TPS2559DRCT [TI]

高电平有效的 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125;
TPS2559DRCT
型号: TPS2559DRCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高电平有效的 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125

开关 电源开关 光电二极管
文件: 总31页 (文件大小:4477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2559  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
TPS2559 精密可调节限流配电开关  
1 特性  
3 说明  
工作电压范围2.5V 6.5V  
TPS2559 配电开关专门用于需要低阻抗精密限流开关  
或电容负载较大的应用。TPS2559 可提供高达 5.5A  
的持续负载电流精密电流限制通过一个接地电阻进行  
设置。当输出负载超出限流阈值时可通过切换至恒流  
模式使输出电流保持在一个安全的级别。过载事件期  
输出电流被限制在由 R(ILIM) 设定的级别。如果出  
现持续过载器件将进入热关断模式防止对  
TPS2559 造成损坏。  
1.2A 4.7A 可调节 I(LIMIT)4.7A 时精度为  
±4.4%)  
短路关断典型值):3.5µs  
高侧 MOSFET13mΩ  
最大待机电源电流2µA  
内置软启动  
系统级 ESD 能力8kV/15kV  
对电源开关的上升和下降次数进行控制以最大程度降低  
接通或关断期间的电流冲击。在过流和过热情况下,  
FAULT 逻辑输出为低电平。  
UL 2367 认证正在申请中  
2 应用  
器件信息 (1)  
USB 端口、集线器  
数字电视  
机顶盒  
封装尺寸标称值)  
器件型号  
TPS2559  
封装  
VSON (10)  
3.00mm x 3.00mm  
VoIP 电话  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
TPS2559DRC  
2.5V-6.5V 0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
RFAULT  
COUT  
FAULT  
Signal  
10  
FAULT  
EN  
6
ILIM  
Control  
Signal  
5
Power  
PAD  
GND  
1
RILIM  
简化版原理图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCL5  
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
Table of Contents  
8.3 Feature Description...................................................10  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
10 Power Supply Recommendations..............................20  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Receiving Notification of Documentation Updates..22  
12.2 Support Resources................................................. 22  
12.3 Trademarks.............................................................22  
12.4 Electrostatic Discharge Caution..............................22  
12.5 Glossary..................................................................22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Timing Requirements..................................................6  
7.7 Timing Diagrams.........................................................7  
7.8 Typical Characteristics................................................8  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (June 2014) to Revision A (November 2020)  
Page  
更新了整个文档的表和图的编号格式.................................................................................................................. 1  
Added OUT row to Voltage range parameter in Absolute Maximum Ratings table............................................4  
Added Tstg row to Absolute Maximum Ratings table, moved from ESD Ratings table.......................................4  
Changled title of ESD Ratings table and updated to current standards............................................................. 4  
Added Timing Diagrams title to section, moved from Parameter Measurement Information section to match  
current standards................................................................................................................................................7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS2559  
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
5 Device Comparison Table  
PACKAGE:  
ICONT.  
ADJ. RANGE  
(A)  
SON-8 (DRB)  
OPERATING  
RANGE (V)  
IOS  
DEVICE  
OCP MODE  
SOT-23 (DBV)  
SON-10 (DRC)  
SON-6 (DRV)  
RDS(on) (m)  
TOLERANCE  
TPS2559  
2.5 - 6.5  
2.5 - 6.5  
Auto retry  
Auto retry  
5.5  
1.2  
13  
±4.4% at 4.7 A  
±6% at 1.7 A  
DRC  
85 (DBV)  
100 (DRV)  
TPS2552/3  
DBV, DRV  
85 (DBV)  
100 (DRV)  
TPS2552/3-1  
2.5 - 6.5  
Latch off  
1.2  
±6% at 1.7 A  
DBV, DRV  
TPS2554/5  
(dual Adjustable)  
4.5 - 5.5  
2.5 - 6.5  
2.5 - 6.5  
Auto retry  
Auto Retry  
Auto retry  
2.5  
5
73  
22  
44  
±9.7% at 2.8 A  
±6.5% at 4.5 A  
±7.5% at 2.8 A  
DRC  
DRB  
DRC  
TPS2556/7  
TPS2560/61  
(dual Channels)  
2.5  
2.1 A to 2.5 A  
including ±1%  
R(ILIM)  
TPS2560A/61A  
(dual Channels)  
2.5 - 6.5  
Auto retry  
Auto retry  
2.5  
2.5  
44  
60  
DRC  
DRV  
TPS25200  
(with OVP protection)  
2.5 - 6.5  
(withstand up to 20 V)  
±6% at 2.9 A  
6 Pin Configuration and Functions  
GND  
1
2
10  
FAULT  
OUT  
OUT  
IN  
IN  
9
8
7
6
PAD  
3
4
IN  
OUT  
ILIM  
5
EN  
6-1. DRC Package, 10-Pin VSON, Top View  
6-1. Pin Functions  
DESCRIPTION  
PIN  
TYPE  
NAME  
NO.  
GND  
1
Ground connection, connect externally to PowerPAD.  
Input voltage, connect a 0.1 μF or greater ceramic capacitor from IN to GND as close to the device as  
possible.  
IN  
2, 3, 4  
I
EN  
5
6
I
Enable input, logic high turns on power switch.  
ILIM  
OUT  
FAULT  
O
O
O
External resistor used to set current-limit threshold; recommended. 24.9 kΩ ≤ R(ILIM) 100 kΩ.  
Power-switch output.  
7, 8, 9  
10  
Active-low open-drain output, asserted during over-current or overtemperature conditions.  
Internally connected to GND; used to heat-sink the part to the circuit board traces. Connect PowerPAD  
to GND pin externally.  
PowerPAD™  
PAD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS2559  
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
0.3  
0.8  
7  
MAX  
UNIT  
V
7
7
7
IN, EN, ILIM, FAULT  
V
Voltage range  
OUT  
V
IN to OUT  
OUT  
Continuous output current, IOUT  
Continuous FAULT sink current  
ILIM source current  
Internally limited  
20  
Internally limited  
mA  
mA  
mA  
°C  
Maximum junction temperature, TJ  
Storage temperature range, Tstg  
OTSD2  
40  
°C  
150  
62  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Voltages are referenced to GND unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
±8000  
±1500  
System level (contact/air) (3)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) Surges per EN61000-4-2, 1999 applied between USB and output ground of the TPS2559EVM-624 Evaluation Module user guide  
(documentation available on the web.) These were the test levels, not the failure threshold.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
MAX UNIT  
VIN  
Input voltage, IN  
6.5  
6.5  
5.5  
10  
V
V
VEN  
IOUT  
Input voltage, EN  
Continuous output current of OUT  
Continuous FAULT sink current  
Recommended resistor limit range (1)  
Operating junction temperature  
A
mA  
kΩ  
°C  
R(ILIM)  
TJ  
24.9  
-40  
100  
125  
(1) R(ILIM) is the resistor from ILIM pin to GND and ILIM pin can be shorted to GND.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS2559  
 
 
 
 
 
 
 
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
7.4 Thermal Information  
TPS2559  
THERMAL METRIC(1)  
DRC (VSON)  
10 PINS  
40.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
45.5  
Junction-to-board thermal resistance  
15.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJT  
15.7  
ψJB  
RθJC(bot)  
2.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
conditions are 40°C TJ 125°C, 2.5 V VIN 6.5 V, V(EN) = VIN, R(ILIM) = 49.9k; positive current are into pins;  
typical value is at 25°C; all voltages are with respect to GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SWITCH  
TJ = 25°C  
13  
16  
21  
RDS(on) Input/output resistance(1)  
mΩ  
-40°C TJ 125°C  
ENABLE INPUT EN  
EN turn-on/off threshold  
Hysteresis  
0.66  
1.1  
1
V
55(2)  
mV  
µA  
I(EN)  
Input current  
V(EN) = 0 V or V(EN) = 6.5 V  
1  
CURRENT LIMIT  
4490  
2505  
2215  
1780  
1080  
5860  
4731  
2665  
2360  
1902  
1176  
6650  
4900  
2775  
2460  
1990  
1245  
7460  
R(ILIM) = 24.9 kΩ  
R(ILIM) = 44.2 kΩ  
R(ILIM) = 49.9 kΩ  
IOS  
OUT short-circuit current limit  
mA  
R(ILIM) = 61.9 kΩ  
R(ILIM) = 100 kΩ  
ILIM pin short to GND (R(ILIM) = 0)  
SUPPLY CURRENT  
I(IN_OFF) Disabled, IN supply current  
V(EN) = 0 V, no load on OUT  
0.1  
97  
2
125  
135  
µA  
µA  
R(ILIM) = 100 kΩ, no load on OUT  
R(ILIM) = 24.9 kΩ, no load on OUT  
I(IN_ON) Enabled, IN supply current  
107  
VOUT = 6.5 V, VIN = 0 V, TJ = 25°C,  
measure IOUT  
I(REV)  
Reverse leakage current  
0.01  
1
µA  
UNDERVOLTAGE LOCKOUT (UVLO)  
VUVLO  
IN rising UVLO threshold voltage  
Hysteresis  
2.36  
35(2)  
2.45  
V
mV  
FAULT  
VOL  
Output low voltage  
Off-state leakage  
IFAULT = 1 mA  
VFAULT = 6.5 V  
180  
1
mV  
µA  
THERMAL SHUTDOWN  
OTSD2 Thermal shutdown threshold  
OTSD1 Thermal shutdown threshold in current-limit  
155  
135  
°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS2559  
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
7.5 Electrical Characteristics (continued)  
conditions are 40°C TJ 125°C, 2.5 V VIN 6.5 V, V(EN) = VIN, R(ILIM) = 49.9k; positive current are into pins;  
typical value is at 25°C; all voltages are with respect to GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Hysteresis  
20 (2)  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only, and do not constitute part of TIs published device specifications for purposes of  
TIs product warranty.  
7.6 Timing Requirements  
conditions are 40°C TJ = 125°C, 2.5 V VIN 6.5 V, V(EN) = VIN, R(ILIM) = 49.9k; positive current are into pins;  
typical value is at 25°C; all voltages are with respect to GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SWITCH  
VIN = 6.5 V  
VIN = 2.5 V  
VIN = 6.5 V  
VIN = 2.5 V  
2.6  
1.3  
3.65  
2.6  
5.2  
tr  
tf  
OUT voltage rise time  
OUT voltage fall time  
3.9  
ms  
1.3  
CL = 1 µF, RL = 100 Ω, see 7-2  
0.7  
0.95  
0.78  
0.42  
1.04  
ENABLE INPUT EN  
ton OUT voltage turn-on time  
toff OUT voltage turn-off time  
CURRENT LIMIT  
15  
ms  
8
CL = 1 µF, RL = 100 Ω, see 7-3  
tIOS  
Short-circuit response time(1)  
3.5(1)  
9.5  
µs  
VIN = 5 V, RSHORT = 50 mΩ, see 7-4  
FAULT  
FAULT assertion or de-assertion resulting from overcurrent  
condition  
FAULT deglitch  
6
13  
ms  
(1) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS2559  
 
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
7.7 Timing Diagrams  
OUT  
RL  
CL  
7-1. Output Rise/Fall Time Test Load  
90%  
VOUT  
tf  
tr  
10%  
7-2. Power-On and Off Timing  
50%  
ton  
50%  
VEN  
toff  
90%  
VOUT  
10%  
7-3. Enable Timing, Active High Enable  
IOUT  
IOS  
120% x IOS  
0A  
tIOS  
7-4. Output Short-Circuit Parameters  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS2559  
 
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
7.8 Typical Characteristics  
2.5  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.4  
2.3  
2.2  
2.1  
2.0  
Rising  
Falling  
0
50  
100  
150  
œ50  
0
50  
100  
150  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C001  
C002  
VIN = 6.5 V  
7-5. Undervoltage Lockout (UVLO) vs Temperature  
7-6. Supply Current, Output Disabled (IIN_OFF) vs Temperature  
120  
140  
120  
100  
80  
100  
80  
60  
60  
40  
40  
20  
0
V=2.5 V  
IN  
V=2.5 V  
IN  
20  
VIN = 6.5 V  
VIN = 6.5 V  
0
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C003  
C004  
R(ILIM) = 100 kΩ  
R(ILIM) = 24.9 kΩ  
7-7. Supply Current, Output Enabled (IIN_ON) vs Temperature 7-8. Supply Current, Output Enabled (IIN_ON) vs Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
œ0.1  
18  
16  
14  
12  
10  
8
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C005  
C006  
VOUT = 6.5 V  
VIN = 5 V  
7-9. Reverse Leakage Current (IREV) vs Temperature  
7-10. Input/Output Resistance (RDS(on)) vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS2559  
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
7.8 Typical Characteristics (continued)  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
13  
12  
11  
10  
9
8
7
6
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C008  
C007  
V( FAULT) = 2.5 V  
7-12. Deglitch Time (tFAULT) vs Temperature  
VIN = 6.5 V, ILIM pin short to GND  
7-11. Short-Circuit Current (IOS) vs Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V=2.5 V  
IN  
V=2.5V  
IN  
0.5  
0.0  
VIN = 6.5 V  
VIN = 6.5 V  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C009  
C010  
COUT = 1 µF, R(LOAD) = 100 Ω  
COUT = 1 µF, R(LOAD) = 100 Ω  
7-14. Output Fall Time (tF) vs Temperature  
7-13. Output Rise Time (tR) vs Temperature  
6
R
= 24.9 k  
ILIM  
R
= 44.9 kꢀ  
ILIM  
5
4
3
2
1
R = 49.9 kꢀ  
ILIM  
R = 61.9 kꢀ  
ILIM  
R = 100 kꢀ  
ILIM  
0
0
50  
100  
150  
œ50  
Junction Temperature (°C)  
C011  
VIN = 6.5 V  
7-15. Short-Circuit Current (IOS) vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS2559  
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
8 Detailed Description  
8.1 Overview  
The TPS2559 is a current-limited, power-distribution switch using N-channel MOSFETs for applications where  
short circuits or heavy capacitive loads will be encountered. This device allows the user to program the current-  
limit via an external resistor and the maximum continuous output current up to 5.5 A. This device incorporates an  
internal charge pump and the gate drive circuitry necessary to drive the N-channel MOSFET. The charge pump  
supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the  
source. The charge pump operates from input voltages as low as 2.5 V and requires little supply current. The  
driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall  
times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality.  
The TPS2559 limits the output current to the programmed current-limit threshold IOS during an overcurrent or  
short-circuit event by reducing the charge pump voltage driving the N-channel MOSFET and operating it in the  
linear range of operation. The result of limiting the output current to IOS reduces the output voltage at OUT  
because N-channel MOSFET is no longer fully enhanced.  
8.2 Functional Block Diagram  
2/3/4  
CS  
7/8/9  
IN  
OUT  
Current  
Sense  
Charge  
Pump  
Current  
Limit  
5
Driver  
EN  
10  
FAULT  
UVLO  
9.5-ms  
Deglitch  
6
1
ILIM  
Thermal  
Sense  
GND  
8.3 Feature Description  
8.3.1 Thermal Sense  
The TPS2559 self protects by using two independent thermal sensing circuits that monitor the operating  
temperature of the power switch and disable operation if the temperature exceeds recommended operating  
conditions. The TPS2559 device operates in constant-current mode during an over-current condition, which  
increases the voltage drop across power switch. The power dissipation in the package is proportional to the  
voltage drop across the power switch, which increases the junction temperature during an over-current condition.  
The first thermal sensor (OTSD1) turns off the power switch when the die temperature exceeds 135°C (min) and  
the part is in current limit. Hysteresis is built into the thermal sensor, and the switch turns on after the device has  
cooled approximately 20°C.  
The TPS2559 also has a second ambient thermal sensor (OTSD2). The ambient thermal sensor turns off the  
power switch when the die temperature exceeds 155°C (min) regardless of whether the power switch is in  
current limit and will turn on the power switch after the device has cooled approximately 20°C. The TPS2559  
continues to cycle off and on until the fault is removed.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS2559  
 
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
8.3.2 Overcurrent Protection  
The TPS2559 responds to overcurrent conditions by limiting their output current to IOS. When an overload  
condition is present, the device maintains a constant output current, with the output voltage determined by (IOS  
RLOAD). Two possible overload conditions can occur.  
×
The first condition is when a short circuit or partial short circuit is present when the device is powered-up or  
enabled. The output voltage is held near zero potential with respect to ground and the TPS2559 ramps the  
output current to IOS. The TPS2559 limits the current to IOS until the overload condition is removed or the device  
begins to thermal cycle (see 9-9).  
The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is  
enabled and powered on. The device responds to the overcurrent condition within time tIOS (see 7-4). The  
response speed and shape will vary with the overload level, input circuit, and rate of application. The current-limit  
response will vary between simply settling to IOS, or turnoff and controlled return to IOS. Similar to the previous  
case, the TPS2559 limits the current to IOS until the overload condition is removed or the device begins to  
thermal cycle.  
The TPS2559 thermal cycles if an overload condition is present long enough to activate thermal limiting in any of  
the above cases. The device turns off when the junction temperature exceeds 135°C (min) while in current limit.  
The device remains off until the junction temperature cools 20°C (typ) and then restarts. The TPS2559 cycles  
on/off until the overload is removed (see 9-10).  
8.3.3 FAULT Response  
The FAULT open-drain output is asserted (active low) during an over-current or over-temperature condition. The  
TPS2559 asserts the FAULT signal until the fault condition is removed and the device resumes normal  
operation. The TPS2559 is designed to eliminate false FAULT reporting by using an internal delay "deglitch"  
circuit for over-current (9-ms typ.) conditions without the need for external circuitry. This ensures that FAULT is  
not accidentally asserted due to normal operation such as starting into a heavy capacitive load. The deglitch  
circuitry delays entering and leaving current-limit induced fault conditions. The FAULT signal is not deglitched  
when the MOSFET is disabled due to an over-temperature condition but is deglitched after the device has  
cooled and begins to turn on. This unidirectional deglitch prevents FAULT oscillation during an over-temperature  
event.  
8.4 Device Functional Modes  
8.4.1 Operation with VIN Undervoltage Lockout (UVLO) Control  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO  
turn-on threshold. Built-in hysteresis prevents unwanted on/off cycling due to input voltage droop during turn on.  
8.4.2 Operation with EN Control  
The logic enable controls the power switch and device supply current. The supply current is reduced to less than  
2-μA when a logic low is present on EN. A logic high input on EN enables the driver, control circuits, and power  
switch. The enable input is compatible with both TTL and CMOS logic levels.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS2559  
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS2559 current limited power switch uses N-channel MOSFETs in applications requiring up to 5.5 A of  
continuous load current. The device enters constant-current mode when the load exceeds the current limit  
threshold.  
The TPS2559 power switch is used to protect the up-stream power supply when the output is overloaded.  
9.2 Typical Application  
TPS2559  
5 V  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
ILIM  
IN  
150µF  
10k  
Fault  
Signal  
10  
FAULT  
EN  
6
Control  
Signal  
5
Power  
Pad  
*
GND  
1
RILIM  
9-1. Typical TPS2559 Power Switch  
Use the IOS in the Electrical Characteristics table or IOS in 方程式 1 to select the RILIM  
.
9.2.1 Design Requirements  
9-1 lists the input parameters for this design example.  
9-1. Design Requirements  
DESIGN PARAMETERS  
Input operation voltage  
Rating current  
EXAMPLE VALUE  
5 V  
3 A or 4.5 A  
3 A  
Minimum current limit  
Maximum current limit  
5 A  
When choosing a power switch, there are several general steps:  
1. Determine what is the power rail, 3.3 V or 5 V, and then choose the operation range of the power switch that  
can cover the power rail voltage range.  
2. Determine what is the normal operation current. For example, the maximum allowable current drawn by  
portable equipment for a USB 2.0 port is 500 mA, so the normal operation current is 500 mA and the  
minimum current limit of power switch must exceed 500 mA to avoid false trigger during normal operation.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS2559  
 
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
3. Determine what is the maximum allowable current provided by up-stream power, and then decide the  
maximum current limit of the power switch that must lower it to ensure the power switch can protect the up-  
stream power when an overload is encountered at the output of the power switch.  
Note  
Choosing power switch with tighter current limit tolerance can loosen the up-stream power-supply  
design.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Step-by-Step Design Procedure  
To begin the design process a few parameters must be decided upon. The designer must know the following:  
Normal input operation voltage  
Rating current  
Minimum current limit  
Maximum current limit  
9.2.2.2 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance should be  
optimized for the particular application. For all applications, a 0.1μF or greater ceramic bypass capacitor  
between IN and GND is recommended as close to the device as possible for local noise decoupling. This  
precaution reduces ringing on the input due to power-supply transients. Additional input capacitance may be  
needed on the input to reduce voltage undershoot from exceeding the UVLO of other load share one power rail  
with TPS2559 or overshoot from exceeding the absolute-maximum voltage of the device during heavy transient  
conditions. This is especially important during bench testing when long, inductive cables are used to connect the  
evaluation board to the bench power supply.  
Output capacitance is not required, but placing a high-value electrolytic capacitor on the output pin is  
recommended when large transient currents are expected on the output to reduce the undershoot, which caused  
by the inductance of the output power bus just after a short has occurred and the TPS2559 has abruptly reduced  
OUT current. Energy stored in the inductance will drive the OUT voltage down and potentially negative as it  
discharges.  
9.2.2.3 Programming the Current-Limit Threshold  
The overcurrent threshold is user programmable via an external resistor. The TPS2559 uses an internal  
regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional to the  
current sourced out of ILIM. The recommended 1% resistor range for R(ILIM) is 24.9 kΩ ≤ R(ILIM) 100 kΩ to  
ensure stability of the internal regulation loop.  
When ILIM pin short to GND (single point failure), maximum current limit is less than 8 A over temperature and  
process variation.  
Many applications require that the minimum current limit is above a certain current level or that the maximum  
current limit is below a certain current level, so it is important to consider the tolerance of the overcurrent  
threshold when selecting a value for R(ILIM). The equations and the graph below can be used to estimate the  
minimum and maximum variation of the current-limit threshold for a predefined resistor value within R(ILIM) is  
24.9 kΩ ≤ R(ILIM) 100 kΩ. This variation is an approximation only and does not take into account, for  
example, the resistor tolerance. For examples of more-precise variation of IOS refer to the current-limit section of  
the Electrical Characteristics table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS2559  
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
121635 V  
R(ILIM)1.0013kW  
IOSmax (mA) =  
IOSnom(mA) =  
IOSmin(mA) =  
+ 36  
118079 V  
R(ILIM)1.0008kW  
113325 V  
- 47  
R(ILIM)1.0010kW  
(1)  
24.9 kΩ ≤ R(ILIM) 100 kΩ  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
IOS (Min)  
IOS (Typ)  
IOS (Max)  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
Current Limit Resistor (k)  
C012  
9-2. Current-Limit vs R(ILIM)  
9.2.2.4 Design Above a Minimum Current Limit  
Some applications require that current limiting cannot occur below a certain threshold. For this example, assume  
that 3 A must be delivered to the load so that the minimum desired current-limit threshold is 3000 mA. Use the  
IOS equations and 9-2 to select R(ILIM)  
.
IOSmin(mA) = 3000 mA  
113325 V  
R(ILIM)1.0010kW  
I
(mA) =  
- 47  
OSmin  
1
1
1.0010  
æ
ö
÷
÷
ø
113325  
113325 1.0010  
æ
ö
R(ILIM)(kW) = ç  
=
= 37.06 kW  
ç
÷
ç
è
IOS(min) + 47  
3000 + 47  
è
ø
(2)  
Select the closest 1% resistor less than the calculated value: R(ILIM) = 36.5 kΩ. This sets the minimum current-  
limit threshold at 3016 A.  
113325 V  
R(ILIM)1.0010kW  
113325  
36.5´1.01 1.0010  
IOSmin(mA) =  
- 47 =  
- 47 = 3016 mA  
(
)
(3)  
Use the IOS equations, Figure 9-2, and the previously calculated value for R(ILIM) to calculate the maximum  
resulting current-limit threshold.  
121635  
121635  
(36.5´0.99)1.0013  
IOSmax (mA) =  
+ 36 =  
+ 36 = 3387 mA  
1.0013  
R(ILIM)  
(4)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS2559  
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
The resulting maximum current-limit threshold minimum is 3016 mA and maximum is 3387 mA with a 36.5 k±  
1%.  
9.2.2.5 Design Below a Maximum Current Limit  
Some applications require that current limiting must occur below a certain threshold. For this example, assume  
that 5A must be delivered to the load so that the minimum desired current-limit threshold is 5000 mA. Use the  
IOS equations and 9-2 to select R(ILIM)  
.
IOSmax (mA) = 5000 mA  
121635  
R(ILIM)1.0013kW  
IOSmax (mA) =  
+ 36  
1
1
1.0013  
æ
ö
÷
÷
ø
121635  
IOS(max)  
121635 1.0013  
æ
ö
R(ILIM)(kW) = ç  
=
ç
= 24.4 kW  
÷
ç
è
5000 - 36  
è
ø
(5)  
Select the closest 1% resistor less than the calculated value: RILIM = 24.9 k. This sets the maximum current-  
limit threshold at 4950 A.  
121635  
R(ILIM)1.0013kW  
121635  
IOSmax (mA) =  
+ 36 =  
+ 36 = 4950 mA  
1.0013  
24.9´0.99  
(
)
(6)  
Use the IOS equations, Figure 9-2, and the previously calculated value for R(ILIM) to calculate the minimum  
resulting current-limit threshold.  
113325  
113325  
(24.9´1.01)1.0010  
IOSmin(mA) =  
- 47 =  
- 47 = 4445 mA  
1.0010  
R(ILIM)  
(7)  
The resulting minimum current-limit threshold minimum is 4445 mA and maximum is 4950 mA with a 24.9 k±  
1%.  
9.2.2.6 Accounting for Resistor Tolerance  
The previous sections described the selection of R(ILIM) given certain application requirements and the  
importance of understanding the current-limit threshold tolerance. The analysis focused only on the TPS2559 is  
bounded by an upper and lower tolerance centered on a nominal resistance. The additional RILIM resistance  
tolerance directly affects the current-limit threshold accuracy at a system level. 9-2 lists a process that  
accounts for worst-case resistor tolerance assuming 1% resistor values.  
Step one follows the selection process outlined in the application examples above.  
Step two determines the upper and lower resistance bounds of the selected resistor.  
Step three uses the upper and lower resistor bounds in the IOS equations to calculate the threshold limits.  
It is important to use tighter tolerance resistors, that is, 0.5% or 0.1%, when precision current limiting is desired.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS2559  
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
9-2. Common R(ILIM) Resistor Selections  
RESISTOR TOLERANCE  
ACTUAL LIMITS  
IDEAL  
RESISTOR  
(kΩ)  
CLOSEST 1%  
RESISTOR  
(kΩ)  
DESIRED NOMINAL  
CURRENT LIMIT  
(mA)  
1% LOW  
1% HIGH  
IOS MIN  
(mA)  
IOS NOM  
(mA)  
IOS MAX  
(mA)  
(kΩ)  
(kΩ)  
1250  
1500  
1750  
2000  
2250  
2500  
2750  
3000  
3250  
3500  
3750  
4000  
4250  
4500  
4750  
94.1  
78.4  
67.2  
58.8  
52.3  
47.1  
42.8  
39.2  
36.2  
33.6  
31.4  
29.4  
27.7  
26.1  
24.8  
93.1  
78.7  
66.5  
59  
92.2  
77.9  
65.8  
58.4  
51.8  
47  
94  
1153  
1372  
1633  
1847  
2090  
2306  
2541  
2805  
3016  
3241  
3491  
3757  
3947  
4238  
4445  
1264  
1495  
1770  
1995  
2551  
2478  
2725  
3003  
3226  
3463  
3726  
4005  
4206  
4512  
4730  
1348  
1588  
1874  
2107  
2373  
2610  
2866  
3155  
3386  
3633  
3907  
4197  
4405  
4724  
4950  
79.5  
67.2  
59.6  
52.8  
48  
52.3  
47.5  
43.2  
39.2  
36.5  
34  
42.8  
38.8  
36.1  
33.7  
31.3  
29.1  
27.7  
25.8  
24.7  
43.6  
39.6  
36.9  
34.3  
31.9  
29.7  
28.3  
26.4  
25.1  
31.6  
29.4  
28  
26.1  
24.9  
9.2.2.7 Power Dissipation and Junction Temperature  
The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It  
is good design practice to estimate power dissipation and junction temperature. The below analysis gives an  
approximation for calculating junction temperature based on the power dissipation in the package. However, it is  
important to note that thermal analysis is strongly dependent on additional system level factors. Such factors  
include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating  
power. Good thermal design practice must include all system level factors in addition to individual component  
analysis. Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and operating  
temperature. As an initial estimate, use the highest operating ambient temperature of interest and read rDS(on)  
from the typical characteristics graph. Using this value, the power dissipation can be calculated by:  
2
PD = rDS(on) × IOUT  
Where:  
PD = Total power dissipation (W)  
rDS(on) = Power switch on-resistance (Ω)  
IOUT = Maximum current-limit threshold (A)  
This step calculates the total power dissipation of the N-channel MOSFET.  
Finally, calculate the junction temperature:  
TJ = PD × θJA + TA  
Where:  
TA = Ambient temperature (°C)  
θJA = Thermal resistance (°C/W)  
PD = Total power dissipation (W)  
Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat  
the calculation using the "refined" rDS(on) from the previous calculation as the new estimate. Two or three  
iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent  
on thermal resistance θJA and thermal resistance is highly dependent on the individual package and board  
layout.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS2559  
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
9.2.2.8 Auto-Retry  
Some applications require that an overcurrent condition disables the part momentarily during a fault condition  
and re-enables after a pre-set time. This auto-retry functionality can be implemented with an external resistor  
and capacitor. During a fault condition, FAULT pulls low EN. The part is disabled when EN is pulled below the  
turn-off threshold, and FAULT goes high impedance allowing C(RETRY) to begin charging. The part re-enables  
when the voltage on EN reaches the turn-on threshold. The part will continue to cycle in this manner until the  
fault condition is removed. The auto-retry cycling time is determined by the resistor/capacitor time constant,  
TPS2559 turn on time and FAULT deglitch time (see 9-13).  
TPS2559  
VIN  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
COUT  
RFAULT  
100kW  
10  
FAULT  
EN  
6
ILIM  
5
CRETRY  
Power  
Pad  
GND  
1
2.2mF  
100k  
9-3. Auto-Retry Circuit  
Some applications require auto-retry functionality and the ability to enable/disable with an external logic signal.  
9-4 shows how an external logic signal can drive EN through R( FAULT) and maintain auto-retry functionality.  
The resistor, capacitor time constant determines the auto-retry time-out period.  
TPS2559  
VIN  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
COUT  
10  
FAULT  
EN  
RFAULT  
External Logic  
Signal and Driver 100 kW  
6
ILIM  
5
Power  
Pad  
CRETRY  
2.2 mF  
GND  
1
100k  
9-4. Auto-Retry Circuit with External EN Signal  
See the A Power-Distribution Switch With Latched OvercurrentProtection application report for how to implement  
latch-off.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS2559  
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
9.2.2.9 Two-Level Current-Limit  
Some applications require different current-limit thresholds depending on external system conditions. 9-5  
shows an implementation for an externally-controlled, two-level current-limit circuit. The current-limit threshold is  
set by the total resistance from ILIM to GND (see the Programming the Current-Limit Threshold section). A logic-  
level input enables/disables MOSFET Q1 and changes the current-limit threshold by modifying the total  
resistance from ILIM to GND (see 9-14 and 9-15). Additional MOSFET/resistor combinations can be used  
in parallel to Q1/R2 to increase the number of additional current-limit levels.  
Note  
ILIM must never be driven directly with an external signal.  
TPS2559  
5 V  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
10k  
COUT  
10  
R1  
100 kΩ  
FAULT  
EN  
6
ILIM  
Control  
Signal  
R2  
100 kΩ  
5
Current Limit  
Control Signal  
Power  
Pad  
GND  
1
Q1  
9-5. Two-Level Current-Limit Circuit  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS2559  
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
9.2.3 Application Curves  
6
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
6
5
3.0  
VEN
VOUT
2.5  
IOUT
2.0  
4
4
3
3
1.5  
1.0  
0.5  
0.0  
œ0.5  
2
2
1
1
V
EN  
0
0
VOUT
IOUT
œ1  
œ1  
0
4
8
12  
16  
0
4
8
12  
16  
œ4  
œ4  
Time (ms)  
Time (ms)  
C013  
C014  
9-6. Output Rise With 150 µF // 5  
9-7. Output Fall With 150 µF // 5 Ω  
5
5
6
6
VEN  
V
VOUT
V
I
OUT
FAULT  
V
FAULT  
5
5
4
4
I
OUT  
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
œ1  
œ1  
œ1  
œ1  
0
8
16  
Time (ms)  
24  
32  
œ8  
0
20  
40  
60  
80 100 120 140 160  
œ40 œ20  
Time (ms)  
C015  
C016  
9-8. Enable Into Output Short  
9-9. Full Load to Output Short Transient  
Response  
6
5
6
6
5
6
VOUT  
V
V
OUT
I
OUT  
FAULT  
I
OUT  
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
œ1  
œ1  
œ1  
œ1  
0
20  
0
2
4
6
8
œ80  
œ60  
œ40  
œ20  
œ2  
Time (ms)  
Time (ms)  
C017  
C019  
9-10. Output Short to Full Load Recovery  
9-11. 50-mHot-Short  
Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS2559  
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
6
5
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOUT  
I
OUT  
4
3
2
1
0
œ1  
œ2  
œ10  
œ20  
V
OUT  
I
IOUT
V
FAULT  
œ0.2  
0
1
2
3
4
5
œ5  
œ4  
œ3  
œ2  
œ1  
œ40  
0
40  
80 120 160 200 240 280 320 360  
Time (ms)  
Time (s)  
C020  
C021  
9-12. 50-mHot-Short Response Time  
9-13. Auto-Retry Cycle  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
6
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
V
V
GATE  
V
FAULT
I
OUT  
OUT  
4
4
3
3
2
2
1
1
0
0
V
V
GATE
I
OUT  
OUT  
V
FAULT  
œ1  
œ1  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0 0.1 0.2 0.3 0.4 0.5  
œ0.5 œ0.4 œ0.3 œ0.2 œ0.1  
Time (s)  
œ2.0 œ1.5 œ1.0 œ0.5  
Time (s)  
C022  
C023  
9-14. Two-Level Current Limit With RLOAD = 2.5  
9-15. Two-Level Current Limit With RLOAD = 1 Ω  
10 Power Supply Recommendations  
Design of the devices is for operation from an input voltage supply range of 2.5 V to 6.5 V. The current capability  
of the power supply should exceed the maximum current limit of the power switch.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS2559  
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
11 Layout  
11.1 Layout Guidelines  
Place the 100-nF bypass capacitor near the IN and GND pins, and make the connections using a low-  
inductance trace.  
Placing a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin is recommended  
when large transient currents are expected on the output.  
The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects  
on the current limit accuracy.  
The PowerPAD should be directly connected to PCB ground plane using wide and short copper trace.  
11.2 Layout Example  
VIA to Power Ground Plane  
Power Ground  
FAULT  
1
2
3
4
5
10
9
High Frequency  
Bypass Capacitor  
IN  
OUT  
8
7
ILIM  
6
11-1. TPS2559 Board Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS2559  
 
 
 
TPS2559  
www.ti.com.cn  
ZHCSCR7A JUNE 2014 REVISED NOVEMBER 2020  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS2559  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS2559DRCR  
TPS2559DRCT  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
2559  
2559  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2559DRCR  
TPS2559DRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2559DRCR  
TPS2559DRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010C  
VSON - 1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
5
6
SYMM  
11  
2X 2  
2.45 0.1  
8X 0.5  
10  
1
0.30  
10X  
PIN 1 ID  
0.18  
0.5  
0.3  
10X  
0.1  
C A B  
0.05  
4218879/A 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010C  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
SEE SOLDER MASK  
DETAIL  
10X (0.6)  
SYMM  
10X (0.24)  
1
10  
(2.45)  
8X (0.5)  
11  
SYMM  
(R0.05) TYP  
(0.975)  
(
0.2) TYP  
VIA  
6
5
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218879/A 08/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010C  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
2X (1.51)  
10  
10X (0.24)  
1
2X (1.08)  
8X (0.5)  
11  
SYMM  
(0.64)  
(R0.05) TYP  
6
5
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 11  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4218879/A 08/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2559QWDRCRQ1

高电平有效的汽车类 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125
TI

TPS2559QWDRCTQ1

高电平有效的汽车类 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125
TI

TPS2560

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560A

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560ADRC

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560ADRCR

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560ADRCT

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560DRC

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560DRCR

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560DRCT

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560_1002

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560_15

Dual Channel Precision Adjustable Current-limited Power Switches
TI