TPS22810TDBVRQ1 [TI]

具有可调节上升时间和可调节输出放电功能的单通道、18V、3A、79mΩ 汽车负载开关 | DBV | 6 | -40 to 105;
TPS22810TDBVRQ1
型号: TPS22810TDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间和可调节输出放电功能的单通道、18V、3A、79mΩ 汽车负载开关 | DBV | 6 | -40 to 105

开关 驱动 光电二极管 接口集成电路
文件: 总30页 (文件大小:2223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
具有热保护功能的 TPS22810-Q1 2.7V-18V79mΩ 导通电阻负载开关  
1 特性  
3 说明  
1
符合汽车类 标准  
TPS22810-Q1 是一款单通道负载开关,具有可配置的  
上升时间和集成式快速输出放电 (QOD) 功能。该器件  
具有 热关断功能,可保护器件免受高结温的损坏,因  
此可从根本上确保器件的安全运行区。该器件 具有 一  
N 沟道 MOSFET,可在 2.7V 18V 的输入电压范  
围内运行。该器件可支持 2A 的最大电流。开关可由一  
个打开和关闭输入控制,此输入可直接连接至低压控制  
信号。  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 2:环境工作温度范围为  
–40°C +105°C  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C5  
集成单通道负载开关  
最大连续电流为 2A  
输入电压:2.7V 18V  
绝对最大输入电压:20V  
该器件的可配置上升时间可大幅降低大容量负载电容所  
产生的浪涌电流,从而降低或消除电源压降。欠压闭锁  
用于在输入电压降至阈值以下时关闭器件,以确保下游  
电路不会因为供电电压低于预期值而损坏。可配置的快  
速输出放电 (QOD) 引脚控制器件的下降时间,以便针  
对掉电进行灵活设计。  
导通电阻 (RON  
RON = 79mVIN = 12V 时的典型值)  
静态电流  
62µAVIN = 12V 时的典型值)  
关断电流  
)
TPS22810-Q1 器件可提供方便目测检查焊点的带引线  
SOT-23 封装 (DBV)。该器件在自然通风环境下的  
额定运行温度范围为 -40°C +105°C。  
500nAVIN = 12V 时的典型值)  
热关断  
欠压闭锁 (UVLO)  
器件信息(1)  
可调节快速输出放电 (QOD)  
可通过 CT 引脚配置的上升时间  
小外形尺寸晶体管 (SOT) 23-6 封装  
器件型号  
封装  
封装尺寸(标称值)  
TPS22810-Q1  
SOT-23 (6)  
2.90mm x 2.80mm  
2.9mm × 2.8mm0.95mm 间距,  
1.45mm (DBV)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
2 应用  
VIN  
VOUT  
QOD  
CT  
汽车音响主机  
环视 ECU  
Power  
Supply  
CIN  
RL  
CL  
GND  
ON  
EN/  
OFF  
UVLO  
TPS22810  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSEJ0  
 
 
 
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical DC Characteristics ....................................... 7  
6.8 Typical AC Characteristics........................................ 8  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 12  
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
11.3 Thermal Considerations........................................ 22  
12 器件和文档支持 ..................................................... 23  
12.1 器件支持................................................................ 23  
12.2 文档支持................................................................ 23  
12.3 接收文档更新通知 ................................................. 23  
12.4 社区资源................................................................ 23  
12.5 ....................................................................... 23  
12.6 静电放电警告......................................................... 23  
12.7 Glossary................................................................ 23  
13 机械、封装和可订购信息....................................... 23  
7
8
4 修订历史记录  
日期  
修订版本  
说明  
4 2018  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
5 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
VOUT  
QOD  
CT  
VIN  
1
6
5
2
3
GND  
4
EN/UVLO  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
4
CT  
O
I
Switch slew rate control. Can be left floating  
EN/UVLO  
GND  
3
Active high switch control input and UVLO adjustment. Do not leave floating  
Device ground  
2
Quick Output Discharge pin. This functionality can be enabled in one of three  
ways:  
Placing an external resistor between VOUT and QOD  
Tying QOD directly to VOUT and using the internal resistor value (RPD  
Disabling QOD by leaving pin floating  
QOD  
5
O
)
See the Quick Output Discharge (QOD) for more information  
VIN  
1
6
I
Switch input. Place ceramic bypass capacitor(s) between this pin and GND  
Switch output  
VOUT  
O
Copyright © 2018, Texas Instruments Incorporated  
3
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
20  
UNIT  
VIN  
Maximum Input Voltage Range  
Maximum Output Voltage Range  
VIN  
V
VOUT  
VOUT  
min (20V, VIN + 0.3)  
Maximum Enable Pin Voltage  
Range  
VEN/UVLO  
EN/UVLO  
–0.3  
20  
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±3000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Corner pins (VIN, VOUT, EN/UVLO, and CT)  
Other pins  
V
Charged device model  
(CDM), per AEC Q100-011  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
18  
UNIT  
V
VIN  
Input Voltage Range  
Output Voltage Range  
IN  
2.7  
VOUT  
OUT  
VIN  
18  
V
VEN/UVLO Enable Pin Voltage Range  
EN/UVLO  
IN to OUT  
IN to OUT  
IN to OUT  
0
V
IMAX  
IMAX  
IMAX  
TA  
Maximum continuous switch current, TA = 65°C  
2
A
Maximum continuous switch current, TA = 85°C  
Maximum continuous switch current, TA = 105°C  
Operating free-air temperature  
1.5  
1
A
A
–40  
1
105  
°C  
µF  
CIN  
Input Capacitor(1)  
(1) See the Detailed Description section.  
6.4 Thermal Information  
TPS22810-Q1  
DBV (SOT23)  
6 PINS  
182  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
127.2  
16.9  
26.4  
ΨJB  
Junction-to-board characterization parameter  
36.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
 
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
6.5 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the following ambient operating  
temperature–40°C TA +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA = –40°C to +85°C  
MIN  
TYP  
MAX UNIT  
62  
80  
85  
80  
85  
VIN = 18 V  
VIN = 12 V  
VIN = 5 V  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
62  
59  
80  
µA  
85  
IQ, VIN  
Quiescent current  
IOUT = 0 A  
53  
80  
85  
VIN = 3.3 V  
VIN = 2.7 V  
VIN = 18 V  
VIN = 12 V  
49  
70  
85  
0.5  
0.5  
0.5  
0.5  
0.5  
2.3  
3.8  
2.3  
3.8  
2.3  
µA  
3.8  
ISD, VIN  
Shutdown current  
VEN = 0 V, VOUT = 0 V VIN = 5 V  
2.3  
3.8  
2.3  
3.8  
VIN = 3.3 V  
VIN = 2.7 V  
EN/UVLO pin input leakage  
current  
IEN/UVLO  
VIN = 18 V, IOUT = 0 A  
TA = –40°C to +105°C  
0.1  
µA  
VUVR  
VIN UVLO threshold, rising  
VIN UVLO hysterisis  
EN threshold, rising  
TA = –40°C to +105°C  
TA = –40°C to +105°C  
TA = –40°C to +105°C  
TA = –40°C to +105°C  
2
2.54  
5
2.62  
V
%
V
VUVRhyst  
VENR  
1.13  
1.08  
1.23  
1.13  
1.3  
VENF  
EN threshold, falling  
1.18  
V
EN threshold voltage for low  
IQ shutdown  
VSHUTF  
TA = –40°C to +105°C  
0.5  
0.75  
79  
0.9  
V
TA = 25°C  
86  
105  
115  
86  
VIN = 18 V, IOUT = –200 mA  
VIN = 12 V, IOUT = –200 mA  
VIN = 9 V, IOUT = –200 mA  
VIN = 5 V, IOUT = –200 mA  
VIN = 3.3 V, IOUT = –200 mA  
VIN = 2.7 V, IOUT = –200 mA  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = 25°C  
79  
79  
79  
83  
86  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = 25°C  
105  
115  
86  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = 25°C  
105  
115  
86  
RON  
On-resistance  
mΩ  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = 25°C  
105  
115  
92  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
TA = 25°C  
115  
125  
95  
TA = –40°C to +85°C  
TA = –40°C to +105°C  
120  
130  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise noted, the specification in the following table applies over the following ambient operating  
temperature–40°C TA +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
290  
265  
250  
160  
30  
MAX UNIT  
VIN = VOUT = 18 V, VEN/UVLO = 0 V TA = –40°C to +105°C  
VIN = VOUT = 12 V, VEN/UVLO = 0 V TA = –40°C to +105°C  
350  
RPD  
Output pull down resistance  
350  
400  
Ω
VIN = VOUT = 5 V, VEN/UVLO = 0 V  
TA = –40°C to +105°C  
TA = –40°C to +105°C  
TA = –40°C to +105°C  
TSD  
Thermal shutdown threshold VIN = 18 V  
Thermal shutdown hysterisis VIN = 18 V  
°C  
°C  
TSD,HYS  
6.6 Switching Characteristics  
Refer to the timing test circuit in Figure 16 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up  
sequence where VIN is already in steady state condition before the EN/UVLO pin is asserted high.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = 18 V, VEN/UVLO = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
520  
3.3  
700  
2
µs  
tF  
tD  
180  
VIN = 12 V, VEN/UVLO = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
380  
3.3  
460  
2
µs  
µs  
tF  
tD  
150  
VIN = 3.3 V, VEN/UVLO = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
185  
3.3  
120  
2
tF  
tD  
130  
6
版权 © 2018, Texas Instruments Incorporated  
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
6.7 Typical DC Characteristics  
0.5  
0.4  
0.3  
0.2  
0.1  
0
75  
70  
65  
60  
55  
50  
45  
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
40  
-0.1  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Input Voltage (V)  
SLVS  
SLVS  
VEN/UVLO = 5 V  
IOUT = 0 A  
VEN/UVLO = 0 V  
IOUT = 0 A  
1. Quiescent Current vs Input Voltage  
2. Shutdown Current vs Input Voltage  
120  
110  
100  
90  
120  
115  
110  
105  
100  
95  
-40 èC  
25 èC  
85 èC  
105 èC  
90  
85  
80  
80  
75  
VIN í 5 V  
VIN = 3.3 V  
VIN = 2.7 V  
70  
70  
65  
60  
60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2
4
6
8
10  
12  
14  
16  
18  
Temperature (èC)  
Input Voltage (V)  
SLVS  
SLVS  
VEN/UVLO = 5 V  
IOUT = –200 mA  
VEN/UVLO = 5 V  
IOUT = –200 mA  
3. On-Resistance vs Temperature  
4. On-Resistance vs Input Voltage  
1.14  
1.137  
1.134  
1.131  
1.128  
1.125  
1.122  
1.119  
450  
400  
350  
300  
250  
200  
150  
100  
50  
105 èC  
85 èC  
25 èC  
-40 èC  
-40èC  
25èC  
85èC  
105èC  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
2
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Input Voltage (V)  
D007  
SLVS  
VIN = VOUT  
VEN/UVLO = 0 V  
IOUT = 0 A  
6. Output Pull-Down Resistance vs Input Voltage  
5. EN VIL vs Input Voltage  
版权 © 2018, Texas Instruments Incorporated  
7
 
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
6.8 Typical AC Characteristics  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
40  
20  
0
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
D009  
Input Voltage (V)  
Input Voltage (V)  
D008  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CT = 2200 pF  
CT = 2200 pF  
7. VOUT Rise Time (tR) vs Input Voltage  
8. Delay Time (tD) vs Input Voltage  
1.8  
1.6  
1.4  
1.2  
1
5
4.5  
4
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
0.5  
0
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Input Voltage (V)  
Input Voltage (V)  
D010  
D011  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
9. VOUT Fall Time (tF) vs Input Voltage  
10. Turnoff Time (tOFF) vs Input Voltage  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VIN  
VON  
VOUT  
-40èC  
25èC  
85èC  
105èC  
IIN  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Input Voltage (V)  
D012  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CT = 2200 pF  
VIN = 5 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
CT = 2200 pF  
11. Turnon Time (tON) vs Input Voltage  
12. Rise Time tR at VIN = 5 V  
8
版权 © 2018, Texas Instruments Incorporated  
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
Typical AC Characteristics (接下页)  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
VIN = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
QOD = Open  
RL = 10 Ω  
CT = 2200 pF  
13. Fall Time tF at VIN = 5 V  
14. Rise Time tR at VIN = 12 V  
VIN  
VON  
VOUT  
IIN  
VIN = 12 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
QOD = Open  
15. Fall Time tF at VIN = 12 V  
版权 © 2018, Texas Instruments Incorporated  
9
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
VIN  
VOUT  
GND  
CIN = 1 µF  
+
-
CL  
ON  
(A)  
RL  
EN/UVLO  
OFF  
TPS22810  
GND  
GND  
A. Rise and fall times of the control signal are 100 ns  
16. Test Circuit  
VON  
50%  
50%  
tF  
tR  
tOFF  
tOUT  
90%  
90%  
VOUT  
VOUT  
50%  
50%  
10%  
10%  
100%  
tD  
17. Timing Waveforms  
10  
版权 © 2018, Texas Instruments Incorporated  
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
8 Detailed Description  
8.1 Overview  
The TPS22810-Q1 is a 6-pin, 2.7-18-V load switch with thermal protection. To reduce voltage drop for low  
voltage and high current rails, the device implements a low resistance N-channel MOSFET which reduces the  
drop out voltage across the device.  
The device starts its operation by monitoring the VIN bus. When VIN exceeds the undervoltage-lockout threshold  
(VUVR), the device samples the EN/UVLO pin. A high level on this pin enables the internal MOSFET. When VIN  
rises, the internal MOSFET of the device starts conducting and allow current to flow from VIN to VOUT. When  
EN/UVLO is held low (below VENF), internal MOSFET is turned off.  
A voltage VEN/UVLO < VENF on this pin turns off the internal FET, thus disconnecting VIN from VOUT, while voltage  
below VSHUTF takes the device into shutdown mode, with IQ less than 1 μA to ensure minimal power loss.  
The device has a configurable slew rate which helps reduce or eliminate power supply droop because of large  
inrush currents. The device also features a QOD (Quick Output Discharge) pin with an internal pull-down  
resistance (RPD) which can be used to discharge VOUT once the switch is disabled.  
During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for  
downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET  
eliminates the need for any external components which reduces solution size and bill of materials (BOM) count.  
The device has a thermal protection feature to protect itself against thermal damage due to overtemperature and  
overcurrent conditions. Safe Operating Area (SOA) requirements are thus inherently met without any special  
design consideration by the board designer.  
8.2 Functional Block Diagram  
VIN  
Charge Pump  
EN/UVLO  
CT  
Control Logic  
VOUT  
QOD  
2.54 V  
2.4 V  
1.23 V  
1.13 V  
Thermal  
Shutdown  
GND  
版权 © 2018, Texas Instruments Incorporated  
11  
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 On and Off Control  
The EN/UVLO pin controls the state of the switch. EN/UVLO is active high and has a low threshold that can  
interface with low-voltage signals. The EN/UVLO pin is compatible with standard GPIO logic threshold. It can be  
used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left floating and must be  
driven either high or low for proper functionality.  
8.3.2 Quick Output Discharge (QOD)  
The TPS22810-Q1 includes a QOD feature. The QOD pin can be configured in one of three ways:  
QOD pin shorted to VOUT pin. Using this method, the discharge rate after the switch becomes disabled is  
controlled with the value of the internal pull-down resistance (RPD). The value of this resistance is listed in the  
Electrical Characteristics table.  
QOD pin connected to VOUT pin using an external resistor REXT. After the switch becomes disabled, the  
discharge rate is controlled by the value of the total resistance of the QOD. To adjust the total QOD  
resistance, 公式 1 can be used.  
RQOD = RPD + REXT  
where  
RQOD is the total output discharge resistance  
RPD is the internal pulldown resistance  
REXT is the external resistance placed between the VOUT and QOD pin.  
(1)  
QOD pin is unused and left floating. Using this method, there is no quick output discharge functionality, and  
the output remains floating after the switch is disabled.  
Note that during thermal shutdown, the QOD functionality is not available. The device does not discharge the  
load because RPD does not become engaged.  
The fall times of the device depend on many factors including the total resistance of the QOD, VIN, and the  
output capacitance. When QOD is connected to VOUT, the fall time changes over VIN because the internal RPD  
varies over VIN. To calculate the approximate fall time of VOUT for a given RQOD, use 公式 2 and 1.  
VCAP = VIN × e-t/τ  
where  
VCAP is the voltage across the capacitor (V)  
t is the time since power supply removal (s)  
τ is the time constant equal to RQOD × CL  
(2)  
The fall time's dependency on VIN becomes minimal because the QOD value increases with additional external  
resistance. See 1 for QOD fall times.  
1. QOD Fall Times  
FALL TIME (μs) 90% - 10%, CIN = 1 μF, IOUT = 0 A , VIN = 0 V, ON = 0 V(1)  
VIN (V)  
TA = 25°C  
CL = 10 μF  
4700  
TA = 85°C  
CL = 10 μF  
4700  
CL = 1 μF  
470  
CL = 100 μF  
47000  
CL = 1 μF  
470  
CL = 100 μF  
47000  
18  
12  
9
450  
4500  
45000  
450  
4500  
45000  
440  
4400  
44000  
440  
4400  
44000  
5
500  
5000  
50000  
480  
4800  
48000  
3.3  
600  
6000  
60000  
570  
5700  
57000  
(1) TYPICAL VALUES WITH QOD SHORTED TO VOUT  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
8.3.2.1 QOD when System Power is Removed  
The adjustable QOD can be used to control the power down sequencing of a system even when the system  
power supply is removed. When the power is removed, the input capacitor, CIN, discharges at VIN. Past the set  
UVLO level, the pull-down resistance RPD becomes disabled and the output no longer becomes discharged. If  
there is still remaining charge on the output capacitor, this results in longer fall times. Care must be taken such  
that CIN is large enough to meet the device UVLO settings.  
8.3.2.2 Internal QOD Considerations  
Special considerations must be taken when using the internal RPD by shorting the QOD pin to the VOUT pin. The  
internal RPD is a pull-down resistance designed to quickly discharge a load after the switch has been disabled.  
Care must be used to ensure that excessive current does not flow through RPD during discharge so that the  
maximum TJ of 125°C is not exceeded. When using only the internal RPD to discharge a load, the total capacitive  
load must not exceed 200 uF. Otherwise, an external resistor, REXT must be used to ensure the amount of  
current flowing through RPD is properly limited and the maximum TJ is not exceeded. To ensure the device is not  
damaged, the remaining charge from CL must decay naturally through the internal QOD resistance and must not  
be driven.  
8.3.3 EN/UVLO  
EN/UVLO controls the ON and OFF state of the internal MOSFET, as an input pin. In its high state, the internal  
MOSFET is enabled. A low on this pin turns off the internal MOSFET. High and Low levels are specified in the  
parametric table of the datasheet.  
A voltage VEN/UVLO < VENF on this pin turns off the internal FET, thus disconnecting VIN from VOUT, while voltage  
below VSHUTF takes the device into shutdown mode, with IQ less than 1 μA to ensure minimal power loss.  
The EN/UVLO pin can be directly driven by a 1.8 V, 3.3 V or 5 V general purpose output pin.  
The internal de-glitch delay on EN/UVLO falling edge is intentionally kept low (2.5 μs typical) for quick detection  
of power failure. For applications where a higher de-glitch delay on EN/UVLO is desired, or when the supply is  
particularly noisy, it is recommended to use an external bypass capacitor from EN/UVLO to GND.  
The undervoltage lock out (UVLO) threshold can be programmed by using an external resistor divider from  
supply VIN terminal to EN/UVLO terminal to GND shown in 18. When an undervoltage or input power fail  
event is detected, the internal FET is quickly turned off. If the programmable UVLO function is not needed, the  
EN/UVLO terminal must be connected to the VIN terminal. EN/UVLO terminal must not be left floating.  
The device also implements internal UVLO circuitry on the VIN terminal. The device disables when the VIN  
terminal voltage falls below internal UVLO Threshold (VUVF). The internal UVLO threshold has a hysteresis  
(VUVRhyst). See 19 and 20.  
VIN  
VOUT  
CL  
VIN  
CIN  
R1  
2.54 V  
2.4 V  
Gate  
EN/  
Control  
UVLO  
R2  
1.23 V  
1.13 V  
GND  
Thermal  
Shutdown  
18. Configuring UVLO with External Resistor Network  
版权 © 2018, Texas Instruments Incorporated  
13  
 
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
VIN  
CIN  
VOUT  
CL  
VIN  
2.54 V  
2.4 V  
Gate  
Control  
EN/  
UVLO  
GPIO  
1.23 V  
1.13 V  
GND  
Thermal  
Shutdown  
19. Using 1.8 V/3.3 V GPIO Signal Directly from Processor  
VIN  
CIN  
VOUT  
CL  
VIN  
2.54 V  
2.4 V  
Gate  
Control  
EN/  
UVLO  
1.23 V  
1.13 V  
GND  
Thermal  
Shutdown  
20. Default UVLO Threshold VUVR Using No Additional External Components  
8.3.4 Adjustable Rise Time (CT)  
A capacitor to GND on the CT pin sets the slew rate. The voltage on the CT pin can be as high as 2.5 V. An  
approximate formula for the relationship between CT and slew rate is shown in 公式 3. This equation accounts  
for 10% to 90% measurement on VOUT and does NOT apply for CT < 1 nF.  
Use 2 to determine rise times for when CT 1 nF.  
SR = 46.62 / CT  
where  
SR is the slew rate (in V/µs)  
CT is the the capacitance value on the CT pin (in pF)  
(3)  
Rise time can be calculated by dividing the input voltage by the slew rate. 2 describes rise time values  
measured on a typical device. Rise times shown below are only valid for the power-up sequence where VIN is  
already in steady state condition before the EN/UVLO pin is asserted high.  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
2. Rise Time Table  
RISE TIME (µs) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10  
CT (pF)  
VIN = 18 V  
115  
VIN = 12 V  
91  
VIN = 9 V  
78  
VIN = 5 V  
60  
VIN = 3.3 V  
0
98  
98  
470  
136  
94  
80  
63  
1000  
2200  
4700  
10000  
27000  
310  
209  
158  
91  
102  
135  
265  
550  
1430  
688  
464  
345  
198  
1430  
3115  
8230  
957  
704  
397  
2085  
5460  
1540  
4010  
864  
2245  
8.3.5 Thermal Shutdown  
The switch disables when the junction temperature (TJ) rises above the thermal shutdown threshold, TSD. The  
switch re-enables once the temperature drops below the TSD – TSD,HYS value.  
8.4 Device Functional Modes  
The features of the TPS22810-Q1 depend on the operating mode. 3 summarizes the Device Functional  
Modes.  
3. Function Table  
EN/UVLO  
Device State  
Disabled  
L
H
Enabled  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section highlights some of the design considerations when implementing this device in various applications.  
A PSPICE model for this device is also available in the product page of this device on www.ti.com (See the  
Device Support section for more information).  
9.1.1 ON and OFF Control  
The EN/UVLO pin controls the state of the switch. Asserting EN/UVLO high enables the switch. EN/UVLO is  
active high and has a low threshold that can interface with low-voltage signals. The EN/UVLO pin is compatible  
with standard GPIO logic thresholds. It can be used with any microcontroller with 1.2 V or higher GPIO voltage.  
This pin cannot be left floating and must be driven either high or low for proper functionality.  
9.1.2 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a  
discharged load capacitor, a capacitor must be placed between VIN and GND. A 1-μF ceramic capacitor, CIN,  
placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop  
during high current applications. When switching heavy loads, it is recommended to have an input capacitor  
about 10 times higher than the output capacitor to avoid excessive voltage drop.  
9.1.3 Output Capacitor (Optional)  
Due to the integrated body diode in the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This can result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN  
dip caused by inrush currents during startup; however, a 10 to 1 ratio for capacitance is not required for proper  
functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) can cause slightly more VIN dip upon  
turnon due to inrush currents.  
This can be mitigated by increasing the capacitance on the CT pin for a longer rise time.  
9.2 Typical Application  
This typical application demonstrates how the TPS22810-Q1 can be used to power downstream modules.  
VIN  
VOUT  
QOD  
CT  
Power  
Supply  
CIN  
RL  
CL  
GND  
ON  
EN/  
OFF  
UVLO  
TPS22810  
21. Typical Application Schematic  
16  
版权 © 2018, Texas Instruments Incorporated  
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the values listed in 4:  
4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
Load current  
12 V  
2 A  
CL  
22 µF  
20 ms  
400 mA  
Desired fall time  
Maximum acceptable inrush current  
9.2.2 Detailed Design Procedure  
9.2.2.1 Shutdown Sequencing During Unexpected Power Loss  
Using the adjustable Quick Output Discharge function of the TPS22810-Q1, adding a load switch to each power  
rail can be used to manage the power down sequencing in the event of an unexpected power loss (for example,  
battery removal). To determine the QOD values for each load switch, first confirm the power down order of the  
device you wish to power sequence. Be sure to check if there are voltage or timing margins that must be  
maintained during power down. Next, consult 1 to determine appropriate CL and RQOD values for each power  
rail's load switch so that the load switches' fall times correspond to the order in which they need to be powered  
down. In the above example, we must have this power rail's fall time to be 4 ms. Using 公式 2, we can determine  
the appropriate RQOD to achieve our desired fall time.  
Since fall times are measured from 90% of VOUT to 10% of VOUT, using 公式 2, we get 公式 4 and 公式 5.  
1.2V = 10.8V ìe-(20ms)/(RQODì(22mF))  
(4)  
RQOD = 413.7 Ω  
(5)  
Consulting 6, RPD at VIN = 12 V is approximately 250 Ω. Using 公式 1, the required external QOD resistance  
can be calculated shown in 公式 6 and 公式 7.  
413.7 Ω = 250 Ω + REXT  
REXT = 163.7 Ω  
(6)  
(7)  
22 through 25 are scope shots demonstrating an example of the QOD functionality when power is removed  
from the device (both ON and VIN are disconnected simultaneously). In the scope shots, the VIN = 12 V and  
correspond to when RQOD = 1000 Ω, RQOD= 500 Ω, and QOD = VOUT with two values of CL = 10 µF and 22 µF.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
 
 
 
 
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
VIN = 12 V  
CIN = 1 µF  
CL = 10 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 10 µF  
22. Fall Time tF at VIN = 12 V, RQOD = 1000 Ω  
23. Fall Time tF at VIN = 12 V, RQOD = 500 Ω  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
VIN = 12 V  
CIN = 1 µF  
CL = 10 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 22 µF  
24. tF at VIN = 12 V , QOD = VOUT  
25. tF at VIN = 12 V, RQOD = 1000 Ω  
18  
版权 © 2018, Texas Instruments Incorporated  
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
VIN = 12 V  
CIN = 1 µF  
CL = 22 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 22 µF  
26. tF at VIN = 12 V, RQOD = 500 Ω  
27. tF at VIN = 12 V, QOD = VOUT  
9.2.2.2 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN conditions of the device. Refer to the RON specification of the device in  
the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based upon the  
VIN conditions, use 公式 8 to calculate the VIN to VOUT voltage drop.  
V = ILOAD × RON  
where  
ΔV is the voltage drop from VIN to VOUT  
ILOAD is the load current  
RON is the On-resistance of the device for a specific VIN  
(8)  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
9.2.2.3 Inrush Current  
To determine how much inrush current is caused by the CL capacitor, use 公式 9.  
dVOUT  
I
= CL ´  
INRUSH  
dt  
where  
IINRUSH is the amount of inrush caused by CL  
CL is the capacitance on VOUT  
dt is the Output Voltage rise time during the ramp up of VOUT when the device is enabled  
dVOUT is the change in VOUT during the ramp up of VOUT when the device is enabled  
(9)  
The appropriate rise time can be calculated using the design requirements and the inrush current equation.  
When we calculate the rise time (measured from 10% to 90% of VOUT), we account for this in our dVOUT  
parameter (80% of VOUT = 9.6 V) shown in 公式 10 and 公式 11.  
400 mA = 22 µF × 9.6 V/dt  
dt = 528 µs  
(10)  
(11)  
To ensure an inrush current of less than 400 mA, choose a CT value that yields a rise time of more than 528 μs.  
Consulting 2 at VIN = 12 V, CT = 4700 pF provides a typical rise time of 957 μs. Using this rise time and  
voltage into 公式 9, yields 公式 12 and 公式 13.  
IInrush = 22 µF × 9.6 V/ 957 µs  
Inrush = 220 mA  
(12)  
(13)  
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
 
 
 
 
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
An appropriate CL value must be placed on VOUT such that the IMAX and IPLS specifications of the device are not  
violated.  
9.2.3 Application Curves  
See the oscilloscope captures below for an example of how the CT capacitor can be used to reduce inrush  
current for VIN = 12 V. See the Adjustable Rise Time (CT) section for rise times for corresponding CT values.  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
28. TPS22810-Q1 Inrush Current With  
29. TPS22810-Q1 Inrush Current  
CL = 22 µF, CT = 0 pF  
with CL = 22 µF, CT = 4700 pF  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
31. TPS22810-Q1 Inrush Current  
30. TPS22810-Q1 Inrush Current  
With CL = 100 µF, CT = 0 pF  
With CL = 22 µF, CT = 27000 pF  
20  
版权 © 2018, Texas Instruments Incorporated  
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
32. TPS22810-Q1 Inrush Current  
33. TPS22810-Q1 Inrush Current  
With CL = 100 µF, CT = 4700 pF  
With CL = 100 µF, CT = 27000 pF  
10 Power Supply Recommendations  
The device is designed to operate from a VIN range of 2.7 V to 18 V. This supply must be well regulated and  
placed as close to the device terminal as possible with the recommended 1-µF bypass capacitor. If the supply is  
located more than a few inches from the device terminals, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or  
ceramic capacitor of 1-µF may be sufficient.  
The TPS22810-Q1 operates regardless of power sequencing order. The order in which voltages are applied to  
VIN and EN/UVLO does not damage the device as long as the voltages do not exceed the absolute maximum  
operating conditions.  
版权 © 2018, Texas Instruments Incorporated  
21  
TPS22810-Q1  
ZHCSHY9 APRIL 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
1. VIN and VOUT traces must be as short and wide as possible to accommodate for high current.  
2. The VIN pin must be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 1-μF ceramic with X5R or X7R dielectric. This capacitor must be  
placed as close to the device pins as possible.  
11.2 Layout Example  
1 VIN  
VOUT 6  
QOD 5  
2 GND  
EN/UVLO  
CT  
3
4
VIA to Power Ground Plane  
34. Recommended Board Layout  
11.3 Thermal Considerations  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal and short-circuit operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic  
electrical effects along with minimizing the case to ambient thermal impedance.  
The maximum IC junction temperature must be restricted to 150°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use 公  
14.  
TJ(MAX) - TA  
PD(MAX)  
=
qJA  
where  
PD(MAX) is the maximum allowable power dissipation  
TJ(MAX) is the maximum allowable junction temperature (150°C for the TPS22810-Q1)  
TA is the ambient temperature of the device  
θJA is the junction to air thermal impedance. Refer to the Thermal Information table. This parameter highly  
depends on the board layout.  
(14)  
22  
版权 © 2018, Texas Instruments Incorporated  
 
TPS22810-Q1  
www.ti.com.cn  
ZHCSHY9 APRIL 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
关于 TPS22810 PSpice 瞬态模型,请参见 TPS22810 PSpice 瞬态模型》  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档::  
TPS22810 负载开关评估模块  
选择一个负载开关以代替分立式解决方案  
负载开关的计时  
12.3 接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹。单击右上角的通知我  
按钮。点击后,您将每周定期收到已更改的产品信息(如果有的话)。有关更改的详细信息,请查看任意已修订文  
档的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22810TDBVRQ1  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 105  
1EFF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Apr-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22810TDBVRQ1  
SOT-23  
DBV  
6
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Apr-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TPS22810TDBVRQ1  
6
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22811

具有快速过压保护和电流监控功能的 2.7V 至 16V、10A、6mΩ 负载开关
TI

TPS22811LRPWR

具有快速过压保护和电流监控功能的 2.7V 至 16V、10A、6mΩ 负载开关 | RPW | 10 | -40 to 125
TI

TPS22860

0.73Ω、5V 超低泄漏负载开关
TI

TPS22860DBVR

0.73Ω、5V 超低泄漏负载开关 | DBV | 6 | -40 to 85
TI

TPS22901

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22901YFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902B

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902BYFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902YFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22903

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22903YFPR

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI