TPS22958NDGKR [TI]

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGK | 8 | -40 to 105;
TPS22958NDGKR
型号: TPS22958NDGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGK | 8 | -40 to 105

开关
文件: 总37页 (文件大小:2275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
TPS22958x 具有可调节上升时间的 5.5V4A/6A14mΩ 负载开关  
1 特性  
2 应用  
1
集成 N 通道负载开关  
输入电压范围:0.6V 5.5V  
VBIAS 电压范围:2.5V 5.5V  
RON 电阻  
电子销售点 (EPOS)  
工厂自动化/控制  
楼宇自动化  
打印机  
波峰焊制造  
VIN = 5V (VBIAS = 5V) 时,RON = 14m  
VIN = 3.3V (VBIAS = 5V) 时,RON = 13mΩ  
VIN = 1.8V (VBIAS = 5V) 时,RON = 13mΩ  
3 说明  
TPS22958x 是一款具有可调节上升时间的小型单通道  
负载开关。 此器件包含一个可在 0.6V 5.5V 输入电  
压范围内运行的 N 通道 MOSFET,并且可支持最大  
4ADGK 封装)或 6ADGN 封装)的持续电流。  
此开关可由一个打开/关闭输入控制,此输入可与低压  
控制信号直接对接。  
4A 最大持续开关电流(DGK 封装)  
6A 最大持续开关电流(DGN 封装)  
低静态电流  
VBIAS = 5V 时为 55µA  
低控制输入阈值支持使用  
1.2V/1.8V/2.5V/3.3V 逻辑电路  
可调节上升时间(1)  
快速输出放电 (QOD)(2)  
该器件的上升时间可从外部进行控制,从而避免涌入电  
流。 在 CT 引脚上连接一个电容即可更改上升时间:  
电容值越大,上升时间越长。 TPS22958x 提供 DGK  
DGN 两种节省空间的封装,其中 DGN 封装带有支  
持高功率耗散的散热焊盘,而 DGN 封装则不带有散热  
焊盘。 器件在自然通风环境下的额定运行温度范围为 -  
40℃ 至 105℃。  
DGK 8 引脚封装:  
3.0mm x 4.9mm x 1.1mm0.65mm 间距  
带有散热焊盘的 DGK 8 引脚封装:  
3.0mm x 4.9mm x 1.1mm0.65mm 间距  
静电放电 (ESD) 性能经测试符合 JEDEC STD 标  
准。  
器件信息(1)  
2kV 人体模型 (HBM) 1kV 器件充电模型  
器件编号  
TPS22958x  
封装(引脚)  
DGK (8)  
DGN (8)  
封装尺寸(标称值)  
3.00mm x 4.90mm  
3.00mm x 4.90mm  
(CDM)  
闩锁性能超出 100mA,符合 JESD 78 II 类规范的  
要求  
通用输入输出 (GPIO) 使能 - 高电平有效  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
(1)  
有关 CT 值与上升时间的关系,请参见Adjustable Rise Time  
部分  
(2)  
TPS22958N 器件不具备该特性。  
典型应用电路原理图  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCX7  
 
 
 
 
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics (VBIAS = 5 V)..................... 6  
7.6 Electrical Characteristics (VBIAS = 3.3 V).................. 7  
7.7 Electrical Characteristics (VBIAS = 2.5 V).................. 8  
7.8 Switching Characteristics.......................................... 9  
7.9 Typical DC Characteristics...................................... 10  
7.10 Typical AC Characteristics.................................... 13  
Parameter Measurement Information ................ 16  
9
Detailed Description ............................................ 17  
9.1 Overview ................................................................. 17  
9.2 Functional Block Diagram ....................................... 17  
9.3 Feature Description................................................. 17  
9.4 Device Functional Modes........................................ 19  
10 Application and Implementation........................ 20  
10.1 Application Information.......................................... 20  
10.2 Typical Application ................................................ 21  
11 Power Supply Recommendations ..................... 24  
12 Layout................................................................... 24  
12.1 Layout Guidelines ................................................. 24  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 相关链接................................................................ 26  
13.2 ....................................................................... 26  
13.3 静电放电警告......................................................... 26  
13.4 术语表 ................................................................... 26  
14 机械封装和可订购信息 .......................................... 26  
8
4 修订历史记录  
Changes from Original (January 2014) to Revision A  
Page  
完整版的最初发布版本。 ....................................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
5 Device Comparison Table  
RON AT  
DEVICE  
QUICK OUTPUT  
DISCHARGE  
MAX OUTPUT  
CURRENT  
RISE TIME  
ENABLE  
VIN = VBIAS = 5V  
TPS22958DGK  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
Yes  
Yes  
No  
4 A  
6 A  
4 A  
6 A  
TPS22958DGN  
14 mΩ  
Active High  
TPS22958NDGK  
TPS22958NDGN  
No  
6 Pin Configuration and Functions  
PACKAGE (TOP VIEW)  
VIN  
ON  
1
2
3
4
8
7
6
5
VOUT  
CT  
VIN  
ON  
1
2
3
4
8
7
6
5
VOUT  
CT  
VBIAS  
VIN  
GND  
VOUT  
VBIAS  
VIN  
GND  
VOUT  
DGK Package  
DGN Package  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1, 4  
2
NAME  
Switch input. Bypass this input with a ceramic capacitor to GND. These pins should be tied together as  
shown in Layout Information.  
VIN  
I
I
I
ON  
Active-high switch control input. Do not leave floating.  
Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5 to 5.5 V. See  
VIN and VBIAS Voltage Range .  
3
VBIAS  
5, 8  
6
VOUT  
GND  
CT  
O
O
Switch output  
Ground  
7
Switch slew rate control. Can be left floating.  
Thermal  
Pad(1)  
Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See Layout Guidelines for  
layout guidelines.  
(1) Only available for the DGN package  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature (unless otherwise noted)(1)  
(2)  
MIN  
–0.3  
MAX  
UNIT  
V
VIN  
Input voltage  
Bias voltage  
Output voltage  
ON voltage  
6
6
VBIAS  
VOUT  
VON  
–0.3  
–0.3  
–0.3  
V
6
V
6
V
Maximum continuous switch current, TA = 65°C (DGK Package)  
Maximum continuous switch current, TA = 75°C (DGN Package)  
Maximum pulsed switch current, pulse <300 µs, 2% duty cycle (DGK Package)  
Maximum pulsed switch current, pulse <300 µs, 2% duty cycle (DGN Package)  
Maximum junction temperature  
4
A
IMAX  
6
A
6
A
IPLS  
8
A
TJ  
125  
°C  
°C  
Tstg  
Storage temperature range  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
MIN  
0.6  
2.5  
0
MAX  
VBIAS  
5.5  
UNIT  
V
VIN  
Input voltage range  
VBIAS  
VON  
Bias voltage range  
V
ON voltage range  
5.5  
V
VOUT  
VIH, ON  
VIL, ON  
TA  
Output voltage range  
High-level input voltage, ON  
Low-level input voltage, ON  
Operating free-air temperature  
Input capacitor  
VIN  
V
VBIAS = 2.5 to 5.5 V  
VBIAS = 2.5 to 5.5 V  
1.2  
0
5.5  
V
0.5  
V
(1)  
–40  
1(2)  
105  
°C  
µF  
CIN  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (RθJA), as given by the following equation: TA(max) = TJ(max) – (RθJA × PD(max)).  
(2) Refer to the Application Information section.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
7.4 Thermal Information  
TPS22958x  
UNIT  
THERMAL METRIC(1) (2)  
DGK  
DGN  
(8 PINS)  
(8 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
185.7  
77.3  
107.0  
15.2  
105.4  
n/a  
67.0  
66.5  
46.8  
5.0  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
46.6  
14.9  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
7.5 Electrical Characteristics (VBIAS = 5 V)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C TA 105°C and VBIAS = 5 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
54  
0.5  
60  
60  
1
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
IOUT = 0, VIN = VON = VBIAS = 5 V  
VON = 0 V, VOUT = 0 V, VBIAS = 5 V  
µA  
µA  
ISD, VBIAS  
1
0.5  
8
VIN = 5 V  
10  
3
0.1  
VIN = 3.3 V  
VIN = 1.8 V  
VIN= 1.2 V  
VIN = 0.6 V  
4
0.07  
0.05  
0.04  
2
ISD, VIN  
VIN shutdown current  
VON = 0 V, VOUT = 0 V, VBIAS = 5 V  
µA  
µA  
3
1
2
1
2
ION  
ON pin input leakage current  
VON = 5.5 V, VBIAS = 5 V  
0.1  
RESISTANCE CHARACTERISTICS  
25°C  
14  
13  
18  
VIN = 5 V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
24  
17  
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.6 V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
RON  
ON-state resistance  
IOUT = –200 mA, VBIAS = 5 V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
20 mΩ  
23  
RPD  
Output pulldown resistance  
VIN = VBIAS = 5 V, VON = 0 V, IOUT = 10 mA  
135  
160  
Ω
6
Copyright © 2015, Texas Instruments Incorporated  
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
7.6 Electrical Characteristics (VBIAS = 3.3 V)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C TA 105°C and VBIAS = 3.3 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
23  
0.3  
27  
27  
0.7  
0.7  
3
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
IOUT = 0, VIN = VON = VBIAS = 3.3 V  
VON = 0 V, VOUT = 0 V, VBIAS = 3.3 V  
µA  
µA  
ISD, VBIAS  
0.1  
VIN = 3.3 V  
VIN = 1.8 V  
VIN= 1.2 V  
VIN = 0.6 V  
4
0.07  
0.05  
0.04  
2
3
ISD, VIN  
VIN shutdown current  
VON = 0 V, VOUT = 0 V, VBIAS = 3.3 V  
µA  
µA  
1
2
1
2
ION  
ON pin input leakage current  
VON = 5.5 V, VBIAS = 3.3 V  
0.1  
RESISTANCE CHARACTERISTICS  
25°C  
14  
13  
18  
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.6 V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
24  
17  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
RON  
ON-state resistance  
IOUT = –200 mA, VBIAS = 3.3 V  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
25°C  
20 mΩ  
23  
13  
17  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
20 mΩ  
23  
RPD  
Output pulldown resistance  
VIN = VBIAS = 3.3 V, VON = 0 V, IOUT = 10 mA  
135  
160  
Ω
Copyright © 2015, Texas Instruments Incorporated  
7
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
7.7 Electrical Characteristics (VBIAS = 2.5 V)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40 °C TA 105 °C and VBIAS = 2.5 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
14  
0.2  
17  
17  
0.5  
0.5  
3
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
IOUT = 0, VIN = VON = VBIAS = 2.5 V  
VON = 0 V, VOUT = 0 V, VBIAS = 2.5 V  
µA  
µA  
ISD, VBIAS  
0.1  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 0.6 V  
4
0.07  
0.05  
0.04  
2
3
ISD, VIN  
VIN shutdown current (per channel)  
ON pin input leakage current  
VON = 0 V, VOUT = 0 V, VBIAS = 2.5 V  
µA  
µA  
1
2
1
2
ION  
VON = 5.5 V, VBIAS = 2.5 V  
0.1  
RESISTANCE CHARACTERISTICS  
25°C  
15  
14  
19  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.6 V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
23 mΩ  
26  
18  
-40°C to 85°C  
-40°C to 105°C  
25°C  
22 mΩ  
25  
14  
18  
RON  
ON-state resistance  
IOUT = –200 mA, VBIAS = 2.5 V  
-40°C to 85°C  
-40°C to 105°C  
25°C  
22 mΩ  
25  
14  
18  
-40°C to 85°C  
-40°C to 105°C  
25°C  
22 mΩ  
25  
13  
18  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 105°C  
22 mΩ  
25  
RPD  
Output pulldown resistance  
VIN = VBIAS = 2.5 V, VON = 0 V, IOUT = 10 mA  
135  
160  
Ω
8
Copyright © 2015, Texas Instruments Incorporated  
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
7.8 Switching Characteristics  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIN = VON = VBIAS = 5 V, TA = 25 °C  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
646  
5
769  
2
µs  
tF  
tD  
280  
VIN = 0.6 V, VON = VBIAS = 5 V, TA = 25 ºC  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
303  
91  
126  
7
µs  
µs  
µs  
tF  
tD  
243  
VIN = 2.5 V, VON = 5 V, VBIAS = 2.5V, TA = 25 ºC  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
983  
7
987  
2
tF  
tD  
518  
VIN = 0.6 V, VON = 5 V, VBIAS = 2.5 V, TA = 25 ºC  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
611  
77  
305  
7
tF  
tD  
468  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
7.9 Typical DC Characteristics  
80  
70  
60  
50  
40  
30  
20  
10  
65  
63  
61  
59  
57  
55  
53  
51  
49  
47  
45  
-40°C  
25°C  
85°C  
105°C  
-40°C  
25°C  
85°C  
105°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VBIAS (V)  
VIN (V)  
D001  
D002  
VIN = VBIAS  
VOUT = Open  
VON = 5 V  
VBIAS = 5 V  
VON = 5 V  
VOUT = Open  
Figure 1. Quiescent Current vs VBIAS  
Figure 2. Quiescent Current vs VIN  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105°C  
105°C  
-0.2  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VBIAS (V)  
VIN (V)  
D003  
D004  
VIN = VBIAS  
VOUT = 0 V  
VON = 0 V  
VBIAS = 5 V  
VOUT = 0 V  
VON = 0 V  
Figure 3. Shutdown Current vs VBIAS  
Figure 4. VIN Shutdown Current vs VIN  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
4
4
VIN = 0.6V  
VIN = 0.6V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 5V  
2
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (qC)  
Ambient Temperature (qC)  
D005  
D006  
VBIAS = 2.5 V  
VON = 5 V  
IOUT = –200 mA  
VBIAS = 5 V  
VON = 5 V  
IOUT = –200 mA  
Figure 5. RON vs Temperature  
Figure 6. RON vs Temperature  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
Typical DC Characteristics (continued)  
20  
25  
23  
21  
19  
17  
15  
13  
11  
9
VIN = 0.6V  
VIN = 3.3V  
VIN = 5V  
-40°C  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
25°C  
85°C  
105°C  
7
5
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
IOUT (A)  
VIN (V)  
D007  
D008  
VBIAS = 5 V  
VON = 5 V  
TA = 25°C  
VBIAS = 2.5 V  
VON = 5V  
IOUT = –200 mA  
Figure 7. RON vs IOUT (DGN Package)  
Figure 8. RON vs VIN  
25  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
-40°C  
25°C  
85°C  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
23  
21  
19  
17  
15  
13  
11  
9
105°C  
VBIAS = 5.5V  
7
5
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
VIN (V)  
D009  
D012  
VBIAS = 5 V  
VON = 5 V  
IOUT = –200 mA  
TA = 25°C  
VON = 5 V  
IOUT = –200 mA  
Figure 9. RON vs VIN  
Figure 10. RON vs VIN  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
150  
148  
146  
144  
142  
140  
138  
136  
134  
132  
VIN = 0.6V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
-40°C  
25°C  
85°C  
105°C  
12.0  
2.5  
130  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VBIAS (V)  
VBIAS (V)  
D013  
D014  
TA = 25°C  
VON = 5 V  
IOUT = –200 mA  
VIN = 1.8 V  
IOUT = 10 mA  
VON = 0 V  
Figure 11. RON vs VBIAS  
Figure 12. RPD vs VBIAS  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
Typical DC Characteristics (continued)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
VBIAS = 5.5V  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
VON (V)  
D015  
TA = 25°C  
VIN = 2 V  
Figure 13. VOUT vs VON  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
7.10 Typical AC Characteristics  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω (unless otherwise specified)  
700  
600  
500  
400  
300  
200  
100  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
-40qC  
25qC  
85qC  
105qC  
-40qC  
25qC  
85qC  
105qC  
0.0  
0.5  
1.0  
1.5  
VIN (V)  
2.0  
2.5  
2.5  
2.5  
3.0  
0.0  
1.0  
2.0  
3.0  
VIN (V)  
4.0  
5.0  
5.0  
5.0  
6.0  
D016  
D017  
VBIAS = 2.5 V  
CT= 1000 pF  
Figure 14. tD vs VIN  
VBIAS = 5 V  
CT = 1000 pF  
Figure 15. tD vs VIN  
20  
20  
18  
16  
14  
12  
10  
8
-40qC  
25qC  
85qC  
105qC  
-40qC  
25qC  
85qC  
105qC  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
VIN (V)  
2.0  
3.0  
1.0  
2.0  
3.0  
VIN (V)  
4.0  
6.0  
D018  
D019  
VBIAS = 2.5 V  
CT = 1000 pF  
Figure 16. tF vs VIN  
VBIAS = 5 V  
CT = 1000 pF  
Figure 17. tF vs VIN  
200  
200  
180  
160  
140  
120  
100  
80  
-40qC  
25qC  
85qC  
-40qC  
180  
160  
140  
120  
100  
80  
25qC  
85qC  
105qC  
105qC  
60  
60  
40  
40  
20  
20  
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
3.0  
1.0  
2.0  
3.0  
4.0  
6.0  
VIN (V)  
VIN (V)  
D020  
D021  
VBIAS = 2.5 V  
CT = 1000 pF  
Figure 18. tOFF vs VIN  
VBIAS = 5 V  
CT = 1000 pF  
Figure 19. tOFF vs VIN  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
Typical AC Characteristics (continued)  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
800  
700  
600  
500  
400  
300  
200  
100  
-40qC  
25qC  
85qC  
105qC  
-40qC  
25qC  
85qC  
105qC  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
VIN (V)  
D022  
D023  
VBIAS = 2.5 V  
CT = 1000 pF  
VBIAS = 5 V  
CT = 1000 pF  
Figure 21. tON vs VIN  
Figure 20. tON vs VIN  
1200  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40qC  
25qC  
85qC  
105qC  
-40qC  
25qC  
85qC  
105qC  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
VIN (V)  
D024  
D025  
VBIAS = 2.5 V  
CT = 1000 pF  
VBIAS = 5 V  
CT = 1000 pF  
Figure 23. tR vs VIN  
Figure 22. tR vs VIN  
1200  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
-40°C  
25°C  
85°C  
CT=0pF  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
CT=220pF  
CT=470pF  
CT=1000pF  
CT=2200pF  
CT=4700pF  
CT=10000pF  
105°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
1
2
3
4
5
6
VBIAS (V)  
VIN (V)  
D026  
D027  
VIN = 2.5 V  
CT = 1000 pF  
VBIAS = 5 V  
TA = 25°C  
Figure 24. tR vs VBIAS  
Figure 25. tR vs VIN  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
Typical AC Characteristics (continued)  
VIN = 0.6 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
VIN = 0.6 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
RL = 10 Ω  
Figure 26. Turn-on Response Time  
Figure 27. Turn-on Response Time  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 28. Turn-on Response Time  
Figure 29. Turn-on Response Time  
VIN = 0.6 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
VIN = 0.6 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
RL = 10 Ω  
Figure 30. Turn-Off Response Time  
Figure 31. Turn-off Response Time  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
Typical AC Characteristics (continued)  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
VIN = 5 V  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
CIN = 1 µF  
RL = 10 Ω  
Figure 32. Turn-off Response Time  
Figure 33. Turn-on Response Time  
8 Parameter Measurement Information  
Figure 34. Test Circuit and Timing Waveforms  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
9 Detailed Description  
9.1 Overview  
This device is a 5.5 V, 4 A / 6 A, single channel load switch with an adjustable rise time. The device contains an  
N-channel MOSFET controlled by an on/off GPIO-compatible input. The ON pin must be connected and cannot  
be left floating. The device is designed to control the turn-on rate and therefore the inrush current. By controlling  
the inrush current, power supply sag can be reduced during turn on. The slew rate is set by connecting a  
capacitor from the CT pin to GND.  
The slew rate is proportional to the capacitor on the CT pin. Refer to the Adjustable Rise Time section to  
determine the correct CT value for a desired rise time.  
The internal circuitry is powered by the VBIAS pin, which supports voltages from 2.5 to 5.5 V. This circuitry  
includes the charge pump, QOD, and control logic. For these internal blocks to function correctly, a voltage  
between 2.5 and 5.5 V must be supplied to VBIAS.  
When a voltage is supplied to VBIAS and the ON pin goes low, the QOD turns on. This connects VOUT to GND  
through an on-chip resistor and is not a feature for the TPS22958N. The typical pull-down resistance (RPD) is 135  
Ω.  
9.2 Functional Block Diagram  
9.3 Feature Description  
9.3.1 ON/OFF Control  
The ON pin controls the state of the switch. Asserting ON high enables the switch. ON is active high and has a  
low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard  
GPIO logic threshold. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot  
be left floating and must be tied either high or low for proper functionality.  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
Feature Description (continued)  
9.3.2 Quick Output Discharge (QOD)  
The TPS22958 includes a QOD feature while the TPS22958N does not. When the device is disabled, a  
discharge resistor is connected between VOUT and GND. This resistor has a typical value of 135 and  
prevents the output from floating while the switch is disabled.  
9.3.3 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN VBIAS. The device will still function if VIN > VBIAS but will exhibit an  
RON greater than what is listed in the Electrical Characteristics table. See Figure 35 for an example of a typical  
device. RON increases as VIN exceeds the VBIAS voltage. For the maximum voltage ratings on the VIN and VBIAS  
pins, please refer to the Absolute Maximum Ratings table.  
20  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
VBIAS = 5.5V  
19  
18  
17  
16  
15  
14  
13  
12  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
D028  
TA = 25°C  
IOUT = -200 mA  
VON = 5 V  
Figure 35. RON vs VIN  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
Feature Description (continued)  
9.3.4 Adjustable Rise Time  
A capacitor from the CT pin to GND sets the slew rate, and it should be rated for 25 V and above. An  
approximate formula for the relationship between CT and slew rate with VBIAS = 5 V is:  
SR = 0.146 × CT + 14.78  
where  
SR = slew rate (in µs/V)  
CT = the capacitance value on the CT pin (in pF)  
The units for the constant 14.78 is µs/V.  
The units for the constant 0.146 is µs/(V×pF)  
(1)  
Rise time can be calculated by multiplying the input voltage by the slew rate. Table 1 contains rise time values  
measured on a typical device.  
Table 1. Rise Time Table  
RISE TIME (µs) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10 , VBIAS = 5 V  
Typical values at 25°C with a 25-V X7R 10% ceramic capacitor on CT  
CTx (pF)  
VIN = 5 V VIN = 3.3 V VIN = 1.8 V VIN = 1.5 V VIN = 1.2 V VIN = 0.8 V VIN = 0.6 V  
0
79  
59  
41  
97  
37  
86  
33  
74  
26  
55  
23  
48  
220  
227  
158  
470  
397  
270  
160  
301  
640  
1315  
2778  
139  
258  
548  
1128  
2372  
116  
211  
450  
927  
1950  
88  
72  
1000  
2200  
4700  
10000  
769  
522  
153  
315  
656  
1379  
126  
256  
528  
1103  
1659  
3445  
7310  
1118  
2314  
4884  
9.4 Device Functional Modes  
The following table lists the VOUT pin connections for a particular device as determined by the ON pin.  
Table 2. VOUT Functional Table  
ON (Control Input)  
TPS22958  
GND  
TPS22958N  
Open  
L
H
VIN  
VIN  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
 
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
10 Application and Implementation  
10.1 Application Information  
10.1.1 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a  
discharged load capacitor, a capacitor can be placed between VIN and GND. A 1 µF ceramic capacitor, CIN,  
placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop  
during high-current application. When switching heavy loads, TI recommends to have an input capacitor about  
10× higher than the output capacitor to avoid excessive voltage drop.  
10.1.2 Output Capacitor (Optional)  
Due to the integrated body diode in the NMOS switch, TI recommends a CIN greater than CL. A CL greater than  
CIN can cause the voltage on VOUT to exceed VIN when the system supply is removed. This could result in  
current flow through the body diode from VOUT to VIN. TI recommends a CIN to CL ratio of 10 to 1 for minimizing  
VIN dip caused by inrush currents during startup.  
10.1.3 Power Supply Sequencing Without a GPIO Input  
2.5 V to 5.5 V  
VBIAS  
Li-Ion 1S battery or  
DC/DC controller  
VIN  
VOUT  
CIN  
COUT1  
Module 1  
TPS22958x  
ON  
CT  
GND  
CT1  
2.5 V to 5.5 V  
VBIAS  
VIN  
VOUT  
COUT2  
Module 2  
TPS22958x  
ON  
CT  
GND  
CT2  
Figure 36. Power Supply Sequencing Without a GPIO Input  
In many end equipments, there is a need to power up various modules in a pre-determined manner. The  
TPS22958x can solve the problem of power sequencing without adding any complexity to the overall system.  
Figure 36 shows the configuration required for powering up two modules in a fixed sequence. The output of the  
first load switch is tied to the enable of the second load switch, so when Module 1 is powered the second load  
switch is enabled and Module 2 is powered.  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
10.2 Typical Application  
This application demonstrates how the TPS22958 can be used to power a downstream load with a large  
capacitance. The example in Figure 37 is powering a 22 µF capacitive output load.  
Figure 37. Typical Application Schematic  
10.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 3. Design Parameters  
DESIGN PARAMETER  
VIN  
EXAMPLE VALUE  
3.3 V  
5.0 V  
4 A  
VBIAS  
Load current  
Output capacitance (CL)  
Allowable inrush current on VOUT  
22 µF  
0.33 A  
10.2.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
VIN voltage  
VBIAS voltage  
Load current  
Allowable inrush current on VOUT due to CL capacitor  
10.2.2.1 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN and VBIAS conditions of the device. Refer to the RON specification of the  
device in the Electrical Characteristics table. After the RON of the device is determined based upon the VIN and  
VBIAS conditions, use Equation 2 to calculate the VIN to VOUT voltage drop:  
DV = ILOAD ´RON  
where  
ΔV = voltage drop from VIN to VOUT  
ILOAD = load current  
RON = On-resistance of the device for a specific VIN and VBIAS combination  
(2)  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
 
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
10.2.2.2 Inrush Current  
To determine how much inrush current will be caused by the CL capacitor, use Equation 3.  
dVOUT  
I
= CL ´  
INRUSH  
dt  
where  
IINRUSH = amount of inrush caused by CL  
CL = capacitance on VOUT  
dt = time it takes for change in VOUT during the ramp up of VOUT when the device is enabled  
dVOUT = change in VOUT during the ramp up of VOUT when the device is enabled  
(3)  
The device offers adjustable rise time for VOUT and allows the user to control the inrush current during turn-on  
through the CT pin. The appropriate rise time can be calculated using the design requirements and the inrush  
current equation (Equation 3).  
330 mA = 22 µF × 3.3 V / dt  
dt = 22 µF × 3.3 V / 300mA  
dt = 220 µs  
(4)  
(5)  
(6)  
To ensure an inrush current of less than 330 mA, choose a CT based on Table 1 or Equation 1 value that will  
yield a rise time of more than 220 µs. See the oscilloscope captures in the Application Curves for an example of  
how the CT capacitor can be used to reduce inrush current. See Table 1 for correlation between rise times and  
CT values.  
An appropriate CL value should be placed on VOUT such that the IMAX and IPLS specifications of the device are  
not violated.  
10.2.2.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use  
Equation 7.  
TJ(MAX) - TA  
=
P
D(MAX)  
RθJA  
where  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (125°C for the TPS22958)  
TA = ambient temperature of the device  
R
θJA = junction to air thermal impedance. See Thermal Information . This parameter is highly dependent upon  
board layout. (7)  
For the DGK package, VBIAS = 5 V, and VIN = 3.3 V, the maximum ambient temperature with a 4 A load can be  
determined by using the following calculation:  
White Space  
PD = I2 × R  
(8)  
(9)  
White Space  
TA = TJ(MAX) – RθJA × PD  
White Space  
TA = TJ(MAX) – RθJA × I2 × R  
(10)  
White Space  
TA = 125°C – 185.7°C/W × (4 A)2 × 20 mΩ = 65.6°C  
(11)  
White Space  
Therefore, with the conditions mentioned above, a maximum ambient temperature of 65.6°C is recommended.  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
For the DGN package, VBIAS = 5 V, and VIN = 3.3 V, the maximum ambient temperature with a 4 A load can be  
determined by using the following calculation:  
White Space  
PD = I2 × R  
(12)  
(13)  
(14)  
(15)  
White Space  
TA = TJ(MAX) – RθJA × PD  
White Space  
TA = TJ(MAX) – RθJA × I2 × R  
White Space  
TA = 125°C – 67.0°C/W × (4 A)2 × 20 mΩ = 103.6°C  
White Space  
Therefore, with the conditions mentioned above, a maximum ambient temperature of 103.6°C is recommended.  
10.2.3 Application Curves  
The three scope captures show the usage of a CT capacitor in conjunction with the device. A higher CT value  
results in a slower rise and a lower inrush current.  
VBIAS = 5 V  
CT = Open  
VIN = 3.3 V  
CL = 22µF  
TA = 25°C  
VBIAS = 5 V  
CT = 220 pF  
VIN = 3.3 V  
CL = 22µF  
TA = 25°C  
Figure 38. Inrush Current Without CT Capacitor  
Figure 39. Inrush Current With CT = 220 pF  
VBIAS = 5 V  
CT = 470 pF  
VIN = 3.3 V  
CL = 22µF  
TA = 25°C  
Figure 40. Inrush Current With CT = 470 pF  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
11 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 2.5 to 5.5 V and VIN range of 0.6 to 5.5 V. The power  
supply should be well regulated and placed as close to the device terminals as possible. It must be able to  
withstand all transient and load current steps. In most situations, using the minimum recommended input  
capacitance of 1 uF is sufficient to prevent the supply voltage from dipping when the switch is turned on. In  
cases where the power supply is slow to respond to a large transient current or large load current step, additional  
bulk capacitance may be required on the input. To avoid ringing on the VBIAS pin from a noisy power supply, a  
bypass capacitance of 0.1 µF is recommended.  
The requirements for large input capacitance can be mitigated by adding additional capacitance to the CT pin.  
This will cause the load switch to turn on more slowly. Not only will this reduce transient inrush current, but it will  
also give the power supply more time to respond to the load current step.  
12 Layout  
12.1 Layout Guidelines  
VIN and VOUT traces should be as short and wide as possible to accommodate for high current. When  
connecting the two VIN or VOUT pins together, an equal trace length should be used to avoid an unequal  
distribution of current through each pin.  
Use vias under the exposed thermal pad to connect to the power ground plane for thermal relief during high  
current operation.  
VIN pins should be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended  
bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be placed as close to  
the device pins as possible.  
VOUT pins should be bypassed to ground with low-ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating.  
This capacitor should be placed as close to the device pins as possible.  
The CT capacitor should be placed as close to the device pins as possible. The typical recommended CT  
capacitance is a capacitor of X5R or X7R dielectric rating with a rating of 25 V or higher.  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPS22958, TPS22958N  
www.ti.com.cn  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
12.2 Layout Example  
VIA to Power Ground  
Plane  
VIA to another layer  
VOUT Bypass  
Capacitor  
VIN Bypass  
Capacitor  
VIN  
ON  
VOUT  
CT  
CT Capacitor  
VBIAS  
VIN  
GND  
VOUT  
DGN Package  
VOUT Bypass  
Capacitor  
VIN Bypass  
Capacitor  
VIN  
ON  
VOUT  
CT  
CT Capacitor  
VBIAS  
VIN  
GND  
VOUT  
DGK Package  
版权 © 2015, Texas Instruments Incorporated  
25  
TPS22958, TPS22958N  
ZHCSDJ0A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
13 器件和文档支持  
13.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS22958  
TPS22958N  
13.2 商标  
All trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22958DGKR  
TPS22958DGNR  
TPS22958NDGKR  
TPS22958NDGNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
HVSSOP  
VSSOP  
DGK  
DGN  
DGK  
DGN  
8
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
(ZBUO, ZBUX)  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
ZBVX  
ZBWX  
ZBXX  
HVSSOP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22958DGKR  
TPS22958DGKR  
TPS22958DGNR  
TPS22958NDGKR  
TPS22958NDGNR  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
3.3  
3.4  
3.4  
3.4  
3.4  
1.3  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
HVSSOP DGN  
VSSOP DGK  
HVSSOP DGN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22958DGKR  
TPS22958DGKR  
TPS22958DGNR  
TPS22958NDGKR  
TPS22958NDGNR  
VSSOP  
VSSOP  
DGK  
DGK  
DGN  
DGK  
DGN  
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
346.0  
364.0  
364.0  
364.0  
364.0  
346.0  
364.0  
364.0  
364.0  
364.0  
35.0  
27.0  
27.0  
27.0  
27.0  
HVSSOP  
VSSOP  
HVSSOP  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DGN 8  
3 x 3, 0.65 mm pitch  
PowerPAD VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225482/A  
www.ti.com  
PACKAGE OUTLINE  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE PACKAGE  
C
5.05  
4.75  
TYP  
A
0.1 C  
SEATING  
PLANE  
PIN 1 INDEX AREA  
6X 0.65  
8
1
2X  
3.1  
2.9  
1.95  
NOTE 3  
4
5
0.38  
8X  
0.25  
3.1  
2.9  
0.13  
C A B  
B
NOTE 4  
0.23  
0.13  
SEE DETAIL A  
EXPOSED THERMAL PAD  
4
5
0.25  
GAGE PLANE  
2.15  
1.95  
9
1.1 MAX  
8
0.15  
0.05  
1
0.7  
0.4  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1.846  
1.646  
4225480/B 12/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(2)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(1.57)  
SOLDER MASK  
DEFINED PAD  
SYMM  
8X (1.4)  
(R0.05) TYP  
8
8X (0.45)  
1
(3)  
NOTE 9  
SYMM  
(1.89)  
9
(1.22)  
6X (0.65)  
5
4
(
0.2) TYP  
VIA  
SEE DETAILS  
(0.55)  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225480/B 12/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(1.57)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
(R0.05) TYP  
8X (1.4)  
8
1
8X (0.45)  
(1.89)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
6X (0.65)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
(4.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD 9:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
1.76 X 2.11  
1.57 X 1.89 (SHOWN)  
1.43 X 1.73  
0.125  
0.15  
0.175  
1.33 X 1.60  
4225480/B 12/2022  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS22958NDGNR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGN | 8 | -40 to 105
TI

TPS22959

具有输出放电功能的 5.5V、15A、4.4mΩ 负载开关
TI

TPS22959DNYR

具有输出放电功能的 5.5V、15A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22959DNYT

具有输出放电功能的 5.5V、15A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS2295X-Q1

TPS2295x-Q1 5.7-V, 5-A, 14-mΩ On-Resistance, Automotive Load Switch
TI

TPS22960

3.5V to 60V INPUT, 2.5A, STEP DOWN CONVERTER WITH ECO-MODE™
TI

TPS22960DCNR

LOW INPUT VOLTAGE, DUAL LOAD SWITCH WITH CONTROLLED TURN-ON
TI

TPS22960RSER

LOW INPUT VOLTAGE,DUAL LOAD SWITCH WITH CONTROLLED TURN-ON
TI

TPS22960RSET

具有输出放电功能的 2 通道、5.5V、0.5A、435mΩ 负载开关 | RSE | 8 | -40 to 85
TI

TPS22960_1

LOW INPUT VOLTAGE,DUAL LOAD SWITCH WITH CONTROLLED TURN-ON
TI

TPS22960_2

LOW INPUT VOLTAGE,DUAL LOAD SWITCH WITH CONTROLLED TURN-ON
TI

TPS22961

具有输出放电功能的 3.5V、6A、7mΩ 负载开关
TI