TPS22961 [TI]

具有输出放电功能的 3.5V、6A、7mΩ 负载开关;
TPS22961
型号: TPS22961
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输出放电功能的 3.5V、6A、7mΩ 负载开关

开关
文件: 总29页 (文件大小:1918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
TPS22961 3.5V6A,超低电阻负载开关  
1 特性  
3 说明  
1
集成单通道负载开关  
TPS22961 是一款小型,超低 RON,单通道负载开  
关,此开关具有受控开启功能。此器件包含一个可在  
0.8V 3.5V 输入电压范围内运行的 N 通道金属氧化  
物半导体场效应晶体管 (MOSFET),并且支持最大 6A  
的持续电流。  
VBIAS 电压范围:3V 5.5V  
输入电压范围:0.8V 3.5V  
超低 RON 电阻  
VIN = 1.05V (VBIAS = 5V) 时,RON = 4.4m  
6A 最大持续开关电流  
器件的超低 RON 和高电流处理能力的组合使得此器件  
非常适合于驱动具有非常严格压降耐受的处理器电源  
轨。器件的快速上升时间使得电源轨可以在器件被启用  
时迅速接通,从而减少配电响应时间。此开关可由 ON  
端子单独控制,此端子能够与微控制器或低压离散逻辑  
电路生成的低压控制信号直接对接。通过集成一个  
260Ω 下拉电阻器,在开关关闭时实现快速输出放电  
(QOD),此器件进一步减少总体解决方案尺寸。  
低静态电流小于 1µA(最大值)  
低控制输入阈值支持使用 1.2V/1.8V/2.5V/3.3V 逻  
辑器件  
受控转换率  
VIN = 1.05V (VBIAS = 5V) tR = 4.2µs  
快速输出放电 (QOD)  
带有散热垫的小外形尺寸无引线 (SON) 8 端子封装  
静电放电 (ESD) 性能经测试符合 JESD 22 规范  
TPS22961 采用小型,节省空间的 3mm x 3mm 8 端  
子小外形尺寸无引线 (SON) 封装 (DNY),此类封装具  
有可实现高功率耗散的集成散热垫。器件在自然通风环  
境下的额定运行温度范围为 -40°C 85°C。  
2kV 人体放电模式 (HBM) 1kV 器件充电模型  
(CDM)  
2 应用范围  
Ultrabook™/笔记本电脑  
台式机  
器件信息(1)  
器件型号  
TPS22961  
封装  
WSON (8)  
封装尺寸  
服务器  
3.00mm x 3.00mm  
机顶盒  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
电信系统  
平板电脑  
4 简化电路原理图  
VBIAS  
(4.5V to 5.5V)  
RON VIN 之间的关系 (VBIAS = 5VIOUT = -200mA)  
Processor  
(x86, FPGA,  
DSP)  
VIN  
VOUT  
Power  
Supply  
8
CIN  
CL  
7
6
5
4
3
ON  
ON  
GND  
OFF  
TPS22961  
典型应用:驱动用于处理器的高电流内核电  
源轨  
2
-40°C  
1
25°C  
85°C  
0
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VIN (V)  
C007  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCI4  
 
 
 
 
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
Applications and Implementation ...................... 14  
9.1 Application Information............................................ 14  
9.2 Typical Application .................................................. 14  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics, VBIAS = 5.0 V ................... 5  
7.6 Electrical Characteristics, VBIAS = 3.0 V ................... 5  
7.7 Switching Characteristics.......................................... 6  
7.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 ....................................................................... 20  
12.2 静电放电警告......................................................... 20  
12.3 术语表 ................................................................... 20  
13 机械封装和可订购信息 .......................................... 20  
8
5 修订历史记录  
Changes from Revision A (February 2014) to Revision B  
Page  
Fixed caption error in Filtered Output curve. ....................................................................................................................... 18  
Changes from Original (February 2014) to Revision A  
Page  
完整版的最初发布版本。 ........................................................................................................................................................ 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
6 Terminal Configuration and Functions  
DNY PACKAGE  
8 TERMINAL  
VOUT  
1
2
3
4
VIN  
8
7
6
5
VOUT  
VOUT  
8
7
6
5
VIN  
VIN  
1
2
3
4
VOUT  
VIN  
VIN  
(Exposed thermal  
pad)  
VIN  
(Exposed thermal  
pad)  
VBIAS  
ON  
VOUT  
GND  
VBIAS  
ON  
VOUT  
GND  
Top View  
Bottom View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See Detailed  
Description section for more information.  
VIN  
1, 2  
I
I
Exposed thermal  
Pad  
Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See Detailed  
Description section for more information.  
VIN  
VBIAS  
ON  
3
4
5
I
I
Bias voltage. Power supply to the device.  
Active high switch control input. Do not leave floating.  
Ground.  
GND  
Switch output. Place ceramic bypass capacitor(s) between this terminal and GND. See Detailed  
Description section for more information.  
VOUT  
6, 7, 8  
O
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4
UNIT  
V
VIN  
Input voltage range  
VBIAS  
VOUT  
VON  
IMAX  
IPLS  
TA  
Bias voltage range  
6
V
Output voltage range  
4
V
ON pin voltage range  
6
V
Maximum Continuous Switch Current  
Maximum Pulsed Switch Current, pulse < 300 µs, 2% duty cycle  
Operating free-air temperature range  
Maximum junction temperature  
6
A
8
A
–40  
85  
125  
°C  
°C  
TJ  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2014, Texas Instruments Incorporated  
3
 
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
°C  
TSTG  
Storage temperature range  
–65  
150  
300  
2
TLEAD  
Maximum lead temperature (10-s soldering time)  
Human-Body Model (HBM)(2)  
Charged-Device Model (CDM)(3)  
°C  
kV  
(1)  
VESD  
1
kV  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
0.8  
3
MAX  
UNIT  
V
VIN  
Input voltage range  
Bias voltage range  
ON voltage range  
Output voltage range  
VBIAS – 1.95  
VBIAS  
VON  
VOUT  
5.5  
5.5  
VIN  
5.5  
0.5  
V
0
V
V
VIH, ON High-level voltage, ON  
VIL, ON Low-level voltage, ON  
VBIAS = 3 V to 5.5 V  
VBIAS = 3 V to 5.5 V  
1.2  
0
V
V
CIN  
Input Capacitor  
1(1)  
µF  
(1) Refer to Detailed Description section.  
7.4 Thermal Information  
TPS22961  
THERMAL METRIC(1)  
DNY  
8 PINS  
44.6  
44.4  
17.6  
0.4  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
17.4  
1.1  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
7.5 Electrical Characteristics, VBIAS = 5.0 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C TA 85°C (full) and VBIAS = 5.0 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT = 0, VIN = 3 V,  
VON = VBIAS = 5.0 V  
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
Full  
Full  
0.6  
1
µA  
µA  
ISD, VBIAS  
VON = 0 V, VOUT = 0 V  
0.6  
0.0009  
0.0008  
0.0007  
0.0007  
0.0006  
1
0.1  
0.1  
0.1  
0.1  
0.1  
VIN = 3.0 V  
VIN = 2.5 V  
VIN = 2.0 V  
VIN = 1.05 V  
VIN = 0.8 V  
VON = 0 V,  
VOUT = 0 V  
ISD, VIN  
VIN shutdown current  
Full  
Full  
µA  
µA  
ON terminal input leakage  
current  
ION  
VON = 5.5 V  
0.1  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
6.5  
5.3  
4.8  
4.4  
4.3  
260  
8
8.8  
6.3  
7.2  
5.8  
6.7  
5.3  
6.2  
5.3  
6.1  
300  
VIN = 3.0 V  
VIN = 2.5 V  
VIN = 2.0 V  
VIN = 1.05 V  
VIN = 0.8 V  
m  
mΩ  
mΩ  
mΩ  
25°C  
Full  
25°C  
Full  
IOUT = –200 mA,  
VBIAS = 5.0 V  
RON  
ON-state resistance  
25°C  
Full  
25°C  
Full  
mΩ  
RPD  
Output pulldown resistance  
VIN = 5.0 V, VON = 0 V, VOUT = 1 V  
Full  
7.6 Electrical Characteristics, VBIAS = 3.0 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C TA 85°C (full) and VBIAS = 3.0 V. Typical values are for TA = 25°C unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT = 0, VIN = 1 V,  
VON = VBIAS = 3.0 V  
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
Full  
Full  
0.3  
1
µA  
µA  
ISD, VBIAS  
VON = 0 V, VOUT = 0 V  
0.3  
0.001  
1
0.1  
0.1  
VIN = 1.05 V  
VIN = 0.8 V  
VON = 0 V,  
VOUT = 0 V  
ISD, VIN  
ION  
VIN shutdown current  
Full  
Full  
µA  
µA  
0.0008  
ON terminal input leakage  
current  
VON = 5.5 V  
0.1  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
6.7  
5.8  
8.4  
9.2  
7.0  
7.9  
300  
VIN =1.05 V  
VIN = 0.8 V  
mΩ  
IOUT = –200 mA,  
VBIAS = 3.0 V  
RON  
ON-state resistance  
25°C  
Full  
mΩ  
RPD  
Output pull-down resistance  
VIN = 3V, VON = 0 V, VOUT = 1 V  
Full  
260  
Copyright © 2014, Texas Instruments Incorporated  
5
 
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.7 Switching Characteristics  
Refer to the timing test circuit in Figure 1 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIN = 2.5 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
10.0  
3.5  
6.3  
2.0  
8.1  
RL = 10 Ω, CL = 0.1 µF  
µs  
tF  
tD  
VIN = 1.05 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
8.1  
5
11.3  
13700  
9.5  
17.3  
L = 2.2 µH (DCR = 0.33 Ω),  
C = 2 x 22 µF  
(Refer to Typical Application  
Powering Rails Sensitive to Ringing  
and Overvoltage due to Fast Rise  
Time and Figure 31)  
12.5  
12.5  
µs  
µs  
µs  
µs  
tF  
44200  
9.3  
tD  
6.7  
VIN = 0.8 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
9.7  
6.0  
3.2  
1.8  
8.1  
RL = 10 Ω, CL = 0.1 µF  
tF  
tD  
VIN = 1.05 V, VON = 5 V, VBIAS = 3.0 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
19.1  
4.7  
RL = 10 Ω, CL = 0.1 µF  
9.0  
tF  
2.0  
tD  
15.6  
VIN = 0.8 V, VON = 5 V, VBIAS = 3.0 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
19.0  
5.4  
RL = 10 Ω, CL = 0.1 µF  
7.0  
tF  
1.9  
tD  
15.7  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
VIN  
ON  
VOUT  
CIN = 1µF  
ON  
(A)  
CL  
+
-
RL  
OFF  
VBIAS  
GND  
TPS22961  
GND  
GND  
Timing Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
VOUT  
tON  
90%  
90%  
VOUT  
50%  
50%  
10%  
10%  
10%  
tD  
Timing Waveforms  
(A) Rise and fall times of the control signal is 100ns.  
Figure 1. Switching Characteristics Measurement Setup and Definitions  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.8 Typical Characteristics  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
3
3.25  
3.5  
3.75  
4
4.25  
4.5  
4.75  
5
5.25  
5.5  
3
3.25  
3.5  
3.75  
4
4.25  
4.5  
4.75  
5
5.25  
5.5  
VBIAS (V)  
VBIAS (V)  
C002  
C003  
VIN = 1.05 V  
VON = 5 V  
IOUT = 0 A  
VON = 0 V  
VOUT = 0 V  
Figure 3. ISD,VBIAS vs VBIAS  
Figure 2. IQ,VBIAS vs VBIAS  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
8
7
6
5
4
3
2
1
-40°C  
25°C  
85°C  
VIN = 0.8V  
VIN = 0.9V  
VIN = 1.05V  
0
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
-40  
-15  
10  
35  
60  
85  
VIN (V)  
Ambient Temperature (£/)  
C001  
C004  
VBIAS = 5 V  
VON = 0 V  
Figure 4. ISD,VIN vs VIN  
VOUT = 0 V  
VBIAS = 3 V  
VON = 5 V  
IOUT = –200 mA  
Figure 5. RON vs Ambient Temperature  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
0
VIN = 0.8V  
VIN = 1.05V  
VIN = 1.2V  
VIN = 1.5V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3V  
-40°C  
25°C  
85°C  
0
-40  
-15  
10  
35  
60  
85  
0.8  
0.85  
0.9  
0.95  
1
1.05  
Ambient Temperature (°C)  
VIN (V)  
C005  
C006  
VBIAS = 5 V  
VON = 5 V  
IOUT = –200 mA  
VBIAS = 3 V  
VON = 5 V  
Figure 7. RON vs VIN  
IOUT = –200 mA  
Figure 6. RON vs Ambient Temperature  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
Typical Characteristics (continued)  
8
7
6
5
4
3
2
1
0
8
6
4
2
0
-40°C  
25°C  
85°C  
VBIAS = 3V  
VBIAS = 5V  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VIN (V)  
VIN (V)  
C007  
C008  
VBIAS = 5 V  
VON = 5 V  
Figure 8. RON vs VIN  
IOUT = –200 mA  
TA = 25°C  
VON = 5 V  
Figure 9. RON vs VIN  
IOUT = –200 mA  
8
7
6
5
4
3
2
1
0
270  
268  
266  
264  
262  
260  
258  
256  
254  
252  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
250  
3
3.5  
4
4.5  
5
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VBIAS (V)  
VIN (V)  
C009  
C012  
VON = 0 V  
VIN = 1.05 V  
VOUT = 1 V  
VBIAS = 5 V  
VON = 5 V  
IOUT = –6 A  
Figure 10. RPD vs VBIAS  
Figure 11. RON vs VIN at 6A load  
1
0.95  
0.9  
1.1  
1.05  
1
0.95  
0.9  
0.85  
0.8  
-40°C  
-40°C  
25°C  
85°C  
0.85  
0.8  
0.75  
25°C  
85°C  
0.7  
3
3
3.5  
4
4.5  
5
3.5  
4
4.5  
5
VBIAS (V)  
VBIAS (V)  
C011  
C010  
VIN = VBIAS – 2 V  
VIN = VBIAS – 2 V  
Figure 13. VIH,ON vs VBIAS  
Figure 12. VIL,ON vs VBIAS  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
10  
9.5  
9
8.5  
8
7.5  
7
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
6.5  
6
0.80 0.83 0.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03 1.05  
0.8  
1
1.2  
1.2  
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.6  
2.6  
2.8  
3
VIN (V)  
VIN (V)  
C015  
C020  
VBIAS = 3 V  
RL = 10 Ω  
CL = 0.1 µF  
VBIAS = 5 V  
RL = 10 Ω  
Figure 15. tD vs VIN  
CL = 0.1 µF  
Figure 14. tD vs VIN  
2.2  
2.1  
2
2.4  
2.3  
2.2  
2.1  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
0.80 0.83 0.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03 1.05  
0.8  
1
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.8  
3
VIN (V)  
VIN (V)  
C014  
C021  
VBIAS = 3 V  
RL = 10 Ω  
CL = 0.1 µF  
VBIAS = 5 V  
RL = 10 Ω  
Figure 17. tF vs VIN  
CL = 0.1 µF  
Figure 16. tF vs VIN  
8
7
6
5
4
3
2
1
7.5  
7
6.5  
6
5.5  
5
4.5  
4
-40°C  
3.5  
3
-40°C  
25°C  
85°C  
25°C  
85°C  
2.5  
0.8  
1
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.8  
3
0.80 0.83 0.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03 1.05  
VIN (V)  
VIN (V)  
C016  
C019  
VBIAS = 3 V  
RL = 10 Ω  
CL = 0.1 µF  
VBIAS = 5 V  
RL = 10 Ω  
Figure 19. tOFF vs VIN  
CL = 0.1 µF  
Figure 18. tOFF vs VIN  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
Typical Characteristics (continued)  
24  
12  
11.5  
11  
22  
20  
18  
16  
14  
12  
10.5  
10  
9.5  
9
8.5  
8
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
7.5  
7
0.80 0.83 0.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03 1.05  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VIN (V)  
VIN (V)  
C017  
C018  
VBIAS = 3 V  
RL = 10 Ω  
CL = 0.1 µF  
VBIAS = 5 V  
RL = 10 Ω  
Figure 21. tON vs VIN  
CL = 0.1 µF  
Figure 20. tON vs VIN  
12  
11  
10  
9
10  
9
8
7
8
6
7
5
6
4
5
-40°C  
25°C  
85°C  
-40°C  
3
4
25°C  
85°C  
3
2
0.80 0.83 0.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03 1.05  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VIN (V)  
VIN (V)  
C013  
C022  
VBIAS = 3 V  
RL = 10 Ω  
CL = 0.1 µF  
VBIAS = 5 V  
RL = 10 Ω  
Figure 23. tR vs VIN  
CL = 0.1 µF  
Figure 22. tR vs VIN  
11  
9
7
5
VBIAS = 3.0V  
3
VBIAS = 3.3V  
VBIAS = 3.6V  
VBIAS = 4.2V  
VBIAS = 5.0V  
VBIAS = 5.5V  
1
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VIN (V)  
C023  
TA = 25°C  
RL = 10 Ω  
CL = 0.1 µF  
Figure 24. tR vs VIN for Various VBIAS  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The device is a 3.5 V, 6 A load switch in a 8-terminal SON package. To reduce voltage drop for low voltage and  
high current rails, the device implements an ultra-low resistance N-channel MOSFET which reduces the drop out  
voltage through the device at very high currents.  
The device has a controlled, yet quick, fixed slew rate for applications that require quick turn-on response. During  
shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream  
modules during standby. Integrated control logic, driver, and output discharge FET eliminates the need for any  
external components, which reduces solution size and BOM count.  
8.2 Functional Block Diagram  
VIN  
VBIAS  
Control  
Logic  
ON  
Driver  
VOUT  
GND  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
8.3 Feature Description  
8.3.1 On/off Control  
The ON terminal controls the state of the load switch, and asserting the terminal high (active high) enables the  
switch. The ON terminal is compatible with standard GPIO logic threshold and can be used with any  
microcontroller or discrete logic with 1.2 V or higher GPIO voltage. This terminal cannot be left floating and must  
be tied either high or low for proper functionality.  
8.3.2 Input Capacitor (CIN)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1 µF ceramic  
capacitor, CIN, placed close to the terminals, is usually sufficient. Higher values of CIN can be used to further  
reduce the voltage drop in high-current application. When switching heavy loads, it is recommended to have an  
input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop.  
8.3.3 Output Capacitor (CL)  
Due to the integrated body diode in the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUTT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN  
dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper  
functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a VIN dip upon turn-on due to  
inrush currents.  
8.3.4 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN (VBIAS – 1.95 V). For example, in order to have VIN = 3.5V, VBIAS  
must be 5.5 V. The device will still be functional if VIN > (VBIAS – 1.95 V) but it will exhibit RON greater than what is  
listed in the Electrical Characteristics, VBIAS = 5.0 V table. See Figure 25 for an example of a typical device.  
Notice the increasing RON as VIN increases. Be sure to never exceed the maximum voltage rating for VIN and  
VBIAS  
.
10  
9
8
7
6
VBIAS = 3.0V  
VBIAS = 3.3V  
VBIAS = 3.6V  
VBIAS = 4.2V  
VBIAS = 5.0V  
VBIAS = 5.5V  
5
4
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2  
VIN (V)  
C023  
Figure 25. RON vs VIN (VIN > VBIAS  
)
Copyright © 2014, Texas Instruments Incorporated  
13  
 
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section will highlight some of the design considerations when implementing this device in various  
applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com  
for further aid.  
9.2 Typical Application  
9.2.1 Typical Application Powering a Downstream Module  
This application demonstrates how the TPS22961 can be used to power downstream modules.  
VIN  
VOUT  
VIN  
VOUT  
CIN  
VIN  
(exposed  
pad)  
CL = 0.1µF  
VBIAS  
VBIAS  
GND  
ON  
ON  
Figure 26. Typical Application Schematic for Powering a Downstream Module  
9.2.1.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
VBIAS  
1.05 V  
5.0 V  
6 A  
Load current  
9.2.1.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
VIN voltage  
VBIAS voltage  
Load current  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
9.2.1.2.1 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN and VBIAS conditions of the device. Refer to the RON specification of the  
device in the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based  
upon the VIN and VBIAS conditions, use Equation 1 to calculate the VIN to VOUT voltage drop:  
DV = ILOAD ´RON  
(1)  
where  
ΔV = voltage drop from VIN to VOUT  
ILOAD = load current  
RON = On-resistance of the device for a specific VIN and VBIAS combination  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
9.2.1.2.2 Inrush Current  
To determine how much inrush current will be caused by the CL capacitor, use Equation 2:  
dVOUT  
I
= CL ´  
INRUSH  
dt  
(2)  
where  
IINRUSH = amount of inrush caused by CL  
CL = capacitance on VOUT  
dt = time it takes for change in VOUT during the ramp up of VOUT when the device is enabled  
dVOUT = change in VOUT during the ramp up of VOUT when the device is enabled  
An appropriate CL value should be placed on VOUT such that the IMAX and IPLS specficiations of the device are  
not violated.  
9.2.1.2.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use  
Equation 3.  
TJ(MAX) - TA  
=
P
D(MAX)  
RθJA  
(3)  
where  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (125°C for the TPS22961)  
TA = ambient temperature of the device  
ΘJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly  
dependent upon board layout.  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
 
 
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
9.2.1.3 Application Curves  
VBIAS = 5 V  
CL = 0.1 µF  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
VIN = 0.8 V  
CIN = 1 µF  
Figure 27. tR at VBIAS = 5 V  
Figure 28. tR at VBIAS = 5 V  
VBIAS = 5 V  
CL = 0.1 µF  
VIN = 1.05 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
VIN = 0.8 V  
CIN = 1 µF  
Figure 29. tR at VBIAS = 3 V  
Figure 30. tR at VBIAS = 3 V  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
9.2.2 Typical Application Powering Rails Sensitive to Ringing and Overvoltage due to Fast Rise Time  
This application demonstrates how the TPS22961 can be used to power rails senstive to ringing and overvoltage  
that can often happen due to fast rise times.  
L = 2.2µH  
VIN  
VOUT  
VIN  
VOUT  
CIN  
VIN  
(exposed  
pad)  
CL = 44µF  
VBIAS  
VBIAS  
GND  
ON  
ON  
Figure 31. Typical Application Schematic for Powering Rails Sensitive to Ringing  
9.2.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
VBIAS  
1.05 V  
5.0 V  
3.2%  
Acceptable percent overshoot (ρ)  
Maximum settling time (tSETTLE  
)
40 µs  
9.2.2.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
VIN voltage  
VBIAS voltage  
Acceptable percent overshoot  
Maximum allowed settling time for the power rail  
9.2.2.2.1 Picking Proper Inductor and Capacitor to Meet Voltage Overshoot Requirements  
To determine the value of L and CL in the circuit, the damping factor associated with the acceptable percent  
overshoot must be calculated. To calculate the damping factor (ε), use Equation 4.  
- ln ρ  
ε =  
2
2
π
+
ln ρ  
(
)
(4)  
where  
ε = damping factor of the LC filter  
ρ = allowable percent overshoot for the power rail  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
 
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Use the damping factor calculated in Equation 4 to determine the inductance (L), the DCR of the inductor (RDCR),  
and capacitance (CL) to achieve the percent overshoot. This will be an iterative process to determine the optimal  
combination of L and CL with standard value components available. Use Equation 5 to determine the  
combination of L, RDCR, and CL that is needed to satisfy damping factor calculated from Equation 4.  
RDCR  
2
CL  
L
ε =  
x
(5)  
where  
ε = damping factor of the LC filter  
RDCR = DCR of the inductor  
CL = the capacitance of the filter  
L = the inductor of the filter  
To determine the setting time (within 5% of steady state value) of the filter, use Equation 6.  
3´ L ´ CL  
tSETTLE  
»
ε
(6)  
where  
tSETTLE = settling time of filter to within 5% of steady state value  
ε = damping factor of the LC filter  
CL = the capacitance of the filter  
L = the inductor of the filter  
The combination of damping factor (ε) and filter settling time (tSETTLE) will bound the values for L, RDCR, and CL  
that can be used to meet the design constraints in Table 2.  
9.2.2.3 Application Curves  
Figure 32. Filtered Output (CH1 = VIN, CH2 = ON, CH3 = Output of LC filter, CH4 = VOUT of TPS22961)  
10 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 3 V to 5.5 V and VIN range of 0.8 V to 3.5 V. This  
supply must be well regulated and placed as close to the TPS22961 as possible. If the supply is located more  
than a few inches from the device terminals, additional bulk capacitance may be required in addition to the  
ceramic bypass capacitors. An electrolytic, tantalum, or ceramic capacitor of 10 µF may be sufficient.  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS22961  
www.ti.com.cn  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
11 Layout  
11.1 Layout Guidelines  
VIN and VOUT traces should be as short and wide as possible to accommodate for high current.  
Use vias under the exposed thermal pad for thermal relief for high current operation.  
The VIN terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be  
placed as close to the device terminals as possible.  
The VOUT terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating.  
This capacitor should be placed as close to the device terminals as possible.  
The VBIAS terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.  
11.2 Layout Example  
VIA to Power Ground Plane  
VIA to VIN Plane  
VIN Bypass  
VIN  
Capacitor  
VIN  
VOUT Bypass  
Capacitor  
VIN  
To Bias Supply  
VBIAS  
ON  
GND  
To GPIO  
control  
Exposed Thermal  
Pad Area  
Figure 33. Recommended Board Layout  
版权 © 2014, Texas Instruments Incorporated  
19  
TPS22961  
ZHCSC50B FEBRUARY 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
Ultrabook is a trademark of Intel.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本  
文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
20  
版权 © 2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22961DNYR  
TPS22961DNYT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DNY  
DNY  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
961A1  
961A1  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22961DNYR  
TPS22961DNYT  
WSON  
WSON  
DNY  
DNY  
8
8
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22961DNYR  
TPS22961DNYT  
WSON  
WSON  
DNY  
DNY  
8
8
3000  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WSON - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DNY0008A  
3.15  
2.85  
A
B
PIN 1 INDEX AREA  
3.15  
2.85  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6±0.1  
SYMM  
0.5  
0.3  
EXPOSED THERMAL  
PAD  
5X  
(0.2) TYP  
6X 0.65  
4
5
SYMM  
2X  
1.95  
2.4±0.1  
0.35  
0.25  
8X  
0.1  
C A B  
C
8
1
0.05  
PIN1 ID  
(OPTIONAL)  
2X (0.2)  
0.5  
0.3  
4221022/E 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WSON - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DNY0008A  
(1.6)  
5X (0.6)  
5X (0.3)  
SYMM  
(0.6)  
1
8
3X (0.65)  
SYMM  
(1.6)  
(0.325)  
(2.4)  
(0.95)  
(0.975)  
5
4
(R0.05) TYP  
(0.55)  
(2.8)  
(Ø0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MAX  
0.07 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221022/E 06/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WSON - 0.8 mm max height  
DNY0008A  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (1.47)  
SYMM  
5X (0.6)  
5X (0.3)  
(0.6)  
8
1
(0.325)  
(1.6)  
(0.63)  
SYMM  
2X  
(1.06)  
(0.975)  
5
3X (0.65)  
4
(R0.05) TYP  
METAL  
TYP  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4221022/E 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22961DNYR

具有输出放电功能的 3.5V、6A、7mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22961DNYT

具有输出放电功能的 3.5V、6A、7mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22962

具有输出放电功能的 5.5V、10A、4.4mΩ 负载开关
TI

TPS22962DNYR

具有输出放电功能的 5.5V、10A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22962DNYT

具有输出放电功能的 5.5V、10A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22963

ULTRA-LOW ON-RESISTANCE, 3A LOAD SWITCH WITH REVERSE CURRENT
TI

TPS22963C

5.5V、3A、14mΩ 负载开关
TI

TPS22963CYZPR

5.5-V, 3-A, 14-m&Omega; load switch 6-DSBGA -40 to 85
TI

TPS22963CYZPT

5.5-V, 3-A, 14-m&Omega; load switch 6-DSBGA -40 to 85
TI

TPS22964

ULTRA-LOW ON-RESISTANCE, 3A LOAD SWITCH WITH REVERSE CURRENT
TI

TPS22964C

具有输出放电功能的 5.5V、3A、14mΩ 负载开关
TI

TPS22964C2YZPR

具有输出放电功能的 5.5V、3A、14mΩ 负载开关 | YZP | 6 | -40 to 85
TI