TPS2115APW [TI]

AUTOSWITCHING POWER MUX; 自动开关MUX
TPS2115APW
型号: TPS2115APW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AUTOSWITCHING POWER MUX
自动开关MUX

开关
文件: 总20页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
FEATURES  
APPLICATIONS  
D
Two-Input, One-Output Power Multiplexer  
With Low r Switches:  
D
D
D
D
D
D
D
PCs  
DS(on)  
PDAs  
− 84 mTyp (TPS2115A)  
− 120 mTyp (TPS2114A)  
Reverse and Cross-Conduction Blocking  
Digital Cameras  
Modems  
D
D
D
D
D
D
Cell Phones  
Digital Radios  
MP3 Players  
Wide Operating Voltage Range . . . .2.8 V to  
5.5 V  
Low Standby Current . . . . 0.5-µA Typ  
Low Operating Current . . . . 55-µA Typ  
Adjustable Current Limit  
PW PACKAGE  
(TOP VIEW)  
Controlled Output Voltage Transition Times,  
Limits Inrush Current and Minimizes Output  
Voltage Hold-Up Capacitance  
1
2
3
4
8
7
6
5
STAT  
D0  
D1  
ILIM  
IN1  
OUT  
IN2  
D
D
D
D
CMOS- and TTL-Compatible Control Inputs  
GND  
Manual and Auto-Switching Operating Modes  
Thermal Shutdown  
Available in a TSSOP-8 Package  
DESCRIPTION  
The TPS211xA family of power multiplexers enables seamless transition between two power supplies, such as a battery  
and a wall adapter, each operating at 2.8−5.5 V and delivering up to 1 A. The TPS211xA family includes extensive protection  
circuitry, including user-programmable current limiting, thermal protection, inrush current control, seamless supply  
transition, cross-conduction blocking, and reverse-conduction blocking. These features greatly simplify designing power  
multiplexer applications.  
TYPICAL APPLICATION  
Switch Status  
IN1: 2.8 − 5.5 V  
TPS2115APW  
R1  
0.1 µF  
1
2
3
4
8
IN1  
OUT  
IN2  
STAT  
D0  
7
6
5
D1  
R
L
C
L
ILIM  
GND  
R
ILIM  
IN2: 2.8 − 5.5 V  
0.1 µF  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢁꢑ ꢉ ꢣꢈ ꢌ ꢀꢋ ꢉꢎ ꢣ ꢆꢀꢆ ꢙꢤ ꢥꢦ ꢧ ꢠꢗ ꢕꢙꢦꢤ ꢙꢨ ꢔꢖ ꢧ ꢧ ꢛꢤꢕ ꢗꢨ ꢦꢥ ꢩꢖꢪ ꢘꢙꢔ ꢗꢕꢙ ꢦꢤ ꢫꢗ ꢕꢛꢬ ꢁꢧ ꢦꢫꢖ ꢔꢕꢨ  
ꢔ ꢦꢤ ꢥꢦꢧ ꢠ ꢕꢦ ꢨ ꢩꢛ ꢔ ꢙ ꢥꢙ ꢔ ꢗ ꢕꢙ ꢦꢤꢨ ꢩ ꢛꢧ ꢕꢭꢛ ꢕꢛ ꢧ ꢠꢨ ꢦꢥ ꢀꢛꢡ ꢗꢨ ꢋꢤꢨ ꢕꢧ ꢖꢠ ꢛꢤꢕ ꢨ ꢨꢕ ꢗꢤꢫ ꢗꢧ ꢫ ꢮ ꢗꢧ ꢧ ꢗ ꢤꢕꢯꢬ  
ꢁꢧ ꢦ ꢫꢖꢔ ꢕ ꢙꢦ ꢤ ꢩꢧ ꢦ ꢔ ꢛ ꢨ ꢨ ꢙꢤ ꢰ ꢫꢦ ꢛ ꢨ ꢤꢦꢕ ꢤꢛ ꢔꢛ ꢨꢨ ꢗꢧ ꢙꢘ ꢯ ꢙꢤꢔ ꢘꢖꢫ ꢛ ꢕꢛ ꢨꢕꢙ ꢤꢰ ꢦꢥ ꢗꢘ ꢘ ꢩꢗ ꢧ ꢗꢠ ꢛꢕꢛ ꢧ ꢨꢬ  
Copyright 2004, Texas Instruments Incorporated  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE OPTIONS  
FEATURE  
TPS2110A  
TPS2111A  
TPS2112A  
TPS2113A  
TPS2114A  
TPS2115A  
Current Limit Adjustment Range  
0.31−0.75A 0.63−1.25A 0.31−0.75A 0.63−1.25A 0.31−0.75A 0.63−1.25A  
Manual  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Switching Modes  
Automatic  
Switch Status Output  
Package  
No  
No  
Yes  
Yes  
Yes  
Yes  
TSSOP-8  
TSSOP-8  
TSSOP-8  
TSSOP-8  
TSSOP-8  
TSSOP-8  
ORDERING INFORMATION  
(1)  
T
A
PACKAGE  
ORDERING NUMBER  
MARKINGS  
2114A  
TPS2114APW  
−40°C to 85°C  
TSSOP-8 (PW)  
TPS2115APW  
2115A  
(1)  
The PW package is available taped and reeled. Add an R suffix to the device type (e.g., TPS2114APWR) to indicate tape and reel.  
PACKAGE DISSIPATION RATINGS  
DERATING FACTOR ABOVE  
T
25°C  
T
= 70°C  
T = 85°C  
A
POWER RATING  
A
A
PACKAGE  
T
= 25°C  
POWER RATING  
POWER RATING  
A
TSSOP-8 (PW)  
3.9 mW/°C  
387 mW  
213 mW  
155 mW  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
TPS2114A, TPS2115A  
−0.3 V to 6 V  
−0.3 V to 6 V  
5 mA  
(2)  
Input voltage range at pins IN1, IN2, D0, D1, ILIM  
(2)  
Output voltage range, V  
Output sink current, I  
, V  
O(OUT) O(STAT)  
O(STAT)  
TPS2114A  
TPS2115A  
0.9 A  
Continuous output current, I  
O
1.5 A  
Continuous total power dissipation  
Operating virtual junction temperature range, T  
See Dissipation Rating Table  
−40°C to 125°C  
−65°C to 150°C  
260°C  
J
Storage temperature range, T  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds  
(1)  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltages are with respect to GND.  
(2)  
RECOMMENDED OPERATING CONDITIONS  
MIN  
1.5  
2.8  
1.5  
2.8  
0
MAX UNIT  
V
V
V
V
2.8 V  
< 2.8 V  
2.8 V  
< 2.8 V  
5.5  
I(IN2)  
I(IN2)  
I(IN1)  
I(IN1)  
Input voltage at IN1, V  
Input voltage at IN2, V  
V
I(IN1)  
5.5  
5.5  
V
I(IN2)  
5.5  
Input voltage, V  
, V  
5.5  
0.75  
1.25  
125  
V
I(DO) I(D1)  
TPS2114A  
TPS2115A  
0.31  
0.63  
−40  
Current limit adjustment range, I  
O(OUT)  
A
Operating virtual junction temperature, T  
°C  
J
ELECTROSTATIC DISCHARGE (ESD) PROTECTION  
MIN  
MAX UNIT  
Human body model  
CDM  
2
kV  
V
500  
2
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
ELECTRICAL CHARACTERISTICS  
over recommended operating junction temperature range, V  
= V  
I(IN2)  
= 5.5 V, R = 400 (unless otherwise noted)  
ILIM  
I(IN1)  
TPS2114A  
TPS2115A  
PARAMETER  
POWER SWITCH  
TEST CONDITIONS  
UNIT  
MIN TYP MAX  
MIN TYP MAX  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
= V  
= V  
= V  
= V  
= V  
= V  
= 5.0 V  
= 3.3 V  
= 2.8 V  
= 5.0 V  
= 3.3 V  
= 2.8 V  
120  
120  
120  
140  
140  
140  
220  
220  
220  
84  
84  
84  
110  
110  
110  
150  
150  
150  
I(IN2)  
I(IN2)  
I(IN2)  
I(IN2)  
I(IN2)  
I(IN2)  
T = 25°C,  
J
mΩ  
mΩ  
I
L
= 500 mA  
Drain-source  
on-state resistance  
(INx−OUT)  
(1)  
r
DS(on)  
T = 125°C,  
J
L
I
= 500 mA  
(1)  
The TPS211xA can switch a voltage as low as 1.5 V as long as there is a minimum of 2.8 V at one of the input power pins. In this specific case,  
the lower supply voltage has no effect on the IN1 and IN2 switch on-resistances.  
PARAMETER  
LOGIC INPUTS (D0 AND D1)  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
V
V
High-level input voltage  
Low-level input voltage  
2
V
V
IH  
0.7  
1
IL  
D0 or D1 = High, sink current  
D0 or D1 = Low, source current  
SUPPLY AND LEAKAGE CURRENTS  
D1 = High, D0 = Low (IN1 active), V  
Input current at D0 or D1  
µA  
0.5  
1.4  
5
= 5.5 V, V  
= 3.3 V, V  
= 3.3 V,  
= 5.5 V,  
I(IN1)  
I(IN2)  
55  
1
90  
12  
75  
1
I
= 0 A  
O(OUT)  
D1 = High, D0 = Low (IN1 active), V  
= 0 A  
I(IN1)  
I(IN2)  
I
O(OUT)  
D0 = D1 = Low (IN2 active), V  
Supply current from IN1  
(operating)  
µA  
= 5.5 V, V  
= 3.3 V,  
= 5.5 V,  
I(IN1)  
I(IN2)  
I
= 0 A  
O(OUT)  
D0 = D1 = Low (IN2 active), V  
= 0 A  
= 3.3 V, V  
I(IN1)  
I(IN2)  
I
O(OUT)  
D1 = High, D0 = Low (IN1 active), V  
= 5.5 V, V  
= 3.3 V, V  
= 3.3 V,  
= 5.5 V,  
I(IN1)  
I(IN2)  
1
I
= 0 A  
O(OUT)  
D1 = High, D0 = Low (IN1 active), V  
= 0 A  
I(IN1)  
I(IN2)  
75  
12  
90  
2
I
O(OUT)  
D0 = D1 = Low (IN2 active), V  
Supply current from IN2  
(operating)  
µA  
= 5.5 V, V  
= 3.3 V,  
= 5.5 V,  
I(IN1)  
I(IN2)  
1
55  
I
= 0 A  
O(OUT)  
D0 = D1 = Low (IN2 active), V  
= 0 A  
= 3.3 V, V  
I(IN1)  
I(IN2)  
I
O(OUT)  
D0 = D1 = High (inactive), V  
= 5.5 V, V  
= 3.3 V, V  
= 5.5 V, V  
= 3.3 V, V  
= 3.3 V,  
= 5.5 V,  
= 3.3 V,  
= 5.5 V,  
I(IN1)  
I(IN1)  
I(IN1)  
I(IN1)  
I(IN1)  
I(IN2)  
I(IN2)  
I(IN2)  
I(IN2)  
0.5  
I
= 0 A  
O(OUT)  
D0 = D1 = High (inactive), V  
= 0 A  
Quiescent current from IN1  
(STANDBY)  
µA  
µA  
1
I
O(OUT)  
D0 = D1 = High (inactive), V  
= 0 A  
1
I
O(OUT)  
D0 = D1 = High (inactive), V  
= 0 A  
Quiescent current from IN2  
(STANDBY)  
0.5  
0.1  
0.1  
0.3  
2
I
O(OUT)  
Forward leakage current from IN1 D0 = D1 = High (inactive), V  
(measured from OUT to GND)  
Forward leakage current from IN2 D0 =D1= High (inactive), V  
= 5.5 V, IN2 open,  
5
µA  
µA  
µA  
V
= 0 V (shorted), T = 25°C  
J
O(OUT)  
= 5.5 V, IN1 open,  
I(IN2)  
= 0 V (shorted), T = 25°C  
5
(measured from OUT to GND)  
V
O(OUT)  
J
Reverse leakage current to INx  
(measured from INx to GND)  
D0 = D1 = High (inactive), V  
= 0 V, V  
O(OUT)  
= 5.5 V, T = 25°C  
5
I(INx)  
J
3
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
ELECTRICAL CHARACTERISTICS (Continued)  
over recommended operating junction temperature range, V  
= V  
I(IN2)  
= 5.5 V, R = 400 (unless otherwise noted)  
ILIM  
I(IN1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT LIMIT CIRCUIT  
R
= 400 Ω  
0.51  
0.30  
0.95  
0.47  
0.63  
0.36  
1.25  
0.71  
0.80  
0.50  
1.56  
0.99  
ILIM  
ILIM  
ILIM  
ILIM  
TPS2114A  
TPS2115A  
R
R
R
= 700 Ω  
= 400 Ω  
= 700 Ω  
Current limit accuracy  
A
Time for short-circuit output current to  
settle within 10% of its steady state value.  
(1)  
t
d
Current limit settling time  
1
ms  
Input current at ILIM  
V
= 0 V, I  
O(OUT)  
= 0 A  
−15  
0
µA  
I(ILIM)  
(1)  
Not tested in production.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
UVLO  
Falling edge  
1.15  
1.25  
1.30  
57  
IN1 and IN2 UVLO  
V
Rising edge  
1.35  
65  
(1)  
IN1 and IN2 UVLO hysteresis  
30  
mV  
Falling edge  
Rising edge  
2.4  
2.53  
2.58  
50  
Internal V  
Internal V  
UVLO (the higher of IN1 and IN2)  
V
DD  
2.8  
75  
(1)  
UVLO hysteresis  
(1)  
30  
mV  
DD  
UVLO deglitch for IN1, IN2  
Falling edge  
110  
µs  
(1)  
Not tested in production.  
PARAMETER  
REVERSE CONDUCTION BLOCKING  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
D0 = D1 = high, V  
I(INx)  
= 3.3 V. Connect OUT to a 5 V  
Minimum output-to-input voltage  
difference to block switching  
supply through a series 1-kresistor. Let D0 = low.  
Slowly decrease the supply voltage until OUT connects  
to IN1.  
V  
O(I_block)  
80  
100  
120  
mV  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THERMAL SHUTDOWN  
(1)  
Thermal shutdown threshold  
TPS211xA is in current limit.  
TPS211xA is in current limit.  
135  
125  
(1)  
Recovery from thermal shutdown  
°C  
(1)  
Hysteresis  
10  
20  
IN2−IN1 COMPARATORS  
Hysteresis of IN2−IN1 comparator  
0.1  
10  
0.2  
50  
V
(1)  
Deglitch of IN2−IN1 comparator (both ↑↓)  
µs  
(1)  
Not tested in production.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STAT OUTPUT  
Leakage current  
Saturation voltage  
V
= 5.5 V  
0.01  
0.13  
150  
1
µA  
V
O(STAT)  
= 2 mA, IN1 switch is on  
I
0.4  
I(STAT)  
Deglitch time (falling edge only)  
µs  
4
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
SWITCHING CHARACTERISTICS  
over recommended operating junction temperature range, V  
= V  
I(IN2)  
= 5.5 V, R = 400 (unless otherwise noted)  
ILIM  
I(IN1)  
TPS2114A  
TPS2115A  
PARAMETER  
POWER SWITCH  
TEST CONDITIONS  
UNIT  
MIN TYP MAX  
MIN TYP MAX  
T = 25°C, C = 1 µF,  
J
L
Output rise time from  
(1)  
t
V
V
= V  
= V  
= 5 V  
= 5 V  
I = 500 mA,  
0.5  
1.0  
0.5  
1.5  
0.7  
1
1.8  
1
3
2
ms  
ms  
r
f
I(IN1)  
I(IN2)  
L
an enable  
See Figure 1(a)  
T = 25°C, C = 1 µF,  
J
L
L
Output fall time from  
(1)  
t
I
= 500 mA,  
0.35  
0.5  
I(IN1)  
I(IN2)  
a disable  
See Figure 1(a)  
T = 125°C, C = 10 µF,  
IN1 to IN2 transition,  
J
L
I
L
= 500 mA  
V
I(IN1)  
V
I(IN2)  
= 3.3 V,  
= 5 V  
40  
40  
60  
60  
40  
40  
60  
60  
[Measure transition time  
as 10−90% rise time or  
from 3.4 V to 4.8 V on  
(1)  
Transition time  
t
t
µs  
IN2 to IN1 transition,  
V
I(IN1)  
V
I(IN2)  
= 5 V,  
= 3.3 V  
V
],  
O(OUT)  
See Figure 1(b)  
V
= V = 5 V  
I(IN2)  
T = 25°C, C = 10 µF,  
I(IN1)  
J
L
Turn-on propagation  
(1)  
t
t
Measured from enable to  
10% of V  
I
L
= 500 mA,  
0.5  
3
1
5
ms  
ms  
PLH1  
delay from enable  
See Figure 1(a)  
O(OUT)  
Turn-off propagation  
delay from a  
(1)  
disable  
V
= V = 5 V,  
I(IN2)  
T = 25°C, C = 10 µF,  
I(IN1)  
J
L
Measured from disable  
to 90% of V  
I = 500 mA,  
PHL1  
L
See Figure 1(a)  
O(OUT)  
Logic 1 to Logic 0  
transition on D1,  
V
I(IN1)  
V
I(IN2)  
V
I(D0)  
= 1.5 V,  
= 5 V,  
= 0 V,  
T = 25°C, C = 10 µF,  
J
L
Switch-over rising  
propagation delay  
t
I
L
= 500 mA,  
40  
100  
40  
100  
µs  
PLH2  
(1)  
See Figure 1(c)  
Measured from D1 to  
10% of V  
O(OUT)  
Logic 0 to Logic 1  
transition on D1,  
V
I(IN1)  
V
I(IN2)  
V
I(D0)  
= 1.5V,  
= 5V,  
= 0 V,  
T = 25°C, C = 10 µF,  
J
L
Switch-over falling  
propagation delay  
t
I
L
= 500 mA,  
2
3
10  
2
5
10  
ms  
PHL2  
(1)  
See Figure 1(c)  
Measured from D1 to  
90% of V  
O(OUT)  
(1)  
Not tested in production.  
5
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TRUTH TABLE  
> V  
(1)  
OUT  
D1  
0
D0  
V
I(IN2)  
I(IN1)  
STAT  
0
1
1
0
1
X
Hi-Z  
IN2  
IN1  
IN2  
IN1  
Hi-Z  
0
No  
Yes  
X
0
Hi-Z  
0
0
1
1
X
0
X = Don’t care.  
(1)  
The under-voltage lockout circuit causes the output OUT to go Hi-Z if the  
selected power supply does not exceed the IN1/IN2 UVLO, or if neither  
of the supplies exceeds the internal V  
UVLO  
DD  
Terminal Functions  
TERMINAL  
NAME NO.  
I/O  
DESCRIPTION  
D0  
2
3
5
8
I
I
I
I
TTL- and CMOS-compatible input pins. Each pin has a 1-µA pull-up. The truth table shown above illustrates the  
functionalityof D0 and D1.  
D1  
GND  
IN1  
Ground  
Primary power switch input. The IN1 switch can be enabled only if the IN1 supply is above the UVLO threshold and at  
least one supply exceeds the internal V  
DD  
UVLO.  
IN2  
6
4
I
I
Secondary power switch input. The IN2 switch can be enabled only if the IN2 supply is above the UVLO threshold and  
at least one supply exceeds the internal V UVLO.  
DD  
from ILIM to GND sets the current limit I to 250/R  
ILIM  
A resistor R  
ILIM  
and 500/R for the TPS2114A and TPS2115A,  
ILIM  
L
ILIM  
respectively.  
OUT  
7
1
O
O
Power switch output  
STAT  
STAT is an open-drain output that is Hi-Z if the IN2 switch is ON. STAT pulls low if the IN1 switch is ON or if OUT is Hi-Z  
(i.e., EN is equal to logic 0).  
6
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
FUNCTIONAL BLOCK DIAGRAM  
Internal V  
DD  
1 µA  
1 µA  
V = 0 V  
f
V = 0 V  
f
I
O(OUT)  
Q1  
8
6
7
4
IN1  
IN2  
OUT  
ILIM  
Q2  
Charge  
Pump  
k* I  
O(OUT)  
TPS2114A: k = 0.2%  
TPS2115A: k = 0.1%  
V
DD  
ULVO  
_
+
0.5 V  
IN2  
ULVO  
Cross-Conduction  
Detector  
+
IN1  
ULVO  
+
0.6 V  
+
_
_
EN2  
EN1  
Q1 is ON  
Q2 is ON  
UVLO (V  
100 mV  
+
)
DD  
V
> V  
I(INx)  
O(OUT)  
+
_
UVLO (IN2)  
UVLO (IN1)  
D0  
EN1  
2
3
D0  
D1  
Thermal  
Sense  
Control  
Logic  
D1  
IN2  
+
_
5
GND  
IN1  
1
STAT  
Q2 is ON  
7
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
PARAMETER MEASUREMENT INFORMATION  
90%  
10%  
90%  
10%  
V
O(OUT)  
0 V  
t
r
t
f
t
t
PHL1  
PLH1  
DO−D1  
Switch Off  
Switch Off  
Switch Enabled  
(a)  
5 V  
4.8 V  
V
O(OUT)  
3.4 V  
3.3 V  
t
t
DO−D1  
Switch #2 Enabled  
(b)  
Switch #1 Enabled  
5 V  
1.85 V  
4.65 V  
V
O(OUT)  
1.5 V  
t
t
PHL2  
PLH2  
DO−D1  
Switch #1 Enabled  
Switch #2 Enabled  
(c)  
Switch #1 Enabled  
Figure 1. Propagation Delays and Transition Timing Waveforms  
8
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
OUTPUT SWITCHOVER RESPONSE  
V
I(DO)  
5 V  
2V/Div  
TPS2115APW  
0.1 µF  
1
2
8
7
NC  
IN1  
STAT  
D0  
f = 28 Hz  
78% Duty Cycle  
OUT  
IN2  
V
I(D1)  
3
4
6
5
D1  
50 Ω  
1
µF  
2V/Div  
ILIM  
GND  
400 Ω  
3.3 V  
V
O(OUT)  
2V/Div  
0.1 µF  
Output Switchover Response Test Circuit  
t − Time − 1 ms/div  
Figure 2  
OUTPUT TURN-ON RESPONSE  
V
I(DO)  
5 V  
2V/Div  
TPS2115APW  
0.1 µF  
1
2
8
7
IN1  
STAT  
D0  
NC  
f = 28 Hz  
78% Duty Cycle  
V
OUT  
IN2  
I(D1)  
3
4
6
5
2V/Div  
D1  
50 Ω  
1
ILIM  
GND  
µF  
400 Ω  
3.3 V  
V
O(OUT)  
2V/Div  
0.1 µF  
Output Turn-On Response Test Circuit  
t − Time − 2 ms/div  
Figure 3  
9
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
OUTPUT SWITCHOVER VOLTAGE DROOP  
V
I(DO)  
5 V  
2V/Div  
TPS2115APW  
0.1 µF  
1
2
8
7
IN1  
STAT  
D0  
NC  
V
f = 580 Hz  
90% Duty Cycle  
OUT  
IN2  
I(D1)  
C
L
= 1 µF  
3
4
6
5
2V/Div  
D1  
50 Ω  
C
L
ILIM  
GND  
400 Ω  
V
O(OUT)  
2V/Div  
0.1 µF  
C
L
= 0 µF  
Output Switchover Voltage Droop Test Circuit  
Figure 4  
t − Time − 40 µs/div  
10  
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
OUTPUT SWITCHOVER VOLTAGE DROOP  
vs  
LOAD CAPACITANCE  
5
V
I
= 5 V  
4.5  
4
3.5  
3
R = 10 Ω  
L
2.5  
2
1.5  
1
0.5  
0
R
L
= 50 Ω  
0.1  
1
10  
100  
C
L
− Load Capacitance − µF  
V
I
TPS2115APW  
0.1 µF  
8
7
6
5
1
2
3
4
IN1  
NC  
STAT  
f = 28 Hz  
50% Duty Cycle  
OUT  
IN2  
D0  
D1  
ILIM  
GND  
400 Ω  
50 Ω  
10 Ω  
0.1 µF  
0.1 µF  
1 µF  
10 µF  
47 µF  
100 µF  
Output Switchover Voltage Droop Test Circuit  
Figure 5  
11  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
AUTO SWITCHOVER VOLTAGE DROOP  
V
I(IN1)  
2V/Div  
5 V  
TPS2115A  
1k  
µ
0.1 F  
1
2
8
7
IN1  
STAT  
VOUT  
D0  
OUT  
IN2  
f = 220 Hz  
20% Duty Cycle  
3
4
6
5
3.3V  
D1  
50  
µ
10  
F
ILIM  
GND  
µ
F
0.1  
400  
V
O(OUT)  
2V/Div  
75% less output voltage  
droop compared to TPS2115  
Auto Switchover Voltage Droop Test Circuit  
t − Time − 250 µs/div  
Figure 6  
12  
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
INRUSH CURRENT  
vs  
LOAD CAPACITANCE  
300  
250  
200  
150  
100  
V = 5 V  
I
V = 3.3 V  
I
50  
0
0
20  
40  
60  
80  
100  
C
L
− Load Capacitance − µF  
V
I
TPS2115APW  
0.1 µF  
8
7
6
5
To Oscilloscope  
1
2
3
4
NC  
NC  
IN1  
OUT  
IN2  
STAT  
D0  
f = 28 Hz  
90% Duty Cycle  
D1  
50 Ω  
ILIM  
GND  
400 Ω  
0.1 µF  
0.1 µF  
1 µF  
10 µF  
47 µF  
100 µF  
Output Capacitor Inrush Current Test Circuit  
Figure 7  
13  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
SWITCH ON-RESISTANCE  
vs  
SWITCH ON-RESISTANCE  
vs  
SUPPLY VOLTAGE  
JUNCTION TEMPERATURE  
120  
115  
110  
105  
100  
95  
180  
160  
140  
TPS2114A  
TPS2114A  
TPS2115A  
120  
100  
90  
80  
60  
TPS2115A  
85  
80  
2
3
4
5
6
−50  
0
50  
100  
150  
V
I(INx)  
− Supply Voltage − V  
T
J
− Junction Temperature − °C  
Figure 8  
Figure 9  
IN1 SUPPLY CURRENT  
vs  
IN1 SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
0.96  
0.94  
0.92  
60  
58  
56  
54  
52  
50  
48  
46  
44  
IN1 Switch is ON  
= 0 V  
Device Disabled  
= 0 V  
V
I(IN2)  
V
I(IN2)  
I
= 0 A  
O(OUT)  
I
= 0 A  
O(OUT)  
0.90  
0.88  
0.86  
0.84  
0.82  
42  
40  
2
3
4
5
6
2
3
4
5
6
V
I(IN1)  
− Supply Voltage − V  
V − IN1 Supply Voltage − V  
I(IN1)  
Figure 10  
Figure 11  
14  
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.2  
80  
70  
IN1 Switch is ON  
Device Disabled  
V
V
I
= 5.5 V  
= 3.3 V  
= 0 A  
V
I(IN1)  
V
I(IN2)  
I
= 5.5 V  
= 3.3 V  
= 0 A  
I(IN1)  
I(IN2)  
O(OUT)  
1
O(OUT)  
60  
50  
I
= 5.5 V  
I
I(IN1)  
I(IN1)  
0.8  
0.6  
0.4  
0.2  
0
40  
30  
20  
10  
0
I
I
3.3 V  
I(IN2)  
I(IN2) =  
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 12  
Figure 13  
15  
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢅꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
APPLICATION INFORMATION  
Some applications have two energy sources, one of which should be used in preference to another. Figure 14  
shows a circuit that will connect IN1 to OUT until the voltage at IN1 falls below a user-specified value. Once  
the voltage on IN1 falls below this value, the TPS2114A/5A will select the higher of the two supplies. This usually  
means that the TPS2114A/5A will swap to IN2.  
Switch Status  
IN1: 2.8 − 5.5 V  
TPS2115APW  
R1  
0.1 µF  
1
2
3
4
8
7
6
5
IN1  
OUT  
IN2  
STAT  
D0  
NC  
D1  
R
L
C
L
ILIM  
GND  
R
ILIM  
IN2: 2.8 − 5.5 V  
C2  
0.1 µF  
Figure 14. Auto-Selecting for a Dual Power Supply Application  
In Figure 15, the multiplexer selects between two power supplies based upon the D1 logic signal. OUT connects  
to IN1 if D1 is logic 1; otherwise, OUT connects to IN2. The logic thresholds for the D1 terminal are compatible  
with both TTL and CMOS logic.  
Switch Status  
IN1: 2.8 − 5.5 V  
TPS2115APW  
R1  
0.1 µF  
1
2
3
4
8
7
6
5
IN1  
OUT  
IN2  
STAT  
D0  
D1  
R
L
C
L
ILIM  
GND  
R
ILIM  
IN2: 2.8 − 5.5 V  
0.1 µF  
Figure 15. Manually Switching Power Sources  
16  
ꢀꢁ ꢂ ꢃꢄꢄꢅ ꢆ  
ꢀꢁ ꢂ ꢃꢄꢄꢇ ꢆ  
www.ti.com  
SBVS044A − MARCH 2004 − REVISED MAY 2004  
DETAILED DESCRIPTION  
AUTO-SWITCHING MODE  
D0 equal to logic 1 and D1 equal to logic 0 selects the auto-switching mode. In this mode, OUT connects to  
the higher of IN1 and IN2.  
MANUAL SWITCHING MODE  
D0 equal to logic 0 selects the manual-switching mode. In this mode, OUT connects to IN1 if D1 is equal to logic  
1, otherwise OUT connects to IN2.  
N-CHANNEL MOSFETs  
Two internal high-side power MOSFETs implement a single-pole double-throw (SPDT) switch. Digital logic  
selects the IN1 switch, IN2 switch, or no switch (Hi-Z state). The MOSFETs have no parallel diodes so  
output-to-input current cannot flow when the FET is off. An integrated comparator prevents turn-on of a FET  
switch if the output voltage is greater than the input voltage.  
CROSS-CONDUCTION BLOCKING  
The switching circuitry ensures that both power switches will never conduct at the same time. A comparator  
monitors the gate-to-source voltage of each power FET and allows a FET to turn on only if the gate-to-source  
voltage of the other FET is below the turn-on threshold voltage.  
REVERSE-CONDUCTION BLOCKING  
When the TPS211xA switches from a higher-voltage supply to a lower-voltage supply, current can potentially  
flow back from the load capacitor into the lower-voltage supply. To minimize such reverse conduction, the  
TPS211xA will not connect a supply to the output until the output voltage has fallen to within 100 mV of the supply  
voltage. Once a supply has been connected to the output, it will remain connected regardless of output voltage.  
CHARGE PUMP  
The higher of supplies IN1 and IN2 powers the internal charge pump. The charge pump provides power to the  
current limit amplifier and allows the output FET gate voltage to be higher than the IN1 and IN2 supply voltages.  
A gate voltage that is higher than the source voltage is necessary to turn on the N-channel FET.  
CURRENT LIMITING  
A resistor R  
from ILIM to GND sets the current limit to 250/R  
and 500/R  
for the TPS2114A and  
ILIM  
ILIM  
ILIM  
TPS2115A, respectively. Setting resistor R  
limiting.  
equal to zero is not recommended as that disables current  
ILIM  
OUTPUT VOLTAGE SLEW-RATE CONTROL  
The TPS2114A/5A slews the output voltage at a slow rate when OUT switches to IN1 or IN2 from the Hi-Z state  
(see Truth Table). A slow slew rate limits the inrush current into the load capacitor. High inrush currents can  
glitch the voltage bus and cause a system to hang up or reset. It can also cause reliability issues—like pit the  
connector power contacts, when hot-plugging a load such as a PCI card. The TPS2114A/5A slews the output  
voltage at a much faster rate when OUT switches between IN1 and IN2. The fast rate minimizes the output  
voltage droop and reduces the output voltage hold-up capacitance requirement.  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
TPS2114APW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
8
8
8
8
8
8
8
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2114APWR  
TPS2114APWRG4  
TPS2115APW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2115APWG4  
TPS2115APWR  
TPS2115APWRG4  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TPS2115APWG4

AUTOSWITCHING POWER MUX
TI

TPS2115APWR

AUTOSWITCHING POWER MUX
TI

TPS2115APWRG4

AUTOSWITCHING POWER MUX
TI

TPS2115PW

AUTOSWITCHING POWER MULTIPLEXER
TI

TPS2115PWG4

AUTOSWITCHING POWER MULTIPLEXER
TI

TPS2115PWR

AUTOSWITCHING POWER MULTIPLEXER
TI

TPS2115PWRG4

AUTOSWITCHING POWER MULTIPLEXER
TI

TPS2116

1.6V 至 5.5V、40mΩ、2.5A、低 IQ、优先级电源多路复用器
TI

TPS2116DRLR

1.6V 至 5.5V、40mΩ、2.5A、低 IQ、优先级电源多路复用器 | DRL | 8 | -40 to 125
TI

TPS2117

1.6-V to 5.5-V, 20-mΩ, 4-A low IQ power multiplexer with manual and priority switchover
TI

TPS2120

支持无缝切换的 2.7V 至 22V、62mΩ、3A 电源多路复用器
TI

TPS2120YFPR

支持无缝切换的 2.7V 至 22V、62mΩ、3A 电源多路复用器 | YFP | 20 | -40 to 125
TI