TPS254900IRVCTQ1 [TI]

具有 BATT 短路保护和压降补偿功能的汽车类 USB 充电端口控制器 | RVC | 20 | -40 to 85;
TPS254900IRVCTQ1
型号: TPS254900IRVCTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 BATT 短路保护和压降补偿功能的汽车类 USB 充电端口控制器 | RVC | 20 | -40 to 85

控制器
文件: 总39页 (文件大小:1827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
TPS254900-Q1 具有 VBATT 短路保护的汽车用 USB 主机充电器  
1 特性  
3 说明  
1
具有符合 AEC-Q100 标准的下列结果:  
TPS254900-Q1 器件是一款具有电池短路保护功能的  
USB 充电端口控制器和电源开关。该功能为 OUT、  
DM_IN DP_IN 引脚提供保护。这三个引脚可耐受高  
18V 的电压。当发生电池短路时,内部 MOSFET  
迅速关断。迅速关断功能对于保护上行 DC-DC 转换  
器、处理器或集线器数据线路来说非常重要。  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C5  
4.5V 6.5V 的输入工作电压范围  
集成 45mΩ(典型值)高侧金属氧化物半导体场效  
应晶体管 (MOSFET)  
TPS254900-Q1 45mΩ 电源开关具有两个可选的可调  
节电流限值,可通过在相邻端口承载高负载时切换至较  
低电流限值来支持端口电源管理。对于具有多个端口且  
上行电源容量有限的系统而言,这一功能非常重要。  
最大连续开关电流达 3A  
连接器上的电缆补偿精度 VBUS ±5%  
支持 USB BC 1.2 充电下行端口 (CDP) 和标准下行  
端口 (SDP) 模式  
OUTDP_IN DM_IN 引脚上具备电池短路保护  
TPS254900-Q1 具有一个能够控制上行电源的电流感  
测输出,即使在充电电流过大时也能在 USB 端口保持  
5V 的电压。该功能对于 USB 电缆较长的系统而言至  
关重要,因为在对便携式设备进行快速充电的过程中会  
产生大幅压降。  
DP_IN DM_IN 上的保护等级符合 IEC 61000-4-  
2 标准  
±8kV 接触放电和 ±15kV 空气放电  
20 引脚 4mm x 3mm 四方扁平无引线 (QFN) 封装  
凭借电流监视器,系统能够通过监视 IMON 电压来实  
时监视负载电流。电流监视器非常有用,可用于端口电  
源动态管理。  
2 应用范围  
汽车 USB 充电端口(主机和集线器)  
汽车类 USB 保护  
TPS254900-Q1 器件还为 DP_IN DM_IN 引脚提供  
了符合 IEC 61000-4-2 标准的 4 ESD 保护功能。  
器件信息(1)  
器件型号  
封装  
WQFN (20)  
封装尺寸(标称值)  
TPS254900-Q1  
4.00mm × 3.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
原理图  
TPS254900-Q1  
10 µF  
5 V  
IN  
VBUS  
D–  
OUT  
DM_OUT  
DP_OUT  
EN  
To Host  
Controller  
DM_IN  
EN  
DP_IN  
BIAS  
D+  
FAULT  
GND  
FAULT  
STATUS  
CTL1  
STATUS  
2.2 µF  
Mode  
Select I/O  
CTL2  
OVP_SEL  
Logic I/O  
ILIM_LO  
ILIM_HI  
GND  
CS  
Upstream DC-DC  
ADC  
IMON  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCO9  
 
 
 
 
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Application ................................................. 26  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 8  
6.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 15  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 30  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 32  
12 器件和文档支持 ..................................................... 33  
12.1 器件支持................................................................ 33  
12.2 文档支持................................................................ 33  
12.3 接收文档更新通知 ................................................. 33  
12.4 社区资源................................................................ 33  
12.5 ....................................................................... 33  
12.6 静电放电警告......................................................... 33  
12.7 Glossary................................................................ 33  
13 机械、封装和可订购信息....................................... 33  
7
8
4 修订历史记录  
Changes from Original (September 2016) to Revision A  
Page  
已将数据表状态由产品预览改为量产数据” .......................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
5 Pin Configuration and Functions  
RVC Package  
20-Pin WQFN  
Top View  
IMON  
IN  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
OUT  
OUT  
Thermal  
Pad  
IN  
DM_IN  
DP_IN  
BIAS  
GND  
DM_OUT  
DP_OUT  
CS  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BIAS  
NO.  
12  
6
Used for IEC protection. Typically, connect a 2.2-µF capacitor and a transient-voltage  
suppressor (TVS) to ground and 5.1 kΩ to OUT.  
PWR  
CS  
O
I
Linear cable compensation current. Connect to divider resistor of front-end dc-dc converter.  
Logic-level control input for controlling the charging mode and the signal switches; see the  
Device Truth Table (TT).  
CTL1  
8
Logic-level control input for controlling the charging mode and the signal switches; see the  
Device Truth Table (TT).  
CTL2  
9
I
DM_IN  
14  
4
I/O  
I/O  
I/O  
I/O  
D– data line to downstream connector  
D– data line to upstream USB host controller  
D+ data line to downstream connector  
D+ data line to upstream USB host controller  
DM_OUT  
DP_IN  
13  
5
DP_OUT  
Logic-level control input for turning the power and signal switches on or off. When EN is low,  
the device is disabled, and the signal and power switches are OFF.  
EN  
7
I
Active-low, open-drain output, asserted during overtemperature, overcurrent, and  
overvoltage conditions.  
FAULT  
18  
O
GND  
11  
20  
I
Ground connection; should be connected externally to the thermal pad.  
External resistor used to set the high current-limit threshold.  
ILIM_HI  
External resistor used to set the low current-limit threshold and the load-detection current  
threshold.  
ILIM_LO  
IMON  
19  
1
I
This pin sources a scaled-down ratio of current through the internal FET. A resistor from this  
pin to GND converts current to proportional voltage; used as an analog current monitor.  
O
Input supply voltage; connect a 0.1-µF or greater ceramic capacitor from IN to GND as close  
to the IC as possible.  
IN  
2,3  
15,16  
10  
PWR  
PWR  
I
OUT  
Power-switch output  
Logic-level control input for choosing the OUT overvoltage threshold. When OVP_SEL is low,  
V(OV_OUT_LOW) is active. When OVP_SEL is high, V(OV_OUT_HIGH) is active.  
OVP_SEL  
STATUS  
17  
O
Active-low open-drain output, asserted in load-detect conditions  
Thermal pad on the bottom of the package  
Thermal pad  
(1) I = Input, O = Output, I/O = Input and output, PWR = Power  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Voltages are with respect to GND unless otherwise noted(1)  
MIN  
MAX  
UNIT  
CS, CTL1, CTL2, EN, FAULT, ILIM_HI, ILIM_LO, IN,  
IMON, OVP_SEL, STATUS  
–0.3  
7
Voltage range  
V
DM_OUT, DP_OUT  
–0.3  
–0.3  
–100  
5.7  
18  
BIAS, DM_IN, DP_IN, OUT  
DM_IN to DM_OUT or DP_IN to DP_OUT  
OUT  
100  
Continuous current  
mA  
A
Internally limited  
Continuous output source  
current  
ISRC  
ISNK  
ILIM_HI, ILIM_LO, IMON  
Internally limited  
FAULT, STATUS  
CS  
25  
mA  
A
Continuous output sink current  
Internally limited  
TJ  
Operating junction temperature  
Storage temperature  
–40  
–65  
Internally limited  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2 000(2)  
±750(3)  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
IEC 61000-4-2 contact discharge, DP_IN and DM_IN(4)  
IEC 61000-4-2 air discharge, DP_IN and DM_IN(4)  
Electrostatic  
discharge  
V(ESD)  
V
±8 000  
±15 000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5  
(4) Surges per IEC 61000-4-2, level 4, 1999 applied from DP_IN and DM_IN to output ground of the TPS254900Q1EVM-817 (SLUUBI0)  
evaluation module.  
6.3 Recommended Operating Conditions  
Voltages are with respect to GND unless otherwise noted.  
MIN  
4.5  
0
NOM  
MAX  
6.5  
6.5  
3.6  
3
UNIT  
V
V(IN)  
Supply voltage  
Input voltage  
IN  
CTL1, CTL2, EN, OVP_SEL  
DM_IN, DM_OUT, DP_IN, DP_OUT  
OUT (–40°C TA 85°C)  
DM_IN to DM_OUT or DP_IN to DP_OUT  
FAULT, STATUS  
V
0
V
A
I(OUT)  
Output continuous current  
–30  
30  
mA  
mA  
kΩ  
°C  
Continuous output sink current  
10  
R(ILIM_xx) Current-limit-set resistors  
TJ Operating junction temperature  
14.3  
–40  
1000  
125  
4
Copyright © 2016, Texas Instruments Incorporated  
 
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
6.4 Thermal Information  
TPS254900-Q1  
THERMAL METRIC(1)  
RVC (WQFN)  
16 PINS  
37.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
39.9  
11.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
11.8  
RθJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
Unless otherwise noted, –40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(CTL1) = V(CTL2) = V(IN), R(FAULT) = R(STATUS)  
=
10 kΩ, R(IMON) = 2.55 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at 25°C.  
All voltages are with respect to GND.  
PARAMETER  
OUT – POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TJ = 25°C  
45  
45  
45  
55  
rDS(on)  
On-resistance(1)  
–40°C TJ 85°C  
–40°C TJ 125°C  
69 mΩ  
77  
VOUT = 6.5 V, VIN = VEN = 0 V, –40°C TJ 85°C,  
measure I(IN)  
Ilkg  
Reverse leakage current  
0.01  
2
µA  
OUT – DISCHARGE  
Discharge resistance  
(mode change)  
R(DCHG)  
400  
500  
630  
Ω
CTL1, CTL2, EN, OVP_SEL INPUTS  
Input pin rising logic  
threshold voltage  
1
1.35  
2
V
V
Input pin falling logic  
threshold voltage  
Hysteresis(2)  
0.85  
1.15  
200  
1.65  
mV  
µA  
Input current  
Pin voltage = 0 V or 6.5 V  
–1  
1
CURRENT LIMIT  
R(ILIM_LO) = 210 kΩ  
R(ILIM_LO) = 80.6 kΩ  
R(ILIM_LO) = 21.5 kΩ  
R(ILIM_LO) = 19.1 kΩ  
R(ILIM_HI) = 18.2 kΩ  
R(ILIM_HI) = 14.3 kΩ  
R(ILIM_HI) shorted to GND  
190  
555  
240  
620  
290  
680  
2145  
2420  
2545  
3240  
5000  
2300  
2590  
2720  
3455  
6500  
2460  
2760  
2895  
3670  
8000  
OUT short-circuit current  
limit  
IOS  
mA  
SUPPLY CURRENT  
V(EN) = 0 V, V(OUT) = 0 V, –40°C TJ 85°C, no  
5.1-kresistor (open) between BIAS and OUT  
I(IN_OFF)  
Disabled IN supply current  
0.1  
5
µA  
µA  
SDP mode (CTL1, CTL2 = 0, 1)  
CDP mode (CTL1, CTL2 = 1, 1)  
Client mode (CTL1, CTL2 = 0, 0)  
170  
200  
120  
250  
280  
210  
I(IN_ON)  
Enabled IN supply current  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(2) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise noted, –40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(CTL1) = V(CTL2) = V(IN), R(FAULT) = R(STATUS)  
=
10 kΩ, R(IMON) = 2.55 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at 25°C.  
All voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
UNDERVOLTAGE LOCKOUT, IN  
V(UVLO)  
UVLO threshold voltage  
Hysteresis(3)  
IN rising  
3.9  
4.15  
100  
4.3  
V
TJ = 25°C  
mV  
FAULT  
Output low voltage  
Off-state leakage  
I(FAULT) = 1 mA  
V(FAULT) = 6.5 V  
100  
2
mV  
µA  
STATUS  
Output low voltage  
Off-state leakage  
I(STATUS) = 1 mA  
V(STATUS) = 6.5 V  
100  
2
mV  
µA  
THERMAL SHUTDOWN  
Thermal shutdown  
T(OTSD2)  
155  
135  
°C  
threshold  
Thermal shutdown  
threshold in current-limit  
T(OTSD1)  
°C  
°C  
Hysteresis(3)  
20  
LOAD DETECT (VCTL1 = VCTL2 = VIN  
)
IOUT load detection  
threshold  
Hysteresis(3)  
I(LD)  
R(ILIM_LO) = 80.6 k, rising load current  
585  
3.7  
650  
50  
715  
mA  
mA  
DM_IN AND DP_IN OVERVOLTAGE PROTECTION  
V(OV_Data)  
Protection trip threshold  
Hysteresis(3)  
DP_IN and DM_IN rising  
3.9  
100  
200  
370  
390  
4.15  
V
mV  
DP_IN = DM_IN = 18 V, IN = 5 V or 0 V  
DP_IN = DM_IN = 5 V, IN = 5 V  
DP_IN = DM_IN = 5 V, IN = 0  
Discharge resistor after  
OVP(2)  
R(DCHG_Data)  
kΩ  
OUT OVERVOLTAGE PROTECTION  
V(OV_OUT_LOW)  
Protection trip threshold  
Hysteresis(3)  
OUT rising  
OUT rising  
5.65  
6.6  
6
90  
6.35  
7.3  
V
mV  
V
V(OV_OUT_HIGH)  
Protection trip threshold  
Hysteresis(3)  
6.95  
130  
55  
mV  
OUT = 18 V, IN = 5 V  
OUT = 18 V, IN = 0  
85  
R(DCHG_OUT)  
Discharge resistor  
kΩ  
80  
120  
CABLE COMPENSATION  
Load = 3 A, 2.5 V V(CS) 6.5 V  
Load = 2.4 A, 2.5 V V(CS) 6.5 V  
Load = 2.1 A, 2.5 V V(CS) 6.5 V  
Load = 1 A, 2.5 V V(CS) 6.5 V  
234  
187  
163  
77  
246  
197  
172  
82  
258  
207  
181  
87  
I(CS)  
Sink current  
µA  
CURRENT MONITOR OUTPUT (IMON)  
Load = 3 A, 0 V(IMON) 2.5 V  
Load = 2.4 A, 0 V(IMON) 2.5 V  
Load = 2.1 A, 0 V(IMON) 2.5 V  
Load = 1 A, 0 V(IMON) 2.5 V  
Load = 0.5 A, 0 V(IMON) 2.5 V  
287  
230  
201  
94  
312  
250  
218  
104  
52  
337  
270  
235  
114  
60  
I(IMON)  
Source current  
µA  
44  
(3) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
Electrical Characteristics (continued)  
Unless otherwise noted, –40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(CTL1) = V(CTL2) = V(IN), R(FAULT) = R(STATUS)  
=
10 kΩ, R(IMON) = 2.55 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at 25°C.  
All voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
HIGH-BANDWIDTH ANALOG SWITCH  
V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN)  
30 mA  
=
3.2  
3.8  
6.5  
Ω
DP and DM switch on-  
resistance  
R(HS_ON)  
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN)  
–15 mA  
=
=
7.6  
V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN)  
30 mA  
=
0.05  
0.05  
8.8  
0.15  
Ω
Switch resistance mismatch  
between DP and DM  
channels  
|ΔR(HS_ON)  
|
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN)  
–15 mA  
0.15  
DP and DM switch off-state VEN = 0 V, V(DP_IN) = V(DM_IN) = 0.3 V, Vac = 0.03  
capacitance(4)  
VPP , f = 1 MHz  
C(IO_OFF)  
C(IO_ON)  
pF  
DP and DM switch on-state V(DP_IN) = V(DM_IN) = 0.3 V, Vac = 0.03 VPP, f = 1  
10.9  
8
pF  
dB  
dB  
capacitance(4)  
MHz  
Off-state isolation(3)  
V(EN) = 0 V, f = 250 MHz  
On-state cross-channel  
isolation(4)  
f = 250 MHz  
30  
VEN = 0 V, V(DP_IN) = V (DM_IN) = 3.6 V, V(DP_OUT)  
= V(DM_OUT) = 0 V, measure I(DP_OUT) and  
I(DM_OUT)  
Ilkg(OFF)  
BW  
Off-state leakage current  
Bandwidth (–3 dB)(4)  
0.1  
1.5  
µA  
R(L) = 50 Ω  
940  
MHz  
CHARGING DOWNSTREAM PORT DETECT  
V(DM_SRC)  
DM_IN CDP output voltage V(DP_IN) = 0.6 V, –250 µA < I(DM_IN) < 0 µA  
0.5  
0.6  
0.7  
0.4  
V
V
DP_IN rising lower window  
threshold for V(DM_SRC)  
activation  
V(DAT_REF)  
0.36  
Hysteresis(4)  
50  
mV  
V
DP_IN rising upper window  
threshold for VDM_SRC  
de-activation  
Hysteresis(4)  
V(LGC_SRC)  
0.8  
40  
0.88  
100  
V(LGC_SRC_HYS)  
I(DP_SINK)  
100  
75  
mV  
µA  
DP_IN sink current  
V(DP_IN) = 0.6 V  
(4) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
6.6 Switching Characteristics  
Unless otherwise noted –40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(IN), V(CTL1) = V(CTL2) = V(IN). R(FAULT) = R(STATUS)  
= 10 kΩ, R(IMON) = 2.55 K, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at  
25°C. All voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
1.05  
0.27  
TYP  
1.75  
0.47  
7.5  
2.7  
2
MAX UNIT  
tr  
OUT voltage rise time  
OUT voltage fall time  
OUT voltage turnon time  
OUT voltage turnoff time  
V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω  
3.1  
0.82  
11  
ms  
ms  
ms  
ms  
s
tf  
ton  
V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω  
toff  
5
t(DCHG_S)  
Discharge hold time (mode Time V(OUT) < 0.7 V  
change)  
1.1  
5.5  
2.9  
t(IOS)  
OUT short-circuit response V(IN) = 5 V, R(SHORT) = 50 mΩ  
2
8.5  
µs  
ms  
ns  
ns  
time(1)  
t(OC_OUT_FAULT)  
OUT FAULT deglitch time  
Bidirectional deglitch applicable to current-limit  
condition only (no deglitch assertion for OTSD)  
11.5  
tpd  
Analog switch propagation V(IN) = 5 V  
0.14  
0.02  
(1)  
delay  
t(SK)  
Analog switch skew  
between opposite  
V(IN) = 5 V  
transitions of the same port  
(1)  
(tPHL – tPLH  
)
t(LD_SET)  
Load-detect set time  
Load-detect reset time  
V(IN) = 5 V  
V(IN) = 5 V  
120  
1.8  
210  
3
280  
4.2  
ms  
s
t(LD_RESET)  
t(OV_Data)  
DP_IN and DM_IN  
overvoltage protection  
response time  
5
µs  
t(OV_OUT)  
OUT overvoltage protection  
response time  
0.3  
16  
16  
µs  
ms  
ms  
t(OV_D_FAULT)  
DP_IN and DM_IN FAULT-  
asserted degltich time  
11  
11  
23  
23  
OUT FAULT-asserted  
degltich time  
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
6.7 Typical Characteristics  
TA = 25°C, V(IN) = 5 V, V(EN) = 5 V, V(CTL1) = V(CTL2) = 5 V, FAULT and STATUS connect to V(IN) via a 10-kΩ pullup resistor  
(unless stated otherwise)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
41  
40.8  
40.6  
40.4  
40.2  
40  
39.8  
39.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
V(IN) = 5 V  
V(OUT) = 5 V  
Measure I(OUT)  
Figure 1. Power Switch On-Resistance vs Temperature  
Figure 2. Reverse Leakage Current vs Temperature  
8
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = 5 V, V(CTL1) = V(CTL2) = 5 V, FAULT and STATUS connect to V(IN) via a 10-kΩ pullup resistor  
(unless stated otherwise)  
570  
560  
550  
540  
530  
520  
510  
500  
490  
480  
100  
90  
80  
70  
60  
50  
40  
VIN = 4.5 V  
VIN = 5.0 V  
VIN = 6.5 V  
VIN = 5 V  
VIN = 0 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D003  
D004  
A
A
Figure 3. OUT Discharge Resistance (Mode Change) vs  
Temperature  
Figure 4. OUT Discharge Resistance (OVP) vs Temperature  
3600  
700  
600  
500  
400  
300  
200  
3400  
3200  
3000  
2800  
2600  
2400  
2200  
2000  
RILIM_HI = 21.5 K  
RILIM_HI = 19.1 K  
RILIM_HI = 18.2 K  
RILIM_HI = 14.3 K  
100  
RILIM_LO = 210 kW  
RILIM_LO = 80.6 kW  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D006  
V(IN) = 5 V  
V(IN) = 5 V  
Figure 5. OUT Short-Circuit Current Limit vs Temperature I  
Figure 6. OUT Short-Circuit Current Limit vs Temperature II  
240  
6
220  
200  
180  
4
2
0
VIN = 4.5 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 5 V  
VIN = 6.5 V  
VIN = 6.5 V  
-2  
160  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D007  
D008  
CTL1 = 1  
CTL2 = 1  
CTL1 = 1  
CTL2 = 1  
Figure 7. Disabled IN Supply Current vs Temperature  
Figure 8. Enabled IN Supply Current – CDP (11) vs  
Temperature  
Copyright © 2016, Texas Instruments Incorporated  
9
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = 5 V, V(CTL1) = V(CTL2) = 5 V, FAULT and STATUS connect to V(IN) via a 10-kΩ pullup resistor  
(unless stated otherwise)  
660  
650  
640  
630  
620  
610  
600  
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
LLD - IOUT Rising Load Detect Threshold  
IOS - IOUT Short Circuit Current Limit  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
D011  
D012  
V(IN) = 5 V  
R(ILIM_LO) = 80.6 kΩ  
V(IN) = 5 V  
Figure 9. I(OUT) Rising Load-Detect Threshold and OUT  
Short-Circuit Limit vs Temperature  
Figure 10. DP_IN Overvoltage Protection Threshold vs  
Temperature  
300  
7.3  
7.2  
7.1  
7
250  
200  
150  
100  
50  
6.9  
6.8  
6.7  
6.6  
IOUT = 1 A  
IOUT = 2.1 A  
IOUT = 2.4 A  
IOUT = 3 A  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125 140  
Junction Temperature (èC)  
Junction Temperature (èC)  
D014  
D016  
V(IN) = 5 V  
V(IN) = 5 V  
V(CS) = 25 V  
Figure 11. OUT Overvoltage Protection Threshold vs  
Temperature  
Figure 12. I(CS) vs Temperature  
300  
340  
320  
300  
280  
260  
240  
220  
200  
250  
200  
150  
100  
50  
IOUT = 2.1 A  
IOT = 2.4 A  
IOUT = 3 A  
IOUT = 1 A  
IOUT = 2.1 A  
IOUT = 2.4 A  
IOUT = 3 A  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D017  
D018  
VIN = 6.5 V  
Figure 13. I(CS) vs V(CS) Voltage  
VIN = 5 V  
V(IMON) = 25 V  
Figure 14. I(IMON) vs Temperature  
10  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = 5 V, V(CTL1) = V(CTL2) = 5 V, FAULT and STATUS connect to V(IN) via a 10-kΩ pullup resistor  
(unless stated otherwise)  
320  
300  
280  
260  
240  
220  
200  
180  
IOUT = 2.1 A  
IOUT = 2.4 A  
IOUT = 3 A  
0
0.5  
1
1.5  
2
2.5  
VCS Voltage (V)  
D020  
VIN = 4.5 V  
Figure 15. I(IMON) vs V(CS) Voltage  
Measured on EVM with 10-cm cable  
Measured on EVM with 10-cm cable  
Figure 16. Bypassing the TPS254900-Q1 Data Switch  
Figure 17. Through the TPS254900-Q1 Data Switch  
VEN  
5 V/div  
VOUT  
2 V/div  
IOUT  
0.5 A/div  
R(LOAD) = 5 Ω  
C(LOAD) = 10 µF  
t = 1 ms/div  
R(LOAD) = 5 Ω  
C(LOAD) = 10 µF  
t = 2 ms/div  
Figure 19. Turnoff Response  
Figure 18. Turnon Response  
Copyright © 2016, Texas Instruments Incorporated  
11  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = 5 V, V(CTL1) = V(CTL2) = 5 V, FAULT and STATUS connect to V(IN) via a 10-kΩ pullup resistor  
(unless stated otherwise)  
R(ILIM_HI) = 19.1 kΩ  
t = 4 ms/div  
R(ILIM_LO) = 80.6 kΩ  
t = 4 ms/div  
Figure 21. Enable Into Short (CDP) – Thermal Cycling  
Figure 20. Enable Into Short (SDP)  
R(ILIM_HI) = 19.1 kΩ  
t = 4 ms/div  
R(ILIM_LO) = 80.6 kΩ  
t = 2 ms/div  
Figure 23. Short Circuit to No Load (CDP)  
Figure 22. Short Circuit to No Load (SDP)  
R(ILIM_LO) = 80.6 kΩ  
t = 100 ms/div  
R(ILIM_HI) = 19.1 kΩ  
R(short) = 50 mΩ  
t = 2 ms/div  
Figure 25. Load-Detection Set Time  
Figure 24. Hot Short  
12  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = 5 V, V(CTL1) = V(CTL2) = 5 V, FAULT and STATUS connect to V(IN) via a 10-kΩ pullup resistor  
(unless stated otherwise)  
R(ILIM_LO) = 80.6 kΩ  
t = 1 s/div  
t = 4 ms/div  
Figure 27. OUT Short to Battery  
Figure 26. Load-Detection Reset Time  
t = 100 ms/div  
Figure 28. OUT Short-to-Battery Recovery  
t = 4 ms/div  
Figure 29. DP_IN Short to Battery  
R(BIAS) = 5.1 kΩ  
t = 100 ms/div  
R(BIAS) = 5.1 kΩ  
t = 4 ms/div  
Figure 30. DP_IN Short-to-Battery Recovery  
Figure 31. DP_IN Short to VBUS  
Copyright © 2016, Texas Instruments Incorporated  
13  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = 5 V, V(CTL1) = V(CTL2) = 5 V, FAULT and STATUS connect to V(IN) via a 10-kΩ pullup resistor  
(unless stated otherwise)  
R(BIAS) = 5.1 kΩ  
t = 200 ms/div  
Figure 32. DP_IN Short-to-VBUS and Recovery  
Figure 33. Data Transmission Characteristics vs Frequency  
Figure 34. Off-State Data-Switch Isolation vs Frequency  
Figure 35. On-State Cross-Channel Isolation vs Frequency  
14  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
7 Parameter Measurement Information  
10 cm AWG18  
0.5 m AWG28  
0.5 m AWG28  
Manually Hot-short  
0.5 m AWG22  
18 V  
OUT  
DM_IN  
DP_IN  
GND  
5 V  
27 mF  
35 V  
GND  
PWR817A  
Copyright © 2016, Texas Instruments Incorporated  
Figure 36. Short-to-Battery System Test Setup  
Copyright © 2016, Texas Instruments Incorporated  
15  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS254900-Q1 device is a USB charging controller and power switch which integrates D+ and D– short-to-  
battery protection, cable compensation, current monitor (IMON), and IEC ESD protection suitable for automotive  
USB charging and USB port protection applications.  
The integrated power distribution switch uses N-channel MOSFETs suitable for applications where short circuits  
or heavy capacitive loads will be encountered. The device allows the user to adjust the current-limit thresholds  
using external resistors. The device enters constant-current mode when the load exceeds the current-limit  
threshold.  
The TPS254900-Q1 device provides VBUS, D+, and D– short-to-battery protection. This protects the upstream  
voltage regulator, automotive processor, and hub when these pins are exposed to fault conditions.  
The device also integrates CDP mode, defined in the BC1.2 specification, to enable up to 1.5-A fast charging of  
most portable devices during data communication.  
The TPS254900-Q1 device integrates a cable compensation (CS) feature to compensate for long-cable voltage  
drop. This keeps the remote USB port output voltage constant to enhance the user experience under high-  
current charging conditions.  
The TPS254900-Q1 device provides a current-monitor function (IMON) by connecting a resistor from the IMON  
pin to GND to provide a positive voltage linearly with load current. This can be used for system power or dynamic  
power management.  
Additionally, the device provides ESD protection up to ±8 kV (contact discharge) and ±15 kV (air discharge) per  
IEC 61000-4-2 on DP_IN and DM_IN.  
16  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
8.2 Functional Block Diagram  
Current  
Sense  
CS  
IN  
OUT  
OVP1  
(Short to BAT)  
Disable + UVLO +  
Discharge + OVP  
ILIM_HI  
ILIM_LO  
Current  
Limit  
OVP_SEL  
GND  
Charge  
Pump  
8-ms  
Deglitch  
OC  
Driver  
EN  
CS  
UVLO  
FAULT  
Thermal  
Sense  
´82 µA/A  
OTSD  
IEC ESD  
Protection  
BIAS  
OVP2/3 (Short to BAT)  
´104 µA/A  
IMON  
DM_OUT  
DP_OUT  
DM_IN  
DP_IN  
CDP  
Detection  
CTL1  
CTL2  
STATUS  
Logic  
Control  
Discharge  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 FAULT Response  
The device features an active-low, open-drain fault output. FAULT goes low when there is a fault condition. Fault  
detection includes overtemperature, overcurrent, or overvoltage on VBUS, DP_IN and DM_IN. Connect a 10-kΩ  
pullup resistor from FAULT to IN.  
Table 1 summarizes the conditions that generate a fault and actions taken by the device.  
Copyright © 2016, Texas Instruments Incorporated  
17  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Feature Description (continued)  
Table 1. Fault Conditions  
EVENT  
CONDITION  
ACTION  
Overvoltage on the data lines  
V(DP_IN) or V(DM_IN) > 3.9 V  
V(OUT) > 6 V or 6.95 V  
I(OUT) > I(OS)  
The device immediately shuts off the USB data switches and  
the internal power switch. The fault indicator asserts with a  
16-ms deglitch, and deasserts without deglitch.  
Overvoltage on V(OUT)  
Overcurrent on V(OUT)  
The device immediately shuts off the internal power switch  
and the USB data switches. The fault indicator asserts with a  
16-ms deglitch and deasserts without deglitch.  
The device regulates switch current at I(OS) until thermal  
cycling occurs. The fault indicator asserts and deasserts with  
an 8-ms deglitch (the device does not assert FAULT on  
overcurrent in SDP1 mode).  
Overtemperature  
TJ > OTSD2 in non-current-limited or TJ The device immediately shuts off the internal power switch  
> OTSD1 in current-limited mode.  
and the USB data switches. The fault indicator asserts  
immediately when the junction temperature exceeds OTSD2  
or OTSD1 while in a current-limiting condition. The device  
has a thermal hysteresis of 20°C.  
8.3.2 Cable Compensation  
When a load draws current through a long or thin wire, there is an IR drop that reduces the voltage delivered to  
the load. In the vehicle from the voltage regulator 5-V output to the VPD_IN (input voltage of portable device), the  
total resistance of power switch rDS(on) and cable resistance causes an IR drop at the PD input. So the charging  
current of most portable devices is less than their expected maximum charging current.  
V(OUT) With Compensation  
5.x  
VBUS With Compensation  
V(DROP)  
VBUS Without Compensation  
0
I(OUT) (A)  
0.5  
1
1.5  
2
2.5  
3
Figure 37. Voltage Drop  
TPS254900-Q1 device detects the load current and applies a proportional sink current that can be used to adjust  
the output voltage of the upstream regulator to compensate for the IR drop in the charging path. The gain G(CS)  
of the sink current proportional to load current is 82 µA/A.  
18  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
rDS(on)  
V(OUT)  
To Regulator OUT  
C(COMP)  
To Load  
IN  
OUT  
R1  
R2  
R(WIRE)  
R(LOAD)  
R3  
R(FA)  
C(BUS)  
R(FB)  
FB  
To Regulator  
Resistor Divider  
CS  
R(G)  
Figure 38. Cable Compensation Equivalent Circuit  
8.3.2.1 Design Procedure  
To start the procedure, the total resistance, including the power switch rDS(on) and wire resistance R(WIRE), must  
be known.  
1. Choose R(G) following the voltage-regulator feedback resistor-divider design guideline.  
2. Calculate R(FA) according to Equation 1.  
RFA = (rDS(on) + R(WIRE) ) / G(CS)  
(1)  
3. Calculate R(FB) according to Equation 2.  
V
(OUT)  
R(FB)  
=
- R(G) - R(FA)  
V
/ R(G)  
(FB)  
(2)  
4. C(COMP) in parallel with R(FA) is required to stablilize V(OUT) when C(BUS) is large. Start with C(COMP) 3 × G(CS)  
× C(OUT), then adjust C(COMP) to optimize the load transient of the voltage regulator output. V(OUT) stability  
should always be verified in the end application circuit.  
8.3.3 D+ and D– Protection  
D+ and D– protection consists of ESD and OVP (overvoltage protection). The DP_IN and DM_IN pins provide  
ESD protection up to ±15 kV (air discharge) and ±8 kV (contact discharge) per IEC 61000-4-2 (see the ESD  
Ratings section for test conditions).  
The ESD stress seen at DP_IN and DM_IN is impacted by many external factors, like the parasitic resistance  
and inductance between ESD test points and the DP_IN and DM_IN pins. For air discharge, the temperature and  
humidity of the environment can cause some difference, so the IEC performance should always be verified in the  
end-application circuit.  
The IEC ESD performance of the TPS254900-Q1 device depends on the capacitance connected from BIAS to  
GND. A 2.2-µF capacitor placed close to the BIAS pin is recommended. Connect the BIAS pin to OUT using a  
5.1-kΩ resistor as a discharge path for the ESD stress.  
OVP protection is provided for short-to-VBUS or short-to-battery conditions in the vehicle harness, preventing  
damage to the upstream USB transceiver or hub. When the voltage on DP_IN or DM_IN exceeds 3.9 V (typical),  
the TPS254900-Q1 device quickly responds to block the high-voltage reverse connection to DP_OUT and  
DM_OUT. Overcurrent short-to-GND protection for D+ and D– is provided by the upstream USB transceiver.  
8.3.4 VBUS OVP Protection  
The TPS254900-Q1 OUT pin can withstand up to 18 V. The internal MOSFET turns off quickly when a short-to-  
battery condition occurs.  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
The TPS254900-Q1 device has two OVP thresholds; one is 6 V (typical) and the other is 6.95 V (typical). Set the  
OVP threshold using the external OVP_SEL pin.  
8.3.5 Output and D+ or D– Discharge  
To allow a charging port to renegotiate current with a portable device, the TPS254900-Q1 device uses the OUT  
discharge function. During mode change, the TPS254900-Q1 device turns off the power switch while discharging  
OUT with a 500-resistance, then turning back on the power switches to reassert the OUT voltage.  
When an OVP condition occurs on DP_IN or DM_IN, the TPS254900-Q1 device enables an internal 200-kΩ  
discharge resistance from DP_IN to ground and from DM_IN to ground. The analog switches are also turned off.  
The TPS254900-Q1 device automatically disables the discharge paths and turns on the analog switches once  
the OVP condition is removed.  
When an OVP condition occurs on OUT, the TPS254900-Q1 device turns on an internal discharge path (see  
Table 2 for the discharge resistance). The TPS254900-Q1 device automatically turns off the discharge path and  
turns on the power switch once the OVP condition is removed.  
Table 2. OUT Discharge Resistance  
VIN(1)  
EN(1)  
OVP(1)  
OUT Discharge  
Resistance(2)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
80 kΩ  
80 kΩ  
500 Ω  
500 or 55 kΩ  
55 kΩ  
(1) 0 = inactive, 1 = active  
(2) — = no discharge resistance  
8.3.6 Port Power Management (PPM)  
PPM is the intelligent and dynamic allocation of power. PPM is for systems that have multiple charging ports but  
cannot power them all simultaneously.  
8.3.6.1 Benefits of PPM  
The benefits of PPM include the following:  
Delivers better user experience  
Prevents overloading of system power supply  
Allows for dynamic power limits based on system state  
Allows every port potentially to be a high-power charging port  
Allows for smaller power-supply capacity because loading is controlled  
8.3.6.2 PPM Details  
All ports are allowed to broadcast high-current charging. The current limit is based on ILIM_HI. The system  
monitors the STATUS pin to see when high-current loads are present. Once the allowed number of ports asserts  
STATUS, the remaining ports are toggled to a non-charging port. The current limit of the non-charging port is  
based on the ILIM_LO setting. The non-charging ports are automatically toggled back to charging ports when a  
charging port deasserts STATUS.  
STATUS asserts in a charging port when the load current is above ILIM_LO + 30 mA for 210 ms (typical).  
STATUS deasserts in a charging port when the load current is below ILIM_LO – 20 mA for 3 seconds (typical).  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
8.3.6.3 Implementing PPM in a System With Two Charging Ports (CDP and SDP1)  
Figure 39 shows the implementation of the two charging ports with data communication, each with a  
TPS254900-Q1 device and configured in CDP mode. In this example, the 5-V power supply for the two charging  
ports is rated at less than 3.5 A. Both TPS254900-Q1 devices have R(ILIM) chosen to correspond to the low (1-A)  
and high (2.4-A) current-limit setting for the port. In this implementation, the system can support only one of the  
two ports at 2.4-A charging current, whereas the other port is set to the SDP1 mode and IOS corresponds to 1 A.  
USB Charging  
Port 1  
TPS254900-Q1 Port 1  
5 V  
IN  
OUT  
EN1  
DM_IN  
EN  
DP_IN  
FAULT1  
FAULT  
STATUS  
ILIM_LO  
ILIM_HI  
CTL1  
CTL2  
100 kW  
GND  
USB Charging  
Port 2  
TPS254900-Q1 Port 2  
IN  
OUT  
EN2  
DM_IN  
EN  
FAULT2  
DP_IN  
FAULT  
STATUS  
ILIM_LO  
ILIM_HI  
CTL1  
CTL2  
GND  
100 kW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 39. PPM Between CDP and SDP1  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
8.3.7 Overcurrent Protection  
When an overcurrent condition is detected, the device maintains a constant output current and reduces the  
output voltage accordingly. Two possible overload conditions can occur. In the first condition, the output is  
shorted before the device is enabled or before the application of V(IN). The TPS254900-Q1 device senses the  
short and immediately switches into a constant-current output. In the second condition, a short or an overload  
occurs while the device is enabled. At the instant the overload occurs, high currents flow for 1 to 2 μs (typical)  
before the current-limit circuit reacts. The device operates in constant-current mode after the current-limit circuit  
has responded. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.  
The device remains off until the junction temperature cools approximately 20°C and then restarts. The device  
continues to cycle on and off until the overcurrent condition is removed.  
8.3.8 Undervoltage Lockout  
The undervoltage-lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO  
turnon threshold. Built-in hysteresis prevents unwanted oscillations on the output due to input voltage drop from  
large current surges.  
8.3.9 Thermal Sensing  
Two independent thermal-sensing circuits protect the TPS254900-Q1 device if the temperature exceeds  
recommended operating conditions. These circuits monitor the operating temperature of the power-distribution  
switch and disable operation. The power dissipation in the package is proportional to the voltage drop across the  
power switch, so the junction temperature rises during an overcurrent condition. The first thermal sensor turns off  
the power switch when the die temperature exceeds 135ºC and the device is in current limit. The second thermal  
sensor turns off the power switch when the die temperature exceeds 155ºC regardless of whether the power  
switch is in current limit. Hysteresis is built into both thermal sensors, and the switch turns on after the device  
has cooled by approximately 20°C. The switch continues to cycle off and then on until the fault is removed. The  
open-drain false-reporting output, FAULT, is asserted (low) during an overtemperature shutdown condition.  
8.3.10 Current-Limit Setting  
The TPS254900-Q1 has two independent current-limit settings that are each adjusted externally with a resistor.  
The ILIM_HI setting is adjusted with R(ILIM_HI) connected between ILIM_HI and GND. The ILIM_LO setting is  
adjusted with R(ILIM_LO) connected between ILIM_LO and GND. Consult the device truth table (Table 3) to see  
when each current limit is used. Both settings have the same relation between the current limit and the adjusting  
resistor.  
The following equation calculates the value of resistor for adjusting the typical current limit:  
48687 V  
0.9945  
IOS(nom) (mA) =  
R(ILIM_ xx)  
kW  
(3)  
Many applications require that the current limit meet specific tolerance limits. When designing to these tolerance  
limits, both the tolerance of the TPS254900-Q1 current limit and the tolerance of the external adjusting resistor  
must be taken into account. The following equations approximate the TPS254900-Q1 minimum and maximum  
current limits to within a few milliamperes and are appropriate for design purposes. The equations do not  
constitute part of TI’s published device specifications for purposes of TI’s product warranty. These equations  
assume an ideal—no variation—external adjusting resistor. To take resistor tolerance into account, first  
determine the minimum and maximum resistor values based on its tolerance specifications and use these values  
in the equations. Because of the inverse relation between the current limit and the adjusting resistor, use the  
maximum resistor value in the IOS(min) equation and the minimum resistor value in the IOS(max) equation.  
46464 V  
0.9974  
IOS(min) (mA) =  
- 32  
R(ILIM_ xx)  
kW  
kW  
(4)  
(5)  
51820 V  
0.9987  
IOS(max) (mA) =  
+ 38  
R(ILIM_ xx)  
22  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
600  
500  
400  
300  
200  
100  
0
IOS, Min  
OS, Max  
IOS, Typ  
IOS, Min  
I
OS, Max  
IOS, Typ  
I
0
10  
20  
30  
40  
50  
60  
70  
Adjusting Resistor (kW)  
80  
90  
100  
100 200 300 400 500 600 700 800 900 1000  
Adjusting Resistor (kW)  
D022  
D023  
Figure 40. Current-Limit Setting vs Adjusting Resistor I  
Figure 41. Current-Limit Setting vs Adjusting Resistor II  
The routing of the traces to the R(ILIM_xx) resistors should have a sufficiently low resistance so as not to affect the  
current-limit accuracy. The ground connection for the R(ILIM_xx) resistors is also very important. The resistors must  
reference back to the TPS254900-Q1 GND pin. Follow normal board layout practices to ensure that current flow  
from other parts of the board does not impact the ground potential between the resistors and the TPS254900-Q1  
GND pin.  
8.4 Device Functional Modes  
8.4.1 Device Truth Table (TT)  
The device truth table (Table 3) lists all valid combinations for both control pins (CTL1 and CTL2), and the  
corresponding charging mode. The TPS254900-Q1 device monitors the CTL inputs and transitions to the  
charging mode to which it is commanded.  
Table 3. Truth Table  
CTL1  
CTL2  
CURRENT LIMIT  
SELECTED  
MODE  
STATUS  
for Load  
Detect  
CS FOR CABLE  
COMPENSATION CURRENT  
MONITOR  
IMON FOR  
FAULT  
REPORT  
NOTES  
0
0
N/A  
Client  
OFF  
OFF  
OFF  
OFF  
Power switch  
is disabled,  
only analog  
switch is on.  
mode(1)  
0
1
1
0
ILIM_LO  
ILIM_LO  
SDP  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
Standard  
SDP  
SDP1(2)  
ON(3)  
No OUT  
discharge  
between CDP  
and SDP1 for  
PPM  
1
1
ILIM_HI  
CDP(2)  
ON  
ON  
ON  
ON  
(1) No 5.1-kΩ resistor from BIAS to OUT (open between the pins), or OUT still has 5-V voltage from an external downstream port; client  
mode is still active.  
(2) No OUT discharge when changing from 10 to 11 or from 11 to 10.  
(3) A fault only trips OTSD, OUT, DP_IN, DM_IN, and OVP.  
8.4.2 USB BC1.2 Specification Overview  
The BC1.2 specification includes three different port types:  
Standard downstream port (SDP)  
Charging downstream port (CDP)  
Dedicated charging port (DCP)  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
BC1.2 defines a charging port as a downstream-facing USB port that provides power for charging portable  
equipment. Under this definition, CDP and DCP are defined as charging ports.  
Table 4 lists the difference between these port types.  
Table 4. Operating Modes Table  
PORT TYPE  
SUPPORTS USB2.0 COMMUNICATION  
MAXIMUM ALLOWABLE CURRENT  
DRAWN BY PORTABLE EQUIPMENT (A)  
SDP (USB 2.0)  
SDP (USB 3.0)  
CDP  
YES  
YES  
YES  
NO  
0.5  
0.9  
1.5  
1.5  
DCP  
8.4.3 Standard Downstream Port (SDP) Mode — USB 2.0 and USB 3.0  
An SDP is a traditional USB port that follows the USB 2.0 or USB 3.0 protocol. An SDP supplies a minimum of  
500 mA per port for USB 2.0 and 900 mA per port for USB 3.0. USB 2.0 and USB 3.0 communication is  
supported, and the host controller must be active to allow charging.  
8.4.4 Charging Downstream Port (CDP) Mode  
A CDP is a USB port that follows the USB BC1.2 specification and supplies a minimum of 1.5 A per port. A CDP  
provides power and meets the USB 2.0 requirements for device enumeration. USB 2.0 communication is  
supported, and the host controller must be active to allow charging. The difference between CDP and SDP is the  
host-charge handshaking logic that identifies this port as a CDP. A CDP is identifiable by a compliant BC1.2  
client device and allows for additional current draw by the client device.  
The CDP handshaking process occurs in two steps. During the first step, the portable equipment outputs a  
nominal 0.6-V output on the D+ line and reads the voltage input on the D– line. The portable device detects the  
connection to an SDP if the voltage is less than the nominal data-detect voltage of 0.3 V. The portable device  
detects the connection to a CDP if the D– voltage is greater than the nominal data-detect voltage of 0.3 V and  
optionally less than 0.8 V.  
The second step is necessary for portable equipment to determine whether the equipment is connected to a CDP  
or a DCP. The portable device outputs a nominal 0.6-V output on the D– line and reads the voltage input on the  
D+ line. The portable device concludes the equipment is connected to a CDP if the data line being read remains  
less than the nominal data detects voltage of 0.3 V. The portable device concludes it is connected to a DCP if  
the data line being read is greater than the nominal data-detect voltage of 0.3 V.  
The TPS254900-Q1 integrates CDP detection protocol, used at a downstream port as the CDP controller to  
support CDP portable-device fast charge up to 1.5 A.  
8.4.5 Client Mode  
The TPS254900-Q1 device integrates client mode as shown in Figure 42. The internal power switch is OFF to  
block current flow from OUT to IN, and the signal switches are ON. This mode can be used for software  
upgrades from the USB port.  
OUT  
DP_IN  
DM_IN  
IN  
OFF  
DP_OUT  
DM_OUT  
Copyright © 2016, Texas Instruments Incorporated  
Figure 42. Client-Mode Equivalent Circuit  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
Passing the IEC 61000-4-2 test for DP_IN and DM_IN requires connecting a discharge resistor to OUT during  
USB 2.0 high-speed enumeration. In client mode, because the power switch is OFF, OUT must be 5 V so that  
the device can work normally (usually powered by an external downstream USB port). If the OUT voltage is low,  
the communication may not work properly.  
8.4.6 High-Bandwidth Data-Line Switch  
The D+ and D– data lines pass through the device to enable monitoring and handshaking while supporting the  
charging operation. A wide-bandwidth signal switch allows data to pass through the device without corrupting  
signal integrity. The data-line switches are turned on in any of the CDP, SDP or client operating modes. The EN  
input must be at logic high for the data-line switches to be enabled.  
NOTE  
While in CDP mode, the data switches are ON, even during CDP handshaking.  
The data switches are only for the USB-2.0 differential pair. In the case of a USB-3.0  
host, the super-speed differential pairs must be routed directly to the USB connector  
without passing through the TPS254900-Q1 device.  
Data switches are OFF during OUT (VBUS) discharge.  
Copyright © 2016, Texas Instruments Incorporated  
25  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS254900-Q1 device is a USB charging-port controller and power switch with cable compensation and  
short-to-battery protection for VBUS, D+, and D–. The device is typically used for automotive USB port protection  
and as a USB charging controller. The following design procedure can be used to select components for the  
TPS254900-Q1. This section presents a simplified discussion of how to choose external components for VBUS  
D+, and D– short-to-battery protection. For cable-compensation design information, see the data sheet  
(SLUSCE3) for the TPS2549-Q1 device, which has features and design considerations very similar to those of  
the TPS254900-Q1 device.  
,
9.2 Typical Application  
For an automotive USB charging port, the VBUS, D+, and D– pins are exposed and require a protection device.  
The protection required includes VBUS overcurrent, D+ and D– ESD protection, and short-to-battery protection.  
This charging-port device protects the upstream dc-dc converter (bus line) and automotive SOC or hub chips (D+  
and D– data lines). An application schematic of this circuit with short-to-battery protection is shown in Figure 43.  
10 µF  
TPS254900-Q1  
1210  
35 V  
X7R  
5 V  
IN  
VBUS  
D–  
OUT  
DM_IN  
DP_IN  
DM_OUT  
DP_OUT  
To Host  
Controller  
D+  
EN  
EN  
GND  
FAULT  
BIAS  
FAULT  
2.2 µF  
STATUS  
0805  
50 V  
X7R  
STATUS  
CTL1  
Mode  
Select I/O  
ILIM_LO  
ILIM_HI  
CTL2  
OVP_SEL  
Logic I/O  
Upstream DC-DC  
Converter  
CS  
GND  
ADC  
IMON  
Copyright © 2016, Texas Instruments Incorporated  
Figure 43. Typical Application Schematic: USB Port Charging With Cable Compensation  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
DESIGN PARAMETER  
EXAMPLE VALUE  
Battery voltage, V(BAT)  
Short-circuit cable  
18 V  
0.5 m  
9.2.2 Detailed Design Procedure  
To begin the design process, the designer must know the following:  
The battery voltage  
The short-circuit cable length  
The maximum continuous output current for the charging port. The minimum current-limit setting of  
TPS254900-Q1 device must be higher than this current.  
The maximum output current of the upstream dc-dc converter. The maximum current-limit setting of  
TPS254900-Q1 device must be lower than this current.  
For cable compensation, the total resistance including power switch rDS(on), cable resistance, and connector  
contact resistance must be specified.  
9.2.2.1 Input Capacitance  
Consider the following application situations when choosing the input capacitors.  
For all applications, TI recommends a 0.1-µF or greater ceramic bypass capacitor between IN and GND, placed  
as close as possible to the device for local noise decoupling.  
During output short or hot plug-in of a capacitive load, high current flows through the TPS254900-Q1 device back  
to the upstream dc-dc converter until the TPS254900-Q1 device responds (after t(IOS)). During this response time,  
the TPS254900-Q1 input capacitance and the dc-dc converter output capacitance source current to keep VIN  
above the UVLO of the TPS254900-Q1 device and any shared circuits. Size the input capacitance for the  
expected transient conditions and keep the path between the TPS254900-Q1 device and the dc-dc converter  
short to help minimize voltage drops.  
Input voltage overshoots can be caused by either of two effects. The first cause is an abrupt application of input  
voltage in conjunction with input power-bus inductance and input capacitance when the IN pin is in the high-  
impedance state (before turnon). Theoretically, the peak voltage is 2 times the applied voltage. The second  
cause is due to the abrupt reduction of output short-circuit current when the TPS254900-Q1 device turns off and  
energy stored in the input inductance drives the input voltage high. Applications with large input inductance (for  
example, a connection between the evaluation board and the bench power supply through long cables) may  
require large input capacitance to prevent the voltage overshoot from exceeding the absolute-maximum voltage  
of the device.  
During the short-to-battery (EN = HIGH) condition, the input voltage follows the output voltage until OVP  
protection is triggered (t(OV_OUT)). After the TPS254900-Q1 device responds and turns off the power switch, the  
stored energy in the input inductance can cause ringing.  
Based on the three situations described, 10-µF and 0.1-µF low-ESR ceramic capacitors, placed close to the  
input, are recommended.  
9.2.2.2 Output Capacitance  
Consider the following application situations when choosing the output capacitors.  
After an output short occurs, the TPS254900-Q1 device abruptly reduces the OUT current, and the energy stored  
in the output power-bus inductance causes voltage undershoot and potentially reverse voltage as it discharges.  
Applications with large output inductance (such as from a cable) benefit from the use of a high-value output  
capacitor to control the voltage undershoot.  
For USB port applications, because the VBUS pin is exposed to IEC61000-4-2 level-4 ESD, use a low-ESR  
capacitance to protect OUT.  
Copyright © 2016, Texas Instruments Incorporated  
27  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
The TPS254900-Q1 device is capable of handling up to 18-V battery voltage. When VBUS is shorted to the  
battery, the LCR tank circuit formed can induce ringing. The peak voltage seen on the OUT pin depends on the  
short-circuit cable length. The parasitic inductance and resistance varies with length, causing the damping factor  
and peak voltage to differ. Longer cables with larger resistance reduce the peak current and peak voltage.  
Consider high-voltage derating for the ceramic capacitor, because the peak voltage can be higher than twice the  
battery voltage.  
Based on the three situations described, a 10-µF, 35-V, X7R, 1210 low-ESR ceramic capacitor placed close to  
OUT is recommended. If the battery voltage is 16 V and a 16-V transient voltage suppressor (TVS) is used, then  
the capacitor voltage can be reduced to 25 V. Considering temperature variation, placing an additional 35-V  
aluminum electrolytic capacitor can lower the peak voltage and make the system more robust.  
9.2.2.3 BIAS Capacitance  
The capacitance on the BIAS pin helps the IEC ESD performance on the DM_IN and DP_IN pins.  
When a short to battery on DP_IN, DM_IN and/or OUT occurs, high voltage can be seen on the BIAS pin. Place  
a 2.2-µF, 50-V, X7R, 0805, low-ESR ceramic capacitor close to the BIAS pin. The whole current path from BIAS  
to GND should be as short as possible. Additionally, use a 5.1-kdischarge resistor from BIAS to OUT.  
9.2.2.4 Output and BIAS TVS  
The TPS254900-Q1 device can withstand high transient voltages due to LCR tank ringing, but in order to make  
OUT, DP_IN, and DM_IN robust, place one TVS close to the OUT pin, and another TVS close to the BIAS pin.  
When choosing the TVS, the reverse standoff voltage VR depends on the battery voltage (16 V or 18 V).  
Considering the peak pulse power capability, a 400-W device is recommended such as an SMAJ16 for a 16-V  
battery or an SMAJ18 for an 18-V battery.  
9.2.3 Application Curves  
VBAT = 14 V  
t = 10 µs/div  
VBAT = 18 V  
t = 10 µs/div  
Figure 44. Disabled, 25-V, 1206, X7R COUT Capacitor  
Without SMAJ18  
Figure 45. Disabled, 35-V, 1210, X7R COUT Capacitor  
Without SMAJ18  
28  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
t = 10 µs/div  
t = 10 µs/div  
Figure 46. Disabled, 25-V, 1206, X7R COUT Capacitor With  
SMAJ18, OUT Shorted to Battery  
Figure 47. Disabled, 35-V, 1210, X7R COUT Capacitor With  
SMAJ18, OUT Shorted to Battery  
t = 10 µs/div  
t = 10 µs/div  
Figure 48. DC-DC Input Is Floating, OUT Shorted to Battery  
Figure 49. Enabled With OVP_SEL = High, OUT Shorted to  
Battery  
t = 10 µs/div  
RBIAS = 5.1 kΩ  
t = 2 µs/div  
Figure 50. Enabled With OVP_SEL = Low, OUT Shorted to  
Battery  
Figure 51. Disabled, DP_IN Shorted to Battery  
Copyright © 2016, Texas Instruments Incorporated  
29  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
RBIAS = 5.1 kΩ  
t = 2 µs/div  
R(BIAS) = 5.1 kΩ  
t = 2 µs/div  
R(DP_OUT) = 15 kΩ  
Figure 52. DC-DC Input Is Floating, DP_IN Shorted to  
Battery  
Figure 53. Enabled, DP_IN Shorted to Battery  
10 Power Supply Recommendations  
The TPS254900-Q1 device is designed for a supply voltage range of 4.5 V VIN 6.5 V, with its power switch  
used for protecting the upstream power supply when a fault such as overcurrent or short to ground occurs on the  
USB port. Therefore, the power supply should be rated higher than the current-limit setting to avoid voltage drops  
during overcurrent or short-circuit conditions.  
11 Layout  
11.1 Layout Guidelines  
Layout best practices for the TPS254900-Q1 are listed as follows.  
Considerations for input and output power traces  
Make the power traces as short as possible.  
Make the power traces as wide as possible.  
Considerations for input-capacitor traces  
For all applications, 10-µF and 0.1-µF low-ESR ceramic capacitors are recommended, placed close to the  
IN pin.  
The resistors attached to the ILIM_HI and ILIM_LO pins of the device have several requirements.  
It is recommended to use 1% low-temperature-coefficient resistors.  
The trace routing between these two pins and GND should be as short as possible to reduce parasitic  
effects on current limit. These traces should not have any coupling to switching signals on the board.  
Locate all TPS254900-Q1 pullup resistors for open-drain outputs close to their connection pin. Pullup  
resistors should be 100 k.  
If a particular open-drain output is not used or needed in the system, tie it to GND.  
ESD considerations  
The TPS254900-Q1 device has built-in ESD protection for DP_IN and DM_IN. Keep trace lengths minimal  
from the USB connector to the DP_IN and DM_IN pins on the TPS254900-Q1 device, and use minimal  
vias along the traces.  
The capacitor on BIAS helps to improve the IEC ESD performance. A 2.2-µF capacitor should be placed  
close to BIAS, and the current path from BIAS to GND across this capacitor should be as short as  
possible. Do not use vias along the connection traces.  
A 10-µF output capacitor should be placed close to the OUT pin and TVS.  
See the ESD Protection Layout Guide (SLVA680) for additional information.  
TVS Considerations  
For OUT, a TVS like SMAJ18 should be placed near the OUT pin.  
For BIAS, a TVS like SMAJ18 should be placed close to the BIAS pin, but behind the 2.2-µF capacitor.  
30  
Copyright © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
Layout Guidelines (continued)  
The whole path from OUT to GND or BIAS to GND across the TVS should be as short as possible.  
DP_IN, DM_IN, DP_OUT, and DM_OUT routing considerations  
Route these traces as microstrips with nominal differential impedance of 90 Ω.  
Minimize the use of vias on the high-speed data lines.  
Keep the reference GND plane devoid from cuts or splits above the differential pairs to prevent impedance  
discontinuities.  
For more USB 2.0 high-speed D+ and D– differential routing information, see the High Speed USB  
Platform Design Guideline from Intel.  
Thermal Considerations  
When properly mounted, the thermal-pad package provides significantly greater cooling ability than an  
ordinary package. To operate at rated power, the thermal pad must be soldered to the board GND plane  
directly under the device. The thermal pad is at GND potential and can be connected using multiple vias  
to inner-layer GND. Other planes, such as the bottom side of the circuit board, can be used to increase  
heat sinking in higher-current applications. See the PowerPad™ Thermally Enhanced Package application  
report (SLMA002) and PowerPAD™ Made Easy application brief (SLMA004) for more information on  
using this thermal pad package.  
Copyright © 2016, Texas Instruments Incorporated  
31  
TPS254900-Q1  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
11.2 Layout Example  
Top Layer Signal Trace  
Top Layer Signal Ground Plane  
Bottom Layer Signal Trace  
Via to Bottom layer Signal Ground Plane  
Via to Bottom layer Signal  
IMON  
16  
1
2
3
4
5
6
OUT  
15  
14  
Thermal  
Pad  
IN  
DM_IN  
DP_IN  
BIAS  
13  
DM_OUT  
DP_OUT  
CS  
12  
11  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 54. TPS254900-Q1 Layout Diagram  
32  
版权 © 2016, Texas Instruments Incorporated  
TPS254900-Q1  
www.ti.com.cn  
ZHCSFK7A SEPTEMBER 2016REVISED OCTOBER 2016  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 文档支持  
12.2.1 相关文档ꢀ  
《高速 USB 平台设计指南》Intel  
12.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件提供的最新数据。本数据随时可能发生变更并且  
不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
版权 © 2016, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS254900IRVCRQ1  
TPS254900IRVCTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
254900Q  
254900Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS254900IRVCRQ1  
TPS254900IRVCTQ1  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
4.3  
4.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS254900IRVCRQ1  
TPS254900IRVCTQ1  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2549IRTERQ1

具有压降补偿功能的汽车类 USB 充电端口控制器 | RTE | 16 | -40 to 85
TI

TPS2549IRTETQ1

具有压降补偿功能的汽车类 USB 充电端口控制器 | RTE | 16 | -40 to 85
TI

TPS2549RTER

具有电缆补偿功能的 USB 汽车类充电端口控制器和 3A 电源开关 | RTE | 16 | -40 to 125
TI

TPS2549RTET

具有电缆补偿功能的 USB 汽车类充电端口控制器和 3A 电源开关 | RTE | 16 | -40 to 125
TI

TPS2550

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DBV

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DBVR

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DBVRG4

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DBVT

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DBVTG4

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DRV

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DRVR

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI