TPS22954 [TI]

具有可调节上升时间、电压监控功能和输出放电功能的 5.7V、5A、14mΩ 负载开关;
TPS22954
型号: TPS22954
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间、电压监控功能和输出放电功能的 5.7V、5A、14mΩ 负载开关

开关 监控
文件: 总47页 (文件大小:2820K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
TPS2295x 5.7V5A14mΩ 导通电阻负载开关  
1 特性  
3 说明  
1
集成单通道负载开关  
TPS22953/54 是具有受控导通功能的小型单通道负载  
开关。 该器件包含一个可在 0.7V 5.7V 输入电压范  
围内运行的 N 通道 MOSFET,并且可支持最大 5A  
的持续电流。  
输入电压范围:0.7V 5.7V  
RON 电阻  
VIN = 5V (VBIAS = 5V) 时,RON = 14m  
5A 最大持续开关电流  
可调欠压闭锁 (UVLO) 阈值  
带有电源正常 (PG) 指示器的  
可调电压监控器  
该器件具有可调欠压闭锁 (UVLO) 和可调电源正常  
(PG) 阈值,可提供电压监控和可靠的电源排序功能。  
器件的可调上升时间控制功能可大幅降低各类大容量负  
载电容的浪涌电流,从而降低或消除电源压降。 此开  
关可由一个导通/关断输入 (EN) 独立控制,该输入可与  
低压控制信号直接对接。 器件集成了一个 15Ω 片上负  
载电阻,可在开关被禁用时使输出快速放电。 增强型  
快速输出放电 (QOD) 功能可在器件断电后的一小段时  
间内继续保持激活状态,以便使输出完成放电。  
可调输出转换率控制  
增强型快速输出放电功能,在电源移除后仍能保持  
激活状态(仅 TPS22954)  
15Ω(典型值),可使 100µF 电容在 10ms 内  
完全放电  
禁用时提供反向电流保护(仅 TPS22953)  
可在监控器检测到故障后自动重启(使能时)  
热关断  
TPS22953/54 采用小型、节省空间的 10 引脚小外形  
尺寸无引线 (SON) 封装,此类封装具有集成散热焊  
盘,支持较高功耗。 器件在自然通风环境下的额定运  
行温度范围为 –40°C 105℃。  
低静态电流 50µA  
带有散热焊盘的小外形尺寸无引线 (SON) 10 引脚  
封装  
器件信息(1)  
经测试,静电放电 (ESD) 性能符合 JESD 22 规范  
器件编号  
封装(引脚)  
DSQ (10)  
封装尺寸(标称值)  
2.00mm x 2.00mm  
2.00mm x 3.00mm  
2kV 人体模型 (HBM) 750V 充电器件模型  
(CDM)  
TPS2295x  
DQC (10)  
2 应用  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
固态硬盘  
嵌入式/工业 PC  
Ultrabook™/笔记本电脑  
台式机  
服务器  
电信系统  
4 简化电路原理图  
TPS22953/54  
Power  
Supply  
IN  
OUT  
OUT  
SNS  
IN  
RSNS1  
VBIAS  
EN  
REN1  
RSNS2  
CIN  
CL = 100 µF  
RL  
Rpullup  
PG  
REN2  
PG  
CT  
GND  
PAD  
CT  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCT5  
 
 
 
 
 
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
目录  
8.12 Typical Switching Characteristics ......................... 15  
Detailed Description ............................................ 21  
9.1 Overview ................................................................. 21  
9.2 Functional Block Diagram ....................................... 21  
9.3 Feature Description................................................. 22  
9.4 Device Functional Modes ....................................... 27  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ...................................... 4  
8.2 ESD Ratings ............................................................ 4  
8.3 Recommended Operating Conditions....................... 4  
8.4 Thermal Information.................................................. 5  
8.5 Electrical Characteristics........................................... 5  
8.6 Electrical Characteristics, VBIAS = 5 V ...................... 6  
8.7 Electrical Characteristics, VBIAS = 3.3 V ................... 7  
8.8 Electrical Characteristics, VBIAS = 2.5 V ................... 8  
8.9 Switching Characteristics, CT = 1000 pF.................. 9  
8.10 Switching Characteristics, CT = 0 pF.................... 10  
8.11 Typical DC Characteristics.................................... 12  
9
10 Application and Implementation........................ 28  
10.1 Application Information.......................................... 28  
10.2 Typical Application ............................................... 31  
11 Power Supply Recommendations ..................... 33  
12 Layout................................................................... 33  
12.1 Layout Guidelines ................................................ 33  
12.2 Layout Example .................................................... 34  
13 器件和文档支持 ..................................................... 35  
13.1 相关链接................................................................ 35  
13.2 ....................................................................... 35  
13.3 静电放电警告......................................................... 35  
13.4 术语表 ................................................................... 35  
14 机械封装和可订购信息 .......................................... 35  
5 修订历史记录  
Changes from Original (March 2015) to Revision A  
Page  
完整版的最初发布版本。 ....................................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
6 Device Comparison Table  
Device  
Quick Output  
Discharge  
Reverse Current  
Blocking  
Package (Pin)  
Body Size  
Pin Pitch  
DSQ (10)  
DQC (10)  
DSQ (10)  
DQC (10)  
2.00 mm x 2.00 mm  
2.00 mm x 3.00 mm  
2.00 mm x 2.00 mm  
2.00 mm x 3.00 mm  
0.4 mm  
0.5 mm  
0.4 mm  
0.5 mm  
TPS22954  
Yes  
No  
No  
TPS22953  
Yes  
7 Pin Configuration and Functions  
1
2
3
10  
9
10  
1
IN  
IN  
OUT  
OUT  
OUT  
IN  
IN  
9
2
3
OUT  
GND  
GND  
8
8
(Exposed  
thermal pad)  
(Exposed  
thermal pad)  
BIAS  
EN  
SNS  
PG  
SNS  
BIAS  
EN  
4
5
7
6
7
4
5
PG  
GND  
CT  
CT  
6
GND  
Top View  
Bottom View  
Pin Functions  
PIN(1)  
I/O  
DESCRIPTION  
NAME  
NO.  
1, 2  
3
IN  
I
I
Switch input. Bypass this input with a ceramic capacitor to GND.  
Bias pin and power supply to the device.  
BIAS  
Active high switch enable/disable input. Also acts as the input UVLO pin. Use external resistor divider to  
adjust the UVLO level. Do not leave floating.  
EN  
4
5
6
I
GND  
CT  
Device ground.  
VOUT slew rate control. Place ceramic cap from CT to GND to change the VOUT slew rate of the device  
and limit the inrush current. CT Capacitor should be rated to 25V or higher.  
O
Power good. This pin is open drain which will pull low when the voltage on EN and/or SNS is below  
their respective VIL level.  
PG  
7
O
SNS  
OUT  
8
9, 10  
I
Sense pin. Use external resistor divider to adjust the power good level. Do not leave floating.  
O
Switch output.  
Thermal Pad  
Exposed thermal pad. Tie to GND.  
(1) Pinout applies to all package versions.  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX UNIT  
VIN  
Input voltage range  
Bias voltage range  
Output voltage range  
6
6
6
V
V
V
VBIAS  
VOUT  
VEN, VSNS  
VPG  
,
EN, SNS, and PG voltage range  
–0.3  
6
V
IMAX  
IPLS  
TJ,MAX  
Tstg  
Maximum Continuous Switch Current, TA = 70°C  
5
7
A
A
Maximum Pulsed Switch Current, pulse <300µs, 2% duty cycle  
Maximum junction temperature  
(2)  
Internally limited  
–65 150  
Storage temperature range  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) See TSD specification in Electrical Characteristics section and Thermal Considerations section.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
8.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
0.7  
2.5  
0
MAX UNIT  
VIN  
Input voltage range  
VBIAS  
5.7  
V
V
V
V
VBIAS  
VOUT  
Bias voltage range  
Output voltage range  
EN, SNS, and PG voltage range  
5.7  
VEN, VSNS  
,
0
5.7  
VPG  
(1)  
TA  
Operating free-air temperature range  
Operating Junction Temperature  
–40  
–40  
105  
125  
°C  
°C  
TJ  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(max) = TJ(max) – (θJA × PD(max)  
)
4
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
8.4 Thermal Information  
TPS22953/54  
UNIT  
THERMAL METRIC(1)  
DQC-10  
65.2  
73.9  
25.5  
2
DSQ-10  
63.5  
81.6  
34.1  
1.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
25.4  
8.5  
34.5  
7.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
8.5 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C TA ≤  
105 °C and the recommended VBIAS voltage range of 2.5V to 5.7V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN TYP  
MAX UNIT  
VOLTAGE THRESHOLDS  
VIH, Rising threshold  
VEN  
VIN = 0.7V to VBIAS  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
650 700  
560 600  
465 515  
410 455  
750  
640  
565  
500  
mV  
mV  
mV  
mV  
VIL, Falling threshold  
VIN = 0.7V to VBIAS  
VIN = 0.7V to VBIAS  
VIN = 0.7V to VBIAS  
VIH, Rising threshold  
VSNS  
VIL, Falling threshold  
TIMINGS  
tBLANK  
Blanking time for EN and SNS  
EN or SNS Rising  
EN or SNS Falling  
-40°C to 105°C  
-40°C to 105°C  
100  
5
µs  
µs  
tDEGLITCH Deglitch time for EN and SNS  
Output discharge time  
(TPS22954 Only)  
tDIS  
CL = 100 µF  
SNS Falling  
-40°C to 105°C  
-40°C to 105°C  
10  
ms  
ms  
tRESTART Output Restart Time  
2
THERMAL CHARACTERISTICS  
TSD  
Thermal shutdown  
Junction Temperature Rising  
Junction Temperature Falling  
-
-
130 150  
20  
170  
°C  
°C  
TSDHYS Thermal shutdown hysteresis  
Copyright © 2015, Texas Instruments Incorporated  
5
 
 
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
8.6 Electrical Characteristics, VBIAS = 5 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C TA ≤  
105 °C and VBIAS = 5V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN TYP  
34  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
45  
50  
7
µA  
IQ, BIAS  
BIAS quiescent current  
IOUT = 0, VIN = 0.7V to VBIAS, VEN= 5V  
VOUT = 0V, VIN = 0.7V to VBIAS, VEN = 0V  
VIN = 5.0V  
5
µA  
µA  
ISD, BIAS BIAS shutdown current  
8
0.02  
0.01  
0.01  
0.01  
0.01  
4
13  
3
VIN = 3.3V  
10  
3
ISD, IN  
Input shutdown current  
VEN = 0V, VOUT = 0V  
VIN = 1.8V  
VIN = 1.2V  
VIN = 0.7V  
µA  
10  
2
8
2
8
IEN  
EN pin input leakage current  
SNS pin input leakage current  
VEN = 0V to 5.7V  
VSNS VBIAS  
0.1  
0.1  
µA  
µA  
ISNS  
RESISTANCE CHARACTERISTICS  
25°C  
14  
14  
14  
14  
14  
14  
15  
20  
23  
24  
20  
23  
24  
20  
23  
24  
20  
23  
24  
20  
23  
24  
20  
23  
24  
28  
30  
VIN = 5.0V  
VIN = 3.3V  
VIN = 1.8V  
VIN = 1.5V  
VIN = 1.2V  
VIN = 0.7V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
-40°C to 85°C  
-40°C to 105°C  
25°C  
-40°C to 85°C  
-40°C to 105°C  
25°C  
RON  
ON-state resistance  
IOUT = –200 mA  
-40°C to 85°C  
-40°C to 105°C  
25°C  
-40°C to 85°C  
-40°C to 105°C  
25°C  
-40°C to 85°C  
-40°C to 105°C  
25°C  
Ω
Ω
Output pulldown resistance  
(TPS22954 Only)  
RPD  
VIN = VOUT = VBIAS, VEN = 0 V  
-40°C to 105°C  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
8.7 Electrical Characteristics, VBIAS = 3.3 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C TA ≤  
105 °C and VBIAS = 3.3V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN TYP  
19  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
35  
37  
6
µA  
IQ, BIAS  
BIAS quiescent current  
IOUT = 0, VIN = 0.7V to VBIAS, VEN= 5V  
VOUT = 0V, VIN = 0.7V to VBIAS, VEN = 0V  
VIN = 3.3V  
4
µA  
µA  
ISD, BIAS BIAS shutdown current  
7
0.01  
0.01  
0.01  
0.01  
3
10  
3
VIN = 1.8V  
10  
2
ISD, IN  
Input shutdown current  
VEN = 0V, VOUT = 0V  
µA  
VIN = 1.2V  
8
2
VIN = 0.7V  
8
IEN  
EN pin input leakage current  
SNS pin input leakage current  
VEN = 0V to 5.7V  
VSNS = 0V to VBIAS  
0.1  
0.1  
µA  
µA  
ISNS  
RESISTANCE CHARACTERISTICS  
25°C  
15  
14  
14  
14  
14  
13  
21  
24  
25  
20  
23  
24  
20  
23  
24  
20  
23  
24  
20  
23  
24  
28  
30  
VIN = 3.3V  
VIN = 1.8V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
-40°C to 85°C  
-40°C to 105°C  
25°C  
RON  
ON-state resistance  
IOUT = –200 mA  
VIN = 1.5V  
VIN = 1.2V  
VIN = 0.7V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
-40°C to 85°C  
-40°C to 105°C  
25°C  
-40°C to 85°C  
-40°C to 105°C  
25°C  
Ω
Ω
Output pulldown resistance  
(TPS22954 Only)  
RPD  
VIN = VOUT = VBIAS, VEN = 0 V  
-40°C to 105°C  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
8.8 Electrical Characteristics, VBIAS = 2.5 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C TA ≤  
105 °C and VBIAS = 2.5V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN TYP  
16  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
25  
27  
5
µA  
IQ, BIAS  
BIAS quiescent current  
IOUT = 0, VIN = 0.7V to VBIAS, VEN= 5V  
VOUT = 0V, VIN = 0.7V to VBIAS, VEN = 0V  
VIN = 2.5V  
4
µA  
µA  
ISD, BIAS BIAS shutdown current  
6
0.01  
0.01  
0.01  
0.01  
3
10  
3
VIN = 1.8V  
10  
2
ISD, IN  
Input shutdown current  
VEN = 0V, VOUT = 0V  
µA  
VIN = 1.2V  
8
2
VIN = 0.7V  
8
IEN  
EN pin input leakage current  
SNS pin input leakage current  
VEN = 0V to 5.7V  
VSNS = 0V to VBIAS  
0.1  
0.1  
µA  
µA  
ISNS  
RESISTANCE CHARACTERISTICS  
25°C  
16  
15  
15  
15  
14  
12  
23  
26  
27  
22  
25  
26  
22  
25  
26  
22  
24  
25  
21  
24  
25  
28  
30  
VIN = 2.5V  
VIN = 1.8V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
-40°C to 85°C  
-40°C to 105°C  
25°C  
RON  
ON-state resistance  
IOUT = –200 mA  
VIN = 1.5V  
VIN = 1.2V  
VIN = 0.7V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
-40°C to 85°C  
-40°C to 105°C  
25°C  
-40°C to 85°C  
-40°C to 105°C  
25°C  
Ω
Ω
Output pulldown resistance  
(TPS22954 Only)  
RPD  
VIN = VOUT = VBIAS, VEN = 0 V  
-40°C to 105°C  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
8.9 Switching Characteristics, CT = 1000 pF  
Refer to the timing test circuit in Figure 1 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up  
sequence where VIN and VBIAS are already in steady state condition before the EN terminal is asserted high.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN = 5V, VEN = VBIAS = 5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
1265  
6.0  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1492  
2.2  
µs  
tF  
tD  
519  
VIN = 2.5V, VEN = VBIAS = 5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
813  
6.1  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
765  
2.2  
µs  
µs  
µs  
µs  
tF  
tD  
430  
VIN = 0.7V, VEN = VBIAS = 5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
476  
6.2  
245  
2.1  
tF  
tD  
353  
VIN = 2.5V, VEN = 5V, VBIAS = 2.5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
813  
4.9  
765  
2.2  
tF  
tD  
430  
VIN = 0.7V, VEN = 5V, VBIAS = 2.5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
476  
6.1  
245  
2.1  
tF  
tD  
353  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
8.10 Switching Characteristics, CT = 0 pF  
Refer to the timing test circuit in Figure 1 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up  
sequence where VIN and VBIAS are already in steady state condition before the EN terminal is asserted high.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN = 5V, VEN = VBIAS = 5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
235  
6.0  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
140  
2.2  
µs  
tF  
tD  
165  
VIN = 2.5V, VEN = VBIAS = 5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
200  
6
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
79  
µs  
µs  
µs  
µs  
tF  
2.1  
160  
tD  
VIN = 0.7V, VEN = VBIAS = 5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
170  
6
32  
2
tF  
tD  
154  
VIN = 2.5V, VEN = 5V, VBIAS = 2.5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
200  
6
79  
tF  
2.1  
160  
tD  
VIN = 0.7V, VEN = 5V, VBIAS = 2.5V, TA = 25°C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
170  
6
32  
2
tF  
tD  
154  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
IN  
OUT  
SNS  
CIN = 1µF  
ON  
(A)  
+
-
EN  
CL  
RL  
10kΩ  
OFF  
BIAS  
GND  
PG  
CT  
GND  
GND  
+
-
TPS22953/54  
A. Rise and fall times of the control signal is 100 ns.  
Figure 1. Timing Test Circuit  
tDEGLITCH  
tDEGLITCH  
VEN  
50%  
50%  
50%  
50%  
tON  
tOFF  
90%  
90%  
tD  
VOUT  
50%  
50%  
10%  
10%  
tBLANK  
tBLANK  
tR  
tF  
Figure 2. Timing Waveforms  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
8.11 Typical DC Characteristics  
40  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
105°C  
85°C  
25°C  
35  
30  
25  
20  
15  
10  
-40°C  
105°C  
85°C  
25°C  
-40°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
5.5  
100  
6
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
VBIAS (V)  
D001  
D002  
VIN = 1.8 V  
VEN = 5.7V  
VOUT = 0V  
VBIAS = 5 V  
VEN = 5.7V  
VOUT = 0V  
Figure 3. IQ,BIAS vs VBIAS  
Figure 4. IQ,BIAS vs VIN  
2.5  
2.25  
2
6
5.5  
5
105°C  
85°C  
25°C  
105°C  
85°C  
25°C  
-40°C  
-40°C  
1.75  
1.5  
1.25  
1
4.5  
4
0.75  
0.5  
0.25  
0
3.5  
-0.25  
3
2.5  
-0.5  
3
3.5  
4
4.5  
5
6
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
VBIAS (V)  
D003  
D004  
VIN = 1.8 V  
VEN = 0V  
VOUT = 0V  
VBIAS = 5 V  
VEN = 0V  
VOUT = 0V  
Figure 5. ISD,BIAS vs VBIAS  
Figure 6. ISD,IN vs VIN  
22  
20  
18  
16  
14  
12  
10  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
-40  
-20  
0
20  
40  
60  
80  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Ambient Temperature (qC)  
Ambient Temperature (qC)  
D005  
D006  
VBIAS = 2.5 V  
Iout = –200 mA  
VEN = 5V  
VBIAS = 3.3 V  
Iout = –200 mA  
VEN = 5V  
Figure 7. RON vs Temperature, VBIAS = 2.5V  
Figure 8. RON vs Temperature, VBIAS = 3.3 V  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
Typical DC Characteristics (continued)  
24  
22  
20  
18  
16  
14  
12  
10  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
22  
-40°C  
20  
18  
16  
14  
12  
10  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4  
VIN (V)  
D008  
D009  
VBIAS = 2.5 V  
Iout = –200 mA  
VEN = 5V  
VBIAS = 3.3 V  
Iout = –200 mA  
VEN = 5V  
Figure 9. RON vs VIN, VBIAS = 2.5 V  
Figure 10. RON vs VIN, VBIAS = 3.3 V  
22  
20  
18  
16  
14  
12  
10  
16  
15.75  
15.5  
15.25  
15  
105°C  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
85°C  
25°C  
-40°C  
VBIAS = 5.7V  
14.75  
14.5  
14.25  
14  
13.75  
13.5  
13.25  
0.6  
1
1.4 1.8 2.2 2.6  
3
3.4 3.8 4.2 4.6  
5
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN (V)  
VIN (V)  
D010  
D011  
VBIAS = 5 V  
Iout = –200 mA  
VEN = 5V  
TA = 25°C  
Iout = –200 mA  
VEN = 5V  
Figure 11. RON vs VIN, VBIAS = 5 V  
Figure 12. RON vs VIN  
17.5  
17  
15.4  
15.2  
15  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
16.5  
16  
14.8  
14.6  
14.4  
14.2  
14  
15.5  
15  
13.8  
13.6  
13.4  
13.2  
14.5  
14  
13.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOUT (A)  
IOUT (A)  
D032  
D033  
VBIAS = 2.5 V  
VEN = 5V  
VBIAS = 3.3 V  
VEN = 5V  
Figure 13. RON vs IOUT, VBIAS = 2.5 V  
Figure 14. RON vs IOUT, VBIAS = 3.3 V  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Typical DC Characteristics (continued)  
14.3  
22  
20  
18  
16  
14  
12  
10  
8
VIN = 5V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
105°C  
25°C  
-40°C  
14.2  
14.1  
14  
VIN = 0.7V  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
6
4
2
0
0.5  
1
1.5  
2
2.5  
IOUT (A)  
3
3.5  
4
4.5  
5
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VOUT (V)  
2
2.2 2.4 2.6  
D034  
D012  
VBIAS = 5 V  
VEN = 5V  
VBIAS = 2.5 V  
VIN = VOUT  
VEN = 0V  
Figure 15. RON vs IOUT, VBIAS = 5 V  
Figure 16. RPD vs VOUT, VBIAS = 2.5 V  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
105°C  
25°C  
-40°C  
105°C  
25°C  
-40°C  
6
6
4
4
2
2
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
VOUT (V)  
VOUT (V)  
D016  
D014  
VBIAS = 3.3 V  
VIN = VOUT  
VEN = 0V  
VBIAS = 5 V  
VIN = VOUT  
VEN = 0V  
Figure 17. RPD vs VOUT, VBIAS = 3.3 V  
Figure 18. RPD vs VOUT, VBIAS = 5 V  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
8.12 Typical Switching Characteristics  
800  
1600  
1400  
1200  
1000  
800  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
-40°C  
600  
400  
200  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D020  
D021  
VBIAS = 2.5 V  
CT = 1000 pF  
VEN = low to high  
VBIAS = 5 V  
CT = 1000 pF  
VEN = low to high  
Figure 19. tR vs VIN , VBIAS = 2.5 V  
Figure 20. tR vs VIN , VBIAS = 5 V  
2.2  
2.18  
2.16  
2.14  
2.12  
2.1  
2.25  
2.22  
2.19  
2.16  
2.13  
2.1  
105°C  
85°C  
25°C  
-40°C  
2.08  
2.06  
2.04  
2.02  
2.07  
2.04  
2.01  
1.98  
105°C  
85°C  
25°C  
-40°C  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D022  
D023  
VBIAS = 2.5 V  
CT = 1000 pF  
VEN = high to low  
VBIAS = 5 V  
CT = 1000 pF  
VEN = high to low  
Figure 21. tF vs VIN , VBIAS = 2.5 V  
Figure 22. tF vs VIN , VBIAS = 5 V  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
1400  
1300  
1200  
1100  
1000  
900  
105°C  
105°C  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
800  
700  
600  
500  
400  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D024  
D025  
VBIAS = 2.5 V  
CT = 1000 pF  
VEN = low to high  
VBIAS = 5 V  
CT = 1000 pF  
VEN = low to high  
Figure 23. tON vs VIN , VBIAS = 2.5 V  
Figure 24. tON vs VIN , VBIAS = 5 V  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Typical Switching Characteristics (continued)  
7.25  
6.4  
6.35  
6.3  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
7
6.75  
6.5  
-40°C  
6.25  
6.2  
6.25  
6
6.15  
6.1  
5.75  
5.5  
5.25  
5
6.05  
6
4.75  
5.95  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D02351  
D027  
VBIAS = 2.5 V  
CT = 1000 pF  
VEN = high to low  
VBIAS = 5 V  
CT = 1000 pF  
VEN = high to low  
Figure 25. tOFF vs VIN , VBIAS = 2.5 V  
Figure 26. tOFF vs VIN , VBIAS = 5 V  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
280  
570  
540  
510  
480  
450  
420  
390  
360  
330  
300  
270  
105°C  
105°C  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D028  
D029  
VBIAS = 2.5 V  
CT = 1000 pF  
VEN = low to high  
VBIAS = 5 V  
CT = 1000 pF  
VEN = low to high  
Figure 27. tD vs VIN , VBIAS = 2.5 V  
Figure 28. tD vs VIN , VBIAS= 5 V  
810  
800  
790  
780  
770  
760  
750  
740  
730  
720  
710  
700  
690  
105°C  
85°C  
25°C  
-40°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VBIAS (V)  
D030  
VIN = 2.5 V  
CT = 1000 pF  
VEN = low to  
high  
Figure 29. tR vs VBIAS  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
Typical Switching Characteristics (continued)  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
RL = 10 Ω  
Figure 30. Turn On Waveform, VBIAS = 2.5 V  
Figure 31. Turn Off Waveform, VBIAS = 2.5 V  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 32. Turn On Waveform, VBIAS = 5 V  
Figure 33. Turn Off Waveform, VBIAS = 5 V  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 34. Turn On Waveform, VBIAS = 2.5 V  
Figure 35. Turn Off Waveform, VBIAS = 2.5 V  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Typical Switching Characteristics (continued)  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
RL = 10 Ω  
Figure 36. Turn On Waveform, VBIAS = 5 V  
Figure 37. Turn Off Waveform, VBIAS = 5 V  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 38. Turn On Waveform, VBIAS = 5 V  
Figure 39. Turn Off Waveform, VBIAS = 5 V  
VIN = 5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 40. Turn On Waveform, VBIAS = 5 V  
Figure 41. Turn Off Waveform, VBIAS = 5 V  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
Typical Switching Characteristics (continued)  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = Open  
VIN = 5 V  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = Open  
CIN = 1 µF  
Figure 42. Turn On Waveform, No Load  
Figure 43. Turn On Waveform, No Load  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 1 Ω  
VIN = 5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 1 Ω  
Figure 44. Turn On Waveform, Heavy Load  
Figure 45. Turn On Waveform, Heavy Load  
VIN = 5 V  
VBIAS = 5 V  
CL = 100 µF  
CT = 1000 pF  
VIN = 5 V  
VBIAS = 5 V  
CL = 100 µF  
CT = 1000 pF  
CIN = 1 µF  
RL = 10 Ω  
CIN = 1 µF  
RL = 10 Ω  
Figure 46. PG Response to EN Falling (tDEGLITCH  
)
Figure 47. PG Response to SNS Falling with Auto-Restart  
(tDEGLITCH and tRESTART  
)
Copyright © 2015, Texas Instruments Incorporated  
19  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Typical Switching Characteristics (continued)  
VIN = 5 V  
VBIAS = 5 V  
CL = 100 µF  
CT = 1000 pF  
VIN = 5 V  
VBIAS = 5 CT = 1000  
V
pF  
CIN = 1 µF  
RL = 10 Ω  
CIN = 1 µF  
CL = 100  
µF  
RL = None  
Figure 48. PG Response to SNS Rising (tBLANK  
)
Figure 49. Quick Output Discharge of 100µF Load (tDIS  
)
20  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
9 Detailed Description  
9.1 Overview  
The TPS22953/4 are 5.7-V, 5-A load switches in 10-pin SON packages. To reduce voltage drop for low voltage,  
high current rails the device implements a low resistance N-channel MOSFET, which reduces the drop out  
voltage through the device at high currents. The integrated adjustable undervoltage lockout (UVLO) and  
adjustable power good (PG) threshold provides voltage monitoring as well as robust power sequencing.  
The adjustable rise time control of the device greatly reduces inrush current for a wide variety of bulk load  
capacitances, thereby reducing or eliminating power supply droop. The switch is independently controlled by an  
on/off input (EN), which is capable of interfacing directly with low-voltage control signals. A 15 Ω on-chip load  
resistor is integrated into the device for output quick discharge when switch is turned off.  
During shutdown, the device has very low leakage currents, thereby reducing unneccessary leakages for  
downstream modules during standby. Integrated power monitoring functionality, control logic, driver, power  
supply, and output discharge FET eliminates the need for any external components, which reduces solution size  
and BOM count.  
9.2 Functional Block Diagram  
Reverse Current  
Blocking*  
(TPS22953 Only)  
IN  
Power  
supply  
module  
BIAS  
PG  
EN  
Control  
Logic  
Driver  
VEN  
OUT  
CT  
Thermal  
Shutdown  
QOD Resistance*  
(TPS22954 Only)  
SNS  
VSNS  
GND  
(*) Only active when the switch is disabled.  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 On/Off Control (EN pin)  
The EN pin controls the state of the switch. When the voltage on EN has exceeded VIH,EN the switch will be  
enabled. When EN goes below VIL,EN the switch is disabled.  
The EN pin has a blanking time of tBLANK on the rising edge once the VIH,EN threshold has been exceeded. It also  
has a deglitch time of tDEGLITCH when the voltage has gone below VIL,EN  
.
The EN pin can also be configured via an external resistor divider to monitor a voltage signal for input UVLO.  
Refer to the equation and diagram below on how to configure the EN pin for input UVLO.  
REN2  
V
= V ´  
IN  
IH,EN  
REN1 + REN2  
(1)  
Where:  
VIH,EN = the rising threshold of the EN pin (see Electrical Characteristics table)  
VIN = the input voltage being monitored (this could be VIN, VBIAS, or an external power supply)  
REN1, REN2 = resistor divider values  
VIN or VBIAS  
REN1  
EN  
REN2  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
Feature Description (continued)  
9.3.2 Voltage Monitoring (SNS pin)  
The SNS pin of the device can be used to monitor the output voltage of the device or another voltage rail. The  
pin can be configured with an external resistor divider to set the desired trip point for the voltage being monitored  
or be tied to OUT directly. If the voltage on the SNS pin exceeds VIH,SNS, the voltage being monitored on the  
SNS pin is considered to be valid high. The voltage on the SNS pin must be greater than VIH,SNS for at least  
tBLANK before PG is asserted high. If the voltage on the SNS pin goes below VIL,SNS, then the switch will power  
cycle (i.e., the switch will be disabled and re-enabled). For proper functionality of the device, this pin must not be  
left floating. If a resistor divider is not being used for voltage sensing, this pin can be tied directly to VOUT  
.
The SNS pin has a blanking time of tBLANK on the rising edge once the VIH,SNS threshold has been exceeded. It  
has a deglitch time of tDEGLITCH when the voltage has gone below VIL,SNS  
.
Refer to the equation and diagram below on how to configure the SNS pin for voltage monitoring.  
RSNS2  
V
= VOUT  
´
IH,SNS  
R
SNS1 + RSNS2  
(2)  
Where:  
VIH,SNS = the rising threshold of the SNS pin (see Electrical Characteristics table)  
VOUT = voltage on the OUTpin  
RSNS1, RSNS2 = resistor divider values  
VOUT  
RSNS1  
SNS  
RSNS2  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Feature Description (continued)  
9.3.3 Power Good (PG Pin)  
The PG pin is only asserted high when the voltage on EN has exceeded VIH,EN and the voltage on SNS has  
exceeded VIH,SNS. There is a tBLANK time, typically 100µs, between the SNS voltage exceeding VIH,SNS and PG  
being asserted high. If the voltage on EN goes below VIL,EN or the voltage on SNS goes below VIL,SNS, PG will be  
de-asserted. There is a tDEGLITCH time, typically 5µs, between the EN voltage or SNS voltage going below their  
respective VIL levels and PG being pulled low.  
PG is an open drain pin and must be pulled up with a pull-up resistor. Be sure to never exceed the maximum  
operating voltage on this pin. If PG is not being used in the application, tie it to GND for proper device  
functionality.  
For proper PG operation, the BIAS voltage should be within the recommended operating range. In systems that  
are very sensitive to noise or have long PG traces, it is recommended to add a small capacitance from PG to  
GND to for decoupling.  
9.3.4 Supervisor Fault Detection and Automatic Restart  
The falling edge of the SNS pin below VIL,SNS is considered a fault case and will cause the load switch to be  
disabled for tRESTART (typically 2ms). After the tRESTART time, the switch will be automatically re-enabled as long  
as EN is still above VIH,EN . In the case the SNS pin is being used to monitor VOUT or a downstream voltage, the  
restart will help to protect against excessive over-current if there is a quick short to GND.  
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
tR  
0
tD  
VOUT  
90%  
Voltage  
Pulled  
Down  
OUT  
SNS  
10%  
0
tRESTART  
VSNS  
0
VIL,SNS  
VIH,SNS  
tBLANK  
tDEGLITCH  
VEN  
0
PG  
Time  
Figure 50. Automatic Restart after Quick Short to GND  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
Feature Description (continued)  
9.3.5 Manual Restart  
The falling edge of the SNS pin below VIL,SNS is considered a fault case and will cause the load switch to be  
disabled for tRESTART (typically 2ms). The SNS pin can be driven by an MCU to manually reset the load switch.  
After the tRESTART time, the switch will be automatically re-enabled as long as EN is still above VIH,EN , even is  
SNS is held low. The PG pin will stay low until the switch is re-enabled and the SNS pin rises above VIH,SNS  
.
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
tR  
0
tD  
VOUT  
90%  
OUT  
SNS  
10%  
0
tRESTART  
VSNS  
0
VIL,SNS  
tDEGLITCH  
VEN  
0
PG  
Time  
Figure 51. Manual Restart (SNS Held Low)  
If the SNS pin is brought above VIH,SNS within the tRESTART time, the switch will still wait to re-enable. The PG pin  
will also stay low until tBLANK after switch is re-enabled. In this case, PG will indicate when the switch is enabled  
and capable of being reset again.  
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
tR  
0
tD  
VOUT  
90%  
OUT  
SNS  
10%  
0
tRESTART  
VSNS  
0
VIL,SNS  
tBLANK  
tDEGLITCH  
VEN  
0
PG  
Time  
Figure 52. Manual Restart (SNS Toggled Low to High)  
Copyright © 2015, Texas Instruments Incorporated  
25  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Feature Description (continued)  
9.3.6 Thermal Shutdown  
If the junction temperature of the device exceeds TSD, the switch will be disabled. The device will be enabled  
once the junction temperature drops by TSDHYS as long as EN is still greater than VIH,EN  
.
9.3.7 Quick Output Discharge (QOD) (TPS22954 Only)  
The quick output discharge (QOD) transistor is engaged indefinitely whenever the switch is disabled and the  
recommended VBIAS voltage is met. During this state, the QOD resistance (RPD) will discharge VOUT to GND. It is  
not recommended to apply a continuous DC voltage to OUT when the device is disabled.  
The QOD transistor can remain active for a short period of time even after VBIAS looses power. This brief period  
of time is defined as tDIS. For best results, it is recommended the device get disabled before VBIAS goes below the  
minimum recommended voltage. The waveform below shows the behaviour when power is applied and then  
removed in a typical application.  
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
EN  
tBLANK  
VIH,EN  
VIL,EN  
0
tDEGLITCH  
VOUT  
OUT  
OUT  
VOUT < 100mV  
0
tDIS  
VSNS  
VIL,SNS  
tDEGLITCH  
VIH,SNS  
tBLANK  
SNS  
PG  
SNS  
PG  
0
VEN  
0
Time  
Figure 53. Power Applied and then Removed in a Typical Application  
At the end of the tDIS time, it is not guaranteed that VOUT will be 0V since the final voltage will be dependent upon  
the initial voltage and the CL capacitor. The final VOUT can be calculated with the following formula for a given  
initial voltage and CL capacitor.  
-t  
Vƒ = Vo ´ eRC  
(3)  
Where:  
Vf = final VOUT voltage  
Vo = initial VOUT voltage  
R = the value of the output discharge resistor, RPD (see Electrical Characteristics table)  
C = the output bulk capacitance on OUT  
9.3.8 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN VBIAS. The device will still be functional if VIN > VBIAS but it will  
exhibit RON greater than what is listed in the Electrical Characteristics table. See Figure 50 for an example of a  
typical device. Notice the increasing RON as VIN increases. Be sure to never exceed the maximum voltage rating  
for VIN and VBIAS  
.
26  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
Feature Description (continued)  
55  
50  
45  
40  
35  
30  
25  
20  
15  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
VBIAS = 5.7V  
10  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN (V)  
D031  
Figure 54. RON When VIN > VBIAS  
9.3.9 Adjustable Rise Time (CT pin)  
A capacitor to GND on the CT pin sets the slew rate for VOUT. An appropriate capacitance value should be  
placed on CT such that the IMAX and IPLS specifications of the device are not violated. The capacitor to GND on  
the CT pin should be rated for 25 V or higher. An approximate formula for the relationship between CT (except  
for CT = open) and the slew rate for any VBIAS is:  
SR = 0.35 × CT + 20  
where  
SR = slew rate (in μs/V)  
CT = the capacitance value on the CT terminal (in pF)  
The units for the constant 20 are μs/V.  
The units for the constant 0.35 are μs/(V*pF).  
(4)  
Rise time can be calculated by multiplying the input voltage (typically 10% to 90%) by the slew rate. The table  
below contains rise time values measured on a typical device.  
RISE TIME (µs) 10%–90%, CL = 0.1 µF, VBIAS = 2.5V to 5.7V, RL=10Ω LOAD.  
TYPICAL VALUES AT 25°C, 25V X7R 10% CERAMIC CAP  
CTx (pF)  
5V  
140  
3.3V  
98  
1.8V  
62  
1.5V  
54  
1.2V  
46  
0.7V  
32  
Open  
220  
444  
301  
175  
150  
255  
474  
961  
1980  
4331  
124  
210  
387  
787  
1612  
3533  
81  
470  
767  
518  
299  
133  
245  
490  
998  
2197  
1000  
2200  
4700  
10000  
1492  
3105  
6420  
14059  
994  
562  
2050  
4246  
9339  
1151  
2365  
5183  
9.4 Device Functional Modes  
The following Table describes what the OUT pin will be connected to for a particular device as determined by the  
EN pin.  
EN  
L
TPS22953  
OPEN  
IN  
TPS22954  
RPD to GND  
IN  
H
Copyright © 2015, Texas Instruments Incorporated  
27  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
This section will highlight some of the design considerations when implementing this device in various  
applications. A PSPICE model for this device is also available on www.ti.com for further aid.  
10.1.1 Input to OutputVoltage Drop  
The input to output voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN and VBIAS conditions of the device. Refer to the RON specification of the  
device in the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based  
upon the VIN and VBIAS voltage conditions, use Equation 5 to calculate the input to output voltage drop:  
DV = ILOAD ´RON  
(5)  
Where:  
ΔV = voltage drop from IN to OUT  
ILOAD = load current  
RON = On-Resistance of the device for a specific VIN and VBIAS  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
10.1.2 Thermal Considerations  
The maximum IC junction temperature should be restricted to just under the thermal shutdown (TSD) limit of the  
device. To calculate the maximum allowable dissipation, PD(max) for a given output current and ambient  
temperature, use Equation 6.  
TJ(max) - TA  
PD(max)  
=
qJA  
(6)  
Where:  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature before hitting thermal shutdown (see Electrical  
Characteristics table)  
TA = ambient temperature of the device  
θJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly  
dependent upon board layout.  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
Application Information (continued)  
10.1.3 Automatic Power Sequencing  
The PG pin of the TPS22953/54 allows for automatic sequencing of multiple system rails or loads. The accurate  
SNS voltage monitoring will ensure the first rail is up before the next starts to turn on. This approach provides  
robust system sequencing and reduces the total inrush current by preventing overlap. The example shows how  
two rails can be sequenced. There is no limit to the number of rails that can be sequenced in this way  
TPS22953/54  
System  
Module 1  
Power  
Supply  
IN  
OUT  
OUT  
SNS  
IN  
RSNS1  
VBIAS  
EN  
REN1  
RSNS2  
CIN  
CL  
REN2  
PG  
CT  
GND  
PAD  
CT  
TPS22953/54  
Power  
Supply  
System  
Module 2  
IN  
OUT  
OUT  
SNS  
IN  
RSNS1  
VBIAS  
EN  
REN1  
RSNS2  
CIN  
CL  
Rpullup  
PG  
REN2  
PG  
CT  
GND  
PAD  
CT  
Figure 55. Power Sequencing with PG Control  
Copyright © 2015, Texas Instruments Incorporated  
29  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
Application Information (continued)  
10.1.4 Monitoring a Downstream Voltage  
The SNS pin can be used to monitor other system voltages in addition to VOUT. The status of the monitored  
voltage will be indicated by the PG pin which can be pulled up to VOUT or another voltage. The figure below  
shows an example of the TPS22953/54 monitoring the output of a downstream DC/DC regulator. In this case, the  
switch will turn on when the power supply is above the UVLO, but the PG will not be asserted until the DC/DC  
regulator has started up.  
TPS22953/54  
DC/DC  
Regulator  
Power  
Supply  
IN  
OUT  
CL  
IN  
OUT  
RSNS1  
VBIAS  
EN  
SNS  
REN1  
RSNS2  
CIN  
RL  
Rpullup  
PG  
REN2  
PG  
CT  
GND  
PAD  
CT  
Figure 56. Monitoring a Downstream Voltage  
In this application, if the DC/DC Regulator is shut down, the supervisor will register this as a fault case and reset  
the load switch.  
10.1.4.1 Monitoring the Input Voltage  
The SNS pin can also be used to monitor VIN in the case a MCU GPIO is being used to control the EN. This will  
allow PG to report on the status of the input voltage when the switch is enabled.  
TPS22953/54  
Power  
Supply  
IN  
OUT  
CL  
CL  
IN  
OUT  
RSNS1  
VBIAS  
EN  
SNS  
RSNS2  
GPIO  
RL  
MCU  
Rpullup  
PG  
PG  
CT  
GND  
PAD  
CT  
Figure 57. Monitoring Input Voltage  
30  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
10.2 Typical Application  
This application demonstrates how the TPS22953/54 can use used to limit inrush current to output capacitance.  
TPS22953/54  
Power  
Supply  
IN  
OUT  
OUT  
SNS  
IN  
RSNS1  
VBIAS  
EN  
REN1  
RSNS2  
CIN  
CL = 100 µF  
RL  
Rpullup  
PG  
REN2  
PG  
CT  
GND  
PAD  
CT  
Figure 58. Typical Application Schematic for Powering a Downstream Module  
10.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
3.3 V  
5.0 V  
VBIAS  
CL  
47 µF  
150mA  
None  
Maximum Acceptable Inrush Current  
RL  
10.2.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
Input voltage  
BIAS voltage  
Load current  
Load capacitance  
Maximum acceptable inrush current  
10.2.2.1 Inrush Current  
To determine how much inrush current will be caused by the CL capacitor, use Equation 7:  
dVOUT  
I
= CL ´  
INRUSH  
dt  
(7)  
Where:  
IINRUSH = amount of inrush caused by CL  
CL = capacitance on VOUT  
dt = VOUT Rise Time (typically 10% to 90%)  
dVOUT = Change in VOUT Voltage (typically 10% to 90%)  
In this case, a Slew Rate slower than 314μs/V will be required to meet the maximum acceptable inrush  
requirement. Equation 4 can be used to estimate the CT capacitance required for this slew rate.  
314 μs/V = 0.35 × CT + 20  
(8)  
(9)  
CT = 840 pF  
Copyright © 2015, Texas Instruments Incorporated  
31  
 
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
10.2.3 Application Curves  
The following Application Curves show the inrush with multiple different CT values. These curves show only a CT  
capacitance greater than 840pF results in the acceptable inrush current of 150mA.  
CT = 0 pF  
CT = 220 pF  
Figure 59. Inrush with CT = 0 pF  
Figure 60. Inrush with CT = 220 pF  
CT = 470 pF  
CT = 1000 pF  
Figure 61. Inrush with CT = 470 pF  
Figure 62. Inrush with CT = 1000 pF  
CT = 2200 pF  
Figure 63. Inrush with CT = 2200 pF  
32  
Copyright © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
11 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 2.5V to 5.7V and a VIN range of 0.7 V to 5.7 V. The  
power supply should be well regulated and placed as close to the device terminals as possible. It must be able to  
withstand all transient and load current steps. In most situations, using an input capacitance of 1 µF is sufficient  
to prevent the supply voltage from dipping when the switch is turned on. In cases where the power supply is  
slow to respond to a large transient current or large load current step, additional bulk capacitance may be  
required on the input.  
The requirements for larger input capacitance can be mitigated by adding additional capacitance to the CT pin.  
This will cause the load switch to turn on more slowly. Not only will this reduce transient inrush current, but it will  
also give the power supply more time to respond to the load current step.  
12 Layout  
12.1 Layout Guidelines  
Input and Output traces should be as short and wide as possible to accommodate for high current.  
Use vias under the exposed thermal pad for thermal relief for high current operation.  
The CT Capacitor should be placed as close as possible to the device to minimize parasitic trace  
capacitance. It is also recommended to cutout copper on other layers directly below CT to minimize parasitic  
capacitance.  
The IN terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is ceramic with X5R or X7R dielectric. This capacitor should be placed as  
close to the device pins as possible.  
The OUT terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is ceramic with X5R or X7R dielectric. This capacitor should be placed as  
close to the device pins as possible.  
The BIAS terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is ceramic with X5R or X7R dielectric.  
版权 © 2015, Texas Instruments Incorporated  
33  
TPS22954, TPS22953  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
www.ti.com.cn  
12.2 Layout Example  
VIA to Power Ground Plane  
VIA to PG pin  
Input Bypass  
Capacitor  
Output Bypass  
Capacitor  
IN  
OUT  
OUT  
SNS  
PG  
IN  
To Bias Supply  
BIAS  
To µC  
EN  
GND  
CT  
To GPIO  
control or  
resistor  
divider  
Exposed Thermal  
Pad Area  
Figure 64. Recommended Board Layout  
34  
版权 © 2015, Texas Instruments Incorporated  
TPS22954, TPS22953  
www.ti.com.cn  
ZHCSDK9A MARCH 2015REVISED APRIL 2015  
13 器件和文档支持  
13.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS22953  
TPS22954  
13.2 商标  
All trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22953DQCR  
TPS22953DSQR  
TPS22954DQCR  
TPS22954DSQR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DQC  
DSQ  
DQC  
DSQ  
10  
10  
10  
10  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
RB953  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
ZFDI  
RB954  
ZDKI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Apr-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS22953, TPS22954 :  
Automotive : TPS22953-Q1, TPS22954-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22953DQCR  
TPS22953DQCR  
TPS22953DSQR  
TPS22953DSQR  
TPS22954DQCR  
TPS22954DSQR  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DQC  
DQC  
DSQ  
DSQ  
DQC  
DSQ  
10  
10  
10  
10  
10  
10  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
179.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
2.25  
2.3  
3.2  
3.25  
2.3  
1.0  
1.05  
1.15  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q1  
Q2  
2.2  
2.2  
2.25  
2.3  
3.25  
2.3  
1.05  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Nov-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22953DQCR  
TPS22953DQCR  
TPS22953DSQR  
TPS22953DSQR  
TPS22954DQCR  
TPS22954DSQR  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DQC  
DQC  
DSQ  
DSQ  
DQC  
DSQ  
10  
10  
10  
10  
10  
10  
3000  
3000  
3000  
3000  
3000  
3000  
195.0  
210.0  
210.0  
213.0  
210.0  
210.0  
200.0  
185.0  
185.0  
191.0  
185.0  
185.0  
45.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DQC0010A  
WSON - 0.8mm max height  
S
C
A
L
E
4
.
5
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.3  
0.2  
0.35  
0.25  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.84 0.1  
SYMM  
(0.2) TYP  
0.05  
0.00  
5
6
8X 0.5  
2X  
2
SYMM  
11  
2.4 0.1  
SEE OPTIONAL  
TERMINAL  
DETAIL  
1
10  
0.3  
10X  
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X0.2)  
C A B  
C
0.4  
10X  
0.2  
4218281/C 11/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQC0010A  
WSON - 0.8mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.84)  
(
0.2) TYP  
10X (0.5)  
VIA  
1
10  
10X (0.25)  
(0.95)  
11  
SYMM  
(2.4)  
8X (0.5)  
6
5
(R0.05) TYP  
SYMM  
(1.9)  
LAND PATTERN EXAMPLE  
SCALE: 30X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218281/C 11/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQC0010A  
WSON - 0.8mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.8)  
10X (0.5)  
10  
10X (0.25)  
1
(1.08)  
11  
SYMM  
8X (0.5)  
(0.64)  
METAL  
TYP  
6
5
(R0.05) TYP  
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 30X  
4218281/C 11/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DSQ0010A  
WSON - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.9 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
5
6
SYMM  
1.5 0.1  
11  
2X 1.6  
8X 0.4  
1
PIN 1 ID  
10  
0.25  
0.15  
10X  
0.4  
0.2  
10X  
0.1  
C A B  
0.05  
4218906/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSQ0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SEE SOLDER MASK  
DETAIL  
10X (0.5)  
10X (0.2)  
SYMM  
10  
1
(1.5)  
8X (0.4)  
11  
SYMM  
(0.5)  
(R0.05) TYP  
5
6
(
0.2) TYP  
VIA  
(1.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218906/A 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSQ0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.5)  
10X (0.2)  
(0.85)  
10  
1
8X (0.4)  
11  
SYMM  
(1.38)  
(R0.05) TYP  
5
6
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 11  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4218906/A 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS22954-Q1

TPS2295x-Q1 5.7-V, 5-A, 14-mΩ On-Resistance, Automotive Load Switch
TI

TPS22954DQCR

具有可调节上升时间、电压监控功能和输出放电功能的 5.7V、5A、14mΩ 负载开关 | DQC | 10 | -40 to 105
TI

TPS22954DSQR

具有可调节上升时间、电压监控功能和输出放电功能的 5.7V、5A、14mΩ 负载开关 | DSQ | 10 | -40 to 105
TI

TPS22954QDQCRQ1

具有可调节上升时间、电压监控功能和输出诊断功能的汽车类 5.7V、5A、14mΩ 负载开关 | DQC | 10 | -40 to 125
TI

TPS22958

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关
TI

TPS22958DGKR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGK | 8 | -40 to 105
TI

TPS22958DGNR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGN | 8 | -40 to 105
TI

TPS22958NDGKR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGK | 8 | -40 to 105
TI

TPS22958NDGNR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGN | 8 | -40 to 105
TI

TPS22959

具有输出放电功能的 5.5V、15A、4.4mΩ 负载开关
TI

TPS22959DNYR

具有输出放电功能的 5.5V、15A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22959DNYT

具有输出放电功能的 5.5V、15A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI