TPS25814RSMR [TI]

具有集成拉电流电源开关的 USB Type-C® 控制器 | RSM | 32 | -40 to 105;
TPS25814RSMR
型号: TPS25814RSMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成拉电流电源开关的 USB Type-C® 控制器 | RSM | 32 | -40 to 105

开关 控制器 电源开关
文件: 总44页 (文件大小:2610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS25814  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
TPS25814 具有集成拉电流电源开关USB Type-C® 控制器  
15W USB-C 充电器  
• 集线站和集线器  
1 特性  
• 符USB Type-C 规范  
3 说明  
– 线缆连接和方向检测  
– 集成VCONN 开关  
26V CC 引脚  
TPS25814 是一款独立的 USB Type-C 控制器可为  
一个 USB Type-C 连接器提供电缆插拔和方向检测功  
能。在连接电缆时TPS25814 根据 USB Type-C 规  
范执行电缆检测。在线缆检测完成后TPS25814 会启  
用内部电源路径。状态指示器引脚可用于控制外部多路  
复用器。  
– 可配置电流广播  
• 集成VBUS 供电端口电源开关  
5V3A36mΩ源开关  
UL 认证组(E169910)  
– 欠压和过压保护  
器件信息  
器件型号(1)  
TPS25814  
封装尺寸标称值)  
– 高3A 的可配置电流限制  
USB type-C 连接器系统软件接(USCI) 支持  
• 支持工业温度范围  
封装  
QFN (RSM)  
4.0mm x 4.0mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 面向多端口系统的可选简易电源管理  
2 应用  
• 笔记本电脑和台式机  
3.3V  
VIN_3V3  
TPS25814  
PP5V  
VBUS  
5 V  
3 A  
EC Host  
Interface  
(slave)  
Type-C Rp & state  
machine,  
VCONN switches  
CC  
VCONN  
CC1/2  
2
2
EC  
(master)  
USB  
Type-C  
Connector  
DEBUG  
FAULT  
POL  
USB_P  
USB_N  
D+  
D-  
Status  
Indicators  
SINK  
GND  
CHG_HI  
EN  
CTL  
2 ADCIN pins  
(I2C addr)  
Control  
Inputs  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEZ5  
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
Table of Contents  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................25  
9 Application and Implementation..................................28  
9.1 Application Information............................................. 28  
9.2 Typical Application.................................................... 28  
10 Power Supply Recommendations..............................31  
10.1 3.3-V Power............................................................ 31  
10.2 1.5-V Power............................................................ 31  
10.3 Recommended Supply Load Capacitance..............31  
11 Layout...........................................................................32  
11.1 Layout Guidelines................................................... 32  
11.2 Layout Example...................................................... 32  
11.3 Component Placement............................................32  
11.4 Routing and View Placement.................................. 33  
12 Device and Documentation Support..........................38  
12.1 Device Support....................................................... 38  
12.2 Documentation Support.......................................... 38  
12.3 支持资源..................................................................38  
12.4 Trademarks.............................................................38  
12.5 静电放电警告.......................................................... 38  
12.6 术语表..................................................................... 38  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Recommended Capacitance ......................................6  
6.5 Thermal Information ...................................................6  
6.6 Power Supply Characteristics ....................................6  
6.7 Power Consumption ...................................................7  
6.8 PP_5V Power Switch Characteristics ........................ 7  
6.9 Power Path Supervisory ............................................ 8  
6.10 CC Cable Detection Parameters ..............................8  
6.11 CC VCONN Parameters .......................................... 9  
6.12 Thermal Shutdown Characteristics ..........................9  
6.13 Input/Output (I/O) Characteristics .......................... 10  
6.14 BC1.2 Characteristics ............................................ 10  
6.15 I2C Requirements and Characteristics .................. 10  
6.16 Typical Characteristics ...........................................12  
7 Parameter Measurement Information..........................13  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (July 2020) to Revision A (December 2020)  
Page  
• 首次公开发布...................................................................................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
5 Pin Configuration and Functions  
LDO_3V3  
ADCIN1  
ADCIN2  
LDO_1V5  
EN  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
CC1  
USB_N  
USB_P  
NC  
Thermal  
Pad  
(GND)  
GND  
DEBUG  
GND  
FAULT  
SINK  
I2C_EC_SDA  
CHG_HI  
Not to Scale  
5-1. RSM Package 32-pin QFN Top View  
5-1. Pin Functions  
PIN  
TYPE(1) RESET Description  
NAME  
ADCIN1  
ADCIN2  
CC1  
NO.  
2
I
I
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Configuration input. Connect to a resistor divider to LDO_3V3.  
Configuration input. Connect to a resistor divider to LDO_3V3.  
I/O for USB Type-C .  
3
24  
25  
I/O  
I/O  
I
CC2  
I/O for USB Type-C .  
CHG_HI  
Charge logic input to select between minimum or maximum Type-C current  
advertisement.  
17  
30  
6
CTL  
I
O
I
Hi-Z  
Hi-Z  
Low  
This pin controls which BC 1.2 mode is used. Pull to GND for CDP mode. Pull  
high for DCP mode.  
DEBUG  
EN  
Open-drain logic output that is asserted low when a Type-C debug accessory  
is detected.  
When this pin is pulled low or left floating, the device will be disabled and  
remain in the Type-C Error Recovery state.  
5
7
FAULT  
GND  
O
Hi-Z  
Open-drain logic output that asserts when an over-current fault is detected.  
Ground. Connect to ground plane.  
11,12,14,15,16,  
19,20  
I2C slave serial clock input. Tie to pullup voltage through a resistor when  
used or unused. Connect to Embedded Controller (EC).  
I2C_EC_SCL  
I2C_EC_SDA  
9
8
I
Hi-Z  
Hi-Z  
I2C slave serial data. Open-drain output. Tie to pullup voltage through a  
resistor when used or unused. Connect to Embedded Controller (EC).  
I/O  
I2C slave interrupt. Active low. Connect to external voltage through a pull-up  
resistor. May also be used as a general purpose digital output. Connect to  
Embedded Controller (EC).  
I2C_EC_IRQ  
LDO_1V5  
10  
4
O
O
Hi-Z  
Output of the CORE LDO. Bypass with capacitance CLDO_1V5 to GND. This  
pin cannot source current to external circuits.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
5-1. Pin Functions (continued)  
PIN  
TYPE(1) RESET Description  
NAME  
LDO_3V3  
POL  
NO.  
Output of supply switched from VIN_3V3 or VBUS LDO. Bypass with  
capacitance CLDO_3V3 to GND.  
1
O
O
Hi-Z  
Open-drain logic output that gives the information needed to mux the  
13  
superspeed lines. It is asserted low when CC2 is connected to the cable CC  
line.  
PP5V  
SINK  
28,29  
18  
I
5-V System Supply to VBUS, supply for CCy pins as VCONN.  
O
Hi-Z  
Open-drain logic output that asserts low when a Type-C Sink is identified on  
the CC lines.  
USB_N  
USB_P  
VBUS  
VIN_3V3  
NC  
23  
22  
I/O  
I/O  
I/O  
I
Hi-Z  
Hi-Z  
I/O for BC 1.2 functionality. Connect to the USB D- line.  
I/O for BC 1.2 functionality. Connect to the USB D+ line.  
5-V to 20-V input. Bypass with capacitance CVBUS to GND.  
Supply for core circuitry and I/O. Bypass with capacitance CVIN_3V3 to GND.  
This pin has no functionality. Leave floating.  
26,27  
32  
21,31  
(1) I = input, O = output, I/O = input and output, GPIO = general purpose digital input and output  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.5  
MAX  
6
UNIT  
PP5V  
VIN_3V3  
4
V
ADCIN1, ADCIN2  
4
VBUS(4)  
28  
26  
Input voltage range (2)  
CC1, CC2 (4)  
V
V
SINK, FAULT, CHG_HI, USB_P, USB_N, CTL,  
POL, DEBUG, EN  
-0.3  
6.0  
I2C_EC_SDA, I2C_EC_SCL, I2C_EC_IRQ  
4
0.3  
0.3  
0.3  
LDO_1V5(3)  
Output voltage range (2)  
2
LDO_3V3(3)  
4
internally limited  
1
Source or sink current VBUS  
Positive source current on CC1, CC2  
Positive sink current on CC1, CC2 while VCONN  
1
Source current  
switch is enabled  
A
positive sink current for I2C_EC_SDA,  
I2C_EC_SCL  
internally limited  
positive source current for LDO_3V3, LDO_1V5  
internally limited  
TJ Operating junction temperature  
TSTG Storage temperature  
175  
150  
°C  
°C  
40  
55  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network GND. Connect the GND pin directly to the GND plane of the board.  
(3) Do not apply voltage to these pins.  
(4) A TVS with a break down voltage falling between the Recommended max and the Abs max value is recommended such as TVS2200.  
6.2 ESD Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specificationJESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
3.0  
4.9  
4
MAX  
UNIT  
VIN_3V3  
PP5V  
3.6  
5.5  
22  
VI  
Input voltage range (1)  
V
VBUS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS25814  
 
 
 
 
 
 
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
I2C_EC_SDA, I2C_EC_SCL,  
I2C_EC_IRQ, ADCIN1, ADCIN2  
0
3.6  
VIO  
I/O voltage range (1)  
SINK, FAULT, CHG_HI, USB_P,  
USB_N, CTL, POL, DEBUG, EN  
V
0
0
5.5  
CC1, CC2  
VBUS  
5.5  
3
A
IO  
IO  
Output current (from PP5V)  
CC1, CC2  
315  
5
mA  
mA  
Output current (from VBUS LDO) current from LDO_3V3  
I
PP_5V 1.5 A, IPP_CABLE 315  
105  
40  
mA  
TA  
TJ  
Ambient operating temperature  
Operating junction temperature  
°C  
°C  
85  
I
PP_5V 3 A, IPP_CABLE 315 mA  
40  
40  
125  
(1) All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board.  
6.4 Recommended Capacitance  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
VOLTAGE RATING  
MIN  
5
NOM  
10  
MAX  
UNIT  
µF  
CVIN_3V3  
CLDO_3V3  
CLDO_1V5  
CVBUS  
Capacitance on VIN_3V3  
6.3 V  
6.3 V  
4 V  
Capacitance on LDO_3V3  
Capacitance on LDO_1V5  
Capacitance on VBUS  
Capacitance on PP5V  
5
10  
25  
12  
10  
µF  
4.5  
1
µF  
25 V  
10 V  
4.7  
µF  
CPP5V  
120  
µF  
(1) Capacitance values do not include any derating factors. For example, if 5.0 µF is required and the external capacitor value reduces by  
50% at the required operating voltage, then the required external capacitor value would be 10 µF.  
6.5 Thermal Information  
TPS25814  
THERMAL METRIC(1)  
QFN (RSM)  
32 PINS  
30.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
RθJC (top)  
Junction-to-case (top) thermal resistance  
24.5  
Junction-to-board (bottom) thermal  
resistance  
RθJC  
2
°C/W  
RθJB  
Junction-to-board thermal resistance  
9.8  
0.2  
°C/W  
°C/W  
Junction-to-top characterization parameter  
ψJT  
Junction-to-board characterization  
parameter  
9.7  
°C/W  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Power Supply Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN_3V3, VBUS  
rising  
falling  
3.6  
3.5  
3.9  
3.8  
VVBUS_UVLO  
VBUS UVLO threshold.  
V
hysteresis  
0.1  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6.6 Power Supply Characteristics (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
2.56  
2.44  
TYP  
2.66  
2.54  
0.12  
MAX  
2.76  
2.64  
UNIT  
rising, VVBUS=0  
voltage required on VIN_3V3 for  
power on  
VVIN3V3_UVLO  
falling, VVBUS=0  
hysteresis  
V
LDO_3V3, LDO_1V5  
VLDO_3V3  
VVIN_3V3 = 0V, 10 µA ILOAD  
18 mA, VVBUS 3.9V  
voltage on LDO_3V3  
3.0  
3.4  
1.5  
3.6  
1.4  
V
RLDO_3V3  
Rdson of VIN_3V3 to LDO_3V3 ILDO_3V3=50mA  
up to maximum internal loading  
condition.  
Ω
VLDO_1V5  
voltage on LDO_1V5  
1.49  
1.65  
V
6.7 Power Consumption  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V, no GPIO loading  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX UNIT  
IVIN_3V3,ActSrc  
IVIN_3V3,IdlSrc  
current into VIN_3V3  
Active Source mode: VVBUS=5.0V, VVIN_3V3=3.3V  
Idle Source mode: VVBUS=5.0V, VVIN_3V3=3.3V  
mA  
mA  
current into VIN_3V3  
1.0  
Power drawn into PP5V  
and VIN_3V3 in Modern  
Standby Source Mode  
CCm floating, CCn tied to GND through 5.1k, VPP5V = 5V,  
PMstbySrc  
4.5  
mW  
VVIN_3V3=3.3V, IVBUS=0, TJ=25oC  
IVIN_3V3,SleepSrc  
IPP5V,Sleep  
current into VIN_3V3  
current into PP5V  
Sleep source mode: VVBUS=0V, VVIN_3V3=3.3V  
Sleep mode: VVBUS=0V, VVIN_3V3=3.3V  
61  
2
µA  
µA  
Active Source mode: VVBUS=5.0V, VVBUS=5.0V,  
VVIN_3V3=3.3V. No external load on VBUS.  
IPP5V,ActSrc  
current into PP5V  
0.5  
mA  
6.8 PP_5V Power Switch Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6V  
PARAMETER  
TEST CONDITIONS  
ILOAD = 3 A, TJ=25oC  
ILOAD = 3 A, TJ=125oC  
MIN  
TYP  
MAX  
UNIT  
mΩ  
mΩ  
RPP_5V  
RPP_5V  
Resistance from PP5V to VBUS  
Resistance from PP5V to VBUS  
36  
36  
38  
53  
VPP5V = 0V, VVBUS = 5.5V,  
PP_5V disabled, TJ85oC,  
measure IPP5V  
IPP5V_REV  
VBUS to PP5V leakage current  
PP5V to VBUS leakage current  
5
µA  
µA  
VPP5V = 5.5V, VVBUS = 0V,  
PP_5V disabled, TJ85oC,  
measure IVBUS  
IPP5V_FWD  
15  
ILIM5V  
ILIM5V  
Current limit setting  
Current limit setting  
1.5A setting  
3.0A setting  
2.3  
2.70  
3.78  
A
A
3.22  
PP5V to VBUS current sense  
accuracy  
IVBUS  
3.05  
3.5  
3.75  
A/V  
mV  
µs  
3.64A IVBUS 1A  
RCP clears and PP_5V starts turning  
on when VVBUS VPP5V <  
VPP_5V_RCP. Measure VVBUS VPP5V  
VPP_5V_RCP  
10  
20  
VBUS to GND through  
10m, CVBUS=0  
tiOS_PP_5V  
response time to VBUS short circuit  
1.15  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS25814  
 
 
TPS25814  
www.ti.com.cn  
UNIT  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6.8 PP_5V Power Switch Characteristics (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
Enable PP_5V, IRpDef being  
drawn from PP5V,  
configure VOVP4RCP to  
setting 2, ramp VVBUS from  
tPP_5V_ovp  
response time to VVBUS > VOVP4RCP 4V to 20V at 100 V/ms,  
4.5  
µs  
µs  
CPP5V = 2.5 µF, measure  
time from OVP detection  
until reverse current < 100  
mA  
response time to VPP5V  
VPP5V_UVLO, PP_VBUS is deemed off  
when VVBUS < 0.8V  
<
RL = 100 Ω, no external  
capacitance on VBUS  
tPP_5V_uvlo  
4
VPP5V=5.5V, IRpDef being  
drawn from PP5V, enable  
PP_5V, configure VOVP4RCP  
to setting 2, ramp VVBUS  
from 4V to 21.5V at 10  
response time to VPP5V  
VVBUS+VPP_5V_RCP  
<
tPP_5V_rcp  
0.7  
µs  
V/µs, measure VPP5V  
CPP5V = 104 µF,  
.
CVBUS=10µF, measure time  
from RCP detection until  
reverse current < 100 mA.  
tILIM  
tON  
Current limit deglitch time  
5.1  
3.3  
ms  
ms  
from enable signal to VBUS at 90%  
of final value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
2.3  
0.30  
1.2  
4.3  
0.6  
from disable signal to VBUS at 10%  
of final value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
tOFF  
tRISE  
tFALL  
0.45  
1.7  
ms  
ms  
ms  
VBUS from 10% to 90% of final value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
2.2  
VBUS from 90% to 10% of initial  
value  
RL = 100Ω, VPP5V = 5V,  
CL=0  
0.06  
0.1  
0.14  
6.9 Power Path Supervisory  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
OVP detected when VVBUS  
VOVP4RCP (rising)  
>
VOVP4RCP  
VOVP4RCP  
VBUS over voltage protection  
VBUS over voltage protection  
5.54  
5.8  
6.08  
falling  
5.44  
3.9  
5.94  
4.3  
V
rising  
4.1  
4.0  
0.1  
VPP5V_UVLO  
Voltage required on PP5V  
VBUS discharge current  
falling  
3.8  
4.2  
V
hysteresis  
IDSCH  
VVBUS = 22V, measure IVBUS  
4
15  
mA  
6.10 CC Cable Detection Parameters  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Type-C Source (Rp pull-up)  
Unattached CCy open circuit  
voltage while Rp enabled, no load  
VOC_3.3  
VOC_5  
1.85  
2.95  
V
V
VLDO_3V3 > 2.302 V, RCC = 47 kΩ  
VPP5V > 3.802 V, RCC = 47 kΩ  
Attached CCy open circuit voltage  
while Rp enabled, no load  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6.10 CC Cable Detection Parameters (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCCy = 5.5V, VCCx = 0V,  
VLDO_3V3_UVLO < VLDO_3V3 < 3.6 V,  
VPP5V = 3.8 V , measure current  
into CCy  
10  
Unattached reverse current on  
CCy  
IRev  
µA  
VCCy = 5.5V, VCCx = 0V,  
VLDO_3V3_UVLO < VLDO_3V3 < 3.6 V,  
VPP5V = 0, TJ85oC, measure  
current into CCy  
10  
IRpDef  
IRp1.5  
current source - USB Default  
current source - 1.5A  
0 < VCCy < 1.0 V, measure ICCy  
64  
80  
96  
µA  
µA  
4.75 V < VPP5V < 5.5 V, 0 < VCCy  
1.5 V, measure ICCy  
<
<
166  
180  
194  
4.75 V < VPP5V < 5.5 V, 0 < VCCy  
2.45 V, measure ICCy  
IRp3.0  
current source - 3.0A  
304  
330  
356  
µA  
6.11 CC VCONN Parameters  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
VPP5V=5V, IL = 250 mA,  
RPP_CABLE  
Rdson of the VCONN path  
measure resistance from PP5V  
to CCy  
1.2  
Ω
VPP5V=5V, RL=10m, measure  
ILIMVC  
short circuit current limit  
540  
600  
660  
10  
mA  
µA  
ICCy  
VCONN disabled, TJ 85 oC,  
VCCy = 5.5 V, VPP5V=0 V,  
VVBUS=5V, LDO forced to draw  
from VBUS, measure ICCy  
Reverse leakage current  
through VCONN FET  
ICC2PP5V  
Over-voltage protection  
threshold for PP_CABLE  
VVC_OVP  
VPP5V rising  
5.6  
60  
5.9  
6.2  
340  
470  
V
V
PP5V 4.9 V, VCCy = VPP5V  
,
200  
mV  
Reverse current protection  
threshold for PP_CABLE,  
sourcing VCONN through CCx  
VCCx rising  
VVC_RCP  
V
PP5V 4.9 V, VCCy 4 V,  
210  
340  
1.3  
mV  
ms  
VCCx rising  
tVCILIM  
Current clamp deglitch time  
Time to disable PP_CABLE  
tPP_CABLE_FSD  
after VPP5V > VVC_OVP or VCCx - CL=0  
VPP5V > VVC_RCP  
0.5  
µs  
from disable signal to CCy at  
10% of final value  
tPP_CABLE_off  
tiOS_PP_CABLE  
IL = 250 mA, VPP5V = 5V, CL=0  
100  
200  
2
300  
µs  
µs  
VPP5V=5V, for short circuit RL =  
10mΩ.  
response time to short circuit  
6.12 Thermal Shutdown Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Temperature rising  
hysteresis  
145  
160  
20  
175  
TSD_MAIN  
Temperature shutdown threshold  
°C  
Temperature controlled shutdown Temperature rising  
threshold. The PP_5V and  
135  
150  
165  
°C  
PP_CABLE power paths have  
TSD_PP5V  
local sensors that disables them  
when this temperature is  
exceeded.  
hysteresis  
10  
°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS25814  
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6.13 Input/Output (I/O) Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CHG_HI, CTL, EN  
GPIO_VIH  
GPIOx high-Level input voltage VLDO_3V3 = 3.3V  
GPIOx low-level input voltage VLDO_3V3 = 3.3V  
GPIOx input hysteresis voltage VLDO_3V3 = 3.3V  
1.3  
V
V
GPIO_VIL  
0.54  
GPIO_HYS  
0.09  
1  
50  
V
GPIO_ILKG  
GPIO_RPD  
GPIOx leakage current  
GPIOx internal pull-down  
GPIOx input deglitch  
VGPIOx = 3.45 V  
1
µA  
pull-down enabled  
100  
20  
150  
kΩ  
GPIO_DG  
ns  
Status Outputs  
GPIO_VOL  
GPIOx output low voltage  
VLDO_3V3 = 3.3V, IGPIOx=2mA  
VADCINx = 3.45 V, VVIN_3V3 = 3.3  
0.4  
1
V
ADCIN1, ADCIN2  
ADCIN_ILKG  
ADCINx leakage current  
µA  
ms  
1  
time from LDO_3V3 going high  
until ADCINx is read for  
configuration  
tBOOT  
10  
6.14 BC1.2 Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Advertisement  
VDX_SRC  
Source voltage  
0.55  
250  
25  
0.6  
0.65  
400  
125  
125  
V
C
USB_P 600 pF  
VDX_ILIM  
VDX_SRC current limit  
Sink Current  
µA  
µA  
µA  
IDX_SNK  
75  
75  
V
V
USB_P 250 mV  
USB_N 250 mV  
IDX_SNK  
Sink Current  
25  
0.5 V VUSB_P 0.7 V, 25 µA ≤  
USB_N 175 µA  
RDCP_DAT  
Dedicated Charging Port Resistance  
200  
I
6.15 I2C Requirements and Characteristics  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C_EC_IRQ  
OD_VOL_IRQ  
OD_LKG_IRQ  
Low level output voltage  
Leakage Current  
IOL = 2 mA  
0.4  
1
V
Output is Hi-Z, VI2Cx_IRQ = 3.45 V  
µA  
1  
SDA and SCL Common Characteristics (Slave)  
VIL  
VIH  
VHYS  
VOL  
ILEAK  
IOL  
IOL  
tf  
Input low signal  
VLDO_3V3=3.3V,  
0.54  
V
V
Input high signal  
VLDO_3V3=3.3V,  
1.3  
Input hysteresis  
VLDO_3V3=3.3V  
0.165  
V
Output low voltage  
IOL=3 mA  
0.36  
3
V
Input leakage current  
Max output low current  
Max output low current  
Fall time from 0.7*VDD to 0.3*VDD  
Fall time from 0.7*VDD to 0.3*VDD  
I2C pulse width surpressed  
pin capacitance (internal)  
Voltage on pin = VLDO_3V3  
VOL=0.4 V  
µA  
mA  
mA  
ns  
ns  
ns  
pF  
3  
15  
20  
12  
12  
VOL=0.6 V  
80  
150  
50  
VDD = 1.8V, 10 pF Cb 400 pF  
VDD = 3.3V, 10 pF Cb 400 pF  
tf  
tSP  
CI  
10  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6.15 I2C Requirements and Characteristics (continued)  
Operating under these conditions unless otherwise noted: 3.0 V VVIN_3V3 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Capacitive load for each bus line  
(external)  
Cb  
400  
pF  
SDA and SCL Standard Mode Characteristics (Slave)  
fSCLS  
Clock frequency for slave  
Valid data time  
VDD = 1.8V or 3.3V  
100  
kHz  
µs  
Transmitting Data, VDD = 1.8V or  
3.3V, SCL low to SDA output valid  
tVD;DAT  
3.45  
Transmitting Data, VDD = 1.8V or  
3.3V, ACK signal from SCL low to  
SDA (out) low  
tVD;ACK  
Valid data time of ACK condition  
3.45  
µs  
SDA and SCL Fast Mode Characteristics (Slave)  
fSCLS  
Clock frequency for slave  
VDD = 1.8V or 3.3V  
100  
400  
0.9  
kHz  
µs  
Transmitting data, VDD = 1.8V,  
SCL  
tVD;DAT  
Valid data time  
low to SDA output valid  
Transmitting data, VDD = 1.8V or  
3.3V, ACK  
signal from SCL low to SDA (out)  
low  
tVD;ACK  
Valid data time of ACK condition  
0.9  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS25814  
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
6.16 Typical Characteristics  
0.55  
0.525  
0.5  
40  
38  
36  
34  
32  
30  
28  
26  
24  
0.475  
0.45  
0.425  
0.4  
0.375  
0.35  
-20  
0
20  
40  
60  
TJ (oC)  
80  
100  
120  
140  
-20  
0
20  
40  
60  
TJ (oC)  
80  
100  
120  
140  
D004  
D003  
6-2. PP_CABLEx Rdson vs. Temperature  
6-1. PP_5Vx Rdson vs. Temperature  
5.8  
5.798  
5.796  
5.794  
5.792  
5.79  
-20  
0
20  
40  
60  
TJ (oC)  
80  
100  
120  
140  
D008  
6-3. VOVP4RCP vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
7 Parameter Measurement Information  
t
f
t
r
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
cont.  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
70 %  
30 %  
70 %  
30 %  
SCL  
30 %  
cont.  
t
HD;STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD;ACK  
t
t
t
t
SU;STO  
SU;STA  
HD;STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
002aac938  
7-1. I2C Slave Interface Timing  
ILIM5V, ILIMVC  
tiOS_PP_5V, tiOS_PP_CABLE  
7-2. Short-Circuit Response Time for Internal Power Paths PP_5V and PP_CABLE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8 Detailed Description  
8.1 Overview  
The TPS25814 is a fully-integrated USB Type-C Source management device providing cable plug and  
orientation detection for USB Type-C receptacle. The TPS25814 may also control an attached super-speed  
multiplexer to simultaneously support USB data .  
The TPS25814 is divided into several main sections: the cable plug and orientation detection circuitry, the port  
power switches, the power management circuitry and the digital core.  
The cable plug and orientation detection analog circuitry automatically detects a USB Type-C cable plug  
insertion and also automatically detects the cable orientation. For a high-level block diagram of cable plug and  
orientation detection, a description of its features and more detailed circuitry, see the Cable Plug and Orientation  
Detection.  
The port power switches provide power to the VBUS pin and also to the CC1 or CC2 pins based on the detected  
plug orientation. For a high-level block diagram of the port power switches, a description of its features and more  
detailed circuitry, see the Power Paths.  
The TPS25814 has a I2C slave port to be controlled by host processor (see the I2C Interface).  
The TPS25814 also integrates a thermal shutdown mechanism and runs off of accurate clocks provided by the  
integrated oscillator.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8.2 Functional Block Diagram  
Current Sense  
5.0V  
PP5V  
VBUS  
OTSD  
thermal  
sense  
VPP5V_UVLO  
VVBUS_UVLO  
3.3V  
Current Sense  
VIN_3V3  
CC1  
Current  
Limit  
LDO_1V5  
Power  
Supply  
CC2  
Current  
Sense  
LDO_3V3  
Charge Pump  
Gate Control  
CC Cable  
Detect &  
OVP  
ADCIN1  
ADCIN2  
POL  
Control Logic  
I2C_EC_SDA  
I2C_EC_SCL  
I2C_EC_IRQ  
SINK  
FAULT  
CTL  
DEBUG  
CHG_HI  
EN  
GPIO_RPD  
USB_N  
USB_P  
BC 1.2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8.3 Feature Description  
8.3.1 Power Paths  
The TPS25814 has internal power paths: PP_5V and PP_CABLE. Each power path is described in detail in this  
section.  
8.3.1.1 Internal Sourcing Power Paths  
8-1 shows the TPS25814 internal sourcing power paths. The TPS25814 features two internal 5-V sourcing  
power paths. The path from PP5V to VBUS is called PP_5V. The path from PP5V to CCx is called PP_CABLE.  
Each path contains current clamping protection, overvoltage protection, UVLO protection and temperature  
sensing circuitry. PP_5V may conduct up to 3 A continuously, while PP_CABLE may conduct up to 315 mA  
continuously. When disabled, the blocking FET protects the PP5V rail from high-voltage that may appear on  
VBUS.  
3A  
Fast current clamp, ILIM5V  
VBUS  
Temp  
Sensor  
PP_5V Gate Control and Sense  
PP_5V  
PP_CABLE  
CC1 Gate Control  
TSD_PP5V  
Fast current limit, IVCON  
CC1  
CC2 Gate Control  
Temp  
Sensor  
PP5V  
CC2  
8-1. Port Power Switches  
8.3.1.1.1 PP_5V Current Clamping  
The current through the internal PP_5V path are current limited to ILIM5V. The ILIM5V value is configured by the  
CHG_HI pin as well as ADCIN1 and ADCIN2 pin strapping. When the current through the switch exceeds ILIM5V  
,
the current limiting circuit activates within tiOS_PP_5V and the path behaves as a constant current source. If the  
duration of the overcurrent event exceeds tILIM, the PP_5V switch is disabled.  
8.3.1.1.2 PP_5V Local Overtemperature Shut Down (OTSD)  
When PP_5V clamps the current, the temperature of the switch will begin to increase. When the local  
temperature sensors of PP_5V or PP_CABLE detect that TJ>TSD_PP5V the PP_5V switch is disabled and the  
affected port enters the USB Type-C ErrorRecovery state.  
8.3.1.1.3 PP_5V OVP  
When the voltage on a port's VBUS pin exceeds VOVP4RCP while PP_5V is enabled, then PP_5V is disabled  
within tPP_5V_ovp and the port enters into the Type-C ErrorRecovery state.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8.3.1.1.4 PP_5V UVLO  
If the PP5V pin voltage falls below its undervoltage lock out threshold (VPP5V_UVLO) while PP_5V is enabled, then  
PP_5V is disabled within tPP_5V_uvlo and the port that had PP_5V enabled enters into the Type-C ErrorRecovery  
state.  
8.3.1.1.5 PP_5Vx Reverse Current Protection  
If VVBUS - VPP5V > VPP_5V_RCP, then the PP_5V path is automatically disabled within tPP_5V_rcp. If the RCP  
condition clears, then the PP_5V path is automatically enabled within tON  
.
8.3.1.1.6 PP_CABLE Current Clamp  
When enabled and providing VCONN power the TPS25814 PP_CABLE power switch clamps the current to  
IVCON. When the current through the PP_CABLE switch exceeds IVCON, the current clamping circuit activates  
within tiOS_PP_CABLE and the switch behaves as a constant current source.  
8.3.1.1.7 PP_CABLE Local Overtemperature Shut Down (OTSD)  
When PP_CABLE clamps the current, the temperature of the switch will begin to increase. When the local  
temperature sensors of PP_5V or PP_CABLE detect that TJ>TSD_PP5V the PP_CABLE switch is disabled and  
latched off within tPP_CABLE_off. The port then enters the USB Type-C ErrorRecovery state.  
8.3.1.1.8 PP_CABLE UVLO  
If the PP5V pin voltage falls below its undervoltage lock out threshold (VPP5V_UVLO), then the PP_CABLE switch  
is automatically disabled within tPP_CABLE_off  
.
8.3.2 Cable Plug and Orientation Detection  
8-2 shows the plug and orientation detection block at each CCy pin (CC1, CC2). Each pin has identical  
detection circuitry.  
IRpDef  
IRp1.5  
IRp3.0  
VREF1  
VREF2  
VREF3  
CCy  
RSNK  
8-2. Plug and Orientation Detection Block  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS25814  
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8.3.2.1 Configured as a Source  
When configured as a source, the TPS25814 detects when a cable or a Sink is attached using the CC1 and CC2  
pins. When in a disconnected state, the TPS25814 monitors the voltages on these pins to determine what, if  
anything, is connected. See USB Type-C Specification for more information.  
8-1 shows the Cable Detect States for a Source.  
8-1. Cable Detect States for a Source  
CC1  
CC2  
CONNECTION STATE  
RESULTING ACTION  
Continue monitoring both CCy pins for attach. Power is not applied to VBUS or  
VCONN.  
Open  
Open Nothing attached  
Open Sink attached  
Rd  
Monitor CC1 for detach. Power is applied to VBUS but not to VCONN (CC2).  
Monitor CC2 for detach. Power is applied to VBUS but not to VCONN (CC1).  
Open  
Rd  
Sink attached  
Powered Cable-No UFP  
attached  
Monitor CC2 for a Sink attach and CC1 for cable detach. Power is not applied to  
VBUS or VCONN (CC1).  
Ra  
Open  
Ra  
Open  
Powered Cable-No UFP  
attached  
Monitor CC1 for a Sink attach and CC2 for cable detach. Power is not applied to  
VBUS or VCONN (CC1).  
Ra  
Rd  
Ra  
Rd  
Ra  
Provide power on VBUS and VCONN (CC1) then monitor CC2 for a Sink detach.  
CC1 is not monitored for a detach.  
Powered Cable-UFP Attached  
Powered Cable-UFP attached  
Provide power on VBUS and VCONN (CC2) then monitor CC1 for a Sink detach.  
CC2 is not monitored for a detach.  
Rd  
Debug Accessory Mode  
attached  
Rd  
Sense either CCy pin for detach.  
Sense either CCy pin for detach.  
Audio Adapter Accessory  
Mode attached  
Ra  
When a TPS25814 port is configured as a Source, a current IRpDef is driven out each CCy pin and each pin is  
monitored for different states. When a Sink is attached to the pin a pull-down resistance of Rd to GND exists.  
The current IRpDef is then forced across the resistance Rd generating a voltage at the CCy pin. The TPS25814  
applies IRpDef until it closes the switch from PP5V to VBUS, at which time it may change to IRp1.5A or IRp3.0A  
.
When the CCy pin is connected to an active cable VCONN input, the pull-down resistance is different (Ra). In  
this case the voltage on the CCy pin will be lower and the TPS25814 recognizes it as an active cable.  
The voltage on CCy is monitored to detect a disconnection depending upon which Rp current source is active.  
When a connection has been recognized and the voltage on CCy subsequently rises above the disconnect  
threshold for tCC, the system registers a disconnection.  
8.3.3 Overvoltage Protection (CC1, CC2)  
The TPS25814 detects when the voltage on the CC1 or CC2 pin is too high or there is reverse current into the  
PP5V pin and takes action to protect the system. The protective action is to disable PP_CABLE within  
tPP_CABLE_FSD and disable the USB PD transmitter.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
max(VCC1, VCC2) - VPP5V  
VVC_RCP  
PP5V  
CC1  
VVC_OVP  
Control Logic  
Disable PP_CABLE  
VPHY_OVP  
CC2  
VPHY_OVP  
8-3. Overvoltage and Reverse Current Protection for CC1 and CC2  
8.3.4 Default Behavior Configuration (ADCIN1, ADCIN2)  
The ADCINx pins must be externally tied to the LDO_3V3 pin via a resistive divider as shown in the following  
figure. At power-up the ADC converts the ADCINx voltage and the digital core uses these two values to  
determine the I2C slave address.  
LDO_3V3  
Mux and  
ADC  
Dividers  
ADCINx  
8-4. ADCINx Resistor Divider  
The device behavior is determined in several ways depending upon the decoded value of the ADCIN1 and  
ADCIN2 pins. The following table shows the decoded values for different resistor divider ratios. See Pin  
Strapping to Configure Default Behavior for details on how the ADCINx configurations determine default device  
behavior. See I2C Address Setting for details on how ADCINx decoded values affects default I2C slave address.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS25814  
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8-2. Decoding of ADCIN1 and ADCIN2 Pins  
DIV = RDOWN / (RUP + RDOWN  
)
ADCINx Decoded Value  
Without Using  
RUP or RDOWN  
MIN  
Target  
MAX  
0.0228  
0.0722  
0.1425  
0.2372  
0.3671  
0.7064  
0.9060  
1.0  
ADCINx[2]  
ADCINx[1]  
ADCINx[0]  
0
0.0114  
tie to GND  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.0229  
0.0723  
0.1425  
0.2373  
0.3672  
0.7065  
0.9061  
0.0475  
0.1074  
0.1899  
0.3022  
0.5368  
0.8062  
0.9530  
N/A  
N/A  
N/A  
N/A  
tie to LDO_1V5  
N/A  
tie to LDO_3V3  
8.3.5 BC 1.2 (USB_P, USB_N)  
The TPS25814 supports BC 1.2 as a Downstream Port using the hardware shown in the following figure.  
RDCP_DAT  
USB_P  
USB_N  
VDX_SRC  
IDX_SNK  
8-5. BC1.2 Hardware Components  
8.3.6 Digital Interfaces  
The TPS25814 contains several different digital interfaces which may be used for communicating with other  
devices. The available interfaces include one I2C Slave, and additional inputs and outputs.  
8.3.6.1 Fault Indicators ( FAULT)  
When the PP_5Vx power path is clamping the current, the FAULT pin is asserted. It is de-asserted when the sink  
is unplugged or when the TPS25814 enters the Error Recovery state due to an OTSD event.  
8.3.6.2 Sink Attachment Indicator ( SINK)  
When the TPS25814 detects a valid sink attachment it asserts the SINK pin. The pin is de-asserted when the  
sink is detached or the TPS25814 enters the Error Recovery state due to an OTSD event.  
8.3.6.3 Polarity Indicator ( POL)  
When the SINK pin is asserted, the TPS25814 will also assert the POL pin if CC2 is connected to the CC wire in  
the plug. This pin will be de-asserted upon detachment of the sink. POL can connect to the FLIP pin of the  
TUSB1046 for example.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8.3.6.4 Power Management ( CHG_HI)  
The TPS25814 will adjust its current advertisement and its current limit when the CHG_HI pin changes state.  
When the CHG_HI pin is high, the TPS25814 will limit its current advertisement to the minimum current value.  
When the pin is low, the maximum current is advertised. The ADCIN2 pin is used to configure the minimum and  
maximum current (see Pin Strapping to Configure Default Behavior). To enable this behavior, the ADCIN1 must  
be set to enable SPM (see Pin Strapping to Configure Default Behavior). Note that until the SINK pin is asserted,  
the TPS25814 will set its Type-C current advertisement to USB default current.  
8-3. CHG_HI usage  
ADCIN1[0]  
CHG_HI pin state  
Current Advertisement and Current Limit  
1
1
0
Low  
Maximum Current (1.5 A or 3.0 A depending on ADCIN2)  
Minimum Current (USB default or 1.5 A depending on ADCIN2)  
Maximum Current (1.5 A or 3.0 A depending on ADCIN2)  
High  
High or Low  
8.3.6.5 Battery Charging Control (CTL)  
The system can control the mode of the BC 1.2 charging used. The TPS25814 will implement the Dedicated  
Charging Port (DCP) mode or the Charging Data Port (CDP) mode.  
8-4. BC 1.2 Mode Control (CTL)  
CTL pin state  
Low  
ADCIN2[0] Decoded Value  
BC 1.2 Charging Mode  
0 or 1  
CDP  
DCP  
High  
0
1
High  
DCP Auto Mode1  
8.3.6.6 Debug Accessory Detection ( DEBUG)  
If the TPS25814 detects the attachment of a Type-C debug accessory (Rd, Rd), then it will assert the DEBUG  
pin low. Otherwise this pin is Hi-Z.  
8.3.6.7 Disable the Port (EN)  
The system may force the TPS25814 to disable the port by forcing the EN pin low. This forces the TPS25814  
into the Type-C Error Recovery state. Note that the TPS25814 has an internal pull-down on this pin  
(GPIO_RPD).  
8.3.6.8 I2C Interface  
The TPS25814 features an I2C interface that each use an I2C I/O driver like the one shown in 8-6. This I/O  
consists of an open-drain output and in input comparator with de-glitching.  
50ns  
I2C_DI  
Deglitch  
I2C_SDA/SCL  
I2C_DO  
8-6. I2C Buffer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8.3.7 I2C Interface  
The TPS25814 has an I2C slave interface port: I2C_EC . I2C port I2C_EC is comprised of the I2C_EC_SDA,  
I2C_EC_SCL, and I2C_EC_IRQ pins. These interfaces provide general status information about the TPS25814,  
as well as the ability to control the TPS25814 behavior, and providing information about connections detected at  
the USB-C receptacle.  
8-5. I2C Summary  
I2C Bus  
Type  
Typical Usage  
I2C_EC  
Slave  
Connect to an Embedded Controller (EC).  
8.3.7.1 I2C Interface Description  
The TPS25814 supports Standard and Fast mode I2C interfaces. The bidirectional I2C bus consists of the serial  
clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply through a pull-up resistor.  
Data transfer may be initiated only when the bus is not busy.  
A master sending a Start condition, a high-to-low transition on the SDA input and output, while the SCL input is  
high initiates I2C communication. After the Start condition, the device address byte is sent, most significant bit  
(MSB) first, including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/  
output during the high of the ACK-related clock pulse. On the I2C bus, only one data bit is transferred during  
each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period as  
changes in the data line at this time are interpreted as control commands (Start or Stop). The master sends a  
Stop condition, a low-to-high transition on the SDA input and output while the SCL input is high.  
Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period. When a  
slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must  
generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to  
ensure proper operation.  
A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after  
the last byte has been clocked out of the slave. The master receiver holding the SDA line high does this. In this  
event, the transmitter must release the data line to enable the master to generate a Stop condition.  
8-7 shows the start and stop conditions of the transfer. 8-8 shows the SDA and SCL signals for transferring  
a bit. 8-9 shows a data transfer sequence with the ACK or NACK at the last clock pulse.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
8-7. I2C Definition of Start and Stop Conditions  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
SDA  
SCL  
Data Line  
Change  
8-8. I2C Bit Transfer  
Data Output  
by Transmitter  
Nack  
Data Output  
by Receiver  
SCL From  
Master  
Ack  
1
2
8
9
S
Clock Pulse for  
Acknowledgement  
Start  
Condition  
8-9. I2C Acknowledgment  
8.3.7.2 I2C Clock Stretching  
The TPS25814 features clock stretching for the I2C protocol. The TPS25814 slave I2C port may hold the clock  
line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The  
master communicating with the slave must not finish the transmission of the current bit and must wait until the  
clock line actually goes high. When the slave is clock stretching, the clock line remains low.  
The master must wait until it observes the clock line transitioning high plus an additional minimum time (4 μs for  
standard 100-kbps I2C) before pulling the clock low again.  
Any clock pulse may be stretched but typically it is the interval before or after the acknowledgment bit.  
8.3.7.3 I2C Address Setting  
The host should only use I2C_EC_SCL/SDA for loading a patch bundle. Once the boot process is complete,  
each port has a unique slave address on the I2C_EC_SCL/SDA bus as selected by the ADCINx pins.  
8-6. I2C Default Slave Address for I2C_EC_SCL/SDA.  
ADCIN1 Decoding  
Slave Address  
ADCIN1[1] ADCIN1[0]  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
R/W  
R/W  
R/W  
R/W  
0
0
1
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
0
0
8.3.7.4 Unique Address Interface  
The Unique Address Interface allows for complex interaction between an I2C master and a single TPS25814.  
The I2C Slave sub-address is used to receive or respond to Host Interface protocol commands. 8-10 and 图  
8-11 show the write and read protocol for the I2C slave interface, and a key is included in 8-12 to explain the  
terminology used. The key to the protocol diagrams is in the SMBus Specification and is repeated here in part.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS25814  
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
1
S
7
1
1
8
1
8
1
8
1
Unique Address  
Wr  
A
Register Number  
A
Byte Count = N  
A
Data Byte 1  
A
8
1
8
1
Data Byte 2  
A
Data Byte N  
A
P
8-10. I2C Unique Address Write Register Protocol  
1
S
7
1
1
8
1
1
7
1
1
8
1
Unique Address  
Wr  
A
Register Number  
A
Sr  
Unique Address  
Rd  
A
Byte Count = N  
A
8
1
8
1
8
1
Data Byte 1  
A
Data Byte 2  
A
Data Byte N  
A
1
P
8-11. I2C Unique Address Read Register Protocol  
1
7
1
1
A
x
8
1
A
x
1
S
Slave Address  
Wr  
Data Byte  
P
S
Start Condition  
SR  
Rd  
Wr  
x
Repeated Start Condition  
Read (bit value of 1)  
Write (bit value of 0)  
Field is required to have the value x  
Acknowledge (this bit position may be 0 for an ACK or  
1 for a NACK)  
A
P
Stop Condition  
Master-to-Slave  
Slave-to-Master  
Continuation of protocol  
8-12. I2C Read/Write Protocol Key  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8.4 Device Functional Modes  
8.4.1 Pin Strapping to Configure Default Behavior  
During the boot procedure, the device will read the ADCINx pins and set the configurations based on the table  
below.  
8-7. Device Configuration using ADCIN1  
ADCIN1 Decoded Value (1)  
I2C Address Index (2) SPM Enabled  
ADCIN1[2]  
ADCIN1[1]  
ADCIN1[0]  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
#1  
#2  
#3  
#4  
#1  
#2  
#3  
#4  
0
0
0
1
1
1
1
no  
yes  
(1) See 8-6 to see the exact meaning of I2C Address Index.  
(2) See 8-2 for how to configure a given ADCINx decoded value.  
8-8. Device Configuration using ADCIN2  
ADCIN2 Decoded Value (1)  
Maximum  
Current  
Minimum Current(2)  
DCP Mode  
ADCIN2[2]  
ADCIN2[1]  
ADCIN2[0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DCP  
1.5A  
DCP Auto Mode 1  
DCP  
USB Default  
3A  
1.5A  
3A  
DCP Auto Mode 1  
DCP  
DCP Auto Mode 1  
DCP  
1.5A  
DCP Auto Mode 1  
(1) See 8-2 for how to configure a given ADCINx decoded value.  
(2) Requires SPM to be enabled via ADCIN1.  
8.4.2 Power States  
The TPS25814 may operate in one of three different power states: Active, Idle, or Sleep. The Modern Standby  
mode is a special case of the Idle mode. The functionality available in each state is summarized in the following  
table. The device will automatically transition between the three power states based on the circuits that are  
active and required, see the following figure. In the Sleep State the TPS25814 will detect a Type-C connection.  
Transitioning between the Active mode to the Idle mode requires a period of time (T) without any of the following  
activity:  
Change in CC status.  
GPIO input event.  
I2C transactions.  
Voltage alert.  
Fault alert.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS25814  
 
 
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
8-13. Flow Diagram For Power States  
8-9. Power Consumption States.  
Modern Standby Source  
Active Source Mode(1)  
Idle Source Mode(2)  
Sleep Mode(3)  
Mode(4)  
enabled  
disabled  
Rd  
PP_5V  
enabled  
enabled  
enabled  
enabled  
Rd  
disabled  
disabled  
open  
PP_CABLE  
external CC1 termination Rd  
external CC2 termination open  
open  
open  
open  
(1) This mode is used for: IVIN_3V3,ActSrc  
(2) This mode is used for: IVIN_3V3,IdlSrc  
(3) This mode is used for: IVIN_3V3,SleepSrc  
(4) This mode is used for: PMstbySrc  
8.4.3 Schottky for Current Surge Protection  
To prevent the possibility of large ground currents into the TPS25814 during sudden disconnects due to  
inductive effects in a cable, it is recommended that a Schottky diode be placed from VBUS to ground as shown  
in 8-14.  
PP5V  
VBUS  
GND  
8-14. Schottky for Current Surge Protection  
8.4.4 Thermal Shutdown  
The TPS25814 features a central thermal shutdown as well as independent thermal sensors for each internal  
power path. The central thermal shutdown monitors the overall temperature of the die and disables all functions  
except for supervisory circuitry when die temperature goes above a rising temperature of TSD_MAIN. The  
temperature shutdown has a hysteresis of TSDH_MAIN and when the temperature falls back below this value, the  
device resumes normal operation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
The power path thermal shutdown monitors the temperature of each internal PP5V-to-VBUS power path and  
disables both power paths and the VCONN power path when either exceeds TSD_PP5V. Once the temperature  
falls by at least TSDH_PP5V the path can be configured to resume operation or remain disabled until re-enabled by  
firmware.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS25814  
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS25814 is a Type-C DFP controller that supports all Type-C DFP required functions. The TPS25814 Only  
applies power to VBUS when it detects that a UFP is attached and removes power when it detects the UFP is  
detached. The device exposes its identity via its CC pin advertising its current capability based on the CHG_HI  
pin settings. The TPS25814 also limits its advertised current internally and provides robust protection to a fault  
on the system VBUS power rail.  
After a connection is established by the TPS25814, the device is capable of providing VCONN to power circuits  
in the cable plug on the CC pin that is not connected to the CC wire in the cable. VCONN is internally current  
limited and is supplied by PP5V.  
The TPS25814 is also capable of supporting BC 1.2 compliant charging schemes of a Charging Data Port (CDP)  
and a Dedicated Charging Port (DCP). The CTL pin changes which charging modes are activated to the  
connected portable device.  
The following design procedure can be used to implement a full featured Type-C DFP.  
9.2 Typical Application  
9.2.1 Type C DFP Port Implementation with Embedded Controller  
9-1 shows a Type-C DFP implementation where the TPS25814 is connected to an embedded controller. The  
embedded controller will have the ability to communicate with the TPS25814 via I2C, as well as change the  
charge current advertisement and BC 1.2 charging scheme.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
9-1. Type C DFP Port Implementation  
9.2.1.1 Detailed Design Procedure  
9.2.1.1.1 Type-C Connector VBUS Capacitors  
The first level of protection starts at the Type-C connector and the VBUS pin capacitors. These capacitors help  
filter out high frequency noise but can also help absorb short voltage transients. Each VBUS pin should have a  
10-nF capacitor rated at or above 25 V and placed as close to the pin as possible. The GND pin on the  
capacitors should have very short path to GND on the connector. The derating factor of ceramic capacitors  
should be taken into account as they can lose more than 50% of their effective capacitance when biased. Adding  
the VBUS capacitors can help reduce voltage spikes by 2 V to 3 V.  
9.2.1.1.2 VBUS Schottky and TVS Diodes  
Schottky diodes are used on VBUS to help absorb large GND currents when a Type-C cable is removed while  
drawing high current. The inductance in the cable will continue to draw current on VBUS until the energy stored  
is dissipated. Higher currents could cause the body diodes on IC devices connected to VBUS to conduct. When  
the current is high enough it could damage the body diodes of IC devices. Ideally, a VBUS Schottky diode should  
have a lower forward voltage so it can turn on before any other body diodes on other IC devices. Schottky  
diodes on VBUS also help during hard shorts to GND which can occur with a faulty Type-C cable or damaged  
Type-C PD device. VBUS could ring below GND which could damage devices hanging off of VBUS. The  
Schottky diode will start to conduct once VBUS goes below the forward voltage. When the TPS25814 is the only  
device connected to VBUS, place the Schottky Diode close to the VBUS pin of the TPS25814.  
TVS Diodes help suppress and clamp transient voltages. Most TVS diodes can fully clamp around 10 ns and can  
keep the VBUS at their clamping voltage for a period of time. Looking at the clamping voltage of TVS diodes  
after they settle during a transient will help decide which TVS diode to use. The peak power rating of a TVS  
diode must be able to handle the worst case conditions in the system.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
9.2.1.1.3 VBUS Snubber Circuit  
VBUS  
4.7 F  
3.48Ω  
1 F  
GND  
9-2. VBUS Snubber  
Another method of clamping the USB Type-C VBUS is to use a VBUS RC Snubber. An RC Snubber is smaller  
than a TVS diode, and typically more cost effective as well. An RC Snubber works by modifying the  
characteristic of the total RLC response in the USB Type-C cable hot-plug from being under-damped to critically-  
damped or over-damped. So rather than clamping the overvoltage directly, it changes the hot-plug response  
from under-damped to critically-damped, so the voltage on VBUS does not ring at all; so the voltage is limited,  
but without requiring a clamping element like a TVS diode.  
However, the USB Type-C and Power Delivery specifications limit the range of capacitance that can be used on  
VBUS for the RC snubber. VBUS capacitance must have a minimum 1 µF and a maximum of 10 µF. The RC  
snubber values chosen support up to 4 m USB Type-C cable (maximum length allowed in the USB Type-C  
specification) being hot plugged, is to use 4.7-μF capacitor in series with a 3.48-Ω resistor. In parallel with the  
RC Snubber a 1-μF capacitor is used, which always ensures the minimum USB Type-C VBUS capacitance  
specification is met. This circuit is shown in 9-2.  
9.2.1.2 Application Curves  
9-3. VBUS Short to Ground (Zoomed In)  
9-4. VBUS Short to Ground (Zoomed Out)  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
10 Power Supply Recommendations  
10.1 3.3-V Power  
10.1.1 VIN_3V3 Input Switch  
The VIN_3V3 input is the main supply of the TPS25814 device. The VIN_3V3 switch is a uni-directional switch  
from VIN_3V3 to LDO_3V3, not allowing current to flow backwards from LDO_3V3 to VIN_3V3. This switch is on  
when the 3.3 V supply is available. The recommended capacitance CVIN_3V3 (see the Recommended  
Capacitance in the Specifications section) should be connected from the VIN_3V3 pin to the GND pin ).  
10.2 1.5-V Power  
The internal circuitry is powered from 1.5 V. The 1.5-V LDO steps the voltage down from LDO_3V3 to 1.5 V. The  
1.5-V LDO provides power to all internal low-voltage digital circuits which includes the digital core, and memory.  
The 1.5-V LDO also provides power to all internal low-voltage analog circuits. Connect the recommended  
capacitance CLDO_1V5 (see the Recommended Capacitance in the Specifications section) from the LDO_1V5 pin  
to the GND pin.  
10.3 Recommended Supply Load Capacitance  
The Recommended Capacitance in the Specifications section lists the recommended board capacitances for the  
various supplies. The typical capacitance is the nominally rated capacitance that must be placed on the board as  
close to the pin as possible. The maximum capacitance must not be exceeded on pins for which it is specified.  
The minimum capacitance is minimum capacitance allowing for tolerances and voltage derating ensuring proper  
operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS25814  
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
11 Layout  
11.1 Layout Guidelines  
Proper routing and placement will maintain signal integrity for high speed signals and improve the heat  
dissipation from the TPS25814 power path. The combination of power and high speed data signals are easily  
routed if the following guidelines are followed. It is a best practice to consult with board manufacturing to verify  
manufacturing capabilities.  
11.1.1 Top TPS25814 Placement and Bottom Component Placement and Layout  
When the TPS25814 is placed on top and its components on bottom the solution size will be at its smallest.  
11.2 Layout Example  
Follow the differential impedances for Super / High Speed signals defined by their specifications (DisplayPort -  
AUXN/P and USB2.0). All I/O will be fanned out to provide an example for routing out all pins, not all designs will  
utilize all of the I/O on the TPS25814.  
11-1. Example Schematic  
11.3 Component Placement  
Top and bottom placement is used for this example to minimize solution size. The TPS25814 is placed on the  
top side of the board and the majority of its components are placed on the bottom side. When placing the  
components on the bottom side, it is recommended that they are placed directly under the TPS25814. When  
placing the VBUS and PPHV capacitors it is easiest to place them with the GND terminal of the capacitors to  
face outward from the TPS25814 or to the side since the drain connection pads on the bottom layer should not  
be connected to anything and left floating. All other components that are for pins on the GND pad side of the  
TPS25814 should be placed where the GND terminal is underneath the GND pad.  
The CC capacitors should be placed on the same side as the TPS25814 close to the respective CC1 and CC2  
pins. Do NOT via to another layer in between the CC pins to the CC capacitor, placing a via after the CC  
capacitor is recommended.  
The ADCIN1/2 voltage divider resistors can be placed where convenient.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
The figures below show the placement in 2-D and 3-D.  
11-2. Top View Layout  
11-3. Bottom View Layout  
11-4. Top View 3-D  
11-5. Bottom View 3-D  
11.4 Routing and View Placement  
On the top side, create pours for PP5V and VBUS. Connect PP5V and VBUS from the top layer to the bottom  
layer using at least 6, 8-mil hole and 16-mil diameter vias. See 11-6 for the recommended via sizing. The via  
placement and copper pours are highlighted in 11-7.  
11-6. Recommended Minimum Via Sizing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS25814  
 
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
11-7. Via Placement - Top Layer  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
11-8. Via Placement - Bottom Layer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS25814  
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
11-9. Routing - Top Layer  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS25814  
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
11-10. Routing - Bottom Layer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS25814  
TPS25814  
www.ti.com.cn  
ZHCSMU5A JULY 2020 REVISED DECEMBER 2020  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
USB-PD Specifications  
USB Power Delivery Specification  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS25814  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25814RSMR  
ACTIVE  
VQFN  
RSM  
32  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 105  
25814  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS25820

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25820DSSR

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25820DSST

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25821

USB Type-C™ 电源控制器和 1.5A 电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25821DSSR

USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25821DSST

USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25830-Q1

具有 BATT 短路保护和电缆补偿功能的 USB Type-C® 和 SDP/CDP 充电端口转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25830A-Q1

具有 BATT 短路保护和 MFi 功能的 USB Type-C® 和 SDP/CDP 充电端口转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25830AQCWRHBRQ1

具有 BATT 短路保护和 MFi 功能的 USB Type-C® 和 SDP/CDP 充电端口转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25830AQWRHBRQ1

具有 BATT 短路保护和 MFi 功能的 USB Type-C® 和 SDP/CDP 充电端口转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25830QCWRHBRQ1

具有 BATT 短路保护和电缆补偿功能的 USB Type-C® 和 SDP/CDP 充电端口转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25830QWRHBRQ1

具有 BATT 短路保护和电缆补偿功能的 USB Type-C® 和 SDP/CDP 充电端口转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI