TPS22915CYFPR [TI]

具有输出放电功能的 5.5V、2A、39mΩ 负载开关 | YFP | 4 | -40 to 105;
TPS22915CYFPR
型号: TPS22915CYFPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输出放电功能的 5.5V、2A、39mΩ 负载开关 | YFP | 4 | -40 to 105

开关 驱动 接口集成电路
文件: 总32页 (文件大小:1266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
TPS2291xx, 5.5-V, 2-A, 37-mΩ On-Resistance Load Switch  
1 Features  
3 Description  
Integrated Single Channel Load Switch  
Input Voltage Range: 1.05 V to 5.5 V  
Low On-Resistance (RON  
– RON = 37 mΩ (Typical) at VIN = 5 V  
– RON = 38 mΩ (Typical) at VIN = 3.3 V  
– RON = 43 mΩ (Typical) at VIN = 1.8 V  
2-A Maximum Continuous Switch Current  
Low Quiescent Current  
The TPS22914/15 is a small, low RON, single channel  
load switch with controlled slew rate. The device  
contains an N-channel MOSFET that can operate  
over an input voltage range of 1.05 V to 5.5 V and can  
support a maximum continuous current of 2 A. The  
switch is controlled by an on and off input, which is  
capable of interfacing directly with low-voltage control  
signals.  
)
The small size and low RON makes the device ideal  
for being used in space constrained, battery powered  
applications. The wide input voltage range of the  
switch makes it a versatile solution for many different  
voltage rails. The controlled rise time of the device  
greatly reduces inrush current caused by large bulk  
load capacitances, thereby reducing or eliminating  
power supply droop. The TPS22915 further reduces  
the total solution size by integrating a 143-Ω pull-  
down resistor for quick output discharge (QOD) when  
the switch is turned off.  
– 7.7 µA (Typical) at VIN = 3.3 V  
Low Control Input Threshold Enables Use of 1 V or  
Higher GPIO  
Controlled Slew Rate  
– tR(TPS22914B/15B) = 64 µs at VIN = 3.3 V  
– tR(TPS22914C/15C) = 913 µs at VIN = 3.3 V  
Quick Output Discharge (TPS22915 only)  
Ultra-Small Wafer-Chip-Scale Package  
– 0.78 mm × 0.78 mm, 0.4-mm Pitch,  
0.5-mm Height (YFP)  
ESD Performance Tested per JESD 22  
– 2-kV HBM and 1-kV CDM  
The TPS22914/15 is available in a small, space-  
saving 0.78 mm x 0.78 mm, 0.4-mm pitch, 0.5-mm  
height 4-pin Wafer-Chip-Scale (WCSP) package  
(YFP). The device is characterized for operation over  
the free-air temperature range of –40°C to +105°C.  
2 Applications  
Smartphones, Mobile Phones  
Ultrathin, Ultrabook/ Notebook PC  
Tablet PC, Phablet  
Wearable Technology  
Solid State Drives  
Device Information (1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TPS22914B  
TPS22914C  
DSBGA (4)  
0.74 mm x 0.74 mm  
Digital Cameras  
TPS22915B  
TPS22915C  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
80  
VIN  
ON  
VOUT  
GND  
-40°C  
25°C  
85°C  
Power Supply  
ON  
70  
60  
50  
40  
30  
20  
CIN  
CL  
RL  
105°C  
OFF  
TPS22914/15  
GND  
Simplified Schematic  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D005  
RON vs VIN (IOUT = –200 mA)  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Switching Characteristics............................................8  
7.7 Typical DC Characteristics..........................................9  
7.8 Typical AC Characteristics (TPS22914B/15B)..........11  
7.9 Typical AC Characteristics (TPS22914C/15C)......... 14  
8 Parameter Measurement Information..........................16  
9 Detailed Description......................................................17  
9.1 Overview...................................................................17  
9.2 Functional Block Diagram.........................................17  
9.3 Feature Description...................................................17  
9.4 Device Functional Modes..........................................18  
10 Application and Implementation................................19  
10.1 Application Information........................................... 19  
10.2 Typical Application.................................................. 19  
11 Power Supply Recommendations..............................21  
12 Layout...........................................................................21  
12.1 Layout Guidelines................................................... 21  
12.2 Layout Example...................................................... 22  
13 Device and Documentation Support..........................23  
13.1 Documentation Support.......................................... 23  
13.2 Related Links.......................................................... 23  
13.3 Receiving Notification of Documentation Updates..23  
13.4 Support Resources................................................. 23  
13.5 Trademarks.............................................................23  
13.6 Electrostatic Discharge Caution..............................23  
13.7 Glossary..................................................................23  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 24  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (September 2016) to Revision E (October 2020)  
Page  
Updated the numbering format for tables, figures and cross-references throughout the document...................1  
Updated the body size in the Device Information table...................................................................................... 1  
Changes from Revision C (July 2015) to Revision D (September 2016)  
Page  
Changed "TPS22915B" only, to "TPS22915B/C only" in the Electrical Characteristics table ............................5  
Changes from Revision B (September 2014) to Revision C (July 2015)  
Page  
Updated TA ratings in datasheet from 85°C to 105°C.........................................................................................1  
Changes from Revision A (June 2014) to Revision B (September 2014)  
Page  
Updated X-axis scales in th Typical Characteristics section. .............................................................................9  
Changes from Revision * (June 2014) to Revision A (June 2014)  
Page  
Initial release of full version. .............................................................................................................................. 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
5 Device Comparison Table  
RON at 3.3V  
DEVICE  
tR at 3.3V  
(TYPICAL)  
QUICK OUTPUT  
DISCHARGE  
MAXIMUM OUTPUT  
CURRENT  
ENABLE  
(TYPICAL)  
TPS22914B  
TPS22914C  
TPS22915B  
TPS22915C  
38 mΩ  
38 mΩ  
38 mΩ  
38 mΩ  
64 µs  
913 µs  
64 µs  
No  
No  
2 A  
2 A  
2 A  
2 A  
Active High  
Active High  
Active High  
Active High  
Yes  
Yes  
913 µs  
6 Pin Configuration and Functions  
B
B
A
A
1
2
2
1
LASER MARKING VIEW  
BUMP VIEW  
Figure 6-1. YFP PACKAGE 4 PIN DSBGA TOP VIEW  
Table 6-1. Pin Description  
B
A
ON  
VIN  
2
GND  
VOUT  
1
Table 6-2. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
A1  
O
Switch output. Place ceramic bypass capacitor(s) between this pin  
and GND. See the Detailed Description section for more information  
VOUT  
VIN  
I
Switch input. Place ceramic bypass capacitor(s) between this pin and  
GND. See the Detailed Description section for more information  
A2  
B1  
B2  
GND  
ON  
I
Device ground  
Active high switch control input. Do not leave floating  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
V
VIN  
Input voltage  
VOUT  
VON  
IMAX  
IPLS  
TJ  
Output voltage  
6
V
ON voltage  
6
V
Maximum continuous switch current  
Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle  
Maximum junction temperature  
Storage temperature  
2
A
2.5  
125  
150  
A
°C  
°C  
TSTG  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
1.05  
MAX  
5.5  
UNIT  
V
VIN  
Input voltage  
VON  
ON voltage  
0
5.5  
VIN  
5.5  
0.5  
105  
V
VOUT  
VIH, ON  
VIL, ON  
TA  
Output voltage  
V
High-level input voltage, ON  
Low-level input voltage, ON  
Operating free-air temperature range(1)  
Input Capacitor  
VIN = 1.05 V to 5.5 V  
VIN = 1.05 V to 5.5 V  
1
0
V
V
–40  
1(2)  
°C  
µF  
CIN  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature  
may have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [T  
J(MAX)], the maximum power dissipation of the device in the application [PD(MAX)], and the junction-to-ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA(MAX) = TJ(MAX) – (θJA × PD(MAX)).  
(2) Refer to the Detailed Description section.  
7.4 Thermal Information  
TPS2291x  
THERMAL METRIC(1)  
YFP (DSBGA)  
UNIT  
4 PINS  
193  
2.3  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
36  
ψJT  
12  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
 
 
 
 
 
 
 
 
 
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
7.4 Thermal Information (continued)  
TPS2291x  
THERMAL METRIC(1)  
YFP (DSBGA)  
4 PINS  
UNIT  
ψJB  
Junction-to-board characterization parameter  
36  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C ≤ TA ≤ +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITION  
TA  
MIN TYP MAX UNIT  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
7.7  
7.6  
7.7  
8.4  
7.4  
6.7  
7.7  
7.6  
7.7  
8.4  
7.4  
6.7  
10.8  
12.1  
9.6  
VIN = 5.5 V  
VIN = 5 V  
11.9  
9.6  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1.05 V  
VIN = 5.5 V  
VIN = 5 V  
12  
Quiescent current  
(TPS22914B/15B)  
VON = 5 V, IOUT = 0 A  
µA  
11  
13.5  
10.4  
13.9  
10.9  
11.7  
11.5  
14.1  
11.1  
13.7  
10.7  
13.3  
11.7  
13.4  
11  
IQ, VIN  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1.05 V  
Quiescent current  
(TPS22914C/15C)  
VON = 5 V, IOUT = 0 A  
µA  
12.8  
10.9  
10.9  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
7.5 Electrical Characteristics (continued)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C ≤ TA ≤ +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITION  
TA  
MIN TYP MAX UNIT  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
0.5  
0.5  
0.5  
0.5  
0.4  
0.4  
2
3
VIN = 5.5 V  
2
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1.05 V  
3
2
3
ISD, VIN  
Shutdown current  
VON = 0 V, VOUT = 0 V  
µA  
2
3
2
3
2
3
ION  
ON pin input leakage  
current  
VIN = 5.5 V, IOUT = 0 A  
0.1  
µA  
–40°C to +105°C  
25°C  
37  
37  
37  
38  
38  
43  
52  
63  
40  
VIN = 5.5 V, IOUT = –200 mA  
VIN = 5 V, IOUT = –200 mA  
VIN = 4.2 V, IOUT = –200 mA  
VIN = 3.3 V, IOUT = –200 mA  
VIN = 2.5 V, IOUT = –200 mA  
VIN = 1.8 V, IOUT = –200 mA  
VIN = 1.2 V, IOUT = –200 mA  
VIN = 1.05 V, IOUT = –200 mA  
–40°C to +85°C  
–40°C to +105°C  
25°C  
51 mΩ  
57  
41  
–40°C to +85°C  
–40°C to +105°C  
25°C  
51 mΩ  
57  
41  
–40°C to +85°C  
–40°C to +105°C  
25°C  
52 mΩ  
58  
41  
–40°C to +85°C  
–40°C to +105°C  
25°C  
52 mΩ  
59  
RON  
On-resistance  
42  
–40°C to +85°C  
–40°C to +105°C  
25°C  
53 mΩ  
58  
48  
–40°C to +85°C  
–40°C to +105°C  
25°C  
59 mΩ  
66  
61  
–40°C to +85°C  
–40°C to +105°C  
25°C  
73 mΩ  
85  
96  
–40°C to +85°C  
–40°C to +105°C  
102 mΩ  
107  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
7.5 Electrical Characteristics (continued)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C ≤ TA ≤ +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITION  
TA  
MIN TYP MAX UNIT  
VIN = 5.5 V  
VIN = 5 V  
102  
100  
98  
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1.05 V  
VHYS  
ON pin hysteresis  
25°C  
96  
96  
mV  
Ω
94  
92  
(1)  
RPD  
Output pull down resistor  
VIN = VOUT = 3.3 V, VON = 0 V  
–40°C to +105°C  
143  
200  
(1) TPS22915B/C only.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
7.6 Switching Characteristics  
Refer to the timing test circuit in Figure 8-1 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up  
sequence where VIN is already in steady state condition before the ON pin is asserted high.  
TYP  
TYP  
PARAMETER  
TEST CONDITION  
UNIT  
(TPS22914B/15B) (TPS22914C/15C)  
VIN = 5 V, VON = 5 V, TA = 25°C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
104  
2
1300  
2
µs  
µs  
µs  
µs  
µs  
89  
2
1277  
2
tF  
tD  
59  
663  
VIN = 3.3 V, VON = 5 V, TA = 25°C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
83  
2
1077  
2
µs  
µs  
µs  
µs  
µs  
64  
2
913  
2
tF  
tD  
52  
622  
VIN = 1.05 V, VON = 5 V, TA = 25°C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
RL = 10 Ω, CIN = 1 µF, COUT = 0.1 µF  
61  
3
752  
3
µs  
µs  
µs  
µs  
µs  
28  
2
409  
2
tF  
tD  
47  
547  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
7.7 Typical DC Characteristics  
11  
10  
9
11  
10  
9
8
8
7
7
6
6
5
5
-40°C  
25°C  
85°C  
105°C  
-40°C  
25°C  
85°C  
105°C  
4
4
3
3
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D001  
D002  
VON = 5 V  
IOUT = 0 A  
VON = 5 V  
IOUT = 0 A  
Figure 7-1. IQ vs VIN (TPS22914B/15B)  
Figure 7-2. IQ vs VIN (TPS22914C/15C)  
2.8  
2.4  
2
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
105°C  
1.6  
1.2  
0.8  
0.4  
0
VIN = 1.05V  
VIN = 1.2V  
VIN = 1.5V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5V  
VIN = 5.5V  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
D003  
D004  
VON = 0 V  
IOUT = 0 A  
VON = 5 V  
IOUT = –200 mA  
Figure 7-3. ISD vs VIN  
Figure 7-4. RON vs TJ  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
105°C  
70  
60  
50  
40  
30  
20  
VIN = 1.05V  
VIN = 1.2V  
VIN = 1.5V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5V  
VIN = 5.5V  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
0
0.5  
1
IOUT (A)  
1.5  
2
D005  
D006  
VON = 5 V  
IOUT = –200 mA  
VON = 5 V  
TA = 25°C  
Figure 7-5. RON vs VIN  
Figure 7-6. RON vs IOUT  
1
0.95  
0.9  
1
-40°C  
0.95  
0.9  
25°C  
85°C  
105°C  
0.85  
0.8  
0.85  
0.8  
0.75  
0.7  
0.75  
0.7  
0.65  
0.6  
0.65  
0.6  
-40°C  
25°C  
85°C  
105°C  
0.55  
0.5  
0.55  
0.5  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D007  
D008  
IOUT = 0 A  
IOUT = 0 A  
Figure 7-8. VIH vs VIN  
Figure 7-7. VIL vs VIN  
170  
160  
150  
140  
130  
120  
110  
100  
90  
190  
185  
180  
175  
170  
165  
160  
155  
150  
145  
140  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
105°C  
105°C  
80  
70  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D009  
D010  
IOUT = 0 A  
VIN = VOUT  
VON = 0 V  
Figure 7-9. VHYS vs VIN  
Figure 7-10. RPD vs VIN  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
7.8 Typical AC Characteristics (TPS22914B/15B)  
100  
90  
80  
70  
60  
50  
70  
65  
60  
55  
50  
45  
40  
35  
40  
-40°C  
25°C  
85°C  
105°C  
-40°C  
25°C  
85°C  
105°C  
30  
20  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D011  
D012  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 7-11. tR vs VIN  
Figure 7-12. tD vs VIN  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
-40°C  
25°C  
85°C  
105°C  
-40°C  
25°C  
85°C  
105°C  
0.5  
0
0.5  
0
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D013  
D014  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 7-13. tF vs VIN  
Figure 7-14. tOFF vs VIN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
120  
110  
100  
90  
80  
70  
-40°C  
25°C  
85°C  
105°C  
60  
50  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D015  
VIN = 5 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 7-15. tON vs VIN  
Figure 7-16. tR at VIN = 5 V  
VIN = 5 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 3.3 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
Figure 7-17. tF at VIN = 5 V  
Figure 7-18. tR at VIN = 3.3 V  
VIN = 3.3 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 1.05 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
Figure 7-19. tF at VIN = 3.3V  
Figure 7-20. tR at VIN = 1.05V  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
VIN = 1.05 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
Figure 7-21. tF at VIN = 1.05 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
7.9 Typical AC Characteristics (TPS22914C/15C)  
1500  
1300  
1100  
900  
750  
700  
650  
600  
550  
500  
450  
700  
-40°C  
-40°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
500  
300  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D016  
D017  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 7-22. tR vs VIN  
Figure 7-23. tD vs VIN  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
-40°C  
25°C  
85°C  
105°C  
-40°C  
25°C  
85°C  
105°C  
0.5  
0
0.5  
0
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D018  
D019  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 7-24. tF vs VIN  
Figure 7-25. tOFF vs VIN  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
85°C  
105°C  
600  
1.05 1.55 2.05 2.55 3.05 3.55 4.05 4.55 5.05 5.5  
VIN (V)  
D020  
VIN = 5 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 7-26. tON vs VIN  
Figure 7-27. tR at VIN = 5 V  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
VIN = 5 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 3.3 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
Figure 7-28. tF at VIN = 5 V  
Figure 7-29. tR at VIN = 3.3 V  
VIN = 3.3 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 1.05 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
Figure 7-30. tF at VIN = 3.3 V  
Figure 7-31. tR at VIN = 1.05 V  
VIN = 1.05 V  
RL = 10 Ω  
CIN = 1 µF  
CL = 0.1 µF  
Figure 7-32. tF at VIN = 1.05 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
8 Parameter Measurement Information  
VIN  
VOUT  
CIN = 1 µF  
CL  
+
-
RL  
ON  
ON  
(A)  
GND  
TPS22914/15  
OFF  
GND  
GND  
A. Rise and fall times of the control signal is 100ns  
Figure 8-1. Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
tON  
90%  
90%  
VOUT  
VOUT  
50%  
10%  
50%  
10%  
10%  
tD  
Figure 8-2. Timing Waveforms  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
9 Detailed Description  
9.1 Overview  
The device is a 5.5-V, 2-A load switch in a 4-pin YFP package. To reduce voltage drop for low voltage and high  
current rails, the device implements an ultra-low resistance N-channel MOSFET which reduces the drop out  
voltage through the device.  
The device has a controlled and fixed slew rate which helps reduce or eliminate power supply droop due to large  
inrush currents. During shutdown, the device has very low leakage currents, thereby reducing unnecessary  
leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output  
discharge FET eliminates the need for any external components, which reduces solution size and bill of  
materials (BOM) count.  
9.2 Functional Block Diagram  
9.3 Feature Description  
9.3.1 On and Off Control  
The ON pins control the state of the switch. Asserting ON high enables the switch. ON is active high and has a  
low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard  
GPIO logic threshold. It can be used with any microcontroller with 1 V or higher GPIO voltage. This pin cannot  
be left floating and must be driven either high or low for proper functionality.  
9.3.2 Input Capacitor (CIN)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
 
 
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
ceramic capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further  
reduce the voltage drop during high-current application. When switching heavy loads, it is recommended to have  
an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.  
9.3.3 Output Capacitor (CL)  
Due to the integrated body diode in the MOSFET, a CIN greater than CL is highly recommended. A CL greater  
than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current flow  
through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN dip  
caused by inrush currents during startup.  
9.4 Device Functional Modes  
Table 9-1 describes the connection of the VOUT pin depending on the state of the ON pin.  
Table 9-1. VOUT Connection  
ON  
L
TPS22914  
Open  
TPS22915  
GND  
H
VIN  
VIN  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
This section highlights some of the design considerations when implementing this device in various applications.  
A PSPICE model for this device is also available in the product page of this device.  
10.2 Typical Application  
This typical application demonstrates how the TPS22914 and TPS22915 can be used to power downstream  
modules.  
VIN  
VOUT  
VIN  
VOUT  
CL  
CIN  
GND  
ON  
ON  
TPS22914/15  
Figure 10-1. Typical Application Schematic  
10.2.1 Design Requirements  
For this design example, use the input parameters shown in Table 10-1.  
Table 10-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
5 V  
2 A  
Load current  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
 
 
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
10.2.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
VIN voltage  
Load Current  
10.2.2.1 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The R  
ON of the device depends upon the VIN conditions of the device. Refer to the RON specification of the device in  
the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based upon the  
VIN conditions, use Equation 1 to calculate the VIN to VOUT voltage drop.  
∆V = ILOAD × RON  
(1)  
where  
ΔV = voltage drop from VIN to VOUT  
ILOAD = load current  
RON = On-resistance of the device for a specific VIN  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
10.2.2.2 Inrush Current  
To determine how much inrush current is caused by the CL capacitor, use Equation 2.  
dVOUT  
I
= CL ´  
INRUSH  
dt  
(2)  
where  
IINRUSH = amount of inrush caused by CL  
CL = capacitance on VOUT  
dt = rise time in VOUT during the ramp up of VOUT when the device is enabled  
dVOUT = change in VOUT during the ramp up of VOUT when the device is enabled  
An appropriate CL value must be placed on VOUT such that the IMAX and IPLS specifications of the device are  
not violated.  
10.2.3 Application Curves  
VIN = 5 V  
CL = 47 µF  
VIN = 5 V  
CL = 47 µF  
Figure 10-2. TPS22914B/15B Inrush Current  
Figure 10-3. TPS22914C/15C Inrush Current  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
11 Power Supply Recommendations  
The device is designed to operate from a VIN range of 1.05 V to 5.5 V. This supply must be well regulated and  
placed as close to the device terminal as possible with the recommended 1-µF bypass capacitor. If the supply is  
located more than a few inches from the device terminals, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or  
ceramic capacitor of 1 µF may be sufficient.  
12 Layout  
12.1 Layout Guidelines  
1. VIN and VOUT traces must be as short and wide as possible to accommodate for high current.  
2. The VIN pin must be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 1-μF ceramic with X5R or X7R dielectric. This capacitor must be placed  
as close to the device pins as possible.  
3. The VOUT pin must be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating.  
This capacitor must be placed as close to the device pins as possible.  
12.1.1 Thermal Considerations  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal and short-circuit operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic  
electrical effects along with minimizing the case to ambient thermal impedance.  
The maximum IC junction temperature must be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use  
Equation 3.  
TJ(MAX) - TA  
PD(MAX)  
=
qJA  
(3)  
where  
PD(MAX) = maximum allowable power dissipation  
TJ(MAX) = maximum allowable junction temperature (125°C for the TPS22914/15)  
TA = ambient temperature of the device  
θJA = junction to air thermal impedance. Refer to the Thermal Information table. This parameter is highly  
dependent upon board layout.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
 
 
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
12.2 Layout Example  
To GPIO control  
ON  
GND  
VOUTBypass  
Capacitor  
VIN  
VOUT  
V Bypass  
IN  
Capacitor  
VIA to Power Ground Plane  
Figure 12-1. Recommended Board Layout  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
www.ti.com  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
Basics of Load Switches  
Managing Inrush Current  
Load Switch Thermal Considerations  
Using the TPS22915BEVM-078 Single Channel Load Switch IC  
Implementing Ship Mode Using the TPS22915B Load Switches  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 13-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TPS22914B  
TPS22914C  
TPS22915B  
TPS22915C  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
Ultrabookis a trademark of Intel.  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
 
 
 
 
 
 
 
 
TPS22914B, TPS22914C, TPS22915B, TPS22915C  
SLVSCO0E – JUNE 2014 – REVISED OCTOBER 2020  
www.ti.com  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22914BYFPR  
TPS22914BYFPT  
TPS22914CYFPR  
TPS22914CYFPT  
TPS22915BYFPR  
TPS22915BYFPT  
TPS22915CYFPR  
TPS22915CYFPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
4
4
4
4
4
4
4
4
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
S3  
S3  
S6  
S6  
S4  
S4  
S7  
S7  
SNAGCU  
SNAGCU  
SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22914BYFPR  
TPS22914BYFPT  
TPS22914BYFPT  
TPS22914CYFPR  
TPS22914CYFPT  
TPS22915BYFPR  
TPS22915BYFPR  
TPS22915BYFPT  
TPS22915BYFPT  
TPS22915CYFPR  
TPS22915CYFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
4
4
4
4
4
4
4
4
4
4
4
3000  
250  
180.0  
180.0  
178.0  
180.0  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
180.0  
8.4  
8.4  
9.2  
8.4  
8.4  
8.4  
9.2  
8.4  
9.2  
8.4  
8.4  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.85  
0.64  
0.64  
0.59  
0.64  
0.64  
0.64  
0.59  
0.64  
0.59  
0.64  
0.64  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
250  
3000  
250  
3000  
3000  
250  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22914BYFPR  
TPS22914BYFPT  
TPS22914BYFPT  
TPS22914CYFPR  
TPS22914CYFPT  
TPS22915BYFPR  
TPS22915BYFPR  
TPS22915BYFPT  
TPS22915BYFPT  
TPS22915CYFPR  
TPS22915CYFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
4
4
4
4
4
4
4
4
4
4
4
3000  
250  
182.0  
182.0  
220.0  
182.0  
182.0  
182.0  
220.0  
182.0  
220.0  
182.0  
182.0  
182.0  
182.0  
220.0  
182.0  
182.0  
182.0  
220.0  
182.0  
220.0  
182.0  
182.0  
20.0  
20.0  
35.0  
20.0  
20.0  
20.0  
35.0  
20.0  
35.0  
20.0  
20.0  
250  
3000  
250  
3000  
3000  
250  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFP0004  
DSBGA - 0.5 mm max height  
S
C
A
L
E
1
0
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
D
BALL A1  
CORNER  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
BALL TYP  
0.4  
TYP  
B
A
D: Max = 0.778 mm, Min =0.718 mm  
E: Max = 0.778 mm, Min =0.718 mm  
SYMM  
0.4  
TYP  
0.25  
0.21  
C A B  
4X  
0.015  
1
2
SYMM  
4223507/A 01/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0004  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
4X ( 0.23)  
1
2
A
B
SYMM  
(0.4) TYP  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:50X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
EXPOSED  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223507/A 01/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0004  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
4X ( 0.25)  
1
2
A
B
SYMM  
(0.4) TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:50X  
4223507/A 01/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TPS22915CYFPT

具有输出放电功能的 5.5V、2A、39mΩ 负载开关 | YFP | 4 | -40 to 105
TI

TPS22916

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关
TI

TPS22916BL

TPS22916xx 1-V–5.5-V, 2-A, 60-mΩ Ultra-Low Leakage Load Switch
TI

TPS22916BLYFPR

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关 | YFP | 4 | -40 to 85
TI

TPS22916BYFPR

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关 | YFP | 4 | -40 to 85
TI

TPS22916BYFPT

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关 | YFP | 4 | -40 to 85
TI

TPS22916CLYFPR

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关 | YFP | 4 | -40 to 85
TI

TPS22916CLYFPT

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关 | YFP | 4 | -40 to 85
TI

TPS22916CNL

TPS22916xx 1-V–5.5-V, 2-A, 60-mΩ Ultra-Low Leakage Load Switch
TI

TPS22916CNLYFPR

TPS22916xx 1-V–5.5-V, 2-A, 60-mΩ Ultra-Low Leakage Load Switch
TI

TPS22916CNYFPR

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关 | YFP | 4 | -40 to 85
TI

TPS22916CNYFPT

具有输出放电功能的 5.5V、2A、60mΩ、10nA 泄漏负载开关 | YFP | 4 | -40 to 85
TI