TPS2214DBRG4 [TI]

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO24, GREEN, PLASTIC, SSOP-24;
TPS2214DBRG4
型号: TPS2214DBRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO24, GREEN, PLASTIC, SSOP-24

光电二极管
文件: 总25页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B – JULY 1999 – REVISED JUNE 2000  
DB PACKAGE  
(TOP VIEW)  
Fully Integrated xVCC and xVPP Switching  
xVPP Programmed Independent of xVCC  
3.3-V, 5-V, and/or 12-V Power Distribution  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
5V  
5V  
5V  
NC  
MODE  
NC  
12V  
BVPP  
BVCC  
BVCC  
STBY  
OC  
2
Low r  
(60-mxVCC Switch Typical)  
DS(on)  
3
DATA  
CLOCK  
LATCH  
RESET  
12V  
AVPP  
AVCC  
AVCC  
GND  
Short Circuit and Thermal Protection  
150-µA (Maximum) Quiescent Current  
Standby Mode: 50-mA Current Limit (Typ)  
12-V Supply Can Be Disabled  
3.3-V Low-Voltage Mode  
4
5
6
7
8
9
Meets PC Card Standards  
10  
11  
12  
3.3V  
3.3V  
TTL-Logic Compatible Inputs  
Break-Before-Make Switching  
Internal Power-On Reset  
RESET  
TheTPS2214isidenticaltotheTPS2216inallrespects  
except packaging and pin assignments.  
description  
NC – No internal connection  
The TPS2214 PC Card power-interface switch provides an integrated power-management solution for two PC  
Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card  
control are combined on a single integrated circuit. This device allows the distribution of 3.3-V, 5-V, and/or 12-V  
power to the card. The current-limiting feature eliminates the need for fuses. Current-limit reporting can help  
the user isolate a system fault.  
The TPS2214 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5-V power.  
This feature facilitates low-power system designs such as sleep modes where only 3.3 V is available. This  
device also has the ability to program the xVPP outputs independent of the xVCC outputs. A standby mode that  
changes all output-current limits to 50 mA (typical) has been incorporated.  
End-equipment applications for the TPS2214 include: notebook computers, desktop computers, personal  
digital assistants (PDAs), digital cameras, and bar-code scanners.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
J
PLASTIC SMALL OUTLINE  
(DB)  
–40°C to 125°C  
TPS2214DB(R)  
The DB package is available in tubes and left-end  
taped and reeled. Add R suffix to device type (e.g.,  
TPS2214DBR) for taped and reeled.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association).  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
3.3V  
NO.  
13,14  
1, 2, 24  
7, 20  
9, 10  
8
I
3.3-V input for card power and/or chip power if 5 V is not present  
5-V input for card power and/or chip power  
5V  
I
12V  
I
12-V V input card power  
pp  
AVCC  
AVPP  
BVCC  
BVPP  
GND  
MODE  
O
O
O
O
VCC output: 3.3-V, 5-V, GND or high impedance to card  
VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card  
VCC output: 3.3-V, 5-V, GND or high impedance to card  
VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card  
Ground  
17, 18  
19  
11  
22  
I
TPS2206 operation when floating or pulled low; must be pulled high externally for TPS2214 operation. MODE  
is internally pulled low with a 150-kpulldown resistor.  
OC  
15  
6
O
I
Logic-level output that goes low when an overcurrent or overtemperature condition exists.  
RESET  
Logic-level reset input active high. Do not connect if RESET pin is used. RESET is internally pulled low with  
a 150-kpulldown resistor.  
RESET  
STBY  
12  
16  
I
I
Logic-level reset input active low. Do not connect if RESET pin is used. The pin is internally pulled high with  
a 150-kpullup resistor.  
Logic-level active low input sets the TPS2214 to standby mode and sets all current limits to 50 mA. The pin is  
internally pulled high with a 150-kpullup resistor.  
CLOCK  
DATA  
LATCH  
NC  
4
I
I
I
Logic-level clock for serial data word  
Logic-level serial data word  
3
5
Logic-level latch for serial data word  
No internal connection  
21, 23  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
functional block diagram  
TPS2214  
9
AVCC  
S1  
10  
13  
AVCC  
3.3V  
S2  
14  
CS  
3.3V  
S7  
8
S3  
AVPP  
CS  
S8  
CS  
S9  
CS  
S10  
CS  
1
17  
5V  
BVCC  
2
S4  
5V  
18  
BVCC  
24  
5V  
S5  
S6  
CS  
S11  
19  
BVPP  
CS  
S12  
CS  
S13  
CS  
7
12V  
S14  
CS  
20  
12V  
Internal  
Current Monitor  
22  
16  
Thermal  
MODE  
STBY  
3
4
5
6
DATA  
CLOCK  
LATCH  
RESET  
11  
GND  
12  
15  
RESET  
OC  
Both 12V pins must be connected together.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
absolute maximum ratings over operating virtual free-air temperature (unless otherwise noted)  
Input voltage range for card power: V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 14 V  
I(3.3V)  
I(5V)  
V
V
I(12V)  
Logic input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
Output voltage range:  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 14 V  
O(xVCC)  
O(xVPP)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Output current: I  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
O(xVCC)  
O(xVPP)  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
DB  
890 mW  
8.90 mW/°C  
489 mW 356 mW  
These devices are mounted on an JEDEC low-k board (2 oz. traces on surface), 1-W power applied.  
recommended operating conditions  
MIN  
2.7  
2.7  
2.7  
MAX  
5.25  
5.25  
13.5  
1
UNIT  
V
V
V
V
I(3.3V)  
Input voltage, V  
V
I
I(5V)  
V
I(12V)  
I
at T = 70°C  
A
O(VCC)  
O(VPP)  
A
Output current, I  
Clock frequency  
O
I
at T = 70°C  
200  
2.5  
mA  
MHz  
A
Data  
200  
250  
100  
100  
100  
100  
250  
40  
Pulse duration  
Latch  
Clock  
ns  
§
Data hold time  
ns  
ns  
ns  
ns  
°C  
§
Data setup time  
Latch delay time  
Clock delay time  
§
§
Operating virtual junction temperature, T  
125  
J
§
Refer to Figures 2 and 3.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
electrical characteristics, T = 25°C, V  
outputs unloaded (unless otherwise noted)  
= 5 V, V  
= 3.3 V, V  
= 12 V, STBY floating, all  
J
I(5V)  
I(3.3V)  
I(12V)  
power switch  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
60  
90  
65  
90  
60  
90  
65  
95  
70  
100  
70  
100  
0.7  
1.4  
1.4  
2
MAX  
85  
UNIT  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
I
= 25°C,  
= 125°C,  
= 25°C,  
= 125°C,  
= 25°C,  
= 125°C,  
= 25°C,  
= 125°C,  
= 25°C,  
= 125°C,  
= 25°C,  
= 125°C,  
= 25°C,  
= 125°C,  
= 25°C,  
I
I
= 1 A  
= 1 A  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
O
120  
85  
3.3 V to xVCC, with one  
switch on  
O
V
V
I
= 0,  
I
O
I
O
= 1 A  
I(5V)  
I(5V)  
= 0,  
= 1 A  
130  
85  
= 1 A  
5 V to xVCC, with one  
switch on  
O
I
I
I
= 1 A  
120  
105  
140  
105  
140  
105  
140  
1
O
O
O
mΩ  
= 1 A each  
= 1 A each  
= 0,  
3.3 V to xVCC, with two  
switches on  
V
V
I
I
O
I
O
= 1 A each  
= 1 A each  
Switch  
resistance  
I(5V)  
= 0,  
I(5V)  
= 1 A each  
= 1 A each  
= 50 mA  
5 V to xVCC, with two  
switches on  
O
I
O
I
O
I
O
3.3 V/5 V/12 V to xVPP  
3.3 V/5 V to xVCC  
= 50 mA  
2.5  
2
STBY = low,  
= 125°C, STBY = low,  
= 25°C, STBY = low,  
I
O
I
O
I
O
I
O
= 30 mA  
= 30 mA  
= 30 mA  
= 30 mA  
3
5
7
3.3 V/5 V/12 V to xVPP  
= 125°C, STBY = low,  
10  
0.275  
0.275  
1
16  
V
at 10 mA, After reset  
O(xVCC)  
at 10 mA, After reset  
O(xVPP)  
0.8  
0.8  
10  
Clamp low  
voltage  
O(xVCC)  
V
V
I
O(xVPP)  
T
J
T
J
T
J
T
J
= 25°C  
I
High-impedance  
High-impedance  
O(xVCC)  
state  
= 125°C  
= 25°C  
2
50  
I
I
Leakage current  
µA  
lkg  
1
10  
I
O(xVPP)  
state  
= 125°C  
2
50  
I
I
1
2.2  
500  
A
O(xVCC)  
O(xVPP)  
T
= 85°C, output powered into a short to GND  
J
250  
mA  
Short-circuit  
output current  
OS  
T
J
= 85°C,  
Standby mode I  
35  
30  
50  
50  
65  
60  
O(xVCC)  
O(xVPP)  
limit  
Output powered into a short to GND,  
STBY = 0 V  
mA  
µs  
Standby mode I  
xVCC switch  
xVPP switch  
100  
16  
Current limit  
response time  
100-mshort circuit  
I
I
I
I
I
I
I
I
I
0.01  
100  
6
2
120  
10  
I(3.3V)  
I(5V)  
V
= V  
= 5 V  
O(xVPP)  
µA  
O(xVCC)  
Normal operation  
and in reset  
mode  
I(12V)  
I(3.3V)  
I(5V)  
100  
0
120  
V
= 0,  
I(5V)  
§
I
I
µA  
V
V
= 3.3 V,  
= 12 V  
Input current  
O(xVCC)  
O(xVPP)  
22  
30  
1
I(12V)  
I(3.3V)  
I(5V)  
Shutdown mode  
V
= Hi-Z,  
V
= Hi-Z  
µA  
°C  
1
O(xVCC)  
O(xVPP)  
1
I(12V)  
Trip point, T  
J
Hysteresis  
155  
10  
Thermal  
shutdown  
Pulse-testing techniques maintain junction temperature close to ambient temperature (250-µs-wide pulse, less than 0.5% duty cycle); thermal  
effects must be taken into account separately.  
Specified by design, not tested in production.  
§
Input currents do not include logic input currents (presented in electrical characteristics for logic section); clock is inactive.  
NOTE: V  
I(3.3V)  
or V  
must be biased for switches to function.  
I(5V)  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
logic section (CLOCK, DATA, LATCH, MODE, RESET, RESET, STBY, OC)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
50  
1
UNIT  
V
V
V
V
V
V
= 5 V or V  
= 0 V or V  
= 5 V  
= 0 V  
= 5 V  
30  
I(RESET)  
I(RESET)  
I(MODE)  
I(MODE)  
I(RESET)  
I(RESET)  
I
or I  
I(RESET)  
I(RESET)  
30  
30  
50  
1
I
I(MODE)  
Logic input current  
= 0 V  
µA  
= 5 V  
= 0 V  
1
I(STBY)  
I(STBY)  
I
I
I(STBY)  
50  
1
or I  
or I  
I(LATCH)  
I(CLOCK)  
I(DATA)  
V
V
= 5 V  
2
2
I(5V)  
Logic input high level  
Logic input low level  
V
V
V
V
= 0 V  
I(5V)  
0.8  
0.4  
V
V
= 5 V,  
= 0 V,  
I
I
= 1 mA  
= 1 mA  
V
0.4  
I(5V)  
O
I(5V)  
Logic output high level, OC  
Logic output low level, OC  
V
0.4  
I(5V)  
O
I(3.3V)  
I
O
= 1 mA  
RESET and MODE have internal 150-kpulldown resistors; RESET and STBY have internal 150-kpullup resistors.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
switching characteristics  
PARAMETER  
LOAD CONDITION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
C
C
I
I
= 0.1 µF,  
= 0.1 µF,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
V
V
V
V
V
V
V
V
1
O(xVCC)  
§
= 0 ,  
0.8  
1.2  
2.5  
0.01  
0.01  
3
O(xVPP)  
O(xVCC)  
O(xVPP)  
O(xVCC)  
O(xVPP)  
O(xVCC)  
O(xVPP)  
§
= 0  
t
r
ms  
Output rise times  
C
C
= 150 µF,  
= 10 µF,  
= 1 A,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
I
I
= 50 mA  
C
C
= 0.1 µF,  
= 0.1 µF,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
§
I
I
= 0 ,  
§
= 0  
t
f
ms  
Output fall times  
C
C
= 150 µF,  
= 10 µF,  
= 1 A,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
I
I
8
= 50 mA  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3
25  
0.6  
8.5  
0.6  
9
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
Latchto xVPP (12 V)  
Latchto xVPP (5 V)  
Latchto xVPP (3.3 V),  
V
= 5 V  
I(5V)  
Latchto xVPP (3.3 V),  
= 0 V  
C
C
I
= 0.1 µF,  
= 0.1 µF,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
1.4  
9
§
= 0 ,  
V
I(5V)  
§
I
= 0  
0.3  
15  
0.2  
15  
0.4  
15  
4.5  
13  
3.3  
8
Latchto xVCC (5 V)  
Latchto xVCC (3.3 V),  
V
= 5 V  
I(5V)  
Latchto xVCC (3.3 V),  
= 0 V  
V
I(5V)  
t
pd  
Propagation delay  
ms  
Latchto xVPP (12 V)  
Latchto xVPP (5 V)  
3
Latchto xVPP (3.3 V),  
V
= 5 V  
9
I(5V)  
Latchto xVPP (3.3 V),  
= 0 V  
C
C
I
= 150 µF,  
= 10 µF,  
= 1 A,  
L(xVCC)  
L(xVPP)  
3
V
I(5V)  
9
O(xVCC)  
O(xVPP)  
I
= 50 mA  
1
Latchto xVCC (5 V)  
12  
0.6  
12  
1
Latchto xVCC (3.3 V),  
V
= 5 V  
I(5V)  
Latchto xVCC (3.3 V),  
= 0 V  
V
I(5V)  
12  
§
Refer to Parameter Measurement Information  
Specified by design: not tested in production.  
No card inserted, assumes 0.1-µF recommended output capacitor (see Figure 34).  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
PARAMETER MEASUREMENT INFORMATION  
xVPP  
xVCC  
I
I
O(xVPP)  
O(xVCC)  
LOAD CIRCUITS  
V
V
DD  
DD  
LATCH  
LATCH  
50%  
50%  
t
GND  
GND  
t
pd(off)  
pd(off)  
t
t
pd(on)  
pd(on)  
90%  
10%  
V
O(xVPP)  
V
O(xVCC)  
90%  
10%  
GND  
GND  
Propagation Delay (xVPP)  
Propagation Delay (xVCC)  
t
f
t
f
t
t
r
r
V
V
O(xVPP)  
90%  
10%  
90%  
10%  
O(xVCC)  
GND  
GND  
Rise/Fall Time (xVCC)  
Rise/Fall Time (xVPP)  
V
V
DD  
DD  
LATCH  
50%  
50%  
GND  
GND  
t
t
off  
off  
t
t
on  
on  
V
O(xVPP)  
V
90%  
10%  
90%  
10%  
O(xVCC)  
GND  
GND  
Turn On/Off Time (xVPP)  
Turn On/Off Time (xVCC)  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuits and Voltage Waveforms  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
PARAMETER MEASUREMENT INFORMATION  
DATA  
D6  
D10  
D8  
D7  
D4  
D3  
D1  
D9  
D5  
D2  
D0  
Data Setup Time  
Data Hold Time  
Latch Delay Time  
LATCH  
CLOCK  
Clock Delay Time  
NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of  
the clock. For definition of D0 to D10, see the control logic table.  
Figure 2. Serial-Interface Timing for Independent xVPP Switching When MODE = 5 V or 3.3 V  
DATA  
D4  
D8  
D6  
D5  
D2  
D1  
D7  
D3  
D0  
Data Setup Time  
LATCH  
Latch Delay Time  
Data Hold Time  
Clock Delay Time  
CLOCK  
NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of  
the clock. For definition of D0 to D8, see the control logic table.  
Figure 3. Serial-Interface Timing When MODE = 0 V or Floating  
Table of Timing Diagrams  
FIGURE  
Short-circuit current response, short applied to powered-on 5-V xVCC switch output  
Short-circuit current response, short applied to powered-on 12-V xVPP switch output  
OC response with ramped load on 5-V xVCC switch output  
4
5
6
7
OC response with ramped load on 12-V xVPP switch output  
Timing tests are conducted at free-air temperature, V  
I(5V)  
= 5 V, V  
I(3.3V)  
= 3.3 V, V = 12 V, C = 0.1 µF on each output, STBY floating.  
I(12V) L  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
PARAMETER MEASUREMENT INFORMATION  
V
O(OC)  
V
O(OC)  
5 V/div  
5 V/div  
I
I
O(VPP)  
5 A/div  
O(VCC)  
5 A/div  
0
0
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
t Time µs  
t Time µs  
Figure 4. Short-Circuit Response, Short Applied  
to Powered-On 5-V xVCC-Switch Output  
Figure 5. Short-Circuit Response, Short Applied  
to Powered-On 12-V xVPP-Switch Output  
V
V
O(OC)  
O(OC)  
5 V/div  
5 V/div  
I
I
O(VPP)  
O(VCC)  
1 A/div  
0.2 A/div  
0
0
4
8
12  
16  
20  
10  
20  
30  
40  
50  
t Time ms  
t Time ms  
Figure 6. OC Response With Ramped Load  
on 5-V xVCC-Switch Output  
Figure 7. OC Response With Ramped Load on  
12-V xVPP-Switch Output  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
8
t
t
t
t
t
t
t
t
t
t
t
t
Turnon propagation delay time, 3.3-V xVCC switch  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Load current  
pd(on)  
Turnoff propagation delay time, 3.3-V xVCC switch  
Turnon propagation delay time, 5-V xVCC switch  
Turnoff propagation delay time, 5-V xVCC switch  
Turnon propagation delay time, 12-V xVPP switch  
Turnoff propagation delay time, 12-V xVPP switch  
Rise time, 3.3-V xVCC switch  
9
pd(off)  
10  
11  
pd(on)  
pd(off)  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
pd(on)  
pd(off)  
r
f
r
f
r
f
Fall time, 3.3-V xVCC switch  
Rise time, 5-V xVCC switch  
Fall time, 5-V xVCC switch  
Rise time, 12-V xVPP switch  
Fall time, 12-V xVPP switch  
Input current at V  
Input current at V  
Input current at V  
= V  
= V  
=3.3 V  
=5 V  
O(xVCC)  
O(xVCC)  
O(xVCC)  
O(xVPP)  
O(xVPP)  
I
I
= 5 V, V  
=12 V  
O(xVPP)  
Static drain-source on-state resistance, 3.3-V xVCC switch (V  
Static drain-source on-state resistance, 3.3-V xVCC switch  
Static drain-source on-state resistance, 5-V xVCC switch  
Static drain-source on-state resistance, 12-V xVPP switch  
=0)  
I(5V)  
r
DS(on)  
dc input-to-output voltage (drop), 3.3-V xVCC switch (V  
dc input-to-output voltage (drop), 3.3-V xVCC switch  
dc input-to-output voltage (drop), 5-V xVCC switch  
dc input-to-output voltage (drop), 12-V xVPP switch  
Short-circuit current limit, 3.3-V xVCC switch  
Short-circuit current limit, 5-V xVCC switch  
=0)  
I(5V)  
V
V
vs Load current  
IO(xVCC)  
vs Load current  
vs Load current  
IO(xVPP)  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
I
OS  
Short-circuit current limit, 12-V xVPP switch  
NOTE: Electrical characteristics tests are conducted at V  
(unless otherwise noted on Figures).  
= 5 V, V  
I(3.3V)  
= 3.3 V, V  
I(12V)  
= 12 V, C = 0.1 µF on each output, STBY floating  
I(5V)  
L
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
TURNON PROPAGATION DELAY TIME,  
3.3-V xVCC SWITCH  
vs  
TURNOFF PROPAGATION DELAY TIME,  
3.3-V xVCC SWITCH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.4  
1.2  
1
14  
12  
T
J
= 125°C  
T
J
= 85°C  
T
J
= 25°C  
T
J
= 125°C  
T
J
= 0°C  
T
J
= 85°C  
0.8  
10  
8
T
J
= 25°C  
T
J
= 40°C  
0.6  
T
J
= 0°C  
T
J
= 40°C  
0.4  
0.2  
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
6
0.1  
1
10  
0.1  
1
10  
C
Load Capacitance µF  
L
C
Load Capacitance µF  
L
Figure 8  
Figure 9  
TURNON PROPAGATION DELAY TIME,  
5-V xVCC SWITCH  
TURNOFF PROPAGATION DELAY TIME,  
5-V xVCC SWITCH  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.6  
1.4  
1.2  
1
14  
12  
10  
T
= 125°C  
J
T
J
= 125°C  
T
= 25°C  
J
T
= 40°C  
J
T
J
= 85°C  
T
J
= 40°C  
T = 85°C  
J
T
J
= 0°C  
T
J
= 25°C  
T
J
= 0°C  
0.8  
0.6  
8
6
0.4  
0.2  
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
Load Capacitance µF  
C
Load Capacitance µF  
L
L
Figure 10  
Figure 11  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
TURNON PROPAGATION DELAY TIME,  
12-V xVPP SWITCH  
vs  
TURNOFF PROPAGATION DELAY TIME dc,  
12-V xVPP SWITCH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
6
5
4
16  
T
J
= 125°C  
14  
12  
10  
T
= 85°C  
J
T
= 0°C  
J
T
J
= 40°C  
3
2
T
= 0°C  
J
T = 25°C  
J
T
J
= 25°C  
T
J
= 40°C  
T
J
= 85°C  
T
J
= 125°C  
8
6
1
0
dc Load = 50 mA  
100 1000  
dc Load = 50 mA  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
Load Capacitance µF  
L
C
Load Capacitance µF  
L
Figure 12  
Figure 13  
FALL TIME, 3.3-V xVCC SWITCH  
RISE TIME, 3.3-V xVCC SWITCH  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
2
3.5  
3
T
= 125°C  
J
1.8  
1.6  
1.4  
1.2  
T
J
= 85°C  
T
= 25°C  
T
J
= 125°C  
J
2.5  
2
T
J
= 85°C  
T
J
= 0°C  
1
T
= 40°C  
J
T
= 25°C  
T
J
= 0°C  
J
1.5  
T
J
= 40°C  
0.8  
0.6  
0.4  
1
0.5  
0
0.2  
0
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
Load Capacitance µF  
C
Load Capacitance µF  
L
L
Figure 14  
Figure 15  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
FALL TIME, 5-V xVCC SWITCH  
vs  
RISE TIME, 5-V xVCC SWITCH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.8  
1.6  
4
3.5  
3
T
J
= 85°C  
T
J
= 125°C  
1.4  
1.2  
T
J
= 125°C  
2.5  
2
T
J
= 0°C  
T
J
= 85°C  
1
T
J
= 40°C  
0.8  
0.6  
T
J
= 25°C  
T
J
= 25°C  
T
J
= 0°C  
T
J
= 40°C  
1.5  
1
0.4  
0.5  
0
0.2  
0
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
Load Capacitance µF  
C
Load Capacitance µF  
L
L
Figure 16  
Figure 17  
FALL TIME, 12-V xVPP SWITCH  
RISE TIME, 12-V xVPP SWITCH  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
5
4.5  
4
20  
18  
T
= 125°C  
J
T
= 85°C  
J
16  
14  
12  
T
J
= 25°C  
3.5  
3
T
= 0°C  
10  
8
J
2.5  
2
T
J
= 40°C  
T
= 40°C  
J
T
J
= 125°C  
1.5  
6
4
T
= 0°C  
J
T
= 85°C  
J
1
T
J
= 25°C  
.5  
0
2
0
dc Load = 50 mA  
100 1000  
dc Load = 50 mA  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
Load Capacitance µF  
C
Load Capacitance µF  
L
L
Figure 18  
Figure 19  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
INPUT CURRENT AT V  
= V  
= 3.3 V  
INPUT CURRENT AT V  
= V  
= 5 V  
O(xVCC)  
vs  
O(xVPP)  
O(xVCC)  
vs  
O(xVPP)  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
I(5V)  
100  
90  
120  
110  
100  
90  
I
I
I(5V)  
80  
70  
80  
70  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
I
I(3.3V)  
I
I(12V)  
10  
10  
0
0
I
I
I(12V)  
I(3.3V)  
10  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 20  
Figure 21  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
INPUT CURRENT AT V  
= 5 V, V  
= 12 V  
O(xVPP)  
3.3-V xVCC SWITCH  
O(xVCC)  
vs  
vs  
JUNCTION TEMPERATURE  
0.09  
JUNCTION TEMPERATURE  
120  
110  
100  
I
I(5V)  
0.08  
0.07  
90  
80  
70  
60  
50  
0.06  
0.05  
0.04  
0.03  
40  
I
30  
20  
I(12V)  
0.02  
dc Load = 1 A  
10  
V
I(5V)  
= 0  
I
0.01  
0
I(3.3V)  
0
10  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 22  
Figure 23  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
5-V xVCC SWITCH  
3.3-V xVCC SWITCH  
vs  
JUNCTION TEMPERATURE  
0.1  
vs  
JUNCTION TEMPERATURE  
0.09  
0.09  
0.08  
0.07  
0.06  
0.05  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.04  
0.03  
0.02  
0.02  
dc Load = 1 A  
0.01  
0
0.01  
0
dc Load = 1 A  
100 150  
0
0
50  
50  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 25  
Figure 24  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
dc INPUT-TO-OUTPUT VOLTAGE (DROP),  
12-V xVPP SWITCH  
vs  
JUNCTION TEMPERATURE  
3.3-V xVCC SWITCH  
vs  
LOAD CURRENT  
0.1  
0.09  
0.08  
1
0.9  
0.8  
V
I(5V)  
= 0 V  
125°C  
85°C  
25°C  
0°C  
0.07  
0.06  
0.7  
0.6  
0.5  
40°C  
0.05  
0.04  
0.03  
0.02  
0.4  
0.3  
0.2  
0.01  
0
0.1  
0
dc Load = 50 mA  
100  
0
0.2  
0.4  
0.6  
0.8  
1
50  
0
50  
150  
I
L
Load Current A  
T
J
Junction Temperature °C  
Figure 26  
Figure 27  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
dc INPUT-TO-OUTPUT VOLTAGE (DROP),  
dc INPUT-TO-OUTPUT VOLTAGE (DROP),  
3.3-V xVCC SWITCH  
vs  
5-V xVCC SWITCH  
vs  
LOAD CURRENT  
LOAD CURRENT  
0.1  
0.09  
0.08  
0.1  
0.09  
0.08  
125°C  
125°C  
85°C  
85°C  
25°C  
25°C  
0°C  
0.07  
0.06  
0.07  
0.06  
0°C  
40°C  
40°C  
0.05  
0.04  
0.03  
0.02  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.01  
0
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
I
Load Current A  
I
L
Load Current A  
Figure 28  
L
Figure 29  
dc INPUT-TO-OUTPUT VOLTAGE (DROP),  
SHORT-CIRCUIT CURRENT LIMIT,  
3.3-V xVCC SWITCH  
vs  
12-V xVPP SWITCH  
vs  
LOAD CURRENT  
JUNCTION TEMPERATURE  
0.06  
0.05  
1.9  
125°C  
85°C  
1.85  
25°C  
0.04  
1.8  
1.75  
1.7  
0°C  
40°C  
0.03  
0.02  
0.01  
0
1.65  
1.6  
0
0.01  
0.02  
0.03  
0.04  
0.05  
50  
0
50  
100  
150  
I
L
Load Current A  
T
J
Junction Temperature °C  
Figure 30  
Figure 31  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT CURRENT LIMIT, 5-V xVCC  
SHORT-CIRCUIT CURRENT LIMIT, 12-V xVPP  
SWITCH  
SWITCH  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.9  
0.4  
1.85  
1.8  
0.38  
0.36  
1.75  
1.7  
0.34  
0.32  
0.3  
1.65  
1.6  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 32  
Figure 33  
APPLICATION INFORMATION  
overview  
PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with  
limitedonboardmemory. Theideaofadd-incardsquicklytookhold;modems, wirelessLANs, GlobalPositioning  
Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card  
applications grew, the engineering community quickly recognized the need for a standard to ensure  
compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International  
Association), comprising members from leading computer, software, PC Card, and semiconductor  
manufacturers, was established. One key goal was to realize the plug-and-play concept. Cards and hosts from  
different vendors should be compatible or able to communicate with one another transparently.  
PC Card power specification  
Systemcompatibilityalsomeanspowercompatibility. Themostcurrentsetofspecifications(PCCardStandard)  
set forth by the PCMCIA committee states that power is to be transferred between the host and the card through  
eight of the 68 terminals of the PC Card connector. This power interface consists of two V , two V , and four  
CC  
pp  
ground terminals. Multiple V  
and ground terminals minimize connector terminal and line resistance. The two  
CC  
V
terminals were originally specified as separate signals, but are commonly tied together in the host to form  
a single node to minimize voltage losses. Card primary power is supplied through the V  
pp  
terminals;  
CC  
flash-memory programming and erase voltage is supplied through the V terminals.  
pp  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
APPLICATION INFORMATION  
designing for voltage regulation  
The current PCMCIA specification for output voltage regulation, V  
atypicalPCpower-systemdesign,thepowersupplyhasanoutput-voltageregulation,V  
Also, a voltage drop from the power supply to the PC Card will result from resistive losses, V  
traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than  
, of the 5-V output is 5% (250 mV). In  
O(reg)  
,of2%(100mV).  
PS(reg)  
, in the PCB  
PCB  
1% (50 mV) of the output voltage. Therefore, the allowable voltage drop, V , for the TPS2214 would be the  
DS  
PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:  
V
V
V  
V  
DS  
O(reg) PS(reg) PCB  
Typically, this would leave 100 mV for the allowable voltage drop across the 5-V switch. The specification for  
output voltage regulation of the 3.3-V output is 300 mV; so, using the same equation by deducting the voltage  
drop percentages (2%) for power-supply regulation and PCB resistive loss (1%), the allowable voltage drop for  
the 3.3-V switch is 200 mV. The voltage drop is the output current multiplied by the switch resistance of the  
TPS2214. Therefore, the maximum output current, I max, that can be delivered to the PC Card in regulation  
O
is the allowable voltage drop across the IC, divided by the output-switch resistance.  
V
DS  
I max  
r
O
DS(on)  
The xVCC outputs can deliver 1 A continuously at 5 V and 3.3 V within regulation over the operating temperature  
range. The xVPP outputs of the IC can deliver 200 mA continuously.  
overcurrent and overtemperature protection  
PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection  
against short-circuited cards that could lead to power-supply or PCB trace damage. Even systems robust  
enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card,  
resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection.  
However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by  
the manufacturer.  
TheTPS2214takesatwo-prongedapproachtoovercurrentprotection, whichisdesignedtoactivateifanoutput  
is shorted or when an overcurrent condition is present when switches are powered up. First, instead of fuses,  
senseFETsmonitoreachofthexVCCandxVPPpoweroutputs. Unlikesenseresistorsorpolyfuses, theseFETs  
do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent  
sensing is applied to each output separately. Excessive current generates an error signal that limits the output  
current of only the affected output, preventing damage to the host. Each xVCC output overcurrent limits from  
1 A to 2.2 A, typically around 1.6 A; the xVPP outputs limit from 250 mA to 500 mA, typically around 375 mA.  
Second, when an overcurrent condition is detected, the TPS2214 asserts an active low OC signal that can be  
monitored by the microprocessor or controller to initiate diagnostics and/or send the user a warning message.  
In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature,  
thermal-protection circuitry activates. This shuts down all power outputs until the device cools to within a safe  
operating region, which is ensured by a thermal shutdown hysteresis.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
APPLICATION INFORMATION  
12-V supply not required  
Many PC Card switches use the externally supplied 12 V to power gate drive and other chip functions; this  
requiresthatpowerbepresentatalltimes. TheTPS2214offersconsiderablepowersavingsbyusinganinternal  
charge pump to generate the required higher gate drive voltages from the 5-V or 3.3-V power supplies.  
Therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby  
extending battery lifetime. Additional power savings are realized by the IC during shutdown mode, in which  
quiescent current drops to a maximum of 1 µA.  
3.3-V low-voltage mode  
The TPS2214 will operate in 3.3-V low-voltage mode when 3.3 V is the only available input voltage (V  
= 0,  
I(5V)  
V
= 0). ThisfeatureallowshostandPCCardstobeoperatedinlow-power3.3-V-onlymodessuchassleep  
I(12V)  
modes. Note that in this operation mode, the IC will derive its bias current from the 3.3-V input pin and can only  
provide 3.3 V to the outputs.  
voltage transitioning requirement  
PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase  
logic speeds. The TPS2214 meets all combinations of power delivery as currently defined in the PCMCIA  
standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card with 5 V, then  
polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on  
3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This action ensures that  
sensitive 3.3-V circuitry is not subjected to any residual 5-V charge and functions as a power reset. PC Card  
specification requires that V be discharged within 100 ms. PC Card resistance can not be relied on to provide  
CC  
a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by  
power-management schemes. The TPS2214 includes discharge transistors on all xVCC and xVPP outputs to  
meet the specification requirement.  
shutdown mode  
In the shutdown mode, which can be controlled by bit D8 of the input serial DATA word, each of the xVCC and  
xVPP outputs is forced to a high-impedance state. In this mode, the chip quiescent current is limited to 1 µA  
or less to conserve battery power.  
standby mode  
The TPS2214 can be put in standby mode by pulling STBY low to conserve power during low-power operation.  
In this mode, all of the power outputs (xVCC and xVPP) will have a nominal current limit of 50 mA. STBY has  
an internal 150-kpullup resistor. The output-switch status of the device must be set, allowing the output  
capacitors to charge, prior to enabling the standby mode. Changing the setting of the output switches with the  
device in standby mode may cause an overcurrent response to be generated.  
mode  
The mode pin programs the switches in either TPS2214 or TPS2206 mode. An internal 150-kpulldown  
resistor is connected to the pin. Floating or pulling the mode pin low sets the switches in TPS2206 mode; pulling  
the mode pin high sets the switches in TPS2214 mode. In TPS2206 mode, xVPP outputs are dependent on  
xVCC outputs. In TPS2214 mode, xVPP is programmed independent of xVCC. Refer to TPS2214 control-logic  
tables for more information.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
APPLICATION INFORMATION  
power supply considerations  
The TPS2214 has multiple pins for each of its 3.3-V and 5-V power inputs and for the switched xVCC outputs.  
Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the  
series resistance is higher than that specified, resulting in increased voltage drops and less power. It is  
recommended that all input and output power pins be paralleled for optimum operation. Because the two 12-V  
pins are not internally connected, they must be tied together externally.  
To increase the noise immunity of the TPS2214, the power-supply inputs should be bypassed with a 1-µF  
electrolytic or tantalum capacitor paralleled by a 0.047-µF to 0.1-µF ceramic capacitor. It is strongly  
recommended that the switched outputs be bypassed with a 0.1-µF (or larger) ceramic capacitor; doing so  
improves the immunity of the IC to electrostatic discharge (ESD). Care should be taken to minimize the  
inductance of PCB traces between the IC and the load. High switching currents can produce large negative  
voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no  
pin should be taken, or allowed to fall, below 0.3 V.  
RESET and RESET inputs  
To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should  
be reset at the same time as the host by applying low impedance paths from xVCC and xVPP terminals to  
ground. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter  
capacitance, permitting the system (host and PC Cards) to be powered up concurrently. Theactive-highRESET  
or active low RESET input will close internal switches S1, S4, S7, and S11 with all other switches left open. The  
TPS2214 remains in the low-impedance output state until the signal is deasserted and further data is clocked  
in and latched. The input serial data can not be latched during Reset mode. RESET and RESET are provided  
for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The  
RESET pin has an internal 150-kpulldown resistor and the RESET pin has an internal 150-kpullup resistor.  
The device will be reset automatically when powered up.  
calculating junction temperature  
Theswitchresistance,r  
,isdependentonthejunctiontemperature,T ,ofthedie.Thejunctiontemperature  
J
DS(on)  
isdependentonbothr  
andthecurrentthroughtheswitch.TocalculateT ,firstfindr  
fromFigures 23  
DS(on)  
J
DS(on)  
through 26, using an initial temperature estimate about 50°C above ambient. Then calculate the power  
dissipation for each switch, using the formula:  
2
P
r
I
D
DS(on)  
Next, sum the power dissipation of all switches and calculate the junction temperature:  
T
P
R
T
J
D
JA  
A
Where:  
R
is the inverse of the derating factor given in the dissipation rating table.  
θJA  
Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not  
within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.  
logic inputs and outputs  
The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive edge  
of the clock (see Figures 2 and 3). The 11-bit (D0D10) serial data word is loaded during the positive edge of  
the latch signal. The positive edge of the latch signal should occur before the next positive edge of the clock  
occurs.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
APPLICATION INFORMATION  
logic inputs and outputs (continued)  
The TPS2214 serial interfaces are compatible with serial-interface PCMCIA controllers and current PCMCIA  
and Japan Electronic Industry Development Association (JEIDA) standards.  
An overcurrent output (OC) is provided to indicate an overcurrent or overtemperature condition in any of the  
xVCC and xVPP outputs as previously discussed.  
TPS2214 control logic  
TPS2214 mode (MODE pulled high)  
xVPP  
AVPP CONTROL SIGNALS  
BVPP CONTROL SIGNALS  
OUTPUT  
V_AVPP  
OUTPUT  
V_BVPP  
D8 (SHDN)  
D0  
D1  
0
D9  
D8 (SHDN)  
D4  
0
D5  
0
D10  
X
1
1
1
1
1
0
0
0
0
1
1
X
X
0
0 V  
3.3 V  
5 V  
1
1
1
1
1
0
0 V  
3.3 V  
5 V  
1
0
1
0
1
1
0
1
1
0
X
X
X
12 V  
Hi-Z  
Hi-Z  
1
0
X
12 V  
Hi-Z  
Hi-Z  
1
1
1
X
X
X
X
X
xVCC  
AVCC CONTROL SIGNALS  
BVCC CONTROL SIGNALS  
OUTPUT  
V_AVCC  
OUTPUT  
V_BVCC  
D8 (SHDN)  
D3  
0
D2  
0
D8 (SHDN)  
D6  
0
D7  
0
1
1
1
1
0
0 V  
3.3 V  
5 V  
1
1
1
1
0
0 V  
3.3 V  
5 V  
0
1
0
1
1
0
1
0
1
1
0 V  
1
1
0 V  
X
X
Hi-Z  
X
X
Hi-Z  
TPS2206 mode (MODE floating or pulled low)  
xVPP  
AVPP CONTROL SIGNALS  
BVPP CONTROL SIGNALS  
OUTPUT  
V_AVPP  
OUTPUT  
V_BVPP  
D8 (SHDN)  
D0  
0
D1  
0
D8 (SHDN)  
D4  
0
D5  
0
1
1
1
1
0
0 V  
V_AVCC  
12 V  
1
1
1
1
0
0 V  
V_BVCC  
12 V  
0
1
0
1
1
0
1
0
1
1
Hi-Z  
1
1
Hi-Z  
X
X
Hi-Z  
X
X
Hi-Z  
xVCC  
AVCC CONTROL SIGNALS  
BVCC CONTROL SIGNALS  
OUTPUT  
V_AVCC  
OUTPUT  
V_BVCC  
D8 (SHDN)  
D3  
0
D2  
0
D8 (SHDN)  
D6  
0
D7  
0
1
1
1
1
0
0 V  
3.3 V  
5 V  
1
1
1
1
0
0 V  
3.3 V  
5 V  
0
1
0
1
1
0
1
0
1
1
0 V  
1
1
0 V  
X
X
Hi-Z  
X
X
Hi-Z  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
APPLICATION INFORMATION  
ESD protections (see Figure 34)  
All TPS2214 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV  
human-body-model discharge as defined in MIL-STD-883C, Method 3015. The xVCC and xVPP outputs can  
be exposed to potentially higher discharges from the external environment through the PC Card connector.  
Bypassing the outputs with 0.1-µF capacitors protects the devices from discharges up to 10 kV.  
TPS2214  
AVCC  
AVCC  
V
V
CC  
0.1 µF  
CC  
PC Card  
Connector A  
pp1  
V
V
AVPP  
0.1 µF  
pp2  
12V  
12V  
BVCC  
BVCC  
V
V
12V  
5V  
CC  
10 µF  
33 µF  
0.1 µF  
0.1 µF  
0.1 µF  
CC  
PC Card  
Connector B  
pp1  
5V  
5V  
V
V
BVPP  
0.1 µF  
pp2  
5V  
3.3V  
3.3V  
3.3V  
33 µF  
0.1 µF  
Controller  
DATA  
DATA  
CLOCK  
LATCH  
RESET  
RESET  
OC  
CLOCK  
LATCH  
MODE  
STBY  
From PCI or  
System RST  
GPI/O  
Maximum recommended output capacitance for xVCC is 220 µF and for xVPP is 10 µF without OC glitch when switches are powered on.  
Figure 34. Detailed Interconnections and Capacitor Recommendations  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2214  
DUAL-SLOT PC CARD POWER-INTERFACE SWITCH  
FOR SERIAL PCMCIA CONTROLLERS  
SLVS206B JULY 1999 REVISED JUNE 2000  
APPLICATION INFORMATION  
12-V flash memory supply  
The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V.  
The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower  
supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 35, the only  
external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter  
2
capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in of PCB  
space when implemented with surface-mount components. An enable input is provided to shut the converter  
down and reduce the supply current to 3 µA when 12 V is not needed.  
The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET  
power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area  
needed to realize the 0.7-MOSFET and improve efficiency at input voltages below 5 V. Soft start is  
accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use.  
For additional information, see the TPS6734 data sheet (SLVS127).  
TPS2214  
AVCC  
AVCC  
3.3V or 5V  
R1  
10 kΩ  
TPS6734  
ENABLE  
(see Note A)  
1
8
L1  
18 µH  
EN  
VCC  
2
3
7
6
AVPP  
REF  
SS  
FB  
C1  
33 µF  
20V  
+
D1  
OUT  
33 µF, 20 V  
4
5
12 V  
COMP  
GND  
12V  
12V  
C2  
0.01 µF  
+
C1  
0.1 µF  
BVCC  
BVCC  
5 V  
C4  
0.001 µF  
5V  
5V  
33 µF  
33 µF  
0.1 µF  
0.1 µF  
BVPP  
5V  
3.3 V  
3.3V  
3.3V  
DATA  
CLOCK  
LATCH  
RESET  
RESET  
OC  
MODE  
STBY  
NOTE A: The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.  
Figure 35. TPS2214 with TPS6734 12-V, 120-mA Supply  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

TPS2216

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2216A

LOW-COST DUAL-SLOT PC CARD POWER SWITCH FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2216ADAP

LOW-COST DUAL-SLOT PC CARD POWER SWITCH FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2216ADAPRG4

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO32, GREEN, PLASTIC, HTSSOP-32
TI

TPS2216ADB

LOW-COST DUAL-SLOT PC CARD POWER SWITCH FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2216ADBG4

1A Dual-Slot PC Card Power Switch w/ Serial Interface 30-SSOP -40 to 70
TI

TPS2216ADBR

1A Dual-Slot PC Card Power Switch w/ Serial Interface 30-SSOP -40 to 70
TI

TPS2216ADBRG4

1A Dual-Slot PC Card Power Switch w/ Serial Interface 30-SSOP -40 to 70
TI

TPS2216DAP

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2216DAPG4

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO32, GREEN, PLASTIC, HTSSOP-32
TI

TPS2216DAPR

暂无描述
TI

TPS2216DAPRG4

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO32, GREEN, PLASTIC, HTSSOP-32
TI