TPS2101 [TI]

VAUX POWER-DISTRIBUTION SWITCHES; VAUX配电开关
TPS2101
型号: TPS2101
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

VAUX POWER-DISTRIBUTION SWITCHES
VAUX配电开关

开关
文件: 总17页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
features  
typical applications  
Dual-Input, Single-Output MOSFET Switch  
With No Reverse Current Flow (No Parasitic  
Diodes)  
Notebook and Desktop PCs  
Palmtops and PDAs  
IN1 . . . 250-m, 500-mA N-Channel;  
16-µA Max Supply Current  
TPS2100  
IN1  
IN2 . . . 1.3-, 10-mA P-Channel;  
Controller  
(CardBus,  
1394,  
PCI,  
et al.)  
1.5-µA Max Supply Current (V  
Mode)  
AUX  
3.3 V V  
CC  
3.3 V  
Advanced Switch Control Logic  
IN2  
3.3 V V  
AUX  
CMOS- and TTL-Compatible Enable Input  
Controlled Rise, Fall, and Transition Times  
2.7-V to 4 V Operating Range  
EN  
D3 or PME Status  
Control Signal  
Hold-Up  
Capacitor  
SOT-23-5 and SOIC-8 Package  
40°C to 70°C Ambient Temperature Range  
Figure 1. Typical Dual-Input Single-Output  
Application  
2-kV Human-Body-Model, 750-V CDM,  
200-V Machine-Model Electrostatic-  
Discharge Protection  
description  
The TPS2100 and TPS2101 are dual-input, single-output power switches designed to provide uninterrupted  
output voltage when transitioning between two independent power supplies. Both devices combine one  
n-channel (250 m) and one p-channel (1.3 ) MOSFET with a single output. The p-channel MOSFET (IN2)  
is used with auxiliary power supplies that deliver lower current for standby modes. The n-channel MOSFET  
(IN1) is used with a main power supply that delivers higher current required for normal operation. Low  
on-resistance makes the n-channel the ideal path for higher main supply current when power-supply regulation  
and system voltage drops are critical. When using the p-channel MOSFET, quiescent current is reduced to  
0.75 µA to decrease the demand on the standby power supply. The MOSFETs in the TPS2100 and TPS2101  
do not have the parasitic diodes, found in discrete MOSFETs, which allow the devices to prevent back-flow  
current when the switch is off.  
TPS2100  
D PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
DBV PACKAGE  
PCI Bus  
V
3.3 V  
AUX  
IN2  
GND  
EN  
OUT  
OUT  
NC  
1
2
3
4
8
7
6
5
IN1  
1
2
3
5
4
EN  
GND  
IN2  
OUT  
NC  
IN1  
VGA  
TPS210x  
D3-STAT  
TPS2101  
V
CC  
D PACKAGE  
(TOP VIEW)  
DBV PACKAGE  
(TOP VIEW)  
PCI12xx / PCI14xx  
CardBus Controller  
IN2  
GND  
EN  
OUT  
OUT  
NC  
1
2
3
4
8
7
6
5
EN  
GND  
IN2  
IN1  
1
2
3
5
4
Figure 2. V  
CardBus Implementation  
AUX  
OUT  
NC  
IN1  
NC – No internal connection  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
SOT-23-5 SOIC-8  
T
J
DEVICE  
ENABLE  
(DBV)  
(D)  
TPS2100  
TPS2101  
EN  
EN  
TSP2100DBV  
TPS2100D  
TPS2101D  
40°C to 85°C  
TPS2101DBV  
Both packages are available left-end taped and reeled. Add an R suffix to the D device type  
(e.g., TPS2101DR).  
Add T (e.g., TPS2100DBVT) to indicate tape and reel at order quantity of 250 parts.  
Add R (e.g., TPS2100DBVR) to indicate tape and reel at order quantity of 3000 parts.  
TPS2100 functional block diagram  
SW1  
250 mΩ  
IN1  
OUT  
Charge  
Pump  
Pullup  
Circuit  
Discharge  
Circuit  
V
CC  
Driver  
EN  
Select  
IN2  
SW2  
1.3 Ω  
GND  
Driver  
TPS2101 functional block diagram  
SW1  
250 mΩ  
IN1  
OUT  
Charge  
Pump  
Discharge  
Circuit  
V
CC  
Driver  
EN  
Select  
IN2  
SW2  
1.3 Ω  
Pulldown  
Circuit  
GND  
Driver  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
Function Tables  
TPS2100  
TPS2101  
VIN1  
0 V  
VIN2  
EN  
XX  
L
OUT  
VIN1  
0 V  
VIN2  
0 V  
EN  
XX  
H
OUT  
GND  
GND  
VIN1  
VIN1  
VIN2  
VIN2  
VIN2  
0 V  
3.3 V  
3.3 V  
0 V  
GND  
GND  
VIN1  
VIN1  
VIN2  
VIN2  
VIN2  
0 V  
0 V  
3.3 V  
3.3 V  
0 V  
3.3 V  
3.3 V  
0 V  
L
3.3 V  
3.3 V  
0 V  
H
L
H
3.3 V  
0 V  
H
3.3 V  
0 V  
L
3.3 V  
3.3 V  
H
3.3 V  
3.3 V  
L
3.3 V  
H
3.3 V  
L
XX = don’t care  
Terminal Functions  
TERMINAL  
NO.  
DESCRIPTION  
NAME  
I/O  
TPS2100  
DBV  
TPS2101  
D
DBV  
D
EN  
EN  
1
3
Active-high enable for IN1-OUT switch  
Active-low enable for IN1-OUT switch  
Ground  
1
2
5
3
4
3
2
I
I
GND  
IN1  
2
5
3
4
2
5
5
I
Main Input voltage, NMOS drain (250 m)  
Auxilliary input voltage, PMOS drain (1.3 )  
Power switch output  
IN2  
1
1
I
OUT  
NC  
7, 8  
4, 6  
7, 8  
4, 6  
O
No connection  
detailed description  
power switches  
n-channel MOSFET  
The IN1-OUT n-channel MOSFET power switch has a typical on-resistance of 250 mat 3.3-V input voltage,  
and is configured as a high-side switch.  
p-channel MOSFET  
The IN2-OUT p-channel MOSFET power switch with typical on-resistance of 1.3 at 3.3-V input voltage and  
is configured as a high-side switch. When operating, the p-channel MOSFET quiescent current is reduced to  
less than 1.5 µA.  
charge pump  
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate  
of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires  
very little supply current.  
driver  
The driver controls the gate voltage of the IN1-OUT and IN2-OUT power switches. To limit large current surges  
and reduce the associated electromagnetic interference (EMI) produced, the drivers incorporate circuitry that  
controls the rise times and fall times of the output voltage.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
detailed description (continued)  
enable  
The logic enable will turn on the IN2-OUT power switch when a logic high is present on EN (TPS2100) or logic  
low is present on EN (TPS2101). A logic low input on EN (TPS2100) or logic high on EN (TPS2101) restores  
bias to the drive and control circuits and turns on the IN1-OUT power switch. The enable input is compatible  
with both TTL and CMOS logic levels.  
the V  
application for CardBus controllers  
AUX  
The PC Card specification requires the support of V  
sockets. Both are 3.3-V requirements; however the CardBus controller’s current demand from the V  
to the CardBus controller as well as to the PC Card  
AUX  
supply  
AUX  
is limited to 10 µA, whereas the PC Card may consume as much as 200 mA. In either implementation, if support  
of a wake-up event is required, the controller and the socket will transition from the 3.3-V V rail to the 3.3-V  
CC  
CC  
V
railwhentheequipmentmovesintoalowpowermodesuchasD3. ThetransitionfromV toV  
needs  
AUX  
AUX  
to be seamless in order to maintain all memory and register information in the system. If V  
the system will lose all register information when it transitions to the D3 state.  
is not supported,  
AUX  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Input voltage range, V  
Input voltage range, V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
I(IN1)  
I(IN2)  
Input voltage range, V at EN or EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
I
Output voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
O
Continuous output current, I  
Continuous output current, I  
)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 mA  
O(IN1  
O(IN2)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See dissipation rating table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Electrostatic discharge (ESD) protection: Human body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 V  
Charged device model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . 750 V  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
< 25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
DBV  
D
309 mW  
3.1 mW/°C  
5.7 mW/°C  
170 mW  
313 mW  
123 mW  
227 mW  
568 mW  
recommended operating conditions  
MIN MAX  
UNIT  
V
Input voltage, V  
I(INx)  
2.7  
0
4
4
Input voltage, V at EN and EN  
V
I
Continuous output current, I  
Continuous output current, I  
500  
mA  
mA  
°C  
O(IN1)  
100  
O(IN2)  
Operating virtual junction temperature, T  
40  
85  
J
Thedevicecandeliverupto220mAatI  
and greater voltage droop when switching between IN1 and IN2.  
. However,operationatthehighercurrentlevelswillresultingreatervoltagedropacrossthedevice,  
O(IN2)  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
electrical characteristics over recommended operating junction temperature range,  
V
= V  
= 3.3 V, I = rated current (unless otherwise noted)  
I(IN1)  
(IN2) O  
power switch  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
T = 25°C  
250  
300  
1.3  
1.5  
J
IN1-OUT  
IN2-OUT  
mΩ  
T = 85°C  
J
375  
2.1  
r
On-state resistance  
DS(on)  
T = 25°C  
J
T = 85°C  
J
Pulse-testing techniques maintain junction temperature close to ambient termperature; thermal effects must be taken into account separately.  
enable input (EN and EN)  
PARAMETER  
High-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
2.7 V V  
2.7 V V  
TPS2100  
TPS2101  
4 V  
4 V  
2
IH  
I(INx)  
Low-level input voltage  
0.8  
0.5  
0.5  
V
IL  
I(INx)  
EN = 0 V or EN = V  
–0.5  
–0.5  
µA  
µA  
I(INx)  
I(INx)  
I
I
Input current  
EN = 0 V or EN = V  
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.5  
16  
UNIT  
T = 25°C  
J
0.75  
EN = H,  
µA  
IN2 selected  
–40°C T 85°C  
J
TPS2100  
TPS2101  
T = 25°C  
J
10  
0.75  
10  
EN = L,  
µA  
µA  
µA  
IN1 selected  
–40°C T 85°C  
J
I
I
Supply current  
T = 25°C  
J
EN = L,  
IN2 selected  
–40°C T 85°C  
1.5  
16  
J
T = 25°C  
J
EN = H,  
IN1 selected  
–40°C T 85°C  
J
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
switching characteristics, T = 25°C, V  
= V  
= 3.3 V (unless otherwise noted)  
I(IN2)  
J
I(IN1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
830  
840  
640  
5.5  
70  
MAX  
UNIT  
C
C
C
C
C
C
C
C
C
C
C
C
= 1 µF,  
= 10 µF,  
= 1 µF,  
= 1 µF,  
= 10 µF,  
= 1 µF,  
= 1 µF,  
= 10 µF,  
= 1 µF,  
= 1 µF,  
= 10 µF,  
= 1 µF,  
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
= 500 mA  
L
L
L
L
L
L
L
L
L
L
L
L
IN1-OUT  
V
= 0  
= 0  
= 0  
= 0  
= 500 mA  
= 10 mA  
= 10 mA  
= 10 mA  
= 1 mA  
I(IN2)  
I(IN1)  
I(IN2)  
I(IN1)  
t
r
Output rise time  
µs  
IN2-OUT  
IN1-OUT  
IN2-OUT  
V
V
V
5.5  
8
= 500 mA  
= 500 mA  
= 10 mA  
= 10 mA  
= 10 mA  
= 1 mA  
93  
23  
t
f
Output fall time  
µs  
690  
6900  
6900  
75  
IN1-OUT  
IN2-OUT  
IN1-OUT  
IN2-OUT  
V
I(IN2)  
V
I(IN1)  
V
I(IN2)  
V
I(IN1)  
= 0  
= 0  
= 0  
= 0  
t
t
Propagationdelaytime, low-to-highoutput  
Propagationdelaytime, high-to-lowoutput  
C
C
= 10 µF,  
= 10 µF,  
I
= 10 mA  
= 10 mA  
µs  
µs  
PLH  
L
L
L
L
2
3
I
PHL  
370  
All timing parameters refer to Figure 3.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
OUT  
I
O
C
L
LOAD CIRCUIT  
50%  
50%  
EN or EN  
t
EN or EN  
t
PHL  
V
I
V
I
PLH  
90%  
V
O
GND  
V
O
GND  
10%  
Propagation Delay Time, Low-to-High-Level Output  
Propagation Delay Time, High-to–Low-Level Output  
t
t
f
r
V
I
90%  
V
O
10%  
GND  
Rise/Fall Time  
50%  
50%  
EN or EN  
EN or EN  
t
off  
t
V
I
on  
V
I
90%  
V
O
GND  
V
O
GND  
10%  
Turn-off Transition Time  
Turn-on Transition Time  
WAVEFORMS  
Figure 3. Test Circuit and Voltage Waveforms  
Table of Timing Diagrams  
FIGURE  
Propagation Delay and Rise Time With 0.1-µF Load, IN1  
4
5
Propagation Delay and Rise Time With 0.1-µF Load, IN2  
Propagation Delay and Fall Time With 0.1-µF Load, IN1  
Propagation Delay and Fall Time With 0.1-µF Load, IN2  
Propagation Delay and Rise Time With 1-µF Load, IN1  
Propagation Delay and Rise Time With 1-µF Load, IN2  
Propagation Delay and Fall Time With 1-µF Load, IN1  
6
7
8
9
10  
Propagation Delay and Fall Time With 1-µF Load, IN2  
11  
Waveforms shown in Figures 4–11 refer to TPS2100 at T = 25°C  
J
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
V
V
C
R
= 3.3 V  
= 0 V  
= 0.1 µF  
I(IN1)  
I(IN2)  
L
L
= 330 Ω  
EN  
(2 V/div)  
EN  
(2 V/div)  
V
V
C
R
= 0 V  
= 3.3 V  
= 0.1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
O
V
O
(2 V/div)  
(2 V/div)  
t – Time – 1 µs/div  
t – Time – 250 µs/div  
Figure 4. Propagation Delay and Rise Time  
Figure 5. Propagation Delay and Fall Time  
With 0.1-µF Load, IN1  
With 0.1-µF Load, IN2  
V
V
C
R
= 0 V  
= 3.3 V  
= 0.1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
V
C
R
= 3.3 V  
= 0 V  
= 0.1 µF  
I(IN1)  
I(IN2)  
L
L
EN  
(2 V/div)  
EN  
(2 V/div)  
= 330 Ω  
V
O
V
O
(2 V/div)  
(2 V/div)  
t – Time – 50 µs/div  
t – Time – 5 µs/div  
Figure 6. Propagation Delay and Fall Time  
Figure 7. Propagation Delay and Fall Time  
With 0.1-µF Load, IN1  
With 0.1-µF Load, IN2  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
V
V
C
R
= 3.3 V  
= 0 V  
= 1 µF  
I(IN1)  
I(IN2)  
L
L
= 330 Ω  
EN  
(2 V/div)  
EN  
(2 V/div)  
V
V
C
R
= 0 V  
= 3.3 V  
= 1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
V
O
O
(2 V/div)  
(2 V/div)  
t – Time – 2.5 µs/div  
t – Time – 250 µs/div  
Figure 8. Propagation Delay and Rise Time  
Figure 9. Propagation Delay and Rise Time  
With 1-µF Load, IN1  
With 1-µF Load, IN2  
V
V
C
R
= 0 V  
= 3.3 V  
= 1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
V
C
R
= 3.3 V  
= 0 V  
= 1 µF  
I(IN1)  
I(IN2)  
L
L
EN  
(2 V/div)  
EN  
(2 V/div)  
= 330 Ω  
V
O
V
O
(2 V/div)  
(2 V/div)  
t – Time – 250 µs/div  
t – Time – 10 µs/div  
Figure 10. Propagation Delay and Fall Time  
Figure 11. Propagation Delay and Fall Time  
With 1-µF Load, IN1  
With 1-µF Load, IN2  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
12  
IN1 Switch Rise Time  
IN2 Switch Fall Time  
IN1 Switch Fall Time  
IN2 Switch Fall Time  
Output Voltage Droop  
Inrush Current  
vs Output Current  
vs Output Current  
13  
vs Output Current  
14  
vs Output Current  
15  
vs Output Current When Output Is Switched From IN2 to IN1  
vs Output Capacitance  
16  
17  
IN1 Supply Current  
IN1 Supply Current  
IN2 Supply Current  
IN2 Supply Current  
IN1-OUT On-State Resistance  
vs Junction Temperature (IN1 Enabled)  
vs Junction Temperature (IN1 Disabled)  
vs Junction Temperature (IN2 Enabled)  
vs Junction Temperature (IN2 Disabled)  
vs Junction Temperature  
18  
19  
20  
21  
22  
IN2-OUT On-State Resistance  
vs Junction Temperature  
23  
IN1 SWTICH RISE TIME  
IN2 SWTICH RISE TIME  
vs  
OUTPUT CURRENT  
vs  
OUTPUT CURRENT  
900  
850  
800  
750  
700  
1000  
100  
10  
C
= 100 µF  
L
V
V
= 3.3 V  
= 0 V  
= 25°C  
I(IN1)  
I(IN2)  
T
J
C
= 47 µF  
= 10 µF  
L
C
= 100 µF  
L
C
C
= 47 µF  
L
L
C
= 10 µF  
L
650  
600  
C
= 1 µF  
L
1
C
= 1 µF  
L
C
= 0.1 µF  
L
C
= 0.1 µF  
V
V
= 0 V  
= 3.3 V  
= 25°C  
L
I(IN1)  
I(IN2)  
550  
500  
T
J
0.1  
0.01  
0.1  
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
I
O
– Output Current – mA  
I
O
– Output Current – mA  
Figure 12  
Figure 13  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
IN1 SWITCH FALL TIME  
IN2 SWITCH FALL TIME  
vs  
OUTPUT CURRENT  
vs  
OUTPUT CURRENT  
10000  
1000  
100  
1000  
100  
V
V
T
= 3.3 V  
= 0 V  
= 25°C  
I(IN1)  
I(IN2)  
J
C
= 100 µF  
L
C
= 100 µF  
L
C
= 47 µF  
= 10 µF  
L
L
C
= 10 µF  
L
C
L
C
= 1 µF  
L
10  
1
C
= 0.1 µF  
L
C
= 1 µF  
10  
1
V
V
= 0 V  
I(IN1)  
I(IN2)  
C
= 0.1 µF  
L
= 3.3 V  
C
= 47 µF  
L
T
J
= 25°C  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
I
O
– Output Current – mA  
I
O
– Output Current – mA  
Figure 14  
Figure 15  
OUTPUT VOLTAGE DROOP  
vs  
OUTPUT CURRENT WHEN OUTPUT  
IS SWITCHED FROM IN2 TO IN1  
INRUSH CURRENT  
vs  
OUTPUT CAPACITANCE  
1
0.8  
0.6  
1.6  
1.4  
1.2  
1
V
V
T
= 3.3 V  
= 3.3 V  
= 25°C  
I(IN1)  
I(IN2)  
J
V
= 3.3 V  
= 0 V  
= 6.6 Ω  
C
= 0.1 µF  
I(IN1)  
V
I(IN2)  
L
C
L
= 1 µF  
L
R
L
J
T
= 25°C  
C
= 10 µF  
C
= 47 µF  
0.8  
0.6  
L
C
= 100 µF  
0.4  
L
0.4  
0.2  
0
0.2  
0
0.01  
0.1  
1
10  
0
100  
C
200  
300  
400  
500  
I
O
– Output Current – mA  
– Output Capacitance – µF  
o
Figure 16  
Figure 17  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
IN1 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN1 DISABLED)  
IN1 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN1 ENABLED)  
0.25  
0.23  
14  
12  
10  
V
I(INx)  
= 4 V  
V
I(INx)  
= 4 V  
V
I(INx)  
= 3.3 V  
0.21  
0.19  
V
I(INx)  
= 3.3 V  
V
I(INx)  
= 2.7 V  
V
= 2.7 V  
I(INx)  
8
6
0.17  
0.15  
–40 –20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
T
J
Junction Temperature – °C  
T
J
Junction Temperature – °C  
Figure 18  
Figure 19  
IN2 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN2 ENABLED)  
IN2 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN2 DISABLED)  
0.75  
0.7  
0.6  
0.56  
0.52  
0.48  
V
I(INx)  
= 4 V  
0.65  
0.6  
V
I(INx)  
= 4 V  
V
I(INx)  
= 3.3 V  
V
I(INx)  
= 3.3 V  
V
I(INx)  
= 2.7 V  
0.55  
0.5  
0.44  
0.4  
V
= 2.7 V  
40  
I(INx)  
–40 –20  
0
20  
40  
60  
80  
100  
–40 –20  
0
20  
60  
80  
100  
T
J
Junction Temperature – °C  
T
J
Junction Temperature – °C  
Figure 20  
Figure 21  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
IN2-OUT ON-STATE RESISTANCE  
IN1-OUT ON-STATE RESISTANCE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2
1.75  
1.5  
305  
280  
255  
V
I(INx)  
= 2.7 V  
V
= 3.3 V  
I(INx)  
1.25  
1
V
= 2.7 V  
I(INx)  
V
= 4 V  
230  
205  
180  
I(INx)  
V
= 3.3 V  
I(INx)  
0.75  
0.5  
V
= 4 V  
0
I(INx)  
–40  
–20  
0
20  
40  
60  
80  
100  
–40 –20  
20  
40  
60  
80  
100  
T
J
Junction Temperature – °C  
T
J
Junction Temperature – °C  
Figure 22  
Figure 23  
APPLICATION INFORMATION  
TPS2100  
CardBus or System Controller  
3.3 V  
EN  
IN1  
IN2  
OUT  
3.3 V V  
CC  
0.1 µF  
xx µF  
3.3 V V  
AUX  
0.1 µF  
GND  
0.1 µF  
Figure 24. Typical Application  
power supply considerations  
A 0.01-µF to 0.1-µF ceramic bypass capacitor between IN and GND, close to the device is recommended. The  
output capacitor should be chosen based on the size of the load during the transition of the switch. A 47-µF  
capacitor is recommended for 10-mA loads. Typical output capacitors (xx µF, shown in Figure 24) required for  
a given load can be determined from Figure 16 which shows the output voltage droop when output is switched  
from IN2 to IN1. The output voltage droop is insignificant when output is switched from IN1 to IN2. Additionally,  
bypassing the output with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to  
short-circuit transients.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
APPLICATION INFORMATION  
power supply considerations (continued)  
switch transition  
Then-channelMOSFETonIN1usesacharge-pumptocreatethegate-drivevoltage, whichgivestheIN1switch  
a rise time of approximately 1 ms. The p-channel MOSFET on IN2 has a simpler drive circuit that allows a rise  
time of approximately 8 µs. Because the device has two switches and a single enable pin, these rise times are  
seen as transition times, from IN1 to IN2, or IN2 to IN1, by the output. The controlled transition times help limit  
the surge currents seen by the power supply during switching.  
thermal protection  
Thermal protection provided on the IN1 switch prevents damage to the IC when heavy-overload or short-circuit  
faults are present for extended periods of time. The increased dissipation causes the junction temperature to  
rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts  
it off at approximately 125°C (T ). The switch remains off until the junction temperature has dropped. The switch  
J
continues to cycle in this manner until the load fault or input power is removed.  
undervoltage lockout  
An undervoltage lockout function is provided to ensure that the power switch is in the off state at power-up.  
Whenever the input voltage falls below approximately 2 V, the power switch quickly turns off. This function  
facilitates the design of hot-insertion systems that may not have the capability to turn off the power switch before  
input power is removed. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce  
EMI and voltage overshoots.  
power dissipation and junction temperature  
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass  
large currents. The thermal resistances of these packages are high compared to that of power packages; it is  
good design practice to check power dissipation and junction temperature. First, find r at the input voltage,  
on  
and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and  
read r from Figure 22 or Figure 23. Next calculate the power dissipation using:  
on  
2
P
r
I
on  
D
Finally, calculate the junction temperature:  
T
P
R
T
J
D
JA  
A
Where:  
T = Ambient temperature  
A
R
= Thermal resistance  
θJA  
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally  
sufficient to obtain a reasonable answer.  
ESD protection  
All TPS2100 and TPS2101 terminals incorporate ESD-protection circuitry designed to withstand a 2-kV  
human-body-model discharge as defined in MIL-STD-883C.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
MECHANICAL DATA  
DBV (R-PDSO-G5)  
PLASTIC SMALL-OUTLINE  
0,50  
0,30  
M
0,20  
0,95  
5
4
0,15 NOM  
1,70  
1,50  
3,00  
2,60  
1
3
Gage Plane  
3,00  
2,80  
0,25  
0°–8°  
0,55  
0,35  
Seating Plane  
0,10  
1,45  
0,95  
0,05 MIN  
4073253-4/E 05/99  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-178  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197C – JUNE 1999 – REVISED APRIL 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TPS2101D

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2101DBV

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2101DBVR

使能端高电平有效、具有补偿温度功能的 2.7V 至 4V、250mΩ、0.5A、1.3Ω、0.01A 电源多路复用器 | DBV | 5 | -40 to 85
TI

TPS2101DBVT

POWER-DISTRIBUTION SWITCHES
TI

TPS2101DG4

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
TI

TPS2101DR

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, GREEN, PLASTIC, SOIC-8
TI

TPS2101DRG4

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SOIC-8
TI

TPS2102

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2102D

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2102DBV

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2102DBVR

POWER-DISTRIBUTION SWITCHES
TI

TPS2102DBVRG4

2.7-4V Dual In/Single Out MOSFET, 0.5A Main/0.1A Aux Input, Act-Low Enable, Comm. Temp. 5-SOT-23
TI