TPS22975DSGR [TI]

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105;
TPS22975DSGR
型号: TPS22975DSGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105

开关 驱动 光电二极管 接口集成电路
文件: 总29页 (文件大小:2108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
TPS22975 5.7V6A、导通电阻为 16mΩ 的负载开关  
1 特性  
3 说明  
1
集成单通道负载开关  
输入电压范围:0.6V VBIAS  
BIAS 电压范围:2.5V 5.7V  
导通电阻 (RON  
RON = 16mVIN = 0.6V 5.7V,  
VBIAS = 5.7V 时的典型值)  
TPS22975 产品系列包含两个器件:TPS22975 和  
TPS22975N。每个器件都是一款单通道负载开关,可  
提供可配置的上升时间来尽量减小浪涌电流。此器件包  
括一个 N 通道金属氧化物半导体场效应晶体管  
(MOSFET),可在 0.6 V 5.7V 的输入电压范围内运  
行并可支持 6A 的最大持续电流。此开关由一个开/关  
输入 (ON) 控制,此输入能够直接连接低电压控制信  
号。TPS22975 包含一个可选 230Ω 片上负载电阻,  
用于在此开关关断时进行快速输出放电。  
V
)
6A 最大持续开关电流  
低静态电流  
37µAVIN = VBIAS = 5V 时的典型值)  
低控制输入阈值支持使用  
1.2V1.8V2.5V3.3V 逻辑器件  
可配置的上升时间  
TPS22975 采用小型,节省空间的 2mm × 2mm 8 引  
SON 封装 (DSG),集成的散热焊盘允许该器件产生  
较高的功率耗散。该器件在自然通风环境下的额定运行  
温度范围为 –40°C +105°C。  
热关断  
快速输出放电 (QOD)(可选)  
带有散热焊盘的小外形尺寸无引线 (SON) 8 引脚封  
器件信息(1)  
器件型号  
TPS22975  
TPS22975N  
封装  
封装尺寸(标称值)  
经测试,静电放电 (ESD) 性能符合 JESD 22 规范  
WSON (8)  
2.00mm x 2.00mm  
2000V 人体模型 (HBM) 1000V 带电器件模  
(CDM)  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
2 应用  
Ultrabook™  
笔记本电脑和上网本  
平板电脑  
消费类电子产品  
机顶盒和家庭网关  
电信系统  
固态硬盘 (SSD)  
导通电阻与输入电压间的关系  
简化电路原理图  
40  
VIN  
ON  
VOUT  
Power  
Supply  
-40 èC  
25 èC  
85 èC  
105 èC  
35  
30  
25  
20  
15  
10  
5
ON  
C
C
IN  
L
R
CT  
L
OFF  
CT  
GND  
Power  
Supply  
GND  
VBIAS  
TPS22975  
Copyright © 2016, Texas Instruments Incorporated  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
D007  
VBIAS = 5VIVOUT = –200mA  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDD0  
 
 
 
 
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 14  
9.3 Feature Description................................................. 15  
9.4 Device Functional Modes........................................ 15  
10 Application and Implementation........................ 16  
10.1 Application Information.......................................... 16  
10.2 Typical Application ................................................ 16  
11 Power Supply Recommendations ..................... 18  
12 Layout................................................................... 19  
12.1 Layout Guidelines ................................................. 19  
12.2 Layout Example .................................................... 19  
12.3 Thermal Considerations........................................ 19  
13 器件和文档支持 ..................................................... 20  
13.1 器件支持................................................................ 20  
13.2 相关文档................................................................ 20  
13.3 接收文档更新通知 ................................................. 20  
13.4 社区资源................................................................ 20  
13.5 ....................................................................... 20  
13.6 静电放电警告......................................................... 20  
13.7 Glossary................................................................ 20  
14 机械、封装和可订购信息....................................... 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics—VBIAS = 5 V..................... 5  
7.6 Electrical Characteristics—VBIAS = 2.5 V.................. 6  
7.7 Switching Characteristics.......................................... 7  
7.8 Typical DC Characteristics........................................ 8  
7.9 Typical AC Characteristics...................................... 10  
Parameter Measurement Information ................ 13  
Detailed Description ............................................ 14  
9.1 Overview ................................................................. 14  
8
9
4 修订历史记录  
Changes from Revision A (June 2016) to Revision B  
Page  
Updated VIH in Recommended Operating Conditions ............................................................................................................ 4  
Changes from Original (May 2016) to Revision A  
Page  
器件状态,从产品预览改为量产数据 ...................................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
5 Device Comparison Table  
RON AT VIN = VBIAS = 5 V  
QUICK-OUTPUT  
DISCHARGE  
MAXIMUM OUTPUT  
ENABLE  
DEVICE  
(TYPICAL)  
CURRENT  
TPS22975  
16 mΩ  
Yes  
No  
6 A  
6 A  
Active high  
Active high  
TPS22975N  
16 mΩ  
6 Pin Configuration and Functions  
DSG Package  
8-Pin (WSON)  
Top View  
DSG Package  
8-Pin (WSON)  
Bottom View  
1
2
3
4
8
7
6
5
8
7
6
5
1
2
3
4
VIN  
VIN  
VOUT  
VOUT  
VOUT  
CT  
VIN  
VOUT  
CT  
VIN  
ON  
ON  
VBIAS  
VBIAS  
GND  
GND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
1
2
3
Switch input. Input bypass capacitor recommended for minimizing VIN dip. Must be connected to  
Pin 1 and Pin 2. See the Application and Implementation section for more information  
VIN  
I
ON  
VBIAS  
GND  
CT  
I
I
Active high switch control input. Do not leave floating  
Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5 V to  
5.7 V. See the Application and Implementation section for more information  
4
5
6
O
Device ground  
Switch slew rate control. Can be left floating. See the Adjustable Rise Time section under  
Feature Description for more information  
7
8
VOUT  
O
Switch output  
Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See the Layout  
Example section for layout guidelines  
Thermal Pad  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN  
Input voltage  
6
6
VOUT  
VBIAS  
VON  
IMAX  
IPLS  
TJ  
Output voltage  
V
Bias voltage  
6
V
On voltage  
6
V
Maximum continuous switch current  
Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle  
Maximum junction temperature  
Storage temperature  
6
A
8
A
125  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
MAX  
VBIAS  
5.7  
UNIT  
VIN  
Input voltage  
Bias voltage  
ON voltage  
0.6  
2.5  
0
V
V
V
V
VBIAS  
VON  
VOUT  
5.7  
Output voltage  
VIN  
VBIAS = 2.5 V to 5 V, TA< 85°C  
VBIAS = 2.5 V to 5 V, TA< 105°C  
VBIAS = 5 V to 5.7 V, TA< 105°C  
VBIAS = 2.5 V to 5.7 V  
1.05  
1.1  
1.2  
0
5.7  
VIH  
High-level input voltage, ON  
5.7  
V
5.7  
VIL  
CIN  
TA  
Low-level input voltage, ON  
Input capacitor  
0.5  
V
1(1)  
µF  
°C  
Operating free-air temperature(1)(2)  
–40  
105  
(1) See the Application Information section.  
(2) In applications where high power dissipation and-or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated and device lifetime may be affected. Maximum ambient temperature (TA(max)) is dependent on the maximum  
operating junction temperature (TJ(max)), the maximum power dissipation of the device in the application (PD(max)), and the junction-to-  
ambient thermal resistance of the part-package in the application (θJA), and can be approximated by the following equation: TA (max)  
TJ(max) – (θJA × PD(max)).  
=
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
7.4 Thermal Information  
TPS22975  
THERMAL METRIC(1)  
DSG (WSON)  
8 PINS  
74.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
81  
Junction-to-board thermal resistance  
44.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.9  
ψJB  
45.1  
RθJC(bot)  
16.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics—VBIAS = 5 V  
Unless otherwise noted, the specifications in the following table applies where VBIAS = 5 V. Typical values are for TA = 25 °C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT = 0 A,  
VIN = VON = 5 V  
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
–40°C to +105°C  
37  
45  
µA  
µA  
ISD, VBIAS  
VON = VOUT = 0 V  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
2.3  
5
0.005  
0.002  
0.002  
0.001  
VIN = 5 V  
10  
1.5  
3.5  
1
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 0.6 V  
ISD, VIN  
VIN off-state supply current  
On-pin input leakage current  
VON = VOUT = 0 V  
µA  
µA  
2
0.5  
1
ION  
VON = 5.5 V  
0.1  
RESISTANCE CHARACTERISTICS  
25°C  
16  
16  
16  
16  
16  
16  
19  
23  
25  
19  
23  
25  
19  
23  
25  
19  
23  
25  
19  
23  
25  
19  
23  
25  
VIN = 5 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.05 V  
VIN = 0.6 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
RON  
On-resistance  
IOUT = –200 mA  
m  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
VON, HYS  
On-pin hysteresis  
VIN = 5 V  
120  
230  
160  
20  
mV  
(1)  
RPD  
Output pulldown resistance  
Thermal shutdown  
VIN = 5 V, VON = 0 V  
Junction temperature rising  
Junction temperature falling  
–40°C to +105°C  
300  
TSD  
°C  
°C  
TSD, HYS  
Thermal shutdown hysteresis  
(1) TPS22975 only  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
 
 
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.6 Electrical Characteristics—VBIAS = 2.5 V  
Unless otherwise noted, the specifications in the following table applies where VBIAS = 2.5 V. Typical values are for TA = 25  
°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT = 0 mA,  
VIN = VON = 2.5 V  
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
–40°C to +105°C  
14  
20  
µA  
µA  
ISD, VBIAS  
VON = VOUT = 0 V  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
1
1.3  
2.6  
1
0.005  
0.002  
0.002  
0.001  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.05 V  
VIN = 0.6 V  
2
ISD, VIN  
VIN off-state supply current  
On-pin input leakage current  
VON = VOUT = 0 V  
µA  
µA  
0.8  
1.5  
0.5  
1
ION  
VON = 5.5 V  
0.1  
RESISTANCE CHARACTERISTICS  
25°C  
20  
18  
18  
17  
17  
26  
32  
34  
23  
29  
31  
22  
28  
30  
22  
27  
29  
21  
26  
27  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.6 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
RON  
On-resistance  
IOUT = –200 mA  
–40°C to +85°C  
–40°C to +105°C  
25°C  
mΩ  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
VON, HYS  
On-pin hysteresis  
VIN = 2.5 V  
85  
230  
160  
20  
mV  
(1)  
RPD  
Output pulldown resistance  
Thermal shutdown  
VIN = 2.5 V, VON = 0 V  
Junction temperature rising  
Junction temperature falling  
–40°C to +105°C  
330  
TSD  
°C  
°C  
TSD, HYS  
Thermal shutdown hysteresis  
(1) TPS22975 only  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
7.7 Switching Characteristics  
PARAMETER  
TEST CONDITION  
MIN  
TYP MAX UNIT  
VIN = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
1450  
2
1750  
2
µs  
µs  
µs  
µs  
tF  
tD  
600  
VIN = 0.6 V, VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
620  
2
280  
2
tF  
tD  
485  
VIN = VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
2180  
2
2150  
2
tF  
tD  
1120  
VIN = 0.6 V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
RL = 10 Ω, CL = 0.1 µF, CIN = 1 µF, CT = 1000 pF, VON = 5 V  
1315  
3
650  
2
tF  
tD  
975  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.8 Typical DC Characteristics  
60  
70  
60  
50  
40  
30  
20  
10  
-40 èC  
25 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
85 èC  
50  
105 èC  
40  
30  
20  
10  
2.5  
3
3.5  
4
4.5  
5
5.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Bias Voltage (V)  
Input Voltage (V)  
D001  
D002  
VIN = VBIAS  
VON = 5 V  
VOUT = 0 V  
VBIAS = 5 V  
VON = 5 V  
VOUT = 0 V  
Figure 1. VBIAS Quiescent Current vs Bias Voltage  
Figure 2. VBIAS Quiescent Current vs Input Voltage  
2.5  
2
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
1.5  
1
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Bias Voltage (V)  
Input Voltage (V)  
D003  
D0014  
VIN = VBIAS  
VON = 0 V  
VOUT = 0 V  
VBIAS = 5 V  
VON = 0 V  
VOUT = 0 V  
Figure 3. VBIAS Shutdown Current vs Bias Voltage  
Figure 4. VIN Off-State Supply Current vs Input Voltage  
30  
25  
20  
15  
10  
5
30  
VIN = 0.6 V  
VIN = 3.3 V  
VIN = 5 V  
VIN = 0.6 V  
VIN = 1.8 V  
VIN = 2.5 V  
25  
20  
15  
10  
5
0
0
-40  
-10  
20  
50  
80  
110  
-40  
-10  
20  
50  
80  
110  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D005  
D006  
VBIAS = 5 V  
IOUT = –200 mA  
VON = 5 V  
VBIAS = 2.5 V  
IOUT = –200 mA  
VON = 5 V  
Note: All three RON curves have the same  
values; therefore, only one line is visible.  
Figure 6. On-Resistance vs Ambient Temperature  
Figure 5. On-Resistance vs Ambient Temperature  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
Typical DC Characteristics (continued)  
40  
40  
35  
30  
25  
20  
15  
10  
5
-40 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
25 èC  
85 èC  
105 èC  
35  
30  
25  
20  
15  
10  
5
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.5  
1
1.5  
2
2.5  
Input Voltage (V)  
Input Voltage (V)  
D007  
D0098  
VBIAS = 5 V  
IOUT = –200 mA  
VON = 5 V  
VBIAS = 2.5 V  
IOUT = –200 mA  
VON = 5 V  
Figure 7. On-Resistance vs Input Voltage  
Figure 8. On-Resistance vs Input Voltage  
275  
270  
265  
260  
255  
250  
245  
240  
235  
25  
20  
15  
10  
5
-40°C  
VIN = 0.6 V  
VIN = 1.2 V  
VIN = 1.8 V  
VIN = 2.5 V  
25°C  
85°C  
105°C  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Bias Voltage (V)  
Bias Voltage (V)  
D009  
D001  
TA = 25°C  
IOUT = –200 mA  
VON = 5 V  
VIN = 2.5 V  
VON = 0 V  
Figure 9. On-Resistance vs Bias Voltage  
Figure 10. Output Pull Down Resistance vs Bias Voltage  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.9 Typical AC Characteristics  
TA = 25°C, CT = 1000 pF, CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω  
900  
700  
500  
300  
1700  
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
1500  
105 èC  
1300  
1100  
900  
700  
0.5  
1
1.5  
2
2.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D011  
D012  
VBIAS = 2.5 V  
VBIAS = 5 V  
Figure 11. Delay Time vs Input Voltage  
Figure 12. Delay Time vs Input Voltage  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
0.5  
1
1.5  
2
2.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D013  
D014  
VBIAS = 2.5 V  
VBIAS = 5 V  
Figure 13. Fall Time vs Input Voltage  
Figure 14. Fall Time vs Input Voltage  
3.3  
3.2  
3.1  
3
2.4  
2.3  
2.2  
2.1  
2
-40 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
25 èC  
85 èC  
105 èC  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
1.9  
1.8  
1.7  
1.6  
0.5  
1
1.5  
2
2.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D015  
D016  
VBIAS = 2.5 V  
VBIAS = 5 V  
Figure 15. Turnoff Time vs Input Voltage  
Figure 16. Turnoff Time vs Input Voltage  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
Typical AC Characteristics (continued)  
TA = 25°C, CT = 1000 pF, CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω  
3000  
2000  
1600  
1200  
800  
400  
0
-40 èC  
25 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
2500  
85 èC  
105 èC  
2000  
1500  
1000  
500  
0
0.5  
1
1.5  
2
2.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D017  
D018  
VBIAS = 2.5 V  
VBIAS = 5 V  
Figure 17. Turnon Time vs Input Voltage  
Figure 18. Turnon Time vs Input Voltage  
3000  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
0
0
0.5  
1
1.5  
2
2.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D019  
D020  
VBIAS = 2.5 V  
VBIAS = 5 V  
Figure 19. Rise Time vs Input Voltage  
Figure 20. Rise Time vs Input Voltage  
VIN = 0.6 V  
VBIAS = 2.5 V  
VIN = 0.6 V  
VBIAS = 5 V  
Figure 21. Turnon Response Time  
Figure 22. Turnon Response Time  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical AC Characteristics (continued)  
TA = 25°C, CT = 1000 pF, CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω  
VIN = 2.5 V  
VBIAS = 2.5 V  
VIN = 5 V  
VBIAS = 5 V  
Figure 23. Turnon Response Time  
Figure 24. Turnon Response Time  
VIN = 0.6 V  
VBIAS = 2.5 V  
VIN = 0.6 V  
VBIAS = 5 V  
Figure 25. Turnoff Response Time  
Figure 26. Turnoff Response Time  
VIN = 2.5 V  
VBIAS = 2.5 V  
VIN = 5 V  
VBIAS = 5 V  
Figure 27. Turnoff Response Time  
Figure 28. Turnoff Response Time  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
8 Parameter Measurement Information  
VIN  
VOUT  
Power  
Supply  
ON  
C
ON  
C
L
IN  
R
CT  
L
OFF  
CT  
GND  
Power  
Supply  
GND  
VBIAS  
TPS22975  
Copyright © 2016, Texas Instruments Incorporated  
A. Rise and fall times of the control signal are 100 ns.  
B. Turnoff times and fall times are dependent on the time constant at the load. For the TPS22975, the internal pull-down  
resistance RPD is enabled when the switch is disabled. The time constant is (RPD || RL) × CL.  
Figure 29. Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
tON  
90%  
90%  
VOUT  
VOUT  
50%  
10%  
50%  
10%  
10%  
tD  
Figure 30. tON and tOFF Waveforms  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS22975 device is a single-channel, 6-A load switch in an 8-pin SON package. To reduce the voltage drop  
in high current rails, the device implements an N-channel MOSFET. The device has a configurable slew rate for  
applications that require a specific rise-time.  
The device prevents downstream circuits from pulling high standby current from the supply by limiting the  
leakage current of the device when it is disabled. The integrated control logic, driver, power supply, and output  
discharge FET eliminates the need for any external components, which reduces solution size and bill of materials  
(BOM) count.  
9.2 Functional Block Diagram  
VIN  
Charge  
Pump  
VBIAS  
Control  
Logic  
ON  
VOUT  
CT  
TPS22975 Only  
GND  
Copyright © 2016, Texas Instruments Incorporated  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
9.3 Feature Description  
9.3.1 Adjustable Rise Time  
A capacitor to GND on the CT pin sets the slew rate. The voltage on the CT pin can be as high as 15 V;  
therefore, the minimum voltage rating for the CT capacitor must be 30 V for optimal performance. An  
approximate formula for the relationship between CT and slew rate when VBIAS is set to 5 V is shown in  
Equation 1. This equation accounts for 10% to 90% measurement on VOUT and does not apply for CT < 100 pF.  
Use Table 1 to determine rise times for when CT = 0 pF.  
SR = 0.43ìCT + 26  
where  
SR is the slew rate (in µs/V)  
CT is the capacitance value on the CT pin (in pF)  
The units for the constant 26 are µs/V. The units for the constant 0.43 are µs/(V × pF).  
(1)  
Rise time can be calculated by multiplying the input voltage by the slew rate. Table 1 contains rise time values  
measured on a typical device. Rise times shown in Table 1 are only valid for the power-up sequence where VIN  
and VBIAS are already in steady state condition before the ON pin is asserted high.  
Table 1. Rise Time tR vs CT Capacitor  
RISE TIME (µs) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10 Ω, VBIAS = 5 V(1)  
CT (pF)  
VIN = 5 V  
140  
VIN = 3.3 V  
105  
VIN = 1.8 V  
75  
VIN = 1.5 V  
65  
VIN = 1.2 V  
60  
VIN = 1.05 V  
55  
VIN = 0.6 V  
40  
0
220  
520  
360  
215  
185  
160  
140  
95  
470  
970  
660  
385  
330  
275  
240  
155  
1000  
2200  
4700  
10000  
1750  
3875  
7580  
16980  
1190  
700  
595  
495  
435  
275  
2615  
1520  
2950  
6650  
1290  
2510  
5635  
1070  
2075  
4685  
940  
595  
5110  
1830  
4110  
1150  
2595  
11485  
(1) Typical Values at 25°C with a 25-V X7R 10% Ceramic Capacitor on CT  
9.3.2 Quick-Output Discharge (QOD) (Optional)  
The TPS22975 includes an optional QOD feature. When the switch is disabled, an internal discharge resistance  
is connected between VOUT and GND to remove the remaining charge from the output. This resistance has a  
typical value of 230 and prevents the output from floating while the switch is disabled. For best results, it is  
recommended that the device gets disabled before VBIAS falls below the minimum recommended voltage.  
9.3.3 Thermal Shutdown  
Thermal shutdown protects the part from internally or externally generated excessive temperatures. When the  
device temperature triggers TSD (typical 160°C), the switch is turned off. The switch automatically turns on again  
if the temperature of the die drops 20 degrees below the TSD threshold.  
9.4 Device Functional Modes  
The Table 2 lists the VOUT pin states as determined by the ON pin.  
Table 2. VOUT Connection  
ON  
L
TPS22975  
GND  
TPS22975N  
Open  
H
VIN  
VIN  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
 
 
 
 
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 ON and OFF Control  
The ON pin controls the state of the switch. ON is active high and has a 1.2-V ON-pin enable threshold, making  
it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic thresholds.  
It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left floating and  
must be driven either high or low for proper functionality.  
10.1.2 Input Capacitor (CIN) (Optional)  
To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic  
capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce  
the voltage drop during high current applications. When switching heavy loads, it is recommended to have an  
input capacitor about 10 times higher than the output capacitor (CL) to avoid excessive voltage drop.  
10.1.3 Output Capacitor (CL) (Optional)  
Because of the integrated body diode in the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN dip  
caused by inrush currents during startup; however, a 10 to 1 ratio for capacitance is not required for proper  
functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause slightly more VIN dip upon  
turn-on because of inrush currents. This can be mitigated by increasing the capacitance on the CT pin for a  
longer rise time (see the Adjustable Rise Time section).  
10.2 Typical Application  
For optimal RON performance, it is recommended to have VIN VBIAS. The device is functional if VIN > VBIAS but it  
exhibits RON greater than what is listed in the Electrical Characteristics—VBIAS = 5 V and Electrical  
Characteristics—VBIAS = 2.5 V tables.  
Figure 31 demonstrates how the TPS22975 can be used to power downstream modules.  
VIN  
ON  
VOUT  
Power  
Supply  
ON  
C
C
IN  
L
R
CT  
L
OFF  
CT  
GND  
Power  
Supply  
GND  
VBIAS  
TPS22975  
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. Powering a Downstream Module  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
Typical Application (continued)  
10.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
3.3 V  
5 V  
VBIAS  
CL  
22 µF  
400 mA  
Maximum Acceptable Inrush Current  
10.2.2 Detailed Design Procedure  
10.2.2.1 Inrush Current  
When the switch is enabled, the output capacitors must be charged up from 0 V to the set value (3.3 V in this  
example). This charge arrives in the form of inrush current. Inrush current can be calculated using Equation 2.  
Inrush Current = CL × dVOUT/dt  
Where:  
CL is the output capacitance  
dVOUT is the change in VOUT during the ramp up of the output voltage when device is enabled.  
dt is the rise time in VOUT during the ramp up of the output voltage when the device is enabled.  
(2)  
The TPS22975 offers adjustable rise time for VOUT. This feature allows the user to control the inrush current  
during turnon. The appropriate rise time can be calculated using the design requirements and the inrush current  
equation as shown in Equation 3.  
400 mA = 22 µF × 3.3 V/dt  
(3)  
The value of dt is given by Equation 4.  
dt = 181.5 µs  
(4)  
To ensure an inrush current of less than 400 mA, choose a CT value that yields a rise time of more than 181.5  
µs. See the oscilloscope captures in the Application Curves section for an example of how the CT capacitor can  
be used to reduce inrush current.  
10.2.3 Application Curves  
VBIAS = 5 V  
VIN = 3.3 V  
CL = 22 µF  
VBIAS = 5 V  
VIN = 3.3 V  
CL = 22 µF  
Figure 32. Inrush Current with CT = 0 pF  
Figure 33. Inrush Current with CT = 220 pF  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
 
 
 
 
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
11 Power Supply Recommendations  
The supply to the device must be well regulated and placed as close to the device terminal as possible with the  
recommended 1-μF bypass capacitor. If the supply is located more than a few inches from the device terminals,  
additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk  
capacitance is required, an electrolytic, tantalum or ceramic capacitor of 1 μF may be sufficient.  
The TPS22975 operates regardless of power sequencing order. The order in which voltages are applied to VIN,  
VBIAS, and ON does not damage the device as long as the voltages do not exceed the absolute maximum  
operating conditions. If voltage is applied to ON before VIN, the slew rate of VOUT can not be controlled.  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS22975  
www.ti.com.cn  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
12 Layout  
12.1 Layout Guidelines  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects  
along with minimizing the case to ambient thermal impedance. The CT trace must be as short as possible to  
reduce parasitic capacitance.  
12.2 Layout Example  
VIA to GND  
Pin 1  
VIN  
VIN  
VOUT  
VOUT  
CT  
(1)  
GND  
ON  
VBIAS  
GND  
Figure 34. Layout Recommendation  
12.3 Thermal Considerations  
The maximum IC junction temperature must be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) , for a given ambient temperature, use Equation 5 as a  
guideline.  
TJ(max) - TA  
=
P
D(max)  
θJA  
where  
PD(max) is the maximum allowable power dissipation  
TJ(max) is the maximum allowable junction temperature (125°C for the TPS22975)  
TA is the ambient temperature of the device  
ΘJA is the junction to air thermal impedance. See the Thermal Information section. This parameter is highly  
dependent upon board layout.  
(5)  
In Figure 34, notice that the thermal vias are located under the exposed thermal pad of the device. This allows  
for thermal diffusion away from the device.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
 
TPS22975  
ZHCSF80B MAY 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
关于 TPS22975 PSpice 瞬态模型,请参见 SLVMBO6。  
13.2 相关文档  
请参阅如下相关文档:  
《负载开关导通电阻基础知识》SLVA771  
用户指南《TPS22975 负载开关评估模块》SLVUAR3  
13.3 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
Ultrabook is a trademark of Intel.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22975DSGR  
TPS22975DSGT  
TPS22975NDSGR  
TPS22975NDSGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
13XH  
13XH  
14YH  
14YH  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22975DSGR  
TPS22975DSGT  
TPS22975NDSGR  
TPS22975NDSGT  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22975DSGR  
TPS22975DSGT  
TPS22975NDSGR  
TPS22975NDSGT  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS22975DSGT

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105
TI

TPS22975NDSGR

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105
TI

TPS22975NDSGT

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105
TI

TPS22976

具有可调节上升时间和可选输出放电功能的 2 通道、5.7V、6A、14mΩ 负载开关
TI

TPS22976ADPUR

TPS22976 5.7-V, 6-A, 14-mΩ On-Resistance Dual-Channel Load Switch
TI

TPS22976DPUR

具有可调节上升时间和可选输出放电功能的 2 通道、5.7V、6A、14mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22976DPUT

具有可调节上升时间和可选输出放电功能的 2 通道、5.7V、6A、14mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22976NDPUR

具有可调节上升时间和可选输出放电功能的 2 通道、5.7V、6A、14mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22976NDPUT

具有可调节上升时间和可选输出放电功能的 2 通道、5.7V、6A、14mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22976_V01

TPS22976 5.7-V, 6-A, 14-mΩ On-Resistance Dual-Channel Load Switch
TI

TPS22980

3.3V TO 18V MUX with Overcurrent Limit
TI

TPS22980RGPR

3.3V TO 18V MUX with Overcurrent Limit
TI