TPS25810RVCT [TI]

具有 VCONN 的 USB Type-C™ 电源控制器和 3A 电源开关 | RVC | 20 | -40 to 125;
TPS25810RVCT
型号: TPS25810RVCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 VCONN 的 USB Type-C™ 电源控制器和 3A 电源开关 | RVC | 20 | -40 to 125

开关 控制器 电源开关 接口集成电路
文件: 总39页 (文件大小:1349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
TPS25810 具有负载检测功能的 USB Type-C DFP 控制器和电源开关  
1 特性  
3 说明  
1
兼容 USB Type-C 版本 1.2 的下行数据端口 (DFP)  
控制器  
TPS25810 是一款 USB Type-C 下行端口 (DFP) 控制  
器,集成了一个额定电流为 3A USB 电源开关。  
TPS25810 监视 Type-C 配置通道 (CC) 线路,确定何  
时连接了 USB 设备。如果连接了上行端口 (UFP) 设  
备,TPS25810 将对 VBUS 供电并将可选的 VBUS 拉电  
流能力通过直通 CC 线通告给 UFP。如果使用电子标  
记电缆连接了 UFPTPS25810 还会将 VCONN 电源施  
加于电缆 CC 引脚。TPS25810 还会识别何时连接了  
Type-C 音频或调试附件。  
连接器连接/断开检测  
配置通道 (CC) STD/1.5A/3A 电流能力通告  
超高速极性确定  
VBUS 应用和放电  
VCONN 应用于电子标记电缆  
音频和调试附件识别  
端口未连接时,IDDQ 的典型值为 0.7µA  
三个输入电源选项  
TPS25810 在未连接设备时的电流消耗低于 0.7uA(典  
型值)。未连接 UFP 时,可使用 UFP 输出禁用高功  
5V 电源,从而在 S4/S5 系统功耗状态下节省更多  
系统电力。在此模式下,器件能够由电压较低 (3.3V)  
的辅助电源 (AUX) 供电运行,该电源通常在低功耗状  
(S4/S5) 下为系统微控制器供电。  
IN1USB 充电电源  
IN2VCONN 电源  
AUX:器件电源  
电源唤醒可保证系统冬眠 (S4) 和关闭 (S5) 功耗状  
态下的低功耗  
34mΩ(典型值)高侧金属氧化物半导体场效应晶  
体管 (MOSFET)  
TPS25810 34m电源开关有两个可选的固定电流限  
值,与 Type-C 电流水平相对应。FAULT 输出会在开  
关处于过流或过热条件下发出信号。在所有端口不能同  
时提供高电流 (3A) 的环境下,LD_DET 输出可对多个  
高电流 Type-C 端口的功率管理进行控制。  
1.7/3.4A ILimit (±7.1%) - 可编程  
端口功率管理可实现多端口的功率资源优化  
封装:20 引脚晶圆级四方扁平无引线 (WQFN) 封  
(1)  
(3mm x 4mm)  
UL列表 - 文件号E169910  
器件信息(1)  
器件型号  
TPS25810  
封装  
封装尺寸(标称值)  
2 应用  
超薄四方扁平无引线  
(WQFN) (20)  
笔记本中的 USB Type C 主机端口,用于休眠充电  
3.00mm x 4.00mm  
LCD 监视器/扩展坞和充电托板  
Type C USB 壁式充电器  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
(1) CC 引脚符合 IEC-61000-4-2 标准  
简化电路原理图  
6 x 100kΩ  
(
)
optional  
TPS25810  
Bus Power  
CC Power  
4.5 Vœ 6.5V  
4.5 Vœ 5.5V  
2.9 Vœ 5.5V  
VBUS  
OUT  
IN1  
FAULT  
LD_DET  
CC1  
IN2  
Power Switch  
Status Signals  
Auxiliary Power  
AUX  
120mF  
CC2  
EN  
UFP  
Control Signals  
CHG  
CHG_HI  
REF  
POL  
Type- C DFP  
Status Signals  
AUDIO  
DEBUG  
Power Pad  
6.8mF  
100 kΩ  
(1%)  
REF_RTN GND  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCR1  
 
 
 
 
 
 
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Applications ................................................ 22  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 器件支持 ............................................................... 30  
11.2 文档支持 ............................................................... 30  
11.3 接收文档更新通知 ................................................. 30  
11.4 社区资源................................................................ 30  
11.5 ....................................................................... 30  
11.6 静电放电警告......................................................... 30  
11.7 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
Changes from Revision B (May 2016) to Revision C  
Page  
更改了特性:将兼容 USB Type-C 1.1 DFP 控制器更改为兼容 USB Type-C 1.2 DFP 控制..................................... 1  
Changed text From: Type-C spec revision 1.1 To: Type-C spec revision 1.2 in the Overview section............................... 11  
Replaced 15 .................................................................................................................................................................... 18  
Changes from Revision A (September 2015) to Revision B  
Page  
已添加 添加了脚注:CC 引脚符合 IEC-61000-4-2 标准......................................................................................................... 1  
已更改 将特性部分中的正接受 UL CB 测试更改为“UL 认证列名”- 文件编号E169910 ................................................... 1  
已更改 将简化电路原理图中的 10µF 更改为 6.8µF ................................................................................................................ 1  
Added text to REF description ............................................................................................................................................... 3  
Added IEC information to ESD Ratings ................................................................................................................................. 4  
Changed IN2 II parameter description in Electrical Characteristics ...................................................................................... 7  
Changed tres to tios in Switching Characteristics .................................................................................................................... 8  
已添加 text to Detecting a Connection section .................................................................................................................... 12  
已更改 Rp to Rds in 12 ................................................................................................................................................... 12  
已更改 loss to drop in 14 ................................................................................................................................................ 16  
已添加 text and 15 to Plug Polarity Detection.................................................................................................................. 18  
已添加 last sentence to Input and Output Capacitance ...................................................................................................... 23  
已添加 ESD Considerations to Layout Guidelines ............................................................................................................... 28  
已添加 《保护 TPS25810 免受高电压 DFP 损坏》添加到了相关文档”............................................................................... 30  
Changes from Original (September 2015) to Revision A  
Page  
已更改 产品预览更改为生产数据”........................................................................................................................................ 1  
2
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
5 Pin Configuration and Functions  
RVC Package  
20-Pin WQFN  
Top View  
20  
19  
18  
17  
1
16  
15  
14  
13  
12  
11  
C!Ü[Ç  
Lb1  
59.ÜD  
Çhermal  
tad  
2
3
4
5
6
ꢀÜÇ  
ꢀÜÇ  
//2  
Db5  
//1  
Lb1  
Lb2  
!Üó  
9b  
7
8
9
10  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Fault event indicator. Open-drain logic output that asserts low to indicate current limit or thermal shutdown event  
due to over temperature.  
FAULT  
1
O
IN1  
IN2  
2, 3  
4
I
I
VBUS input supply. Internal power switch connects IN1 to OUT.  
VCONN input supply. Internal power switch connects IN2 to CC1 or CC2. Short to IN1 if only one supply is used.  
Auxiliary input supply. Connect to always alive system rail to use the Power Wake feature. Short to IN1 and IN2 if  
only one supply is used.  
AUX  
EN  
5
6
7
I
I
I
Enable logic input to turn the device on and off.  
Charge logic input to select between standard USB (500 mA for a Type C receptacle supporting only USB 2.0 and  
900 mA for Type C receptacle supporting USB 3.1) or Type-C current sourcing ability.  
CHG  
High-charge logic input to select between 1.5-A and 3-A Type-C current sourcing capability. Valid when CHG is  
set to Type-C current.  
CHG_HI  
REF_RTN  
REF  
8
9
I
I
I
Precision signal reference return. Connect to REF pin via 100-k, 1% resistor.  
Analog input used to generate internal current reference. Connect a 1% or better, 100 ppm, 100-kresistor  
between this pin and REF_RTN.  
10  
CC1  
GND  
11  
12  
I/O  
Analog input/output that connects to the Type-C receptacle CC1 pin  
Power ground  
CC2  
13  
I/O  
O
Analog input/output that connects to the Type-C receptacle CC2 pin.  
Power switch output.  
OUT  
14,15  
16  
DEBUG  
AUDIO  
O
Open-drain logic output that asserts when a Type-C Debug accessory is identified on the CC lines.  
Open-drain logic output that asserts when a Type-C Audio accessory is identified on the CC lines.  
17  
O
Polarity open-drain logic output that signals which Type-C CC pin is connected to the CC line. This gives the  
information needed to mux the super speed lines. Asserted when the CC2 pin is connected to the CC line in  
cable.  
POL  
18  
O
UFP  
19  
20  
O
O
Open-drain logic output that asserts when a Type-C UFP is identified on the CC lines.  
Load-detect open-drain logic output that signals when a device set to source Type-C 3 A current is sourcing over  
1.95 A nominal.  
LD_DET  
Thermal Pad  
Thermal pad on bottom of package.  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, voltages are respect to GND (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
IN1, IN2, AUX, EN, CHG, CHG_HI, REF, OUT, LD_DET,  
FAULT, CC1, CC2, UFP, POL, AUDIO, DEBUG  
–0.3  
7
V
Pin voltage, V  
Internally  
connected  
to GND  
REF_RTN  
V
Internally  
limited  
Pin positive source current, ISRC  
Pin positive sink current, ISNK  
OUT, REF, CC1, CC2  
A
OUT (while applying VBUS)  
5
1
A
A
CC1, CC2 (while applying VCONN  
)
Internally  
limited  
LD_DET, FAULT, UFP, POL, AUDIO, DEBUG  
mA  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
–40  
–65  
180  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(3)  
Electrostatic  
discharge  
(1)  
V(ESD)  
V
IEC61000-4-2 contact discharge, CC1 and CC2  
IEC(4)  
±8000  
±15000  
IEC61000-4-2 air discharge, CC1 and CC2  
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by assembly line electrostatic discharges into  
the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(4) Surges per IEC61000-402, 1999 applied between CC1/CC2 and output ground of the TPS25810EVM-745.  
6.3 Recommended Operating Conditions  
Voltages are with respect to GND (unless otherwise noted)  
MIN NOM  
MAX UNIT  
IN1  
4.5  
4.5  
2.9  
0
6.5  
VI  
Supply voltage  
IN2  
5.5  
5.5  
5.5  
V
AUX  
VI  
Input voltage  
EN, CHG, CHG_HI  
EN, CHG, CHG_HI  
EN, CHG, CHG_HI  
V
V
V
VIH  
VIL  
High-level input voltage  
Low-level voltage  
1.17  
0.63  
5.5  
Used on LD_DET, FAULT, UFP, POL, AUDIO,  
DEBUG  
VPU  
ISRC  
ISNK  
Pull-up voltage  
0
V
OUT  
3
A
Positive source current  
CC1 or CC2 when supplying VCONN  
250  
mA  
Positive sink current (10 ms moving  
average)  
LD_DET, FAULT, UFP, POL, AUDIO, DEBUG  
10  
mA  
mA  
Internally  
Limited  
ISNK_PULSE Positive repetitive pulse sink current LD_DET, FAULT, UFP, POL, AUDIO, DEBUG  
RREF  
TJ  
Reference Resistor  
98  
100  
102  
125  
kΩ  
Operating junction temperature  
–40  
°C  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
6.4 Thermal Information  
TPS25810  
THERMAL METRIC(1)  
RVC (WQFN)  
UNIT  
20 PINS  
39.3  
43.4  
13  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
13  
RθJC(bot)  
4.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF = 100  
k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
OUT - POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TJ = 25°C, IOUT = 3 A  
34  
34  
34  
37  
46  
55  
RDS(on)  
On resistance(1)  
–40°C TJ 85°C, IOUT = 3 A  
–40°C TJ 125°C, IOUT = 3 A  
VOUT = 6.5 V, VIN1 = VEN = 0 V,  
mΩ  
IREV  
OUT to IN reverse leakage current –40°C TJ 85°C,  
0
3
µA  
IREV is current out of IN1 pin  
OUT - CURRENT LIMIT  
VCHG = 0 V or VCHG = VAUX and VCHG_HI = 0  
V
1.58  
3.16  
1.7  
3.4  
1.82  
(1)  
IOS  
Short circuit current limit  
A
VCHG = VAUX and VCHG_HI = VAUX  
3.64  
7
RREF = 10 Ω  
OUT - DISCHARGE  
VOUT = 4 V, UFP signature removed from  
CC lines, time < tw_DCHG  
Discharge resistance  
400  
100  
500  
150  
600  
250  
Ω
VOUT = 4 V, No UFP signature on CC lines,  
time > tw_DCHG  
Bleed discharge resistance  
kΩ  
REF  
VO  
Output voltage  
0.78  
9.5  
0.8  
0.82  
15.3  
V
IOS  
Short circuit current  
RREF = 10 Ω  
µA  
FAULT  
VOL  
Output low voltage  
Off-state leakage  
IFAULT = 1 mA  
VFAULT = 5.5 V  
350  
1
mV  
µA  
IOFF  
LD_DET  
VOL  
Output low voltage  
Off-state leakage  
ILD_DET = 1 mA  
VLD_DET = 5.5 V  
350  
1
mV  
µA  
IOFF  
OUT sourcing, rising threshold  
current for load detect  
Hysteresis(2)  
ITH  
1.8  
1.95  
125  
2.1  
A
mA  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only and do not constitute part of TI’s published specifications for purposes of TI’s product  
warranty.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF = 100  
k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CC1/CC2 - VCONN POWER SWITCH  
TJ = 25°C, IOUT = 250 mA  
365  
365  
365  
420  
530  
600  
RDS(on)  
On resistance  
-40°C TJ 85°C, IOUT = 250 mA  
-40°C TJ 125°C, IOUT = 250 mA  
mΩ  
CC1/CC2 - VCONN POWER SWITCH - CURRENT LIMIT  
300  
355  
410  
800  
IOS  
Short circuit current limit(1)  
mA  
RREF = 10 Ω  
CC1/CC2 – CONNECT MANAGEMENT – DANGLING ELECTRONICALLY MARKED CABLE MODE  
Sourcing current on the pass-  
0 V VCCx 1.5 V  
64  
64  
80  
80  
96  
96  
µA  
µA  
through CC Line  
ISRC  
Sourcing current on the Ra CC  
0 V VCCx 1.5 V  
line  
CC1/CC2 – CONNECT MANAGEMENT – ACCESSORY MODE  
CCx Sourcing current  
0 V VCCx 1.5 V  
64  
80  
0
96  
µA  
µA  
(CC2- Audio, CC1-Debug)  
ISRC  
CCx Sourcing current  
0 V VCCx 1.5 V  
(2)  
(CC1- Audio, CC2-Debug)  
CC1/CC2 – CONNECT MANAGEMENT – UFP MODE  
0 V VCCx 1.5 V  
VIN1 < VTH_UVLO_IN1 or VIN2 < VTH_UVLO_IN2  
Sourcing current with either IN1 or  
IN2 in UVLO  
ISRC  
64  
75  
80  
80  
96  
85  
µA  
µA  
VCHG = 0 V and VCHG_HI = 0 V  
0 V VCCx 1.5 V  
VCHG = VAUX and VCHG_HI = 0 V  
0 V VCCx 1.5 V  
ISRC  
Sourcing current  
170  
312  
180  
330  
190  
348  
VCHG = VAUX and VCHG_HI = VAUX  
0 V VCCx 2.45 V  
UFP, POL, AUDIO, DEBUG  
VOL  
IOFF  
Output low voltage  
Off-state leakage  
ISNK_PIN = 1 mA  
VPIN = 5.5 V  
250  
1
mV  
µA  
EN, CHG, CHG_HI - LOGIC INPUTS  
VTH  
VTH  
Rising threshold voltage  
Falling threshold voltage  
Hysteresis(2)  
0.925  
0.875  
50  
1.15  
0.5  
V
V
0.65  
–0.5  
mV  
µA  
IIN  
Input current  
VEN = 0 V or 6.5 V  
OVER TEMPERATURE SHUT DOWN  
Rising threshold temperature for  
device shutdown  
Hysteresis(2)  
TTH_OTSD2  
155  
135  
°C  
°C  
20  
20  
Rising threshold temperature for  
OUT/ VCONN switch shutdown in  
current limit  
Hysteresis(2)  
TTH_OTSD1  
°C  
°C  
IN1  
VTH_UVLO_IN1 Rising threshold voltage for UVLO  
Hysteresis(2)  
3.9  
4.1  
4.3  
V
100  
mV  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
Electrical Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF = 100  
k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Disabled supply current  
VEN = 0 V, -40°C TJ 85°C  
1
µA  
Enabled supply current with CC  
lines open  
-40°C TJ 85°C  
1
2
µA  
µA  
Enabled supply current with  
accessory or dangling  
electronically marked cable  
signature on CC lines  
II  
VCHG = 0 V, or VCHG = VAUX and VCHG_HI  
0 V  
=
75  
85  
100  
110  
Enabled supply current with UFP  
attached  
µA  
IN2  
VTH_UVLO_IN2 Rising threshold voltage for UVLO  
Hysteresis(2)  
3.9  
4.1  
4.3  
V
100  
mV  
µA  
II  
Disabled supply current  
VEN = 0 V, -40°C TJ 85°C  
-40°C TJ 85°C  
1
1
Enabled supply current with CC  
lines open  
µA  
Enabled supply current with  
accessory or dangling  
electronically marked cable  
signature on CC lines  
II  
2
µA  
Enabled supply current with UFP  
signature on CC lines  
(Includes IN current that provides  
the CC output current to the UFP  
Rd resistor)  
VCHG = 0 V, 0 V VCCx 1.5 V  
98  
198  
348  
110  
215  
373  
VCHG = VIN and VCHG_HI = 0 V, 0 V VCCx  
1.5 V  
II  
µA  
0 V VCCx 2.45 V  
AUX  
VTH_UVLO_AUX Rising threshold voltage for UVLO  
Hysteresis(2)  
2.65  
2.75  
100  
2.85  
V
mV  
µA  
II  
Disabled supply current  
VEN = 0 V, -40°C TJ 85°C  
-40°C TJ 85°C  
1
3
Enabled internal supply current  
with CC lines open  
II  
0.7  
µA  
Enabled supply current with  
accessory or dangling active cable  
signature on CC lines  
II  
140  
185  
µA  
Enabled supply current with UFP  
termination on CC lines and with  
either IN1 or IN2 in UVLO  
II  
II  
VIN1 < VTH_UVLO_IN1 or VIN2 < VTH_UVLO_IN2  
145  
55  
190  
82  
µA  
µA  
Enabled supply current with UFP  
termination on CC lines  
6.6 Switching Characteristics  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF = 100  
k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
OUT - POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tr  
tf  
Output voltage rise time  
Output voltage fall time  
VIN1 = 5 V, CL = 1 µF, RL = 100 Ω  
(measured from 10% to 90% of final  
value)  
1.2  
1.8  
2.5  
ms  
ms  
0.35  
0.55  
0.75  
ton  
toff  
Output voltage turn-on time  
Output voltage turn-off time  
2.5  
2
3.5  
3
5
ms  
ms  
VIN1 = 5 V, CL = 1 µF, RL = 100 Ω  
4.5  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
Switching Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF = 100  
k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
OUT - CURRENT LIMIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Current limit response time to short  
circuit  
VIN1 - VOUT = 1 V, RL = 10 mΩ, see  
1  
tios  
1.5  
4
µs  
FAULT  
tDEGA  
Asserting deglitch due to over  
current  
5.5  
5.5  
8.2  
10.7  
10.7  
ms  
Asserting deglitch due to over  
temperature in current limit(1)  
tDEGA  
0
ms  
ms  
tDEGD  
De-asserting deglitch  
8.2  
LD_DET  
tDEGA  
Asserting deglitch  
45  
65  
85  
ms  
s
tDEGD  
De-asserting deglitch  
1.45  
2.15  
2.9  
OUT - DISCHARGE  
RDCHG discharge time  
CC1/CC2 - VCONN POWER SWITCH  
VOUT = 1 V, time ISNK_OUT > 1 mA  
after UFP signature removed from  
CC lines  
39  
65  
96  
ms  
tr  
tf  
Output voltage rise time  
Output voltage fall time  
VIN2 = 5 V, CL = 1 µF, RL = 100 Ω  
(measured from 10% to 90% of final  
value)  
0.15  
0.18  
0.25  
0.22  
0.35  
0.26  
ms  
ms  
ton  
toff  
Output voltage turn-on time  
Output voltage turn-off time  
1
1.5  
0.4  
2
ms  
ms  
VIN2 = 5 V, CL = 1 µF, RL = 100 Ω  
0.3  
0.55  
CC1/CC2 - VCONN POWER SWITCH - CURRENT LIMIT  
Current limit response time to short  
circuit  
VIN2 – VCONN = 1 V, R = 10 mΩ, see  
1  
tres  
1
3
µs  
UFP, POL, AUDIO, DEBUG  
tDEGR  
tDEGF  
Asserting deglitch  
100  
7.9  
150  
200  
ms  
ms  
De-asserting deglitch  
12.5  
17.7  
(1) These parameters are provided for reference only and do not constitute part of TI’s published specifications for purposes of TI’s product  
warranty.  
IOS  
IOUT  
tios  
1. Output Short Circuit Parameter Diagram  
8
版权 © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
6.7 Typical Characteristics  
50  
40  
30  
20  
10  
0
500  
450  
400  
350  
300  
250  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
2. VBUS Current Limiting Switch On Resistance vs  
3. VCONN Current Limiting Switch On Resistance vs  
Temperature  
Temperature  
0.25  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0.2  
0.15  
0.1  
VBUS ILIM 3 A  
VBUS ILIM 1.5 A  
VCONN_ILIM  
0.05  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Device = Disabled; (VOUT-VIN) =6.5V  
4. OUT Reverse Leakage Current vs Temperature  
5. ILIM for VBUS and VCON vs Temperature  
2010  
350  
300  
250  
200  
150  
100  
50  
LD_DET Threshold Rising  
LD_DET Threshold Falling  
1990  
1970  
1950  
1930  
1910  
1890  
1870  
1850  
1830  
1810  
1790  
1770  
1750  
UFP 3 A  
UFP 1.5 A  
UFP 0.5 A/0.9 A  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
6. LD_DET Threshold vs Temperature  
7. CC Sourcing Current to UFP vs Temperature  
版权 © 2015–2017, Texas Instruments Incorporated  
9
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
100  
400  
350  
300  
250  
200  
150  
100  
50  
IN1 UFP 3 A  
IN1 UFP 0.5 A/1.5 A  
95  
IN2 UFP 3 A  
IN2 UFP 1.5 A  
IN2 UFP 0.5 A  
90  
85  
80  
75  
70  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
8. IN1 Current with UFP vs Temperature  
9. IN2 Current with UFP vs Temperature  
70  
65  
60  
55  
50  
45  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
D001  
VAUX = 5 V  
10. AUX Current with UFP vs Temperature  
10  
版权 © 2015–2017, Texas Instruments Incorporated  
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
7 Detailed Description  
7.1 Overview  
The TPS25810 is a highly integrated USB Type-C Downstream Facing Port (DFP) controller with built-in power  
switch developed for the new USB Type-C connector and cable. The part provides all functionality needed to  
support a USB Type C DFP in a system where USB power delivery (PD) source capabilities (for example, VBUS  
> 5 V) are not implemented. The device is designed to be compliant to Type-C spec revision 1.2.  
7.1.1 USB Type C Basic  
For a detailed description of the Type-C spec refer to the USB-IF website to download the latest released  
version. Some of the basic concepts of the Type-C spec that pertains to understanding the operation of the  
TPS25810 (a DFP device) are described as follows.  
USB Type-C removes the need for different plug and receptacle types for host and device functionality. The  
Type-C receptacle replaces both Type-A and Type-B receptacle since the Type-C cable is plug-able in either  
direction between host and device. A host-to-device logical relationship is maintained via the configuration  
channel (CC). Optionally hosts and devices can be either providers or consumers of power when USB PD  
communication is used to swap roles.  
All USB Type-C ports operate in one of below three data modes:  
Host mode: the port can only be host (provider of power)  
Device mode: the port can only be device (consumer of power)  
Dual-Role mode: the port can be either host or device  
Port types:  
DFP (Downstream Facing Port): Host  
UFP (Upstream Facing Port): Device  
DRP (Dual-Role Port): Host or Device  
Valid DFP-to-UFP connections:  
1 describes valid DFP-to-UFP connections  
Host to Host or Device to Device have no functions  
1. DFP-to-UFP Connections  
DEVICE-MODE  
PORT  
HOST-MODE PORT  
DUAL-ROLE PORT  
Host-Mode Port  
Device-Mode Port  
Dual-Role Port  
No Function  
Works  
Works  
No Function  
Works  
Works  
Works  
Works(1)  
Works  
(1) This may be automatic or manually driven.  
7.1.2 Configuration Channel  
The function of the configuration channel is to detect connections and configure the interface across the USB  
Type-C cables and connectors.  
Functionally the Configuration Channel (CC) is used to serve the following purposes:  
Detect connect to the USB ports  
Resolve cable orientation and twist connections to establish USB data bus routing  
Establish DFP and UFP roles between two connected ports  
Discover and configure power: USB Type-C current modes or USB Power Delivery  
Discovery and configure optional Alternate and Accessory modes  
Enhances flexibility and ease of use  
Typical flow of DFP to UFP configuration is shown in 11:  
版权 © 2015–2017, Texas Instruments Incorporated  
11  
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
11. Flow of DFP to UFP Configuration  
7.1.3 Detecting a Connection  
DFPs and DRPs fulfill the role of detecting a valid connection over USB Type-C. 12 shows a DFP to UFP  
connection made with Type C cable. As shown in 12, the detection concept is based on being able to detect  
terminations in the product which has been attached. A pull-up and pull-down termination model is used. A pull-  
up termination can be replaced by a current source.  
In the DFP-UFP connection the DFP monitors both CC pins for a voltage lower than the unterminated  
voltage.  
An UFP advertises Rd on both its CC pins (CC1 and CC2).  
A powered cable advertises Ra on only one of CC pins of the plug. Ra is used to inform the source to apply  
VCONN.  
An analog audio device advertises Ra on both CC pins of the plug, which identifies it as an analog audio  
device. VCONN is not applied on either CC pin in this case.  
UFP monitors for  
connection  
DFP monitors for  
connection  
Cable  
CC  
Rp  
Rp  
Rds  
Rds  
Ra  
Ra  
DFP monitors for  
connection  
UFP monitors for  
connection  
12. DFP-UFP Connection  
12  
版权 © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
7.2 Functional Block Diagram  
/urrenꢀ {ense  
/urrenꢀ {ense  
/urrenꢀ {ense  
Lb1  
ꢁÜÇ  
//1  
ꢁÇ{5  
Çhermal  
{ense  
Lb2  
Üë[ꢁ  
//2  
Üë[ꢁ  
!Üó  
[5_59Ç  
//  
ꢂoniꢀor  
C!Ü[Ç  
/harge  
tump  
/urrenꢀ  
[imiꢀ  
Üë[ꢁ  
Daꢀe  
/onꢀrol  
9b  
ÜCt  
tꢁ[  
/onꢀrol  
[ogic  
/ID  
!Ü5Lꢁ  
59.ÜD  
/ID_IL  
w9C  
w9C_wÇb  
/opyrighꢀ © 2016, Çexas Lnsꢀrumenꢀs Lncorporaꢀed  
7.3 Feature Description  
The TPS25810 is a DFP Type C port controller with integrated power switch for VCONN and VBUS. The  
TPS25810 does not support BC1.2 charging modes since it does not interact with USB D+/D- data lines. It can  
be used in conjunction with a BC 1.2 device like the TPS2514A, to support BC1.2 and Type C charging modes in  
a single Type C DFP port. See the TPS25810 EVM user's guide (SLVUAI0) and Application and Implementation  
section of this data sheet for more details. The TPS25810 can be used in a USB 2.0 only or USB 3.1 port  
implementation. When used in a USB 3.1 port, the TPS25810 can control an external super speed MUX to  
handle the Type C flippable feature.  
版权 © 2015–2017, Texas Instruments Incorporated  
13  
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.1 Configuration Channel Pins CC1 and CC2  
The TPS25810 has two pins, CC1 and CC2 that serve to detect an attachment to the port and resolve cable  
orientation. These pins are also used to establish current broadcast to a valid UFP, configure VCONN, and  
detect Debug or Audio Adapter Accessory attachment.  
2 lists TPS25810 response to various attachments to its port.  
2. TPS25810 Response  
TPS25810 RESPONSE(1)  
VCONN  
On CC1 or  
CC2  
TPS25810 TYPE C PORT  
CC1  
CC2  
OUT  
POL  
UFP  
AUDIO  
DEBUG  
Nothing Attached  
UFP Connected  
UFP Connected  
OPEN  
Rd  
OPEN  
OPEN  
Rd  
OPEN  
IN1  
NO  
NO  
NO  
Hi-Z  
Hi-Z  
Hi-Z  
LOW  
LOW  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
OPEN  
IN1  
LOW  
Powered Cable/No UFP  
Connected  
OPEN  
Ra  
Ra  
OPEN  
Ra  
OPEN  
OPEN  
IN1  
NO  
NO  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Powered Cable/No UFP  
Connected  
Powered Cable/UFP  
Connected  
Rd  
CC2  
LOW  
Powered Cable/UFP  
Connected  
Ra  
Rd  
Ra  
Rd  
Rd  
Ra  
IN1  
CC1  
NO  
LOW  
Hi-Z  
Hi-Z  
LOW  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
LOW  
Hi-Z  
Debug Accessory Connected  
OPEN  
OPEN  
Audio Adapter Accessory  
Connected  
NO  
LOW  
(1) POL, UFP, AUDIO, and DEBUG are open drain outputs; pull high with 100 kto AUX when used. Tie to GND or leave open when not  
used.  
7.3.2 Current Capability Advertisement and Overload Protection  
The TPS25810 supports all three Type-C current advertisements as defined by the USB Type C standard.  
Current broadcast to a connected UFP is controlled by the CHG and CHG_HI pins. For each broadcast level the  
device protects itself from a UFP that draws current in excess of the port’s USB Type-C Current advertisement  
by setting the current limit as shown in 3.  
3. USB Type-C Current Advertisement  
CC CAPABILITY  
BROADCAST  
LOAD DETECT  
THRESHOLD (typ)  
CHG  
CHG_HI  
CURRENT LIMIT (typ)  
0
0
1
1
0
1
0
1
STD  
STD  
1.5 A  
3 A  
1.7 A  
1.7 A  
1.7 A  
3.4 A  
NA  
NA  
NA  
1.95 A  
Under overload conditions, the internal current-limit regulator limits the output current to selected ILIM for OUT  
and fixed internal VCONN current limit as shown in the Electrical Characteristics. When an overload condition is  
present, the device maintains a constant output current, with the output voltage determined by (iOS x RLOAD).  
Two possible overload conditions can occur. The first overload condition occurs when either: 1) input voltage is  
first applied, enable is true, and a short circuit is present (load which draws IOUT > iOS), or 2) input voltage is  
present and the TPS25810 is enabled into a short circuit. The output voltage is held near zero potential with  
respect to ground and the TPS25810 ramps the output current to iOS. The TPS25810 limits the current to iOS until  
the overload condition is removed or the device begins to thermal cycle. This is demonstrated in 24 where the  
device was enabled into a short, and subsequently cycles current off and on as the thermal protection engages.  
14  
版权 © 2015–2017, Texas Instruments Incorporated  
 
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
The second condition is when an overload occurs while the device is enabled and fully turned on. The device  
responds to the overload condition within time iOS (see 1) when the specified overload (per Electrical  
Characteristics) is applied. The response speed and shape vary with the overload level, input circuit, and rate of  
application. The current-limit response varies between simply settling to iOS or turnoff and controlled return to iOS  
.
Similar to the previous case, the TPS25810 limits the current to iOS until the overload condition is removed or the  
device begins to thermal cycle.  
The TPS25810 thermal cycles if an overload condition is present long enough to activate thermal limiting in any  
of the above cases. This is due to the relatively large power dissipation [(VIN – VOUT) x iOS] driving the junction  
temperature up. The device turns off when the junction temperature exceeds 135°C (min) while in current limit.  
The device remains off until the junction temperature cools 20°C and then restarts. The TPS25810 current limit  
profile is shown in 13.  
VIN  
Slope = -rDSON  
VOUT  
0 A  
0 V  
IOUT  
IOS  
13. Current Limit Profile  
7.3.3 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn-  
on threshold. Built-in hysteresis prevents unwanted on/off cycling due to input voltage droop during turn on.  
7.3.3.1 Device Power Pins (IN1, IN2, AUX, OUT, and GND)  
The device has multiple input power pins; IN1, IN2 and AUX. IN1 is connected to OUT by the internal power FET  
and serves the supply for the Type-C charging current. IN2 is the supply for VCONN and ties directly between  
the VCONN power switch on its input and CC1 or CC2 on its output. AUX or auxiliary input supply provides  
power to the chip. Refer to Functional Block Diagram.  
In the simplest implementation where multiple supplies are not available; IN1, IN2, and AUX can be tied together.  
However in mobile systems (battery powered) where system power savings is paramount, IN1 and IN2 can be  
powered by the high power DC-DC supply (>3-A capability) while AUX can be connected to the low power supply  
that typically powers the system uC when the system is in hibernate or sleep power state. Unlike IN1 and IN2,  
AUX can operate directly from a 3.3-V supply commonly used to power the uC when the system is put in low  
power mode. A ceramic bypass capacitor close to the device from IN/AUX to GND is recommended to alleviate  
bus transients.  
The recommended operating voltage range for IN1/IN2 is 4.5 V to 5.5 V while AUX can be operated from 2.9 V  
to 5.5 V. However IN1, the high power supply, can operate up to 6.5 V. This higher input voltage affords a larger  
IR drop budget in systems where a long cable harness is used and results in high IR drops with 3-A charging  
current. Increasing IN1 beyond 5.5 V enables longer cable/board trace lengths between the device and Type C  
receptacle while meeting the USB spec for VBUS at connector 4.75 V.  
14 illustrates the point. In this example IN1 is at 5 V which restricts the IR drop budget from DC-DC to  
connector to 250 mV.  
版权 © 2015–2017, Texas Instruments Incorporated  
15  
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
Total IR loss Budget = 250 mV  
Trace IR drop Budget at 3 A  
= 250-165 = 85 mV  
V_Trace1  
V_Trace2  
V_TPS25810  
V_DC-DC = 5 V  
5 V DC-DC  
V_Connector  
= 4.75 V (MIN)  
IN1  
OUT  
MaxRds_On  
= 55 m  
165 mV drop at 3 A  
82.5 mV drop at 1.5 A  
14. Total IR Loss Budget  
7.3.3.2 FAULT Response  
The FAULT pin is an open drain output that asserts (active low) when device OUT current exceeds its  
programmed value and the over temperature threshold is crossed (TTH_OTSD1). Refer to the Electrical  
Characteristics for over current and temperature values. The FAULT signal remains asserted until the fault  
condition is removed and the device resumes normal operation. The TPS25810 is designed to eliminate false  
overcurrent fault reporting by using an internal deglitch circuit.  
Connect FAULT with a pull-up resistor to AUX. FAULT can be left open or tied to GND when not used.  
7.3.3.3 Thermal Shutdown  
The device has two internal over temperature shutdown thresholds, TTH_OTSD1 and TTH_OTSD2, to protect the  
internal FET from damage and overall safety of the system. TTH_OTSD2 > TTH_OTSD1. FAULT is asserted low to  
signal a fault condition when device temperature exceeds TTH_OTSD1 and the current limit switch is disabled.  
However when TTH_OTSD2 is exceeded all open drain outputs are left open and the device is disabled such that  
minimum power/heat is dissipated. The device attempts to power-up when die temperature decreases by 20°C.  
7.3.3.4 REF  
A 100-k(1% or better recommended) resistor is connected from this pin to REF_RTN. This pin sets the  
reference current required to bias the internal circuitry of the device. The overload current limit tolerance and CC  
currents depend upon the accuracy of this resistor, using a ±1% low tempco resistor, or better, yields the best  
current limit accuracy and overall device performance.  
7.3.3.5 Audio Accessory Detection  
The USB Type-C spec defines an audio adapter decode state which allows implementation of an analog USB  
Type-C to 3.5-mm headset adapter. The TPS25810 detects an audio accessory device when both CC1 and CC2  
pins sees VRa voltage (when pulled to ground by Ra resistor). The device asserts the open drain AUDIO pin low  
to indicate the detection of such a device.  
16  
版权 © 2015–2017, Texas Instruments Incorporated  
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
4. Audio Accessory Detection  
CC1  
CC2  
AUDIO  
STATE  
Ra  
Ra  
Asserted (pulled low)  
Audio Adapter Accessory Connected  
Platforms supporting this extension can trigger off of the AUDIO pin to enable accessory mode circuits to support  
the audio function. When the Ra pull-down is removed from the CC2 pin, AUDIO is de-asserted or pulled high.  
The TPS25810 monitors the CC2 pin for audio device detach. When this function is not needed (for example in a  
data-less port) AUDIO can be tied to GND or left open.  
7.3.3.6 Debug Accessory Detection  
The Type-C spec supports an optional Debug Accessory mode used for debug only and must not be used for  
communicating with commercial products. When the TPS25810 detects VRd voltage on both CC1 and CC2 pins  
(when pulled to ground by an Rd resistor), it asserts DEBUG low. With DEBUG is asserted, the system can enter  
debug mode for factory testing or a similar functional mode. DEBUG de-asserts or pulls high when Rd is  
removed from CC1. The TPS25810 monitors the CC1 pin for Debug Accessory detach.  
If Debug accessory mode is not used, tie DEBUG to GND or leave it open.  
5. Debug Accessory Detection  
CC1  
CC2  
POL  
STATE  
Rd  
Rd  
Asserted (pulled low)  
Debug Accessory Mode connected  
7.3.3.7 Plug Polarity Detection  
Reversible Type-C plug orientation is reported by the POL pin when a UFP is connected. However when no UFP  
is attached, POL remains de-asserted irrespective of cable plug orientation. 6 describes the POL state based  
on which device CC pin detects VRD from an attached UFP pull-down.  
6. Plug Polarity Detection  
CC1  
Rd  
CC2  
Open  
Rd  
POL  
Hi-z  
STATE  
UFP connected  
Open  
Asserted (pulled low)  
UFP connected with reverse plug orientation  
版权 © 2015–2017, Texas Instruments Incorporated  
17  
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
15 shows an example implementation which utilizes the POL terminal to control the SEL terminal on the  
HD3SS3212. The HD3SS3212 provides switching on the differential channels between Port B and Port C to Port  
A depending on cable orientation.  
3.3 V  
HD3SS3212  
USB C  
SSTXp2  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
B0+  
Dp1  
Dp2  
USB Host  
SSTXp  
VCC  
Dp  
B0–  
C0+  
C0–  
B1+  
B1–  
C1+  
C1–  
SSTXn2  
SSTXp1  
SSTXn1  
SSRXp2  
SSRXn2  
SSRXp1  
SSRXn1  
A0+  
A0–  
Dm  
Dm1  
Dm2  
SSTXn  
SSRXp  
A1+  
A1–  
SSRXn  
Dp  
GND  
GND  
GND  
GND  
Dp  
Dm  
Dm  
OEn  
SEL  
3.3 V  
GND  
GND  
GND  
TPS25810  
OUT  
5 V  
POL  
OUT  
UFP  
CC1  
CC2  
IN1  
IN1  
5 V  
IN2  
CHG  
AUX  
EN  
CHG H_I  
FAULT  
LD_DET  
AUDIO  
REF  
REF_RTN  
GND  
DEBUG  
Thermal Pad  
Copyright © 2016, Texas Instruments Incorporated  
15. Example Implementation  
7.3.3.8 Device Enable Control  
The logic enable pin controls the power switch and device supply current. The supply current is reduced to less  
than 1 μA when a logic low is present on EN. The EN pin provides a convenient way to turn on or turn off the  
device while it is powered. The enable input threshold has hysteresis built-in. When this pin is pulled high, the  
device is turned on or enabled. When the device is disabled (EN pulled low) the internal FETs tied to IN1 and  
IN2 are disconnected, all open drain outputs are left open (Hi-Z), and the CC1/CC2 monitor block is turned off.  
The EN terminal should not be left floating.  
7.3.3.9 Load Detect  
The load detect function in the device is enabled when it is set to broadcast high current VBUS charging (CHG =  
CHG_HI = High) on the CC pin. In this mode the device monitors the current to a UFP; if the current exceeds  
1.95 A (TYP) the LD_DET pin asserts. Since LD_DET is an open drain output, pull it high with 100 kto AUX  
when used; tie it to GND or leave open when not used.  
18  
版权 © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
7.3.3.10 Power Wake  
The power wake feature supported in the TPS25810 offers the mobile systems designer a way to save on  
system power when no UFP is attached to the Type-C port. Refer to 16. To enable power wake the UFP from  
device #1 and #2 are tied together (each with its own 100-kpull-up) to the enable pin of a 5 V/6 A dc-dc buck  
converter. When no UFP is detected on both Type-C ports, the EN pin of the dc-dc is pulled high thereby  
disabling it. Since both TPS25810s are powered by an always-on 3.3-V LDO, turning off the IN1/IN2 supply does  
not affect its operation in detach state. Anytime a UFP is detected on either port, the corresponding TPS25810  
UFP pin is pulled low enabling the dc-dc to provide charging current to the attached UFP. Turning off the high  
power dc-dc when ports are unattached saves on system power. This method can save a significant amount of  
power considering the TPS25810 only requires < 5 µA when no UFP device is connected.  
Both /UFP High  
Converter  
Disabled  
OUT  
CC1  
CC2  
IN1  
No UFP  
Attached  
TPS54620  
Buck  
Converter  
IN2  
AUX  
CHG  
TPS25810  
#1  
EN  
/UFP_1  
CHG_HI  
12V  
/UFP_1 /UFP_2  
(High)  
(High)  
OUT  
CC1  
CC2  
IN1  
No UFP  
Attached  
IN2  
AUX  
CHG  
LP2950-33  
TPS25810  
#2  
LDO  
/UFP_2  
CHG_HI  
One /UFP Low  
Converter  
Enabled  
OUT  
CC1  
CC2  
IN1  
TPS54620  
Buck  
Converter  
UFP  
Attached  
IN2  
AUX  
CHG  
TPS25810  
#1  
EN  
/UFP_1  
CHG_HI  
12V  
/UFP_1  
(Low)  
/UFP_2  
(High)  
OUT  
CC1  
CC2  
IN1  
No UFP  
Attached  
IN2  
AUX  
CHG  
LP2950-33  
LDO  
TPS25810  
#2  
/UFP_2  
CHG_HI  
/opyright © 2016, Çexas Lnstruments Lncorporated  
16. Power Wake Implementation  
版权 © 2015–2017, Texas Instruments Incorporated  
19  
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
7.3.3.11 Port Power Management (PPM)  
PPM is the intelligent and dynamic allocation of power made possible with the use of the LD_DET pin. It is for  
systems that have multiple charging ports but cannot power them all at their maximum charging current  
simultaneously.  
Goals of PPM are:  
1. Enhances user experience since user does not have to search for high current charging port.  
2. Lowered cost and size of power supply needed for implementing high current charging in a multi-port system.  
7.3.3.12 Implementing PPM in a System with Two Type-C Ports  
17 shows PPM and power wake implemented in a system with two Type C ports both initially set to broadcast  
high current charging (3 A, CHG and CHG_HI pulled high via a 100 kto AUX). To enable PPM tie the LD_DET  
pin from TPS25810 #1 to CHG_HI of TPS25810 #2 and vice versa as shown in 17. Each device  
independently monitors charging current drawn by its attached UFP.  
IN1, IN2 are connected to a TPS54620; a 6-A synchronous step-down converter. AUX is powered by a LP2950-  
33; a low quiescent current 3.3-V LDO. With no UFP attached to either Type C port the TPS25810 is powered by  
the LP2950-33. This method saves a significant amount of power considering the TPS25810 requires less than 2  
µA when no USB device is connected.  
OUT  
CC1  
CC2  
IN1  
IN2  
TPS54620  
Buck  
Converter  
TPS25810  
#1  
AUX  
CHG  
/LD_DET_1  
/UFP_1  
EN  
CHG_HI  
12V  
/UFP_1 /UFP_2  
OUT  
CC1  
CC2  
IN1  
IN2  
3.0A Broadcast  
LP2950-33  
LDO  
TPS25810  
#2  
AUX  
CHG  
/LD_DET_2  
/UFP_2  
CHG_HI  
/opyright © 2016, Çexas Lnstruments Lncorporated  
17. PPM and Power Wake Implemented  
7.3.3.13 PPM Operation  
When no UFP is attached, or either of the two attached UFP is drawing current less than the LD_DET threshold  
(1.95 A typical), the LD_DET output for both devices is high (shown in blue in 18). Now when a UFP is  
attached to device #1 that draws a charging current higher than the LD_DET threshold (1.95 A), this causes  
LD_DET to assert or pull-low (shown in red in 18). Since the LD-DET pins of the #1 and #2 devices are  
connected to the other devices CHG_HI pin, a high current detection on device #1 forces device #2 to broadcast  
1.5 A or medium charging current capability on its CC pin. The Type C specification requires a UFP to monitor  
the CC pins continuously and adjust its current consumption (within 60 ms) to remain within the value advertised  
by the DFP.  
19 shows the case when a UFP attached to Device 1 reduces its charging current below the LD_DET  
threshold, which causes LD-DET to de-assert, thereby toggling device #2 CH_HI pin from low to high.  
This scheme:  
Delivers a better user experience as the user does not have to worry about the maximum charging current  
rating of the host ports, both ports initially advertise high current charging.  
20  
版权 © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
Enables a smaller and lower cost power supply as the loading is controlled and never allowed to exceed 5 A.  
OUT  
CC1  
CC2  
IN1  
IN2  
TPS54620  
Buck  
Converter  
3.0A USB Device Connected  
TPS25810  
#1  
AUX  
CHG  
/LD_DET_1  
/UFP_1  
EN  
CHG_HI  
12V  
/UFP_1 /UFP_2  
OUT  
CC1  
CC2  
IN1  
IN2  
1.5A Broadcast  
LP2950-33  
LDO  
TPS25810  
#2  
AUX  
CHG  
/LD_DET_2  
/UFP_2  
CHG_HI  
/opyright © 2016, Çexas Lnstruments Lncorporated  
18. 3-A USB Device Connected  
OUT  
CC1  
CC2  
IN1  
IN2  
TPS54620  
Buck  
Converter  
1.5A USB Device Connected  
TPS25810  
#1  
AUX  
CHG  
/LD_DET_1  
/UFP_1  
EN  
CHG_HI  
12V  
/UFP_1 /UFP_2  
OUT  
CC1  
CC2  
IN1  
IN2  
3.0A Broadcast  
LP2950-33  
LDO  
TPS25810  
#2  
AUX  
CHG  
/LD_DET_2  
/UFP_2  
CHG_HI  
/opyright © 2016, Çexas Lnstruments Lncorporated  
19. 1.5-A USB Device Connected  
7.4 Device Functional Modes  
The TPS25810 is a Type-C controller with integrated power switch that supports all Type-C functions in a  
downstream facing port. It is also used to manage current advertisement and protection to a connected UFP and  
active cable. The device starts its operation by monitoring the AUX bus. When VAUX exceeds the under voltage-  
lockout threshold, the device samples the EN pin. A high level on this pin enables the device and normal  
operation begins. Having successfully completed its start-up sequence, the device now actively monitors its CC1  
and CC2 pins for attachment to a UFP. When a UFP is detected on either the CC1 or CC2 pin the internal  
MOSFET starts to turn-on after the required de-bounce time is met. The internal MOSFET starts conducting and  
allows current to flow from IN1 to OUT. If Ra is detected on the other CC pin (not connected to UFP), VCONN is  
applied to allow current to flow from IN2 to the CC pin connected to Ra. For a complete listing of various device  
operational modes refer to 2.  
版权 © 2015–2017, Texas Instruments Incorporated  
21  
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS25810 is a Type-C DFP controller that supports all Type-C DFP required functions. The TPS25810 only  
applies power to VBUS when it detects that a UFP is attached and removes power when it detects the UFP is  
detached. The device exposes its identity via its CC pin advertising its current capability based on CHG and  
CHG_HI pin settings. The TPS25810 also limits its advertised current internally and provides robust protection to  
a fault on the system VBUS power rail.  
After a connection is established by the TPS25810, the device is capable of providing VCONN to power circuits in  
the cable plug on the CC pin that is not connected to the CC wire in the cable. VCONN is internally current limited  
and has its own supply pin IN2. Apart from providing charging current to a UFP, the TPS25810 also supports  
Audio and Debug accessory modes.  
The following design procedure can be used to implement a full featured Type-C DFP.  
BC 1.2 is not supported in the TPS25810. To support BC1.2 with Type-C charging modes  
in a single C connector, a device like a TPS2514A will need to be used.  
8.2 Typical Applications  
8.2.1 Type C DFP Port Implementation without BC 1.2 Support  
20 shows a minimal Type-C DFP implementation capable of supporting 5-V and 3-A charging.  
USB Type C  
Receptacle  
TPS25810RVC  
5V  
2
3
IN1  
14  
15  
VBUS  
OUT  
OUT  
CC2  
CC1  
IN1  
IN2  
4
5
6
13  
11  
AUX  
EN  
1
20  
19  
FAULT  
LD_DET  
10uF  
7
8
CHG  
CHG_HI  
UFP  
POL  
18  
17  
AUDIO  
10  
REF  
16  
DEBUG  
100 kΩ  
(1%)  
12  
21  
GND  
9
REF_RTN  
PAD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
20. Type-C DFP Port Implementation without BC 1.2 Support  
22  
版权 © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
Typical Applications (接下页)  
8.2.1.1 Design Requirements  
8.2.1.1.1 Input and Output Capacitance  
Input and output capacitance improves the performance of the device. The actual capacitance should be  
optimized for the particular application. For all applications, a 0.1-μF or greater ceramic bypass capacitor  
between IN and GND is recommended as close to the device as possible for local noise de-coupling.  
All protection circuits such as the TPS25810 have the potential for input voltage overshoots and output voltage  
undershoots. Input voltage overshoots can be caused by either of two effects. The first cause is an abrupt  
application of input voltage in conjunction with input power bus inductance and input capacitance when the IN  
terminal is high impedance (before turn on). Theoretically, the peak voltage is 2 times the applied. The second  
cause is due to the abrupt reduction of output short circuit current when the TPS25810 turns off and energy  
stored in the input inductance drives the input voltage high. Input voltage droops may also occur with large load  
steps and as the TPS25810 output is shorted. Applications with large input inductance (for instance connecting  
the evaluation board to the bench power-supply through long cables) may require large input capacitance to  
reduce the voltage overshoot from exceeding the absolute maximum voltage of the device.  
The fast current-limit speed of the TPS25810 to hard output short circuits isolate the input bus form faults.  
However, ceramic input capacitance in the range of 1 μF to 22 μF adjacent to the TPS25810 input aids in both  
response time and limiting the transient seen on the input power bus. Momentary input transients to 6.5 V are  
permitted. Output voltage undershoot is caused by the inductance of the output power bus just after a short has  
occurred and the TPS25810 has abruptly reduced OUT current. Energy stored in the inductance drives the OUT  
voltage down and potentially negative as it discharges. An application with large output inductance (such as from  
a cable) benefits from use of a high-value output capacitor to control voltage undershoot.  
When implementing a USB standard application, 120 μF minimum output capacitance is required. Typically a  
150-μF electrolytic capacitor is used, which is sufficient to control voltage undershoots. Since in Type-C DFP is a  
cold socket when no UFP is attached, the output capacitance should be placed at the IN pin versus OUT as is  
used in USB Type A ports. It is also recommended to put a 10-μF ceramic capacitor on the OUT pin for better  
voltage bypass.  
8.2.1.2 Detailed Design Procedure  
The TPS25810 device supports three different input voltages based on the application. In the simplest  
implementation all input supplies are tied to a single voltage source as shown in 20 which is set to 5 V.  
However, it is recommended to set a slightly higher (100 mV to 200 mV) input voltage, when possible, to  
compensate for IR drop from the source to the Type C connector.  
Other design considerations are listed below:  
Place at least 120 µF of bypass capacitance close to the IN pins versus OUT as Type C is a cold socket  
connector.  
A 10-µF bypass capacitor is recommended placed near a Type-C receptacle VBUS pin to handle load  
transients.  
Depending on the max current level advertisement supported by the Type-C port in the system, set CHG and  
CHG_HI levels accordingly. 3 A advertisement is shown in 20.  
EN, CHG, and CHG_HI pins can be tied directly to GND or VAUX without a pull-up resistor.  
CHG and CHG_HI can also be dynamically controlled by a µC to change the current advertisement level  
to the UFP.  
When an open drain output of the TPS25810 is not used, it can be left as NC or tied to GND.  
Use a 1% 100-kresistor to connect between the REF and REF_RTN pins placing it close to the device pin  
and isolated from switching noise on the board.  
版权 © 2015–2017, Texas Instruments Incorporated  
23  
 
 
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.3 Application Curves  
VIN  
CC1  
VIN  
VBUS  
VBUS  
CC2  
CC1  
IN  
Time 20 ms/div  
Basic Start-Up: IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V,  
CC1 = Rd, CC2 = Open  
Time 50 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = Open,  
CC2 = Open then Rd  
21. Basic Start-Up  
22. Start-Up  
VBUS VIN  
VIN  
VBUS  
IN  
CC1  
IN  
CC1  
Time 50 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = Rd, CC2  
= Open, OUT = Shorted  
Time 200 ms/div  
IN1 = IN2 = AUX = EN = 5 V; CHG = CHG_HI = 0 V, CC1 =  
Open, CC2 = Rd, OUT = Open5 Ω  
24. Hot-Plug to Short  
23. Load Step  
VIN  
VIN  
VBUS  
VOUT  
CC1  
IN  
CC1  
CC2  
Time 20 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = Short,  
CC2 = Rd  
Time 20 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = Open,  
CC2 = RdOpen  
25. Short On CC1  
26. Remove Rd  
24  
版权 © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
Typical Applications (接下页)  
VIN  
VBUS  
CC2  
CC1  
Time 50 ms/div  
VIN 5 V3.5 V (100 ms)5 V (1 V/ms),  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V,  
CC1 = Rd,  
CC2 = Ra  
27. Brown-Out Test  
版权 © 2015–2017, Texas Instruments Incorporated  
25  
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.2 Type-C DFP Port Implementation with BC 1.2 (DCP Mode) Support  
28 shows a Type-C DFP implementation capable of supporting 5 V and 3 A charging in a Type-C port that is  
also able to support charging of legacy devices when used with a Type C – µB cable assembly for charging  
phones and handheld devices equipped with µB connector.  
This implementation requires the use of a TPS2514A, a USB dedicated charging port (DCP) controller with auto-  
detect feature to charge not only BC1.2 compliant handheld devices but also popular phones and tablets that  
incorporate their own propriety charging algorithm. Refer to TPS2514A specifications available at www.ti.com for  
more details.  
TPS2514ADBV  
IN DM1  
0.1uF  
DP1  
NC  
NC  
GND  
Dn  
TPS25810RVC  
5V  
2
3
Dp  
IN1  
VBUS  
14  
15  
13  
11  
OUT  
OUT  
CC2  
CC1  
IN1  
IN2  
4
5
6
AUX  
EN  
1
20  
19  
FAULT  
LD_DET  
10uF  
7
8
CHG  
CHG_HI  
UFP  
POL  
USB Type C  
Receptacle  
18  
17  
AUDIO  
10  
16  
REF  
DEBUG  
100 kΩ  
(1%)  
12  
21  
GND  
9
REF_RTN  
PAD  
/opyright © 2016, Çexas Lnstruments Lncorporated  
28. Type C DFP Port Implementation with BC 1.2 (DCP Mode) Support  
8.2.2.1 Design Requirements  
Refer to Design Requirements for the Design Requirements.  
8.2.2.2 Detailed Design Procedure  
Refer to Detailed Design Procedure for the Detailed Design Procedure.  
8.2.2.3 Application Curves  
Refer to Application Curves for the Application Curves.  
26  
版权 © 2015–2017, Texas Instruments Incorporated  
 
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
9 Power Supply Recommendations  
The device has three power supply inputs; IN1, which is directly connected to OUT via the power MOSFET, is  
tied to the VBUS pin in the Type-C receptacle. IN2 also has a current limiting switch and is MUXed either to the  
CC1 or CC2 pin in the Type-C receptacle depending on cable plug polarity. AUX is the chip supply. In most  
applications all three supplies are tied together. In a special implementation like power wake IN1/IN2 are tied to a  
single supply while AUX is powered by a supply that is always ON and can be as low as 2.9 V.  
USB Specification Revisions 2.0 and 3.1 require VBUS voltage at the connector to be between 4.75 V to 5.5 V.  
Depending on layout and routing from supply to the connector the voltage droop on VBUS has to be tightly  
controlled. Locate the input supply close to the device. For all applications, a 10-μF or greater ceramic bypass  
capacitor between OUT and GND is recommended as close to the Type-C connector of the device as possible  
for local noise decoupling. The power supply should be rated higher than the current limit set to avoid voltage  
droops during over current and short-circuit conditions.  
版权 © 2015–2017, Texas Instruments Incorporated  
27  
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Layout best practices as it applies to the TPS25810 are listed below.  
For all applications a 10-µF ceramic capacitor is recommended near the Type-C receptacle and another 120-  
µF ceramic capacitor close to IN1 pin.  
The optimum placement of the 120-µF capacitor is closest to the IN1 and GND pins of the device.  
Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN1 pin,  
and the GND pin of the IC. See 29 for a PCB layout example.  
High current carrying power path connections to the device should be as short as possible and should be  
sized to carry at least twice the full-load current.  
Have the input and output traces as short as possible. The most common cause of voltage drop failure in  
USB power delivery is the resistance associated with the VBUS trace. Trace length, maximum current  
being supplied for normal operation, and total resistance associated with the VBUS trace must be taken  
into account while budgeting for voltage drop.  
For example, a power carrying trace that supplies 3 A, at a distance of 20 inches, 0.100-in. wide, with 2-  
oz. copper on the outer layer will have a total resistance of approximately 0.046 Ω and voltage drop of  
0.14 V. The same trace at 0.050-in.-wide will have a total resistance of approximately 0.09 Ω and voltage  
drop of 0.28 V.  
Make power traces as wide as possible.  
The resistor attached to the REF pin of the device has several requirements:  
It is recommended to use a 1% 100-klow tempco resistor.  
It should be connected to pins REF and REF_RTN (pin 9 and pin 10 respectively).  
The REF_RTN pin should be isolated from the GND plane. See 29.  
The trace routing between the REF and REF_RTN pins of the device should be as short as possible to  
reduce parasitic effects on current limit and current advertisement accuracy. These traces should not have  
any coupling to switching signals on the board.  
Locate all TPS25810 pull-up resistors for open-drain outputs close to their connection pin. Pull up resistors  
should be 100 k.  
When a particular open drain output is not used/needed in the system leave the associated pin open or  
tied to GND.  
Keep the CC lines close to the same length.  
Thermal Considerations:  
When properly mounted, the thermal pad package provides significantly greater cooling ability than an  
ordinary package. To operate at rated power, the thermal pad must be soldered to the board GND plane  
directly under the device. The thermal pad is at GND potential and can be connected using multiple vias  
to inner layer GND. Other planes, such as the bottom side of the circuit board can be used to increase  
heat sinking in higher current applications. Refer to Technical Briefs: PowerPad™ Thermally Enhanced  
Package (TI literature Number SLMA002) and PowerPAD™ Made Easy (TI Literature Number SLMA004)  
or more information on using this thermal pad package.  
The thermal via land pattern specific to the TPS25810 can be downloaded from the device web page at  
www.ti.com.  
Obtaining acceptable performance with alternate layout schemes is possible; however the layout example  
in the following section has been shown to produce good results and is intended as a guideline.  
ESD Considerations  
TPS25810 has built in ESD protection for CC1 and CC2. Keep trace length to a minimum from the type-C  
receptacle to the TPS25810 on CC1 and CC2.  
10-uF output cap should be placed near Type-C receptacle  
Refer to the TPS25810EVM-745 Evaluation Module for an example of a double layer board that passes  
IEC61000-4-2 testing  
Do not create stubs or test points on the CC lines. Keep the traces short if possible and use minimal via  
along the traces (1-2 inches or less).  
Refer to ESD Protection Layout Guide for additional information (TI Literature Number SLVA680)  
28  
版权 © 2015–2017, Texas Instruments Incorporated  
TPS25810  
www.ti.com.cn  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
Layout Guidelines (接下页)  
Have a dedicated ground plane layer if possible to avoid differential voltage buildup  
10.2 Layout Example  
Top Layer Signal Trace  
Top Layer Signal Ground Plane  
Bottom Layer Signal Trace  
Bottom Layer Signal Ground Plane  
Via to Bottom Layer Signal Ground Plane  
Via to Bottom Layer Signal  
AUX  
1
16  
2
15  
Thermal  
Pad  
IN1  
OUT  
14  
3
4
5
6
13  
12  
11  
IN2  
CC2  
GND  
CC1  
AUX  
EN  
Signal Ground  
Bottom Layer  
Signal Ground  
Top Layer  
29. Layout Example  
版权 © 2015–2017, Texas Instruments Incorporated  
29  
TPS25810  
ZHCSE73C SEPTEMBER 2015REVISED JULY 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档  
PowerPad™ 耐热增强型封装》TI 文献编号:SLMA002)  
PowerPAD™ 速成》TI 文献编号:SLMA004)  
TPS25810EVM-745 用户指南》(文献编号SLVUA0)  
TPS25810 高压 DFP 保护》文献编号:SLVA751)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
30  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25810RVCR  
TPS25810RVCT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
25810  
25810  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS25810RVCR  
TPS25810RVCR  
TPS25810RVCT  
WQFN  
WQFN  
WQFN  
RVC  
RVC  
RVC  
20  
20  
20  
3000  
3000  
250  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
4.3  
4.3  
4.3  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS25810RVCR  
TPS25810RVCR  
TPS25810RVCT  
WQFN  
WQFN  
WQFN  
RVC  
RVC  
RVC  
20  
20  
20  
3000  
3000  
250  
346.0  
367.0  
210.0  
346.0  
367.0  
185.0  
33.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVC0020A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
0.45  
0.35  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
7
10  
16X 0.5  
11  
6
2X  
SYMM  
21  
2.5  
2.6 0.1  
SEE TERMINAL  
DETAIL  
1
16  
0.25  
20X  
0.15  
20  
17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
1.6 0.1  
0.05  
0.45  
0.35  
20X  
4219150/B 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.6)  
SYMM  
(R0.05)  
TYP  
17  
20  
20X (0.6)  
1
16  
20X (0.2)  
(1)  
TYP  
21  
(3.8)  
(2.6)  
SYMM  
16X (0.5)  
11  
6
(
0.2) TYP  
VIA  
7
10  
(1 TYP)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219150/B 03/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (1.47)  
20  
17  
20X (0.6)  
1
21  
16  
20X (0.2)  
(R0.05) TYP  
SYMM  
2X  
(1.15)  
(3.8)  
(0.675)  
TYP  
16X (0.5)  
11  
6
METAL  
TYP  
7
10  
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD X  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219150/B 03/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS25810TWRVCRQ1

具有负载检测功能的汽车类 USB Type-C™(版本 1.2)DFP 控制器和电源开关 | RVC | 20 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25814

具有集成拉电流电源开关的 USB Type-C® 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25814RSMR

具有集成拉电流电源开关的 USB Type-C® 控制器 | RSM | 32 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25820

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25820DSSR

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25820DSST

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25821

USB Type-C™ 电源控制器和 1.5A 电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25821DSSR

USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25821DSST

USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TPS25830-Q1

具有 BATT 短路保护和电缆补偿功能的 USB Type-C® 和 SDP/CDP 充电端口转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI