2054AD  
Status (1)  
NRND  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2054ADR  
NRND  
SOIC  
SOIC  
D
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2054ADRG4  
NRND  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TPS2044ADG4

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2044ADR

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2044ADRG4

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2044B

CURRENT-LIMITED, POWER-DISTRIBUTION SWITCHES
TI

TPS2044BD

CURRENT-LIMITED, POWER-DISTRIBUTION SWITCHES
TI

TPS2044BDG4

CURRENT-LIMITED, POWER-DISTRIBUTION SWITCHES
TI

TPS2044BDR

CURRENT-LIMITED, POWER-DISTRIBUTION SWITCHES
TI

TPS2044BDRG4

CURRENT-LIMITED, POWER-DISTRIBUTION SWITCHES
TI

TPS2044D

QUAD POWER-DISTRIBUTION SWITCHES
TI

TPS2044DG4

0.7A, 2.7-5.5V Quad (2In/4Out) Hi-Side MOSFET, Fault Report, Act-Low Enable 16-SOIC -40 to 85
TI

TPS2044DR

QUAD POWER-DISTRIBUTION SWITCHES
TI

TPS2045

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI