TPS25840QWRHBTQ1 [TI]

具有 STB 保护和电缆补偿功能的 USB-A SDP/CDP 充电端口转换器 | RHB | 32 | -40 to 125;
TPS25840QWRHBTQ1
型号: TPS25840QWRHBTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 STB 保护和电缆补偿功能的 USB-A SDP/CDP 充电端口转换器 | RHB | 32 | -40 to 125

CD 开关 输出元件 转换器
文件: 总63页 (文件大小:5969K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
TPS2584x-Q1 具有电缆补偿功能的汽车USB Type-A BC1.25V 3.5A 输出、  
36V 输入同步降压稳压器  
±8kV 接触放电±15kV 空气放电  
• 故障标志报告  
• 具有可润湿侧翼32 QFN 封装  
1 特性  
• 符合面向汽车应用AEC-Q100 标准:  
– 温度等140°C +125°CTA  
HBM ESD 分类等H2  
CDM ESD 分类等C5  
提供功能安全  
2 应用  
汽车信息娱乐系统  
USB 媒体中心  
USB 充电器端口  
有助于进行功能安全系统设计的文档  
• 同步降压直流/直流稳压器  
3 说明  
– 输入电压范围4.5V 36V  
– 输出电流3.5A  
5.1V 输出电压精度±1%  
– 电流模式控制  
– 频率可调节300 kHz 2.2 MHz  
– 与外部时钟频率同步  
TPS2584x-Q1 USB Type-A BC1.2 充电解决方案,  
其中包括一个同步直流/直流转换器。凭借电缆压降补  
不管负载电流如何变化Vbus 都保持恒定确保  
即使在重负载期间也能以合适的电流和电压为连接的便  
携式设备充电。  
– 具有扩频频谱抖动FPWM  
– 内置补偿功能便于使用  
• 符USB-IF 标准  
TPS2584x-Q1 包括可实现 DP DM 直通的高带宽模  
拟开关。  
TPS25840-Q1 还在 VBUSDM_IN DP_IN 引脚上  
集成了电池短路保护。这些引脚可承受最高 18V 的电  
压。TPS25842-Q1 不支持数据线 (Dx) VBAT 短路保  
护。  
– 符USB BC1.2 规范CDP/SDP 模式  
• 针USB 电源和通信进行了优化  
– 用户可编程USB 电流限制  
– 高1.5V 的电缆压降补偿  
DP DM 上的高带宽数据开关  
– 可用于进行系统更新的客户端模式  
• 集成式保护  
器件信息(1)  
器件型号  
TPS25840-Q1  
封装  
封装尺寸标称值)  
超薄四方扁平无  
线(VQFN)  
(32)  
5.00mm x 5.00mm  
VBUS VBAT 短路保护  
DP_IN DM_IN VBAT 短路保护  
超薄四方扁平无  
线(VQFN)  
(32)  
TPS25840-Q1)  
DP_IN DM_IN VBUS 短路保护  
– 符IEC 61000-4-2 标准DP_INDM_IN  
TPS25842-Q1  
5.00mm x 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
CBOOT  
100  
95  
90  
85  
80  
75  
VIN  
BOOT  
L
RSNS  
IN  
SW  
CSP  
RSET  
EN/UVLO  
RT/SYNC  
CSN/OUT  
VCC  
TPS2584x-Q1  
LS_GD  
Optional  
FAULT  
70  
VIN = 6V  
VIN = 13.5V  
BUCK_ST  
CTRL1  
CTRL2  
65  
60  
VIN = 18V  
VIN = 36V  
BUS  
DP_IN  
DM_IN  
DP_OUT  
DM_OUT  
INT  
0.1  
1
OUT Current (A)  
4
A001  
IMON ILIMIT  
AGND PGND  
降压效率与输出电流间的关(fsw = 400 kHz)  
TPS2584x-Q1 简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEG3  
 
 
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
10.3 Feature Description.................................................20  
10.4 Device Functional Modes........................................36  
11 Application and Implementation................................ 38  
11.1 Application Information............................................38  
11.2 Typical Application.................................................. 38  
12 Power Supply Recommendations..............................48  
13 Layout...........................................................................48  
13.1 Layout Guidelines................................................... 48  
13.2 Ground Plane and Thermal Considerations............49  
13.3 Layout Example...................................................... 50  
14 Device and Documentation Support..........................51  
14.1 Documentation Support.......................................... 51  
14.2 Related Links.......................................................... 51  
14.3 接收文档更新通知................................................... 51  
14.4 支持资源..................................................................51  
14.5 Trademarks.............................................................51  
14.6 Electrostatic Discharge Caution..............................51  
14.7 术语表..................................................................... 51  
15 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................4  
8 Specifications.................................................................. 6  
8.1 Absolute Maximum Ratings........................................ 6  
8.2 ESD Ratings............................................................... 6  
8.3 Recommended Operating Conditions.........................7  
8.4 Thermal Information....................................................8  
8.5 Electrical Characteristics.............................................8  
8.6 Timing Requirements................................................ 11  
8.7 Switching Characteristics..........................................12  
8.8 Typical Characteristics..............................................13  
9 Parameter Measurement Information..........................18  
10 Detailed Description....................................................19  
10.1 Overview.................................................................19  
10.2 Functional Block Diagram.......................................20  
Information.................................................................... 51  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (February 2022) to Revision E (March 2022)  
Page  
Added the thermal information for RHB0032AA package.................................................................................. 8  
Changes from Revision C (December 2021) to Revision D (February 2022)  
Page  
Added RHB0032AA package to the data sheet..................................................................................................4  
Changes from Revision B (August 2020) to Revision C (December 2021)  
Page  
Added additional description for Fault pin, for better signal quality under some sensitive application............... 4  
Changes from Revision A (May 2020) to Revision B (August 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 向部分添加了功能安全链接........................................................................................................................ 1  
Changes from Revision * (September 2019) to Revision A (May 2020)  
Page  
Changed Layout description for clarity............................................................................................................. 48  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
5 说明)  
此同步降压稳压器具有电流模式控制并采用内部补偿因此简化了设计。RT 引脚上有一个电阻器可用于在  
300kHz 2.2MHz 之间设置开关频率。在低于 400kHz 的频率下运行可实现更高的系统效率。在高于 2.1MHz 的  
频率下运行则可以避AM 无线电频带并且能够使用较小的电感器。  
TPS2584x-Q1 集成了传统器件所需的电气特性这些器件使USB 数据线来确定充电配置。  
内含一个精密电流感应放大器用于实现用户可编程电缆压降补偿和电流限制调整。电缆补偿可使降压稳压器输  
出电压随负载电流线性改变以抵消由于汽车电缆布线中的导线电阻引起的压降从而帮助便携式设备在重载下  
实现最佳电流和电压充电。无论负载电流如何在连接的便携式器件上测得的 VBUS 电压都保持大致恒定这  
便携式器件的电池充电器就能够保持最佳工作状态。  
USB 规范要求 USB 充电端口满足电流限制但也留下了合理的自由空间允许系统设计人员基于系统要求选择  
过流保护级别。TPS2584x-Q1 使用了一种新颖的双阈值电流限制电路允许系统设计者对降压稳压器的平均电流  
限制保护进行编程或者在 CSN/OUT BUS 引脚之间使用一个外部 NMOS 来对电流限制进行调整。由于实施  
NFETTPS2584x-Q1 降压稳压器可USB 端口上存在过流故障期间为其他负载提5V 输出。  
保护特性包括逐周期电流限制、断续短路保护、欠压锁定、VBUS 过压和过流保护、数据线(Dx) VBUS 短路保  
护以及裸片过热保护。  
TPS25840-Q1 包括可实现 DP DM 直通的高带宽模拟开关支持数据线 (Dx) VBAT 短路保护。TPS25842-  
Q1 不支持数据线(Dx) VBAT 短路保护。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
6 Device Comparison Table  
DP AND DM  
SWITCHES  
DP/DM Short to  
BAT  
PART NUMBER  
PACKAGE  
DCP AUTO  
NTC INPUT  
TPS25840-Q1  
TPS25842-Q1  
VQFN (32)  
VQFN (32)  
No  
No  
Yes  
Yes  
No  
No  
Yes  
No  
7 Pin Configuration and Functions  
A1  
A4  
1
24  
FAULT  
IN  
1
24  
FAULT  
IN  
IN  
BUCK_ST  
N/C  
IN  
IN  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
BUCK_ST  
N/C  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
IN  
EN  
VCC  
EN  
VCC  
Thermal Pad  
Thermal Pad  
CTRL1  
CTRL2  
DP_OUT  
DM_OUT  
INT  
CTRL1  
CTRL2  
DP_OUT  
DM_OUT  
INT  
N/C  
N/C  
DP_IN  
DM_IN  
DP_IN  
DM_IN  
A2  
A3  
As of 11/14/2017  
7-2. TPS25840QCWRHBRQ1,  
NOTES:  
1) A1, A2, A3, and A4 are corner anchors for enhanced package stress  
performance.  
2) A1, A2, A3, and A4 are electrically connected to the thermal pad.  
3) A1, A2, A3, and A4 PCB lands should be electrically isolated or  
electrically connected to thermal pad and PGND.  
TPS25842QCWRHBRQ1 Package 32-Pin (VQFN)  
Top View (2)  
7-1. TPS25840QWRHBRQ1,  
TPS25842QWRHBRQ1 Package 32-Pin (VQFN) Top  
View (1)  
7-1. Pin Functions  
PIN  
NAME  
TYPE(3)  
I/O  
DESCRIPTION  
NO.  
Analog ground terminal. Ground reference for internal references and logic. All electrical  
parameters are measured with respect to this pin. Connect to system ground on PCB.  
AGND  
BOOT  
16  
G
P
-
Boot-strap capacitor connection for HS FET driver. Connect a high quality 100-nF capacitor  
from this pin to the SW pin.  
32  
BUS  
CSN/OUT  
CSP  
15  
13  
14  
5
A
P
P
A
A
A
A
A
A
I
I
I
I
I
VBUS discharge input. Connect to VBUS on USB Connector.  
Negative input of current sense amplifier, also buck output for internal voltage regulation.  
Positive input of current sense amplifier.  
CTRL1  
CTRL2  
DM_IN  
DM_OUT  
DP_IN  
Logic-level control inputs for device and system configuration (see 10-6).  
Logic-level control inputs for device and system configuration (see 10-6).  
DM data line. Connect to USB connector.  
6
17  
8
DM data line. Connect to USB host controller.  
18  
7
DP data line. Connect to USB connector.  
DP_OUT  
DP data line. Connect to USB host controller.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
7-1. Pin Functions (continued)  
PIN  
TYPE(3)  
I/O  
DESCRIPTION  
NAME  
NO.  
Enable pin. Do not float. High = on, Low = off. Can be tied to VIN. Precision enable input  
allows adjustable UVLO by external resistor divider.  
EN/UVLO  
FAULT  
4
A
A
Active LOW open-drain output. Asserted during fault conditions (see 10-4). TI  
recommends series about 1-k ohm damping resistor for better signal quality.  
24  
O
ILIMIT  
IMON  
12  
11  
A
A
External resistor used to set the current-limit threshold (see 10-2).  
External resistor used to set the max cable comp voltage at full load current.  
Input Supply to regulator. Connect high-quality bypass capacitors directly to this pin and  
PGND.  
IN  
1, 2, 3  
23  
P
A
I
Active Low open-drain output. After BUCK_ST assert, the Buck converter begins to start  
up. At the same time, DP and DM data switch turn on accordingly.  
BUCK_ST  
O
External NMOS gate driver. If TPS2584x-Q1 configured under average current limit mode,  
LS_GD pin must be pulled up through a 2.2-kΩresistor (see Current Limit Sensing using  
RILIMIT).  
LS_GD  
10  
A
25, 26,  
27  
Power ground terminal. Connect to system ground and AGND. Connect to bypass  
capacitor with short wide traces.  
PGND  
N/C  
G
-
19, 22  
Make no electrical connection.  
Resistor Timing or External Clock input. An internal amplifier holds this terminal at a fixed  
voltage when using an external resistor to ground to set the switching frequency. If the  
terminal is pulled above the PLL upper threshold, a mode change occurs and the terminal  
becomes a synchronization input. The internal amplifier is disabled and the terminal is a  
high impedance clock input to the internal PLL. If clocking edges stop, the internal amplifier  
is re-enabled and the operating mode returns to resistor frequency programming.  
RT/SYNC  
9
A
28, 29,  
30, 31  
Switching output of the regulator. Internally connected to source of the HS FET and drain of  
the LS FET. Connect to power inductor.  
SW  
INT  
P
A
P
20  
21  
For internal circuit, must connect a 5.1-K resistor to AGND.  
Output of internal bias supply. Used as supply to internal control circuits. Connect a high  
quality 2.2-µF capacitor from this pin to GND.  
VCC  
(1) For package drawing please refer to RHB0032R at the end of the data sheet.  
(2) For package drawing please refer to RHB0032AA at the end of the data sheet.  
(3) A = Analog, P = Power, G = Ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
Voltages are with respect to GND (unless otherwise noted)(1)  
PARAMETER  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
3.5  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
IN to PGND  
40  
OUT to PGND  
EN to AGND  
CSP to AGND  
20  
VIN + 0.3  
20  
Input voltage  
CSN to AGND  
20  
V
BUS to AGND  
18  
RT/SYNC to AGND  
6
CTRL1 or CTRL2 to AGND  
AGND to PGND  
6
0.3  
SW to PGND  
VIN + 0.3  
SW to PGND (less than 10 ns transients)  
BOOT to SW  
40  
6
Output voltage  
Voltage range  
V
V
VCC to AGND  
6
LS_GD  
18  
18  
7
TPS25840-Q1: DP_IN, DM_IN to AGND  
TPS25842-Q1: DP_IN, DM_IN to AGND  
DP_OUT, DM_OUT to AGND  
FAULT, BUCK_ST, INT to AGND  
ILIMIT or IMON to AGND  
6
6
6
Pin positive source current,  
IVCC  
VCC Source Current  
5
mA  
A
Internally  
Limited  
Pin positive sink current, ISNK FAULT, BUCK_ST  
DP_IN to DP_OUT, or DM_IN to DM_OUT in SDP, CDP, or  
Client Mode  
I/O current  
100  
mA  
100  
TJ  
Junction temperature  
Storage temperature  
-40  
150  
150  
°C  
°C  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating can cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.  
8.2 ESD Ratings  
VALUE  
±2000(2)  
±750(3)  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Corner pins (1, 8, 9, 17, 25 and 32)  
Charged device model (CDM), per  
AEC Q100-011  
V(ESD) Electrostatic discharge  
Other pins  
±750(3)  
V
IEC 61000-4-2 contact discharge  
IEC 61000-4-2 air-gap discharge  
DP_IN, DM_IN pins  
DP_IN, DM_IN pins  
±8000(4)  
±15000(4)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5.  
(4) Surges per IEC61000-4-2, 1999 applied between DP_IN, DM_IN and output ground of the TPS2584x-Q1 evaluation module.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
 
 
 
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.3 Recommended Operating Conditions  
Voltages are with respect to GND (unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX UNIT  
IN to PGND  
EN  
36  
VIN  
5.5  
3.6  
VCC when driven from external regulator  
DP_IN, DM_IN  
0
VI  
Input voltage  
0
DP_OUT, DM_OUT  
0
3.6  
VCC  
VCC  
VCC  
6.5  
V
CTRL1, CTRL2  
0
RT/SYNC when driven by external clock  
FAULT, BUCK_ST  
0
VPU  
VO  
Pull up voltage  
Output voltage  
0
CSN/OUT  
0
Buck regulator output current  
0
3.5  
A
IO  
Output current  
DP_IN to DP_OUT or DM_IN to DM_OUT Continuous  
current in SDP, CDP or Client Mode  
30  
30  
mA  
ISNK  
II  
Sink current  
FAULT, BUCK_ST  
10  
200  
Input current  
Continuous current into the CSP pin  
RIMON, RILIMIT  
µA  
kΩ  
°C  
REXT  
TJ  
External resistnace  
0
100  
Operating junction temperature  
125(1)  
40  
(1) Operating at junction temperatures greater than 125°C is possible, however lifetime will be degraded.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.4 Thermal Information  
TPS2584x-Q1  
THERMAL METRIC(1)  
RHB0032R (VQFN)  
RHB0032AA (VQFN)  
UNIT  
32 PINS  
28.7  
17.6  
7.2  
32 PINS  
29.4  
18.6  
9.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
0.2  
ΨJT  
7.2  
9.7  
ΨJB  
RθJC(bot)  
1
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
Limits apply over the junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW =400 kHz, CVCC = 2.2 µF, RSNS  
=
15 mΩ, RIMON = 13 kΩ, RILIMIT= 13 kΩ, RSET= 300 Ωunless otherwise stated. Minimum and maximum limits are specified  
through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are  
provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTATE (IN PIN)  
VIN  
IQ  
Operating input voltage range  
4.5  
36  
V
VEN/UVLO = VIN, CTRL1 = CTRL2 =  
VCC, VCSN = 8 V, INT pull down  
resistance = 5.1 kΩ  
Operating quiescent current (non  
switching)  
700  
10  
990  
µA  
Shutdown quiescent current;  
measured at IN pin.  
ISD  
EN= 0  
16  
µA  
ENABLE and UVLO (EN/UVLO PIN)  
EN/UVLO input level required to turn  
on internal LDO  
VEN/UVLO_VCC_H  
VEN/UVLO_VCC_L  
VEN/UVLO_H  
VEN/UVLO rising threshold  
VEN/UVLO falling threshold  
VEN/UVLO rising threshold  
1.14  
V
V
V
EN/UVLO input level required to turn  
off internal LDO  
0.3  
EN/UVLO input level required to turn  
on state machine  
1.140  
1.200  
1.260  
VEN/UVLO_HYS  
ILKG_EN/UVLO  
INTERNAL LDO  
VBOOT_UVLO  
Hysteresis  
VEN/UVLO falling threshold  
VEN/UVLO = 3.3 V  
90  
mV  
uA  
Enable input leakage current  
0.5  
Bootstrap voltage UVLO threshold  
2.2  
5
V
V
Internal LDO output voltage appearing  
on VCC pin  
VCC  
4.75  
3.4  
5.25  
3.8  
6 V VIN 36 V  
VCC_UVLO_R  
Rising UVLO threshold  
Hysteresis  
3.6  
V
VCC_UVLO_HYS  
600  
mV  
CURRENT LIMIT VOLTAGE (CSP - CSN/OUT PINS) TO ACTIVATE BUCK AVG CURRENT LIMITING  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
13 kΩ, RIMON = 13 kΩ, -40°C TJ ≤  
125°C  
=
Current limit voltage buck regulator  
control loop  
(VCSP VCSN/  
43.5  
42.5  
20  
46  
46  
48.5  
49.5  
25  
mV  
mV  
mV  
)
OUT  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
13 kΩ, RIMON = 13 kΩ, -40°C TJ ≤  
150°C  
=
Current limit voltage buck regulator  
control loop  
(VCSP VCSN/  
)
OUT  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
26.1 kΩ, RIMON = 13 kΩ, -40°C TJ  
125°C  
=
Current limit voltage buck regulator  
control loop  
(VCSP VCSN/  
22.5  
)
OUT  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
Limits apply over the junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW =400 kHz, CVCC = 2.2 µF, RSNS  
=
15 mΩ, RIMON = 13 kΩ, RILIMIT= 13 kΩ, RSET= 300 Ωunless otherwise stated. Minimum and maximum limits are specified  
through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are  
provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
26.1 kΩ, RIMON = 13 kΩ, -40°C TJ  
150°C  
=
Current limit voltage buck regulator  
control loop  
(VCSP VCSN/  
19  
22.5  
26  
mV  
)
OUT  
CURRENT LIMIT VOLTAGE (CSP - CSN/OUT PINS) TO ACTIVATE EXTERNAL NFET CURRENT LIMITING  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
6.8 kΩ, RIMON = 13 kΩ, -40°C TJ  
125°C  
=
(VCSP VCSN/  
Current limit voltage NFET control loop  
Current limit voltage NFET control loop  
Current limit voltage NFET control loop  
Current limit voltage NFET control loop  
40  
38.5  
18  
43  
43  
21  
21  
46  
47.5  
24  
mV  
mV  
mV  
mV  
)
OUT  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
6.8 kΩ, RIMON = 13 kΩ, -40°C TJ  
150°C  
=
(VCSP VCSN/  
)
OUT  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
13.7 kΩ, RIMON = 13 kΩ, -40°C TJ  
125°C  
=
(VCSP VCSN/  
)
OUT  
VCSN = 5 V, RSET = 300 Ω, RILIMIT  
13.7 kΩ, RIMON = 13 kΩ, -40°C TJ  
150°C  
=
(VCSP VCSN/  
17  
25  
)
OUT  
CURRENT LIMIT - BUCK REGULATOR PEAK CURRENT LIMIT  
IL-SC-HS  
IL-SC-LS  
IL-NEG-LS  
High-side current limit  
4.6  
3.5  
5.4  
4
6.2  
4.5  
A
A
A
Low-side current limit  
Low-side negative current limit  
3.1  
2.1  
1.3  
CABLE COMPENSATION VOLTAGE  
(VCSP VCSN) = 46 mV, RSET = 300  
Ω, RILIMIT = 13 kΩ, RIMON = 13 kΩ  
VIMON  
VIMON  
VIMON  
Cable compensation voltage  
0.935  
0.435  
1
0.5  
1.8  
1.065  
0.565  
V
V
V
(VCSP VCSN) = 23 mV, RSET = 300  
Ω, RILIMIT = 13 kΩ, RIMON = 13 kΩ  
Cable compensation voltage  
Cable compensation voltage (internal (VCSP VCSN) = 46 mV, RSET = 300  
clamp)  
Ω, RILIMIT = 13 kΩ, RIMON = open  
BUCK OUTPUT VOLTAGE (CSN/OUT PIN)  
INT pulldown resistance = 5.1k,  
RIMON = 0 Ω, RILIMIT = 0 Ω  
VCSN/OUT  
Output voltage  
5.05  
5.10  
5.15  
1
V
INT pulldown resistance = 5.1k,  
RIMON = 0 Ω, RILIMIT = 0 Ω  
VCSN/OUT  
Output voltage accuracy  
%
1  
Overvoltage level on CSN/OUT pin  
which buck regulator stops switching  
VCSN/OUT_OV  
VCSN/OUT rising  
7.1  
7.5  
500  
2
7.9  
V
mV  
V
VCSN/OUT_OV_HYS Hysteresis  
CSN / OUT pin voltage required to  
trigger short circuit hiccup mode  
VHC  
VIN = VOUT + VDROP, VOUT = 5.1V,  
IOUT = 3A  
VDROP  
Dropout voltage ( VIN-VOUT  
)
150  
mV  
BUCK REGULATOR INTERNAL RESISTANCE  
RDS-ON-HS  
RDS-ON-HS  
RDS-ON-HS  
RDS-ON-LS  
RDS-ON-LS  
RDS-ON-LS  
High-side MOSFET ON-resistance  
High-side MOSFET ON-resistance  
High-side MOSFET ON-resistance  
Low-side MOSFET ON-resistance  
Low-side MOSFET ON-resistance  
Low-side MOSFET ON-resistance  
Load = 3 A, TJ = 25°C  
40  
40  
40  
35  
35  
35  
45  
68  
75  
41  
60  
68  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
Load = 3 A, -40°C TJ 125°C  
Load = 3 A, -40°C TJ 150°C  
Load = 3 A, TJ = 25C  
Load = 3 A, -40°C TJ 125°C  
Load = 3 A, -40°C TJ 150°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
Limits apply over the junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW =400 kHz, CVCC = 2.2 µF, RSNS  
=
15 mΩ, RIMON = 13 kΩ, RILIMIT= 13 kΩ, RSET= 300 Ωunless otherwise stated. Minimum and maximum limits are specified  
through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are  
provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
NFET GATE DRIVE (LS_GD PIN)  
VCSN/OUT = 5.1 V, CG = 1000 pF (see  
9-2)  
VLS_GD  
NFET gate drive output voltage  
9.5  
11  
12.5  
V
ILS_DR_SRC  
ILS_DR_SNK  
NFET gate drive output source current VCSN/OUT = 5.1 V, CG = 1000 pF  
2
3
4
µA  
µA  
NFET gate drive output sink current  
VCSN/OUT = 5.1 V, CG = 1000 pF  
VCSN/OUT rising  
20  
35  
50  
VCSN/OUT rising threshold for LS_GD  
operation  
VLS_GD_UVLO_R  
2.85  
3
3.15  
V
VLS_GD_UVLO_HYS Hysteresis  
80  
mV  
BUS DISCHARGE (BUS PIN)  
Rising threshold for BUS pin  
overvoltage protection  
VBUS_OV  
VBUS rising  
6.6  
7
7.3  
V
VBUS_OV_HYS  
RBUS_DCHG_18V  
RBUS_DCHG_8V  
FAULT, BUCK_ST  
VOL  
Hysteresis  
180  
29  
mV  
kΩ  
kΩ  
Discharge resistance for BUS  
Discharge resistance for BUS  
VBUS = 18V, measure leakage current  
VBUS = 8V, measure leakage current  
35  
FAULT Output low voltage  
FAULT Off-state leakage  
ISNK_PIN = 0.5 mA  
VPIN = 5.5 V  
250  
1
mV  
µA  
IOFF  
VOL  
BUCK_ST Output low voltage  
BUCK_ST Off-state leakage  
ISNK_PIN = 0.5 mA  
VPIN = 5.5 V  
250  
1
mV  
µA  
IOFF  
CTRL1, CTRL2 - LOGIC INPUTS  
VIH  
VIL  
Rising threshold voltage  
1.48  
1.30  
180  
2
V
V
Falling threshold voltage  
Hysteresis  
0.85  
VHYS  
IIN  
mV  
µA  
Input current  
1
1  
DP_IN AND DM_IN OVERVOLTAGE PROTECTION  
Rising threshold for Dx_IN overvoltage  
VDx_IN_OV  
protection  
DP_IN or DM_IN rising  
3.7  
3.9  
100  
94  
4.15  
V
Hysteresis  
mV  
kΩ  
VDx_IN = 18V, measure leakage  
current  
RDx_IN_DCHG_18V  
RDx_IN_DCHG_5V  
Discharge resistance for Dx_IN  
Discharge resistance for Dx_IN  
VDx_IN = 5V, measure leakage  
current  
416  
kΩ  
HIGH-BANDWIDTH ANALOG SWITCH  
VDP_OUT = VDM_OUT = 0 V, IDP_IN  
IDM_IN = 30 mA  
=
RDS_ON  
DP and DM switch on-resistance  
DP and DM switch on-resistance  
3.4  
4.3  
6.3  
7.7  
Ω
Ω
Ω
Ω
pF  
pF  
VDP_OUT = VDM_OUT = 2.4 V, IDP_IN  
IDM_IN = 15 mA  
=
=
RDS_ON  
Switch resistance mismatch between VDP_OUT = VDM_OUT = 0 V, IDP_IN  
=
0.05  
0.05  
6.7  
0.15  
0.15  
|ΔRDS_ON  
|ΔRDS_ON  
CIO_OFF  
CIO_ON  
|
DP and DM channels  
IDM_IN = 30 mA  
VDP_OUT = VDM_OUT = 2.4 V, IDP_IN  
IDM_IN = 15 mA  
Switch resistance mismatch between  
DP and DM channels  
|
VEN = 0 V, VDP_IN = VDM_IN = 0.3 V,  
Vac = 0.03 VPP , f = 1 MHz  
DP/DM switch off-state capacitance  
DP/DM switch on-state capacitance  
VDP_IN = VDM_IN = 0.3 V, Vac = 0.03  
VPP, f = 1 MHz  
10  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
Limits apply over the junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW =400 kHz, CVCC = 2.2 µF, RSNS  
=
15 mΩ, RIMON = 13 kΩ, RILIMIT= 13 kΩ, RSET= 300 Ωunless otherwise stated. Minimum and maximum limits are specified  
through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are  
provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OIRR  
Off-state isolation  
VEN = 0 V, f = 250 MHz  
9
dB  
dB  
XTALK  
On-state cross-channel isolation  
f = 250 MHz  
29  
VEN = 0 V, VDP_IN = VDM_IN = 3.6 V,  
VDP_OUT = VDM_OUT = 0 V,  
measure IDP_OUT and IDM_OUT  
Off-state leakage current, DP_OUT  
and DM_OUT  
Ilkg(OFF)  
0.1  
1.5  
µA  
BW  
800  
MHz  
Bandwidth (3 dB)  
RL = 50 Ω  
CHARGING DOWNSTREAM PORT (CDP) DETECT  
VDP_IN = 0.6 V, 250 µA < IDM_IN < 0  
µA  
VDM_SRC  
DM_IN CDP output voltage  
0.5  
0.6  
0.7  
0.4  
V
DP_IN rising lower window threshold  
for VDM_SRC activation  
VDAT_REF  
VDAT_REF  
VLGC_SRC  
0.36  
0.38  
50  
V
mV  
V
Hysteresis  
DP_IN rising upper window threshold  
for VDM_SRC deactivation  
0.8  
40  
0.84  
0.88  
100  
VLGC_SRC_HYS  
IDP_SINK  
Hysteresis  
100  
70  
mV  
µA  
DP_IN sink current  
VDP_IN = 0.6 V  
RT/SYNC THRESHOLD (RT/SYNC PIN)  
RT/SYNC high threshold for external  
Amplitude of SYNC clock AC signal  
(measured at SYNC pin)  
VIH_RT/SYNC  
3.5  
V
V
clock synchronization  
RT/SYNC low threshold for external  
clock synchronization  
Amplitude of SYNC clock AC signal  
(measured at SYNC pin)  
VIL_RT/SYNC  
0.8  
THERMAL SHUTDOWN  
Shutdown threshold  
Recovery threshold  
160  
140  
°C  
°C  
TSD  
Thermal shutdown  
8.6 Timing Requirements  
Limits apply over the junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW =400 kHz, CVCC = 2.2 µF, RSNS  
=
15 mΩ, RIMON = 13 kΩ, RILIMIT= 13 kΩ, RSET= 300 Ωunless otherwise stated. Minimum and maximum limits are specified  
through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are  
provided for reference purposes only.  
MIN NOM MAX UNIT  
SYNC (RT/SYNC PIN) WITH EXTERNAL CLOCK  
Switching frequency using external clock on  
RT/SYNC pin  
fSYNC  
300  
2300 kHz  
fSYNC = 400 kHz, VRT/SYNC > VIH_RT/SYNC  
VRT/SYNC < VIL_RT/SYNC  
,
TSYNC_MIN  
TLOCK_IN  
Minimum SYNC input pulse width  
PLL lock time  
100  
100  
ns  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.7 Switching Characteristics  
Limits apply over the junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW =400 kHz, CVCC = 2.2 µF, RSNS  
=
15 mΩ, RIMON = 13 kΩ, RILIMIT= 13 kΩ, RSET= 300 Ωunless otherwise stated. Minimum and maximum limits are specified  
through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are  
provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SOFT START  
TSS  
The time of internal reference to  
increase from 0 V to 1.0 V  
Internal soft-start time  
3
5
7
ms  
HICCUP MODE  
NOC  
Number of cycles that LS current limit  
is tripped to enter Hiccup mode  
128  
118  
Cycles  
ms  
TOC  
Hiccup retry delay time  
SW (SW PIN)  
TON_MIN  
Minimum turnon-time  
105  
7.5  
ns  
µs  
Maximum turnon-time, HS timeout in  
dropout  
TON_MAX  
TOFF_MIN  
Dmax  
Minimum turnoff time  
80  
98  
ns  
%
Maximum switch duty cycle  
TIMING RESISTOR AND INTERNAL CLOCK  
Switching frequency range using RT  
fSW_RANGE  
300  
2300  
kHz  
mode  
Switching frequency  
Switching frequency  
360  
400  
440  
kHz  
kHz  
RT = 49.9 kΩ  
RT = 8.87 kΩ  
fSW  
1953  
2100  
2247  
Frequency span of spread spectrum  
operation  
FSSS  
±6  
%
NFET DRIVER  
VOUT = 5.1 V, NFET = CSD87502Q2,  
time from LS_GD 10% to 90%  
tr  
VLS_DR rise time  
VLS_DR fall time  
1000  
100  
µs  
µs  
VOUT = 5.1 V, NFET = CSD87502Q2,  
time from LS_GD time 90% to 10%  
tf  
CURRENT LIMIT - EXTERNAL NFET CONNECTED BETWEEN CSN/OUT AND BUS, LS_GD CONNECTED TO FET GATE  
tOC_HIC_ON  
tOC_HIC_OFF  
ON-time during hiccup mode  
OFF-time during hiccup mode  
2
ms  
ms  
263  
FAULT DUE TO VBUS OC, VBUS OV, DP OV, DM OV  
tDEGLA  
Asserting deglitch time  
5.5  
5.5  
8.2  
8.2  
11.5  
11.5  
ms  
ms  
tDEGLD  
De-asserting deglitch time  
BUCK_ST  
tDEGLA  
Asserting deglitch time  
88  
150  
220  
ms  
HIGH-BANDWIDTH ANALOG SWITCH  
tpd  
Analog switch propagation delay  
Analog switch skew between opposite  
transitions of the same port (tPHL  
tPLH  
0.14  
0.02  
ns  
ns  
tSK  
)
DP_IN and DM_IN overvoltage  
protection response time  
tOV_Dn  
2
µs  
Deglitch time from Vcc > 4V to DP /  
DM data switch turn on  
tST_DEG_Dn  
88  
150  
220  
ms  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.8 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 10 µH, COUT_CSP = 66 µF,  
COUT_CSN = 0.1 µF, CBUS = 1 µF, TA = 25 °C.  
717  
714  
711  
708  
705  
702  
699  
696  
32  
28  
24  
20  
16  
12  
8
-40C  
25C  
125C  
150C  
-40C  
25C  
150C  
4
0
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
32  
36  
40  
D001  
D003  
VCSN = 8 V  
8-1. Non-Switching Quiescent Current  
EN = 0 V  
8-2. Shutdown Quiescent Current  
INT = 5.1 kΩ  
1.225  
1.2  
3.9  
3.75  
3.6  
UP  
DN  
UP  
DN  
1.175  
1.15  
1.125  
1.1  
3.45  
3.3  
3.15  
3
1.075  
1.05  
2.85  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-60  
-30  
0
30  
Temperature (C)  
60  
90  
120  
150  
180  
D004  
D005  
8-3. Precision Enable Threshold  
8-4. VIN UVLO Threshold  
5.1  
5.07  
5.04  
5.01  
4.98  
4.95  
4.92  
4.89  
5.16  
5.14  
5.12  
5.1  
-40C  
25C  
125C  
150C  
Vin = 6V  
Vin = 13.5V  
Vin = 36V  
5.08  
5.06  
5.04  
0
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
32  
36  
40  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
D005  
D006  
8-5. VCC vs Input Voltage  
RIMON = 0 Ω  
8-6. VCSN/OUT Voltage vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 10 µH, COUT_CSP = 66 µF,  
COUT_CSN = 0.1 µF, CBUS = 1 µF, TA = 25 °C.  
6.2  
6
80  
72  
64  
56  
48  
40  
32  
24  
-40C  
25C  
150C  
5.8  
5.6  
5.4  
5.2  
5
Vin = 6V  
Vin = 13.5V  
Vin = 36V  
4.8  
0
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
32  
36  
40  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
D006  
D008  
8-7. High-side Current Limit vs Input Voltage  
8-8. High-side MOSFET on Resistance vs Junction  
Temperature  
60  
55  
50  
45  
40  
35  
30  
25  
420  
414  
408  
402  
396  
390  
384  
378  
Vin = 6V  
Vin = 13.5V  
Vin = 36V  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
D009  
D010  
8-9. Low-side MOSFET on Resistance vs Junction  
RT = 49.9 kΩ  
Temperature  
8-10. Switching Frequency vs Junction Temperature  
2400  
4.2  
1A  
2A  
3A  
Rlimit = 13kW  
Rlimit = 26.1kW  
2100  
1800  
1500  
1200  
900  
3.6  
3
2.4  
1.8  
1.2  
0.6  
0
600  
300  
0
5
10  
15  
20  
Input voltage (V)  
25  
30  
35  
40  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
D011  
D012  
RT = 8.87 kΩ  
8-11. Switching Frequency vs VIN Voltage  
RSNS = 15 mΩ  
RSET = 300 Ω  
8-12. Buck Average Current Limit vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 10 µH, COUT_CSP = 66 µF,  
COUT_CSN = 0.1 µF, CBUS = 1 µF, TA = 25 °C.  
4.2  
3.6  
3
4.8  
4.4  
4
Rlimit = 6.8kW  
Rlimit = 13.7kW  
Vin = 6V  
Vin = 13.5V  
Vin = 36V  
2.4  
1.8  
1.2  
0.6  
0
3.6  
3.2  
2.8  
2.4  
2
-50  
-25  
0
25  
50  
75  
Temperature (C)  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
100  
125  
150  
D013  
D013  
8-14. LS_GD Gate Source Current vs Junction Temperature  
RSNS = 15 mΩ  
RSET = 300 Ω  
8-13. External FET Current Limit vs Junction Temperature  
13  
1.35  
Vin = 6V  
Vin = 13.5V  
Vin = 36V  
Load Current = 3 A  
Load Current = 1.5 A  
12.5  
12  
1.2  
1.05  
0.9  
11.5  
11  
0.75  
0.6  
10.5  
10  
0.45  
0.3  
9.5  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
100  
125  
150  
D013  
D014  
VCSN/OUT = 5.1 V  
RIMON = 0 kΩ  
RSNS = 15 mΩ  
RSET = 300 Ω  
RIMON = 13 kΩ  
8-15. LS_GD Gate Voltage vs Junction Temperature  
8-16. Cable Compensation Voltage vs Junction Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
7.5  
7.35  
7.2  
7.05  
6.9  
6.75  
6.6  
6.45  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Load Current (A)  
3
-50  
-25  
0
25  
50  
75  
Temperature (C)  
100  
125  
150  
D014  
D016  
8-18. VBUS Overvoltage Protection Threshold vs Junction  
RSNS = 15 mΩ  
RSET = 300 Ω  
RIMON = 13 kΩ  
Temperature  
8-17. Cable Compensation Voltage vs Load Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 10 µH, COUT_CSP = 66 µF,  
COUT_CSN = 0.1 µF, CBUS = 1 µF, TA = 25 °C.  
4.3  
4.2  
4.1  
4
4.3  
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
3.9  
3.8  
3.7  
3.6  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
D017  
D018  
8-19. DP_IN Overvoltage Protection Threshold vs Junction  
8-20. DM_IN Overvoltage Protection Threshold vs Junction  
Temperature  
Temperature  
Measured on TPS25830-Q1 EVM with 10-cm cable  
Measured source with 10-cm cable  
8-22. Through the TPS2584x-Q1 Data Switch  
8-21. Bypassing the TPS2584x-Q1 Data Switch  
8-23. Data Transmission Characteristics vs Frequency  
8-24. Off-state Data-Switch Isolation vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 10 µH, COUT_CSP = 66 µF,  
COUT_CSN = 0.1 µF, CBUS = 1 µF, TA = 25 °C.  
8-25. On-state Cross-channel Isolation vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
9 Parameter Measurement Information  
IOS  
90%  
tr  
tf  
VLS_GD  
I(OUT)  
10%  
t(IOS)  
9-2. NFET Gate Drive Rise and Fall Time  
9-1. Short-Circuit Parameters  
0.5m AWG28  
0.5m AWG28  
0.5m AWG28  
10cm AWG18  
Manually Hot-short  
PSIL079  
18V  
OUT  
DP_IN  
DM_IN  
27 mF  
35V  
GND  
GND  
9-3. Short-to-Battery System Test Setup  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
The TPS2584x-Q1 devices are full-featured solutions for implementing a compact USB charging port with  
support for Type-A BC1.2 standards. Both devices contain an efficient 36-V buck regulator power source  
capable of providing up to 3.5 A of output current at 5.10 V (nominal). System designers can optimize efficiency  
or solution size through careful selection of switching frequency over the range of 300 to 2200 kHz with sufficient  
margin to operate above or below the AM radio frequency band. In all versions the buck regulator operates in  
forced PWM mode ensuring fixed switching frequency regardless of load current. Spread-spectrum feature aid  
reducing harmonic peaks of the switching frequency potentially simplifying EMI filter design and easing  
compliance.  
Current sensing via a precision high-side current sense amplifier enables an accurate, user programmable  
overcurrent limit setting; and programmable linear cable compensation to overcome IR losses when powering  
remote USB ports.  
The CTRL1 and CTRL2 pins set the operating mode for the TPS2584x-Q1 device. The device can support CDP,  
SDP or Client configurations.  
The TPS25840-Q1 integrates high band-width (800 MHz) USB switches, includes short to VBAT and short to  
VBUS protection as well as IEC61000-4-2 electrostatic discharge clamps to protect the host from potentially  
damaging overvoltage conditions.  
The TPS25842-Q1 integrates high band-width (800 MHz) USB switches, includes short to VBUS protection as  
well as IEC61000-4-2 electrostatic discharge clamps, but does not support short to VBAT protection.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
10.2 Functional Block Diagram  
10.3 Feature Description  
10.3.1 Buck Regulator  
The following operating description of the TPS2584x-Q1 refers to the Functional Block Diagram and the  
waveforms in 10-1. TPS2584x-Q1 is a step-down synchronous buck regulator with integrated high-side (HS)  
and low-side (LS) switches (synchronous rectifier). The TPS2584x-Q1 supplies a regulated output voltage by  
turning on the HS and LS NMOS switches with controlled duty cycle. During high-side switch ON time, the SW  
pin voltage swings up to approximately VIN, and the inductor current iL increase with linear slope (VIN VOUT) /  
L. When the HS switch is turned off by the control logic, the LS switch is turned on after an anti-shoot-through  
dead time. Inductor current discharges through the LS switch with a slope of VOUT / L. The control parameter  
of a buck converter is defined as Duty Cycle D = tON / TSW, where tON is the high-side switch ON time and TSW is  
the switching period. The regulator control loop maintains a constant output voltage by adjusting the duty cycle  
D. In an ideal buck converter, where losses are ignored, D is proportional to the output voltage and inversely  
proportional to the input voltage: D = VOUT / VIN.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
VSW  
VIN  
D = tON/ TSW  
tON  
tOFF  
t
0
-VD  
TSW  
iL  
ILPK  
IOUT  
DiL  
t
0
10-1. SW Node and Inductor Current Waveforms in Continuous Conduction Mode (CCM)  
The TPS2584x-Q1 employs fixed frequency peak current mode control. A voltage feedback loop is used to get  
accurate DC voltage regulation by adjusting the peak current command based on voltage offset. The peak  
inductor current is sensed from the high-side switch and compared to the peak current threshold to control the  
ON time of the high-side switch. The voltage feedback loop is internally compensated, which allows for fewer  
external components, makes it easy to design, and provides stable operation with almost any combination of  
output capacitors. TPS2584x-Q1 operates in FPWM mode for low output voltage ripple, tight output voltage  
regulation, and constant switching frequency.  
10.3.2 Enable/UVLO  
The voltage on the EN/UVLO pin controls the ON or OFF operation of TPS2584x-Q1. An EN/UVLO pin voltage  
higher than VEN/UVLO-VOUT-H is required to start the internal regulator (Assume 5.1-k pull down resister on INT  
pin). The EN/UVLO pin is an input and can not be left open or floating. The simplest way to enable the operation  
of the TPS2584x-Q1 is to connect the EN to VIN. This action allows self-start-up of the TPS2584x-Q1 when VIN  
is within the operation range.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
EN  
VEN/UVLO-H  
VEN/UVLO-H œ VEN/UVLO-HYS  
VEN-VCC-H  
VEN-VCC-L  
VCC  
5V  
0
VCSN/OUT  
VCSN/OUT  
0
10-2. Precision Enable Behavior  
Many applications benefit from the employment of an enable divider RENT and RENB (10-3) to establish a  
precision system UVLO level for the TPS2584x-Q1. System UVLO can be used for sequencing, ensuring reliable  
operation, or supply protection, such as a battery discharge level. To ensure the USB port VBUS is within the 5-V  
operating range as required for USB compliance (for the latest USB specifications and requirements, refer to  
USB.org), TI suggests that the RENT and RENB resistors be chosen such that the TPS2584x-Q1 enables when  
VIN is approximately 6 V. Considering the drop out voltage of the buck regulator and IR loses in the system, 6 V  
provides adequate margin to maintain VBUS within USB specifications. If system requirements such as a warm  
crank (start) automotive scenario require operation with VIN < 6 V, the values of RENT and RENB can be  
calculated assuming a lower VIN. An external logic signal can also be used to drive EN/UVLO input when a  
microcontroller is present and it is desirable to enable or disable the USB port remotely for other reasons.  
IN  
RENT  
EN  
RENB  
10-3. System UVLO by Enable Divider  
UVLO configuration using external resistors is governed by the following equations:  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
(1)  
(2)  
Example:  
VIN(ON) = 6 V (user choice)  
RENB = 5 kΩ(user choice)  
RENT = [(VIN(ON) / VEN/UVLO_H) 1] × RENB= 19.6 kΩ. Choose standard 20 kΩ.  
Therefore, VIN(OFF) = 6 V × [1 (0.09 V / 1.2 V)] = 5.55 V  
A typical start-up waveform is shown in 10-4. The rise time of DCDC VBUS voltage is about 5 ms.  
EN,  
5V/Div  
VIN  
5V/Div  
VBUS,  
5V/Div  
VCC,  
5V/Div  
40ms/Div  
10-4. Typical Start-up Behavior, VIN = 13.5 V, RIMON = 12.6 kΩ  
For TPS2584x-Q1, the pin voltage must meet the requirement below during startup. See 10-5.  
VBUS < 0.8 V (typical)  
VDX_OUT < 2.2 V (typical)  
VDX_IN < 1.5 V (typical)  
After the 150-ms deglitch time, no additional requirement on these pins. In real application, BUCK_ST pin can be  
used to configure the timing sequence.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
VIN  
EN  
VCC  
Dx_OUT  
Must < 2.2V  
5}v[š ꢀꢁŒꢂ  
VBUS must < 0.8V  
VBUS  
deglitch time  
150ms (typ)  
DP/DM  
ON  
Date Switch  
OFF  
BUCK_ST  
10-5. TPS2584x-Q1 Pin Voltage Requirement During Startup  
10.3.3 Switching Frequency and Synchronization (RT/SYNC)  
The switching frequency of the TPS2584x-Q1 can be programmed by the resistor RT from the RT/SYNC pin and  
GND pin. Use Equation 3 to determine the RT resistance for a given switching frequency.  
-1.0483  
RFREQ kW = 26660ì ƒ  
kHz  
(
)
(
)
SW  
(3)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
Switching Frequency (kHz)  
D024  
10-6. RT Set Resistor vs Switching Frequency  
10-1 lists typical RT resistors values.  
10-1. Setting the Switching Frequency With RT  
SWITCHING FREQUENCY (kHz)  
RT (kΩ)  
68.1  
300  
400  
49.9  
39.2  
500  
19.1  
1000  
1500  
2000  
2100  
12.4  
9.31  
8.87  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
10-1. Setting the Switching Frequency With RT (continued)  
SWITCHING FREQUENCY (kHz)  
RT (kΩ)  
8.45  
2200  
TPS2584x-Q1 switching action can be synchronized to an external clock from 300 kHz to 2.3 MHz. The RT/  
SYNC pin can be used to synchronize the internal oscillator to an external clock. The internal oscillator can be  
synchronized by AC coupling a positive edge into the RT/SYNC pin. The AC coupled peak-to-peak voltage at the  
RT/SYNC pin must exceed the SYNC amplitude threshold of 3.5 V (typical) to trip the internal synchronization  
pulse detector, and the minimum SYNC clock ON and OFF time must be longer than 100 ns (typical). When  
using a low impedance signal source, the frequency setting resistor, RT, is connected in parallel with an AC  
coupling capacitor, CCOUP, to a termination resistor, RTERM (for example: 50 Ω). The two resistors in series  
provide the default frequency setting resistance when the signal source is turned off. A 10-pF ceramic capacitor  
can be used for CCOUP. 10-7 show the device synchronized to an external clock.  
CCOUP  
RT  
PLL  
PLL  
Lo-Z  
Clock  
Hi-Z  
Clock  
Source  
RTERM  
RT  
RT/SYNC  
RT/SYNC  
Source  
10-7. Synchronize to External Clock  
To avoid AM radio frequency brand and maintain proper regulation when minimum ON-time or minimum OFF-  
time is reached, the TPS2584x-Q1 implement frequency foldback scheme depends on VIN voltage. Refer to  
Figure 8-10.  
When 8 V < VIN 19 V, the switching frequency of TPS2584x-Q1 is determined by RT resistor or external  
sync clock.  
When VIN 8 V, the switching frequency of TPS2584x-Q1 is set to default 420 kHz, regardless of RT  
resistor setting or external sync clock.  
When VIN > 19 V, the switching frequency of TPS2584x-Q1 is set to default 420 kHz, regardless of RT  
resistor setting or external sync clock.  
figure 10-8, figure 10-9 and Figure 10-10 show the device switching frequency and behavior under different VIN  
voltage and RT = 8.87 kΩ.  
Figure 10-11, Figure 10-12 and Figure 10-13 show the device switching frequency and behavior under different  
VIN voltage and synchronized to an external 2.1-M system clock.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
VIN,  
10V/Div  
VIN,  
10V/Div  
SW,  
10V/Div  
SW,  
10V/Div  
Inductor Current,  
5A/Div  
Inductor Current,  
5A/Div  
1us/Div  
1us/Div  
VIN = 7.5 V  
L = 2.2 uH  
ILOAD = 3 A  
VIN = 13.5 V  
L = 2.2 uH  
ILOAD = 3 A  
10-8. Switching Frequency When RT = 8.87 kΩ 10-9. Switching Frequency When RT = 8.87 kΩ  
VIN, 5V/Div  
VIN,  
10V/Div  
SW,  
10V/Div  
Sync, 2V/Div  
SW,  
5V/Div  
Inductor Current,  
5A/Div  
Inductor Current,  
2A/Div  
1us/Div  
1us/Div  
VIN = 20 V  
L = 2.2 uH  
ILOAD = 3 A  
VIN = 7.5 V  
L = 2.2 uH  
ILOAD = 3 A  
10-10. Switching Frequency When RT = 8.87 kΩ 10-11. Synchronizing to External 2.1-MHz Clock  
VIN, 10V/Div  
VIN, 5V/Div  
Sync, 2V/Div  
Sync, 2V/Div  
SW,  
10V/Div  
SW,  
10V/Div  
Inductor Current,  
2A/Div  
Inductor Current,  
2A/Div  
1us/Div  
1us/Div  
VIN = 20 V  
L = 2.2 uH  
ILOAD = 3 A  
VIN = 13.5 V  
L = 2.2 uH  
ILOAD = 3 A  
10-13. Synchronizing to External 2.1-MHz Clock  
10-12. Synchronizing to External 2.1-MHz Clock  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
10.3.4 Spread-Spectrum Operation  
To reduce EMI, the TPS2584x-Q1 introduce frequency spread spectrum. The spread spectrum is used to  
eliminate peak emissions at specific frequencies by spreading emissions across a wider range of frequencies  
than a part with fixed frequency operation. In most systems, low frequency conducted emissions from the first  
few harmonics of the switching frequency can be easily filtered. A more difficult design criterion is reduction of  
emissions at higher harmonics which fall in the FM band. These harmonics often couple to the environment  
through electric fields around the switch node. The TPS2584x-Q1 devices use ±6% spread of switching  
frequencies with 1/256 swing frequency.  
The spread spectrum function is only available when using the TPS2584x-Q1 internal oscillator. If the RT/SYNC  
pin is synchronized to an external clock, the spread spectrum function turns off.  
10.3.5 VCC, VCC_UVLO  
The TPS2584x-Q1 integrates an internal LDO to generate VCC for control circuitry and MOSFET drivers. The  
nominal voltage for VCC is 5 V. The VCC pin is the output of an LDO and must be properly bypassed. A high  
quality ceramic capacitor with a value of 2.2 µF to 4.7 µF, 10 V or higher rated voltage must be placed as close  
as possible to VCC and grounded to the PGND ground pin. The VCC output pin must not be loaded with more  
than 5 mA, or shorted to ground during operation. Shorting VCC to ground during operation can cause damage to  
the TPS2584x-Q1.  
10.3.6 Minimum ON-time, Minimum OFF-time  
Minimum ON-time, TON_MIN, is the smallest duration of time that the HS switch can be on. TON_MIN is typically  
105 ns in the TPS2584x-Q1. Minimum OFF-time, TOFF_MIN, is the smallest duration that the HS switch can be  
off. TOFF_MIN is typically 80 ns in the TPS2584x-Q1. In CCM (FPWM) operation, TON_MIN and TOFF_MIN limit the  
voltage conversion range given a selected switching frequency.  
The minimum duty cycle allowed is:  
(4)  
And the maximum duty cycle allowed is:  
(5)  
Given fixed TON_MIN and TOFF_MIN, the higher the switching frequency the narrower the range of the allowed duty  
cycle.  
10.3.7 Internal Compensation  
The TPS2584x-Q1 is internally compensated as shown in 10-14. The internal compensation is designed such  
that the loop response is stable over the specified operating frequency and output voltage range. The  
TPS2584x-Q1 is optimized for transient response over the range 300 kHz fsw 2300 kHz.  
10.3.8 Bootstrap Voltage (BOOT)  
The TPS2584x-Q1 provides an integrated bootstrap voltage regulator. A small capacitor between the BOOT and  
SW pins provides the gate drive voltage for the high-side MOSFET. The BOOT capacitor is refreshed when the  
high-side MOSFET is off and the low-side switch conducts. The recommended value of the BOOT capacitor is  
0.1 μF. TI recommends a ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or  
higher for stable performance overtemperature and voltage.  
10.3.9 RSNS, RSET, RILIMIT and RIMON  
The programmable current limit threshold and full-scale cable compensation voltage are determined by the  
values of the RSNS, RSET, RILIMIT and RIMON resistors. Refer to 10-14.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
RSNS is the current sense resistor. The recommended voltage across RSNS under current limit must be  
approximately 50 mV as a compromise between accuracy and power dissipation. For example, if current  
limiting is desired for IOUT(MAX) 3.3 A, then RSNS = 0.05 V / 3.3 A = 0.01515 Ω. Choose a standard value of  
15 mΩ.  
RSET determines the input current to the transconductance amplifier and current mirror. The amplifier  
balances the voltage to be equal to that across RSNS. Choose a RSET value to produce an ISET current  
between 75180 µA at the desired IOUT(MAX). Considering 50 mV across RSET, a value of 300 Ωprovides  
approximately 166 µA of ISET current to the amplifier and mirror circuit. Care must be taken to limit the ISET  
current below 200 µA to avoid saturating the internal amplifier circuit.  
RILIMIT in conjuction with the 0.5 × ISET current produces a voltage on the ILIMIT pin which is proportional to  
the load current flowing in RSNS. For details on setting the current limit, see Current Limit Sensing Using  
RILIMIT  
.
RIMON in conjuction with the 0.5 × ISET current produces a voltage on the IMON pin which is proportional to  
the load current flowing in RSNS. For details on setting the current limit, see Cable Compensation.  
(1): VSNS = ILOAD x RSNS  
ILOAD  
(2): VSNS ~= VSET  
(by op amp)  
(3): ISET = VSET / RSET = VSNS / RSET  
RSNS  
+ 50mV -  
RSET  
CSP  
CSN/OUT  
RT  
RM  
RB  
+
Low Offset  
Amp  
œ
IMON  
ILIMIT  
IIMON = 0.5 x ISET  
ISET  
+
RIMON  
œ
RS = RT  
IILIMIT = 0.5 x ISET  
RILIMIT  
œ
+
1V  
Soft  
Start  
œ
+
+
VCOMP  
1V  
VILIMIT = 1V (current limit by Buck)  
VILIMIT = 0.49V (current limit by NFET)  
LS_GD  
œ
+
0.49V  
BUS  
10-14. Current Limit and Cable Compensation Circuit  
10.3.10 Overcurrent and Short Circuit Protection  
For maximum versatility, TPS2584x-Q1 includes both a precision, programmable current limit as well cycle-by-  
cycle current limit to protect the USB port from extreme overload conditions. In most applications, the RILIMIT  
resistor in conjunction with the selection of RSNS and RSET determines the overload threshold. The cycle-by-  
cycle current limit serves as a backup means of protection in the event RILMIT is shorted to ground, disabling the  
programmable current limit function.  
In some applications, the setting of TPS2584x-Q1 over-current need meets MFi requirement. For more details,  
please refer to the How to Pass MFi Overcurrent Protection Test With USB Charger and Switch Device  
application report.  
10.3.10.1 Current Limit Setting using RILIMIT  
Refer to 10-14. The TPS2584x-Q1 can establish current limit by two methods.  
Using external a single or back-to-back N-Channel MOFETs between CSN/OUT and BUS: a voltage of 0.49  
V on the ILIMIT pin initiates current limiting using the external MOSFET by decreasing the LS_GD voltage  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
causing the FET to operate in the saturation region. To protect the MOSFETs from damage a hiccup timer  
limits the duty cycle to prevent thermal runaway. Refer to the Specifications for MOSFET hiccup timing.  
Buck average current limit: no MOSFET, CSN/OUT connected to BUS. The LS_GD must be pulled up  
through a 2.2-kΩresistor. In this configuration, a voltage of 1 V across RILIMIT on the ILIMIT pin initiates  
average current limiting of the buck regulator.  
The 2-level current limit is described below:  
With external MOSFET 10-15:  
Isolating a fault on the USB port from other loads connected to the CSP output of the TPS2584x-Q1. In  
some applications, it can be useful to power additional circuitry (for example: USB HUB) from the output of  
the TPS2584x-Q1 and maintain operation of these circuits in the event of a short circuit downstream of the  
BUS pin. To prevent triggering the MOSFET current limit below the programmed ILIMIT threshold, external  
circuits must be supplied after the inductor and before the current sense resistor, RSNS  
.
After RSNS and RSET are determined and the full load ISET current is known, the resistor value, RILIMIT, can  
be determined by:  
(6)  
In most cases, the recommended voltage across RSNS under current limit must be approximately 50 mV  
as a compromise between accuracy and power dissipation. While in some application, RILIMIT is the only  
resistor that can be changed to achieve different current limit. Typical RILIMIT resistors value are listed in 表  
10-2 given the condition RSNS = 15 mΩand RSET = 300 Ω  
10-2. Setting the Current Limit with RILIMIT  
RILIMIT (kΩ)  
Current-Limit Threshold (mA)  
With External MOSFET  
Without External MOSFET  
700  
26.1  
12.7  
11.3  
7.15  
6.49  
5.62  
5.11  
53.6  
26.1  
22.6  
14.7  
13  
1500  
1700  
2700  
3000  
3400  
3800  
11.5  
10.5  
Buck Average Current Limit 10-16:  
1. CSN/OUT connected directly to BUS, LS_GD must be pulled up through 2.2-kΩresistor. The TPS2584x-  
Q1 can operate as a stand-alone USB charging port. In this configuration, the internal buck regulator  
operates with average current limiting as programmed by the ILIMIT pin, potentially producing less heat  
compared to N-channel MOSFET current limiting  
2. After RSNS and RSET are determined and the full load ISET current is known, the resistor value RILIMIT can  
be determined by:  
(7)  
3. 10-2 lists Typical RILIMIT resistors values given the condition RSNS = 15 mΩand RSET = 300 Ω.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
CBOOT  
CBOOT  
To auxillary  
loads  
VIN  
VIN  
BOOT  
BOOT  
L
L
RSNS  
IN  
RSNS  
IN  
SW  
RSET  
EN/UVLO  
RT/SYNC  
EN/UVLO  
RT/SYNC  
CSP  
RSET  
CSP  
CSN/OUT  
CSN/OUT  
VCC  
VCC  
TPS2584x-Q1  
TPS2584x-Q1  
2.2k  
LS_GD  
FAULT  
BUCK_ST  
CTRL1  
FAULT  
LS_GD  
BUS  
BUCK_ST  
CTRL1  
BUS  
CTRL2  
CTRL2  
DP_OUT  
DM_OUT  
DP_IN  
DM_IN  
DP_OUT  
DM_OUT  
DP_IN  
DM_IN  
INT  
IMON ILIMIT  
AGND PGND  
INT  
IMON ILIMIT  
AGND PGND  
10-16. Buck Average Current Limit  
10-15. Current Limit With External MOSFET  
10.3.10.2 Buck Average Current Limit Design Example  
To start the procedure, the ILOAD(MAX), RSNS and RSET, must be known.  
1. Determine ILIMIT, usually chose ILIMIT= ILOAD(MAX) / (1 10%).  
2. Determine RSNS to achieve 50 mV at current limit. For 3-A load current, choose ILIMIT = 3.3A. RSNS = (0.05  
V / 3.3 A) = 15 mΩ.  
3. Choose RSET = 300 Ω  
4. According to 方程7, RLIMIT = 300 / (0.5 × ( 3.3 X 0.015 + 0.0007)) = 11.95 kΩ.  
5. Choose standard 11.8 kΩ.  
10.3.10.3 External MOSFET Gate Drivers  
The TPS2584x-Q1 has integrated NFET gate drivers, and can support current limit with external NFET. Refer to  
10-15.  
The LS_GD pin of TPS2584x-Q1 can source 3-uA (typical) current to enhance the external MOSFET. A 6.2-V  
clamp between LS_GD and CSN/OUT pin limits the gate-to-source voltage. During DCDC start up, the LS_GD  
gate drivers begin to source current after VCSN/OUT reach 3 V. If the VCSN/OUT > 7.5 V or VBUS > 7 V is under  
overvoltage condition, the LS_GD turns off immediately with 35-uA (typical) sink current.  
If load current above NFET current limit threshold, LS_GD also turns off the NFET after 2 ms (typical) and enters  
hiccup mode to protect NFET from thermal issue. Refer to Figure 11-24 for application waveform.  
In real application, if VBUS short to VBAT function is needed, 20 V back-to-back NFET is suggested in circuit  
design.  
10.3.10.4 Cycle-by-Cycle Buck Current Limit  
The buck regulator cycle-by-cycle current limit on both the peak and valley of the inductor current. Hiccup mode  
is activated if a fault condition persists to prevent over-heating.  
High-side MOSFET overcurrent protection is implemented by the nature of the Peak Current Mode control. The  
HS switch current is sensed when the HS is turned on after a set blanking time. The HS switch current is  
compared to the output of the Error Amplifier (EA) minus slope compensation every switching cycle. for more  
details, refer to the Functional Block Diagram. The peak current of HS switch is limited by a clamped maximum  
peak current threshold IHS_LIMIT which is constant. So the peak current limit of the high-side switch is not affected  
by the slope compensation and remains constant over the full duty cycle range.  
The current going through LS MOSFET is also sensed and monitored. When the LS switch turns on, the inductor  
current begins to ramp down. The LS switch is not turned OFF at the end of a switching cycle if its current is  
above the LS current limit ILS_LIMIT. The LS switch is kept ON so that the inductor current keeps ramping down,  
until the inductor current ramps below the LS current limit ILS_LIMIT. Then the LS switch is turned OFF and the HS  
switch is turned on after a dead time. This is somewhat different than the more typical peak current limit, and  
results in Equation 8 for the maximum load current.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
(8)  
If VCSN/OUT < 2-V typical due to a short circuit for 128 consecutive cycles, hiccup current protection mode is  
activated. In hiccup mode, the regulator is shut down and kept off for 118 ms typically, then TPS2583x-Q1 go  
through a normal re-start with soft start again. If the short-circuit condition remains, hiccup repeats until the fault  
condition is removed. Hiccup mode reduces power dissipation under severe overcurrent conditions, prevents  
over-heating and potential damage to the device and serves as a backup to the programmable current limit. See  
Current Limit Setting Using RILIMIT. After the output short is removed, the hiccup delay is passed and the output  
voltage recovers normally as shown in Figure 11-21.  
10.3.11 Overvoltage, IEC and Short-to-Battery Protection  
The TPS25840-Q1 integrates OVP and short to battery protection on VBUS, DM_IN and DP_IN pins. These pins  
can withstand voltage up to 18 V, and can protect upstream processor or Hub data line when overvoltage or  
short to battery condition occurs. Refer to 9-3 for the short-to-battery test setup.  
The TPS2584x-Q1 also integrates IEC ESD cell on DP_IN and DM_IN pins.  
For more detailed TPS2584x-Q1 short-to-battery consideration and test report, please refer to the TPS2583x-Q1  
and TPS2584x-Q1 Short-to- Battery Application application report.  
10.3.11.1 VBUS and VCSN/OUT Overvoltage Protection  
The TPS25840-Q1 integrates overvoltage protection on both BUS and CSN/OUT pin to meet different  
application requirement.  
BUS pin can withstand up to 18 V, and the OVP threshold is 7-V typical. After overvoltage is detected on BUS  
pin, the LS_GD turns off immediately. Also, FAULT asserts after 8-ms deglitch time. After the excessive voltage  
is removed, the LS_GD turns on again and FAULT deasserts.  
CSN/OUT pin can withstand up to 20 V, and the OVP threshold is 7.5-V typical. After overvoltage is detected on  
CSN/OUT pin, the buck converter stops regulation. Also, LS_GD turns off immediately. After the excessive  
voltage is removed, the buck converter resumes and the LS_GD turns on again.  
CBOOT  
CBOOT  
To auxillary  
loads  
VIN  
VIN  
BOOT  
BOOT  
L
L
RSNS  
RSNS  
IN  
IN  
SW  
CSP  
RSET  
EN/UVLO  
RT/SYNC  
EN/UVLO  
RT/SYNC  
RSET  
CSP  
CSN/OUT  
CSN/OUT  
VCC  
VCC  
TPS2584x-Q1  
TPS2584x-Q1  
2.2k  
LS_GD  
FAULT  
FAULT  
BUCK_ST  
CTRL1  
LS_GD  
BUS  
BUCK_ST  
0.22uF  
0.22uF  
CTRL1  
CTRL2  
RBUS= 10  
RBUS= 100Ω  
BUS  
CTRL2  
DP_OUT  
DM_OUT  
DP_IN  
DM_IN  
DP_OUT  
DM_OUT  
DP_IN  
DM_IN  
INT  
IMON ILIMIT  
AGND PGND  
INT  
IMON ILIMIT  
AGND PGND  
10-17. Current Limit With External MOSFET  
10-18. Buck Average Current Limit  
As shown in 10-17, TPS25840-Q1 is configured in external FET current limit mode. When short-to-battery  
occurs on BUS_Connector, the external MOSFET turns off immediately after BUS pin detect over voltage. The  
FAULT signal assertd after 8-ms deglitch time. See Figure 11-28. With Back-to-back FET, the TPS2583x-Q1 can  
withstand short-to-battery event even when Vin is off. TI recommends a 10-Ω 0805 resistor between BUS pin  
and BUS_Connector.  
As shown in 10-18, TPS25840-Q1 is configured in buck average current limit mode. When short-to-battery  
occurs on BUS_Connector, the buck regulator stops switching after CSN/OUT pin detect overvoltage. The  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
FAULT signal also asserts after 8-ms deglitch time. TI recommends a 100-Ω0805 resistor between BUS pin and  
BUS_Connector in buck average current limit mode.  
10.3.11.2 DP_IN and DM_IN Protection  
DP_IN and DM_IN protection consists of IEC ESD and overvoltage protection.  
The DP_IN and DM_IN pins integrate an IEC ESD cell to provide ESD protection up to ±15-kV air discharge and  
±8-kV contact discharge per IEC 61000-4-2 (for test conditions, see the ESD Ratings section). The IEC ESD  
performance of the TPS2584x-Q1 device depends on the capacitance connected from BUS pin to GND. TI  
recommends placing a A 0.22-µF capacitor close to the BUS pin  
The ESD stress seen at DP_IN and DM_IN is impacted by many external factors like the parasitic resistance and  
inductance between ESD test points and the DP_IN and DM_IN pins. For air discharge, the temperature and  
humidity of the environment can cause some difference, so the IEC performance must always be verified in the  
end-application circuit.  
Overvoltage protection (OVP) is provided for short-to-VBUS or short-to-battery conditions in the vehicle harness,  
preventing damage to the upstream USB transceiver or hub. When the voltage on DP_IN or DM_IN exceeds 3.9  
V (typical), the TPS25840-Q1 device immediately turns off DP/DM switch and responds to block the high-voltage  
reverse connection to DP_OUT and DM_OUT. FAULT signal asserts after 8-ms deglitch time. See Figure 11-30.  
For DP_IN and DM_IN, when OVP is triggered, the device turns on an internal discharge path with 416-kΩ  
resistance to ground. On removal of the overvoltage condition, the pin automatically turns off this discharge path  
and returns to normal operation by turning on the previously affected analog switch.  
10.3.12 Cable Compensation  
When a load draws current through a long or thin wire, there is an IR drop that reduces the voltage delivered to  
the load. Cable droop compensation linearly increases the voltage at the CSN/OUT pin of TPS2584x-Q1 as load  
current increases with the objective of maintaining VBUS_CON (the bus voltage at the USB connector) at 5 V,  
regardless of load conditions. Most portable devices charge at maximum current when 5 V is present at the USB  
connector. 10-19 provides an example of resistor drops encountered when designing an automotive USB  
system with a remote USB connector location.  
10-19. Automotive USB Resistances  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
5.x  
V(DROP)  
VOUT with compensation  
VBUS with compensation  
VBUS without compensation  
3
1
2
Output Current (A)  
10-20. Voltage Drop  
The TPS2584x-Q1 detects the load current and increases the voltage at the CSN/OUT pin to compensate the IR  
drop in the charging path according to the gain set by the RSNS, RSET, and RIMON resistors as described in RSNS  
RSET, RILIMIT, and RIMON  
,
.
The amount of cable droop compensation required can be estimated by the following equation: ΔVOUT = (RSNS  
+ RDSON_NFET + RWIRE) IBUS × RIMON is then chosen by RIMON = (ΔVOUT × RSET × 2) / (IBUS × RSNS), Where  
ΔVOUT is the desired cable droop compensation voltage at full load.  
In most cases, the recommended voltage across RSNS must be 50 mV. See the RSNS, RSET, RILIMIT, and RIMON  
section. In type-C application, typical RIMON resistors value are listed in 10-3 given the condition full load  
current = 3 A, RSNS = 15 mΩand RSET = 300 Ω.  
10-3. Setting the Cable Compensation Voltage with RIMON  
Cable Compensation Voltage at 3-A Full Load (V)  
RIMON (kΩ)  
0.3  
0.6  
0.9  
1.2  
1.5  
4.02  
8.06  
12.1  
16.2  
20  
备注  
The maximum cable compensation voltage in TPS2584x-Q1 is 1.5 V.  
10.3.12.1 Cable Compensation Design Example  
To start the procedure, the RSNS, RDSON_NFET and wire resistance RWIRE must be known.  
1. Determine RSNS to achieve 50 mV at full current. For 3.3 A (3-A load current plus at approximately 10% for  
overcurrent threshold). RSNS = (0.05 V / 3.3 A) = 15 mΩ.  
2. RDSON_NFET = 50 mΩ  
3. RWIRE = 200 mΩ  
4. ΔVOUT = (RSNS + RDSON_NFET + RWIRE) × IBUS = (0.015 + 0.05 + 0.2) × 3 = 0.795 V  
5. Choose RSET = 300 Ω  
6. RIMON = (ΔVOUT * RSET × 2) / (IBUS × RSNS) = (0.795 × 300 × 2) / (3 × 0.015) = 10.6 kΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
10.3.13 USB Port Control  
The TPS25840-Q1 and TPS25842-Q1 include DP_IN, DM_IN pins for automatic or host facilitated USB port  
power management of a Type-A downstream facing connector. For details on configuring the TPS2584x-Q1, see  
Device Functional Modes.  
10.3.14 FAULT Response  
The device features an active-low, open-drain fault output. Connect a 100-kΩ pullup resistor from FAULT to  
VCC or other suitable I/O voltage. FAULT can be left open or tied to GND when not used.  
10-4 summarizes the conditions that generate a fault and actions taken by the device.  
10-4. Fault and Warning Conditions  
EVENT  
CONDITION  
ACTION  
The device regulates current at ISNS either by external NFET  
or by the buck regulator control loop.  
When current limiting by external NFET, there is NO fault  
indicator assertion under minor overload conditions.  
When current limiting by buck average current, there is NO  
fault indicator assertion under minor overload conditions.  
Hard shorts during average buck current limiting can trigger  
buck hiccup operation. The FAULT indicator asserts  
immediately after NOC cycles in and persists for TOC as  
specified in Cycle-by-Cycle Buck Current Limit.  
NFET or Buck average current limit  
implemented. See Current Limit Sensing  
Overcurrent on OUT  
using RILIMIT  
.
ICSN/OUT > programmed ISNS  
.
The device turns on the BUS discharge path in the event of  
an overvoltage conditions and turns off the LS_GD  
immediately. The FAULT indicator asserts and de-asserts  
with an 8-ms deglitch.  
Overvoltage on BUS  
VBUS > VBUS_OV  
The device immediately shuts off the USB data switches.  
The FAULT indicator asserts and de-asserts with an 8-ms  
deglitch.  
Overvoltage on the data lines DP_IN or DM_IN > VDx_IN_OV  
10.3.15 USB Specification Overview  
Universal Serial Bus specifications provide critical physical and electrical requirements to electronics  
manufacturers of USB capable equipment. Adherence to these specifications during product development  
coupled with standardized compliance testing assures very high degrees of interoperability amongst USB  
products in the market. Since its inception in the mid 1990s, USB has undergone a number of revisions to  
enhance utility and extend functionality. For the most up to date standards, please consult the USB  
Implementers Forum (USB-IF).  
All USB ports are capable of providing a 5-V output making them a convenient power source for operating and  
charging portable devices. USB specification documents outline specific power requirements to ensure  
interoperability. In general, a USB 2.0 port host port is required to provide up to 500 mA; a USB 3.0 or USB 3.1  
port is required to provide up to 900 mA; ports adhering to the USB Battery Charging 1.2 Specification provide  
up to 1500 mA; and newer Type-C ports can provide up to 3000 mA. Though USB standards governing power  
requirements exist, some manufacturers of popular portable devices created their own proprietary mechanisms  
to extend allowed available current beyond the 1500 mA maximum per BC 1.2. While not officially part of the  
standards maintained by the USB-IF, these proprietary mechanisms are recognized and implemented by  
manufacturers of USB charging ports.  
The TPS2584x-Q1 device supports the most-common USB-charging schemes BC1.2 in popular hand-held  
media and cellular devices.  
The BC1.2 specification includes three different port types:  
Standard downstream port (SDP, supported)  
Charging downstream port (CDP, supported)  
Dedicated charging port (DCP, NOT supported)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
BC1.2 defines a charging port as a downstream-facing USB port that provides power for charging portable  
equipment. Under this definition, CDP and DCP are defined as charging ports.  
10-5 lists the difference between these port types.  
10-5. Operating Modes Table  
MAXIMUM ALLOWABLE CURRENT  
DRAWN BY PORTABLE EQUIPMENT (A)  
PORT TYPE  
SUPPORTS USB2.0 COMMUNICATION  
SDP (USB 2.0)  
SDP (USB 3.0 and 3.1)  
CDP  
YES  
YES  
YES  
NO  
0.5  
0.9  
1.5  
1.5  
DCP  
10.3.16 Device Power Pins (IN, CSN/OUT, and PGND)  
The IN pins are the input power path to the TPS2584x-Q1 devices. The internal LDO and buck regulator high  
side switch are supplied from the IN pins. The CSN/OUT pin connects to the negative terminal of the current  
sense amplifier and the internal voltage feedback network. This pin must be connected to the output LC filter for  
proper operation. PGND is the power ground return. For optimum performance, ensure the IN pin is properly  
bypassed to PGND with adequate bulk and high-frequency bypass capacitance located as close to these pins as  
possible.  
10.3.17 Thermal Shutdown  
The device has an internal overtemperature shutdown threshold, TSD to protect the device from damage and  
overall safety of the system. When device temperature exceeds TSD, the LD_GD pin is pulled low, and the buck  
regulator stops switching. The device attempts to power-up when die temperature decreases by approximately  
20°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
10.4 Device Functional Modes  
10.4.1 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPS2584x-Q1. When VEN is below 1.2 V (typical), the  
device is in shutdown mode. The TPS2584x-Q1 also employs VIN and VCC undervoltage lock out protection. If  
VIN or VCC voltage is below their respective UVLO level, the regulator is turned off.  
10.4.2 Active Mode  
The TPS2584x-Q1 is in Active Mode when VEN is above the precision enable threshold, VIN and VCC are above  
their respective UVLO levels. The simplest way to enable the TPS2584x-Q1 is to connect the EN pin to VIN pin.  
This connection allows self startup when the input voltage is in the operating range of 3.8 V to 36 V and a UFP  
detection is made. For details on setting these operating levels, refer to VCC, VCC_UVLO and Enable/UVLO.  
In Active Mode, the TPS2584x-Q1 buck regulator operates with Forced Pulse Width Modulation (FPWM), also  
referred to as Forced Continuous Conduction Mode (FCCM). This operation ensures the buck regulator  
switching frequency remains constant under all load conditions. FPWM operation provides low output voltage  
ripple, tight output voltage regulation, and constant switching frequency. Built-in spread-spectrum modulation  
aids in distributing spectral energy across a narrow band around the switching frequency programmed by the  
RT/SYNC pin. Under light load conditions the inductor current is allowed to go negative. A negative current limit  
of IL_NEG is imposed to prevent damage to the regulator's low side FET. During operation the TPS2584x-Q1  
synchronized to any valid clock signal on the RT/SYNC input.  
10.4.3 Device Truth Table (TT)  
The device truth table (10-6) lists all valid combinations for the two control pins (CTRL1 and CTRL2). The  
TPS2584x-Q1 devices monitor the CTRL inputs and transitions to whichever charging mode it is commanded.  
10-6. Truth Table  
CURRENT LIMIT  
DEVICE(S)  
CTRL1  
CTRL2  
USB MODES  
BUCK REGULATOR  
LS_GD  
SETTING  
0
0
1
1
0
1
0
1
Buck Hiccup Only  
Buck Hiccup Only  
Client Mode(1)  
Client Mode(1)  
SDP Mode  
ON  
ON  
ON  
ON  
OFF  
OFF  
TPS2584x-Q1  
See Current Limit  
Sensing using RILIMIT  
CDP Mode  
(1) TPS2584x-Q1: USB data switches ON during client mode.  
10.4.4 USB Port Operating Modes  
10.4.4.1 Standard Downstream Port (SDP) Mode USB 2.0, USB 3.0, and USB 3.1  
An SDP is a traditional USB port that follows USB 2.0, USB 3.0 or USB 3.1 protocol. A USB 2.0 SDP supplies a  
minimum of 500 mA per port and supports USB 2.0 communications. A USB 3.x SDP supplies a minimum of 900  
mA per port and supports USB 3.0 or USB 3.1 communications. For both types, the host controller must be  
active to allow charging.  
10.4.4.2 Charging Downstream Port (CDP) Mode  
A CDP is a USB port that follows USB BC1.2 and supplies a minimum of 1.5 A per port. A CDP provides power  
and meets the USB 2.0 requirements for device enumeration. USB-2.0 communication is supported, and the  
host controller must be active to allow charging. The difference between CDP and SDP is the host-charge  
handshaking logic that identifies this port as a CDP. A CDP is identifiable by a compliant BC1.2 client device and  
allows for additional current draw by the client device.  
The CDP handshaking process occurs in two steps. During step one, the portable equipment outputs a nominal  
0.6-V output on the D+ line and reads the voltage input on the Dline. The portable device detects the  
connection to an SDP if the voltage is less than the nominal data-detect voltage of 0.3 V. The portable device  
detects the connection to a CDP if the Dvoltage is greater than the nominal data detect voltage of 0.3 V and  
optionally less than 0.8 V.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
The second step is necessary for portable equipment to determine whether the equipment is connected to a  
CDP or a DCP. The portable device outputs a nominal 0.6-V output on the Dline and reads the voltage input  
on the D+ line. The portable device concludes the equipment is connected to a CDP if the data line being read  
remains less than the nominal data detects voltage of 0.3 V. The portable device concludes it is connected to a  
DCP if the data line being read is greater than the nominal data detect voltage of 0.3 V.  
10.4.4.3 Client Mode  
The TPS2584x-Q1 device integrates client mode as shown in 10-21. The external MOSFET power switch is  
OFF and only the data analog switch is ON. This mode can be used by automotive USB system manufacturers  
and OEMs for factory-only software programming with the USB port.  
L
RSNS  
ON  
BOOT  
IN  
SW  
Buck Regulator  
LS_GD  
NFET  
ON  
RSET  
LOW  
OFF  
ON  
CSP  
USB Switches  
CSN/OUT  
LS_GD  
TPS25840/2-Q1  
LOW  
OFF  
BUS  
DM_IN  
DP_IN  
SW  
SW  
DM_OUT  
DP_OUT  
10-21. Client-mode Equivalent Circuit  
10.4.5 High-bandwidth Data-line Switches  
The TPS2584x-Q1 device passes the D+ and Ddata lines through the device to enable monitoring and  
handshaking while supporting the charging operation. A wide-bandwidth signal switch allows data to pass  
through the device without corrupting signal integrity. The data-line switches are turned on in any of the CDP,  
SDP, or client operating modes. The EN input must be at logic high for the data line switches to be enabled.  
For more detailed USB2.0 data line consideration and eye diagram test report, please refer to the How to  
Improve USB2.0 Eye Diagram Using Long USB Cable application report.  
备注  
The data switches are ON while in CDP mode, even during CDP handshaking.  
The data line switches are OFF if EN/UVLO is low.  
The data line switches are OFF during External FET Current limit conditions.  
The data switches are only for a USB-2.0 differential pair. In the case of a USB-3.0 host, the super-  
speed differential pairs must be routed directly to the USB connector without passing through the  
TPS2584x device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
11 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
11.1 Application Information  
The TPS2584x-Q1 is a step down DC-to-DC regulator and USB charge port controller. TheTPS2584x-Q1 is  
typically used in automotive systems to convert a DC voltage from the vehicle battery to 5-V DC with a maximum  
output current of 3 A. The following design procedure can be used to select components for the TPS2584x-Q1.  
11.2 Typical Application  
The TPS2584x-Q1 only requires a few external components to convert from a wide voltage range supply to a 5-  
V output for powering USB devices. 11-1 shows a basic schematic.  
CBOOT  
CSNS(FLT)  
0.1 F  
0.1 F  
VIN  
6 V to 18 V  
BOOT (32)  
L
RSNS  
IN (1, 2, 3)  
RENT  
20 kꢀ  
SW (28, 29, 30, 31)  
10 H  
CCSP  
0.015 ꢀ  
CIN(HF)  
CIN(BULK)  
CIN  
RSET  
+
5*22 F  
EN/UVLO (4)  
CSP (14)  
RENB  
300 ꢀ  
10 F  
0.1 F  
5 kꢀ  
CSN/OUT (13)  
LS_GD (10)  
CCSN/OUT  
2.2 kꢀ  
VCC (21)  
0.1 F  
CVCC  
CVCC(HF)  
0.22 F  
100 ꢀ  
2.2 F  
0.1 F  
BUS (15)  
RPU  
DM_IN (17)  
DP_IN (18)  
CTRL1 (5)  
CTRL2 (6)  
100 kꢀ  
RPU  
100 kꢀ  
RPU  
RT/SYNC (9)  
IMON (11)  
FAULT (24)  
BUCK_ST (23)  
INT (20)  
100 kꢀ  
RPU  
RIMON  
1 F  
CBUS  
ILIMIT (12)  
12.7 kꢀ  
100 kꢀ  
RRT  
49.9 kꢀ  
RILIMIT  
AGND (16)  
5.1 kꢀ  
11.8 kꢀ  
PGND (25, 26, 27)  
DM_OUT (8)  
DP_OUT (7)  
11-1. Application Circuit  
The integrated buck regulator of TPS2584x-Q1 is internally compensated and optimized for a reasonable  
selection of external inductance and capacitance. The external components have to fulfill the needs of the  
application, but also the stability criteria of the device's control loop. 11-2 can be used to simplify the output  
filter component selection.  
11.2.1 Design Requirements  
To begin the design process, a few parameters must be known:  
Cable compensation: Total resistance including cable resistance, contact resistance of connectors,  
TPS2584x-Q1 current sense resistor and external NFET rDS(on) (if used). Refer to 10-19 for examples of  
resistance in an automotive application.  
The maximum continuous output current for the charging port. The minimum current-limit setting of  
TPS2584x-Q1 device must be higher than this current.  
For this example, use the parameters listed in 11-1 as the input parameters.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
11-1. Design Example Parameters  
PARAMETER  
Input Voltage, VIN  
VALUE  
13.5-V typical, range from 6 V to 18 V  
Output Voltage, VOUT  
5.1 V  
3.0 A  
Maximum Output Current IOUT(MAX)  
Transient Response 0.3 A to 3 A  
Output Voltage Ripple  
5%  
50 mV  
400 mV  
400 kHz  
300 mΩ  
3.3 A  
Input Voltage Ripple  
Switching Frequency fSW  
Cable Resistance for Cable Compensation  
Current Limit by Buck Average  
11-2. L, and COUT Typical Values  
VOUT without  
Cable  
fSW  
CIN + CHF  
L
Current Limit  
CCSP  
CCSN/OUT  
CBUS  
Compensation  
400 kHz  
400 kHz  
2100 kHz  
5.10 V  
5.10 V  
5.10 V  
1 × 10 µF + 1 × 100 nF  
1 × 10 µF + 1 × 100 nF  
1 × 10 µF + 1 × 100 nF  
10 µH  
10 µH  
2.2 µH  
Buck Avg  
Ext. NFET  
Buck Avg  
5 × 22 µF  
5 × 22 µF  
2 × 22 µF  
100 nF  
100 nF  
100 nF  
1 to 4.7 µF  
1 to 4.7 µF  
1 to 4.7 µF  
1. Inductance value is calculated based on VIN = 18 V.  
2. All the COUT values are after derating.  
11.2.2 Detailed Design Procedure  
11.2.2.1 Output Voltage  
The output voltage of TPS2584x-Q1 is internally fixed at 5.10 V. Cable compensation can be used to increase  
the voltage on the CSN/OUT pin linearly with increasing load current. For more details on output voltage  
variation versus load current, refer to Cable Compensation. If cable compensation is not desired, use a 0-Ω  
RIMON resistor.  
11.2.2.2 Switching Frequency  
The recommended switching frequency of the TPS2584x-Q1 is in the range of 300400 kHz for best efficiency.  
Choose RRT = 49.9 kΩfor 400-kHz operation. Refer to 10-1 to choose a different switching frequency.  
11.2.2.3 Inductor Selection  
The most critical parameters for the inductor are the inductance, saturation current and the rated current. The  
inductance is based on the desired peak-to-peak ripple current ΔiL. Because the ripple current increases with  
the input voltage, the maximum input voltage is always used to calculate the minimum inductance LMIN. Use  
Equation 10 to calculate the minimum value of the output inductor. KIND is a coefficient that represents the  
amount of inductor ripple current relative to the maximum output current of the device. A reasonable value of  
KIND must be 20% to 40%. During an instantaneous short or over current operation event, the RMS and peak  
inductor current can be high. The inductor current rating must be higher than the current limit of the device.  
VOUT ì V  
- VOUT  
(
)
IN_MAX  
DiL =  
VIN_MAX ìL ì fSW  
(9)  
V
- VOUT  
VOUT  
IN_MAX  
LMIN  
=
ì
IOUT ìKIND  
V
IN_MAX ì fSW  
(10)  
In general, choose lower inductance in switching power supplies because it usually corresponds to faster  
transient response, smaller DCR, and reduced size for more compact designs. But too low of an inductance can  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
generate too large of an inductor current ripple such that over current protection at the full load can be falsely  
triggered. Too low of an inductance also generates more conduction loss and inductor core loss. Larger inductor  
current ripple also implies larger output voltage ripple with same output capacitors. With peak current mode  
control, TI recommends to have a larger inductor current ripple. A larger peak current ripple improves the  
comparator signal to noise ratio.  
For this design example, choose KIND = 0.3, the minimum inductor value is calculated to be 8.7 µH. Choose the  
nearest standard 10 μH ferrite inductor with a capability of 4 A RMS current and 6-A saturation current.  
11.2.2.4 Output Capacitor Selection  
The value of the output capacitor, and its ESR, determine the output voltage ripple and load transient  
performance. The output capacitor bank is usually limited by the load transient requirements, rather than the  
output voltage ripple. Equation 11 can be used to estimate a lower bound on the total output capacitance, and an  
upper bound on the ESR, required to meet a specified load transient.  
K2  
12  
»
ÿ
DIOUT  
fSW ∂ DVOUT K  
COUT  
í
(
1- D  
)
(
1+ K  
)
+
(
2 - D  
)
Ÿ
Ÿ
(
2 + K  
)
∂ DVOUT  
ESR Ç  
K2  
1
»
ÿ
2∂ DIOUT 1+ K +  
1+  
÷
÷
Ÿ
12  
(1- D)  
«
◊Ÿ  
VOUT  
D =  
V
IN  
(11)  
where  
• ΔVOUT = output voltage transient  
• ΔIOUT = output current transient  
K = Ripple factor from Inductor Selection  
After the output capacitor and ESR have been calculated, Equation 12 can be used to check the peak-to-peak  
output voltage ripple, Vr.  
1
Vr @ DIL ESR2 +  
2
(
8fSW COUT  
)
(12)  
The output capacitor and ESR can then be adjusted to meet both the load transient and output ripple  
requirements.  
For this example, we require a ΔVOUT of 250 mV for an output current step of ΔIOUT = 2.7 A. Equation 11  
gives a minimum value of 86 µF and a maximum ESR of 0.08 Ω. Assuming a 20% tolerance and a 10% bias de-  
rating, we arrive at a minimum capacitance of 110 µF. This can be achieved with a bank of 5 × 22-µF, 10-V,  
ceramic capacitors in the 1210 case size. More output capacitance can be used to improve the load transient  
response. Ceramic capacitors can easily meet the minimum ESR requirements. In some cases an aluminum  
electrolytic capacitor can be placed in parallel with the ceramics to help build up the required value of  
capacitance.  
In practice, the output capacitor has the most influence on the transient response and loop phase margin. Load  
transient testing and Bode plots are the best way to validate any given design and must always be completed  
before the application goes into production. In addition to the required output capacitance, a small ceramic  
placed on the output can help to reduce high frequency noise. Small case size ceramic capacitors in the range  
of 1 nF to 100 nF can be very helpful in reducing voltage spikes on the output caused by inductor and board  
parasitics.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
The maximum value of total output capacitance must be limited to about 10 times the design value, or 1000 µF,  
whichever is smaller. Large values of output capacitance can adversely affect the start-up behavior of the  
regulator as well as the loop stability. If values larger than noted here must be used, then a careful study of start-  
up at full load and loop stability must be performed.  
11.2.2.5 Input Capacitor Selection  
The TPS2584x-Q1 device requires high frequency input decoupling capacitor(s) and a bulk input capacitor,  
depending on the application. A high-quality ceramic capacitor type X5R or X7R with sufficient voltage ratings  
are recommended. To compensate the derating of ceramic capacitors, TI recommends a voltage rating of twice  
the maximum input voltage. The bulk capacitance selection depends upon a number of factors: long leads from  
the automotive battery to the IN pin of TPS2584x-Q1, cold or warm engine crank requirements, and so forth. The  
bulk capacitor is used to dampen voltage spike due to the lead inductance of the cable or the trace. For this  
design, one 10-μF, 50-V, X7R ceramic capacitors are used. Use a 0.1 μF for high-frequency filtering and place  
it as close as possible to the device pins. Consider adding additional bulk capacitance for operation through low  
VIN warm-crank profiles is required by the vehicle OEM.  
11.2.2.6 Bootstrap Capacitor Selection  
Every TPS2584x-Q1 design requires a bootstrap capacitor (CBOOT). The recommended capacitor is 0.1 μF and  
rated 10 V or higher. The bootstrap capacitor is located between the SW pin and the BOOT pin. The bootstrap  
capacitor must be a high-quality ceramic type with an X7R or X5R grade dielectric for temperature stability.  
11.2.2.7 VCC Capacitor Selection  
The VCC pin is the output of an internal LDO for TPS2584x. The LDO supplies gate charge to the LS buck  
switch and is the supply to the digital state-machine and analog USB circuitry. To insure stability of the device,  
place a minimum of 2.2 μF, 10 V, X7R capacitor from this pin to ground. In addition a 0.1-μF high frequency  
decoupling capacitor is highly recommended.  
11.2.2.8 Enable and Under Voltage Lockout Set-Point  
The system enable and undervoltage lockout (UVLO) is adjusted using the external voltage divider network of  
RENT and RENB. The EN/UVLO has two thresholds, one for power up when the input voltage is rising and one  
for power down or brown outs when the input voltage is falling. The following equations can be used to  
determine the VIN(ON) and VIN(OFF) levels.  
(13)  
(14)  
VIN(ON) = 6 V (user choice)  
RENB = 5 kΩ(user choice)  
RENT = [(VIN(ON) / (VEN/UVLO_H) 1] × RENB  
RENB = [(6 V / 1.2 V) 1] × 5 kΩ= 20 kΩ. Choose standard 20 kΩ.  
Therefore VIN(OFF) = 6 V × [1 (0.09 V / 1.2 V)] = 5.55 V  
11.2.2.9 Current Limit Set-Point  
The TPS2584x-Q1 provides an accurate current limit to protect the USB port from overload based upon the  
values of RSNS, RSET and RILIMIT. The design process is the same regardless of whether buck average current  
limiting or external NFET current limiting is chosen. The only difference is the current limit threshold voltage on  
the ILIMIT pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
RSNS is the current sense resistor. The recommended voltage across RSNS under current limit must be  
approximately 50 mV as a compromise between accuracy and power dissipation. For example, if current  
limiting is desired for IOUT(MAX) 3.3 A, then RSNS = 0.05 V / 3.3 A = 0.01515 Ω. Choose a standard value of  
15 mΩ.  
RSET determines the input current to the transconductance amplifier and current mirror. The amplifier  
balances the voltage to be equal to that across RSNS. Choose a RSET value to produce an ISET current  
between 75 180 µA at the desired IOUT(MAX). Considering 50 mV across RSET, a value of 300 Ωprovides  
approximately 166 µA of ISET current to the amplifier and mirror circuit. Care must be taken to limit the ISET  
current below 200 µA to avoid saturating the internal amplifier circuit.  
Buck average current limiting occurs when VILIMIT = 1 V. RILIMIT is calculated as 1 V × 300 Ω/ [ 0.5 × (3.3 A ×  
15 mΩ+ 0.7 mV) ] = 11.95 kΩ. A standard 11.8 kΩvalue is chosen.  
11.2.2.10 Cable Compensation Set-Point  
From 11-1 the total cable resistance to be accounted for is 300 mΩ.  
1. From Current Limit Set-Point RSNS and RSET have been determined as 15 mΩand 300 Ω, respectively.  
2. RWIRE = 300 mΩ  
3. ΔVOUT = (RSNS + RWIRE) × IBUS = (0.015 + 0.3) × 3 = 1.0395 V  
4. RIMON = (ΔVOUT × RSET × 2) / (IBUS × RSNS) = (1.0395 × 300 × 2) / (3.3 × 0.015) = 12.6 kΩ. A standard  
value of 12.7 kΩis selected.  
11.2.2.11 FAULT Resistor Selection  
The FAULT pins are open-drain output flags. The pins can be connected to the TPS2584x-Q1 VCC pin with 100  
kΩ resistors, or connected to another suitable I/O voltage supply if actively monitored by a USB HUB or MCU.  
The pins can be left floating if unused.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
11.2.3 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 10 µH, COUT_CSP = 66 µF,  
COUT_CSN = 0.1 µF, CBUS = 1 µF, TA = 25 °C.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN = 6V  
VIN = 13.5V  
VIN = 18V  
VIN = 36V  
VIN = 8.5V  
VIN = 13.5V  
VIN = 18V  
0.1  
1
OUT Current (A)  
4
0.1  
1
OUT Current (A)  
4
A001  
A002  
VOUT = 5.1 V  
fSW = 400 kHz  
VOUT = 5.1 V  
fSW = 2100 kHz  
11-2. Buck Only Efficiency  
11-3. Buck Only Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN = 6V  
VIN = 13.5V  
VIN = 18V  
VIN = 36V  
VIN = 8.5V  
VIN = 13.5V  
VIN = 18V  
0.1  
1
OUT Current (A)  
4
0.1  
1
OUT Current (A)  
4
A003  
A004  
VOUT = 5.1 V  
fSW = 400 kHz  
VOUT = 5.1 V  
fSW = 2100 kHz  
RSENS = 15 mΩ  
RSENS = 15 mΩ  
11-4. Efficiency With Sense Resistor  
11-5. Efficiency With Sense Resistor  
0.4  
0.1  
VIN = 6V  
VIN = 13.5V  
VIN = 18V  
Load = 1A  
Load = 2A  
Load = 3A  
0.08  
0.06  
0.04  
0.02  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.02  
-0.04  
0
0.5  
1
1.5  
OUT Current (A)  
2
2.5  
3
A005  
6
9
12  
15  
18  
21  
24  
VIN Voltage (V)  
27  
30  
33  
36  
A006  
VOUT = 5.1 V  
fSW = 400 kHz  
VOUT = 5.1 V  
fSW = 400 kHz  
11-6. Load Regulation  
11-7. Line Regulation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
VBUS,  
200mV/Div  
VBUS,  
200mV/Div  
Load Current,  
2A/Div  
Load Current,  
2A/Div  
200us/Div  
200us/Div  
VOUT = 5.1 V ILOAD = 0 A to 3.5A  
VOUT = 5.1 V  
ILOAD = 0.75 A to  
2.25A  
RIMON = 0 Ω  
RIMON = 0 Ω  
11-8. Load Transient Without Cable  
11-9. Load Transient Without Cable  
Compensation  
Compensation  
VBUS,  
500mV/Div  
VBUS,  
500mV/Div  
Load Current,  
2A/Div  
Load Current,  
2A/Div  
2ms/Div  
2ms/Div  
ILOAD = 0 A to 3.5A  
ILOAD = 0.75 A to  
2.25A  
RIMON = 13 kΩ  
RIMON = 13 kΩ  
11-10. Load Transient With Cable Compensation  
11-11. Load Transient With Cable Compensation  
6
5.5  
5
SW,  
5V/Div  
4.5  
4
VBUS,  
10mV/Div (AC coupled)  
Load = 0A  
Load = 1A  
Load = 2A  
Load = 3A  
Load = 3.5A  
3.5  
3
4
4.5  
5
5.5 6  
Input Voltage (V)  
6.5  
7
7.5  
2us/Div  
A007  
RIMON = 13 kΩ  
11-12. Dropout Characteristic  
11-13. 3.5-A Output Ripple  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
SW,  
5V/Div  
SW,  
5V/Div  
VBUS,  
10mV/Div (AC coupled)  
VBUS,  
10mV/Div (AC coupled)  
2us/Div  
2us/Div  
RIMON = 13 kΩ  
RIMON = 13 kΩ  
11-14. 100-mA Output Ripple  
11-15. No Load Output Ripple  
EN,  
5V/Div  
EN,  
5V/Div  
VIN  
5V/Div  
VIN  
5V/Div  
VBUS,  
5V/Div  
VBUS,  
5V/Div  
VCC,  
5V/Div  
VCC,  
5V/Div  
40ms/Div  
10ms/Div  
VIN = 0 V to 13.5 V  
ILOAD = 3A  
VIN = 13.5 V to 0 V  
ILOAD = 3A  
INT = 5.1 kΩ  
INT = 5.1 kΩ  
11-16. Startup Relate to VIN  
11-17. Shutdown Relate to VIN  
EN, 5V/Div  
EN,  
5V/Div  
VIN  
5V/Div  
VIN, 5V/Div  
VBUS, 2V/Div  
VBUS,  
2V/Div  
VCC, 2V/Div  
VCC,  
5V/Div  
40ms/Div  
40ms/Div  
EN = 0V to 5V  
ILOAD = 3A  
EN = 5V to 0V  
ILOAD = 3A  
INT = 5.1 kΩ  
INT = 5.1 kΩ  
11-18. Startup Relate to EN  
11-19. Shutdown Relate to EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
EN, 10V/Div  
EN, 10V/Div  
FAULT, 2V/Div  
Short removed  
FAULT, 2V/Div  
VBUS, 2V/Div  
VBUS, 2V/Div  
Load Current,  
5A/Div  
Load Current, 5A/Div  
40ms/Div  
100ms/Div  
EN to High  
VBUS = GND  
RLIMIT = 13 kΩ  
RLIMIT = 13 kΩ  
11-20. Enable into Short Without External FET 11-21. Short Circuit Recovery Without External  
FET  
EN, 10V/Div  
EN, 10V/Div  
FAULT, 2V/Div  
FAULT, 2V/Div  
VBUS, 1V/Div  
1load removed  
Load Current, 2A/Div  
VBUS, 1V/Div  
Load Current, 2A/Div  
100ms/Div  
100ms/Div  
EN to High  
VBUS = GND  
RLIMIT = 13 kΩ  
RLIMIT = 13 kΩ  
11-22. Enable Into 1-ΩLoad Without External  
11-23. 1-ΩLoad Recovery Without External FET  
FET  
EN, 10V/Div  
EN, 10V/Div  
FAULT, 2V/Div  
Short removed  
FAULT, 2V/Div  
VBUS, 2V/Div  
VBUS, 2V/Div  
Load Current, 2A/Div  
Load Current, 2A/Div  
100ms/Div  
100ms/Div  
EN to High  
VBUS = GND  
RLIMIT = 6.8 kΩ  
RLIMIT = 6.8 kΩ  
11-25. Short Circuit Recovery With External FET  
11-24. Enable Into Short With External FET  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
EN, 10V/Div  
EN, 10V/Div  
FAULT, 2V/Div  
FAULT, 2V/Div  
VBUS, 2V/Div  
VBUS hot short to  
GND  
VBUS hot short to  
GND  
VBUS, 2V/Div  
Load Current, 2A/Div  
Load Current, 5A/Div  
1ms/Div  
2ms/Div  
RLIMIT = 13 kΩ  
RLIMIT = 6.8 kΩ  
11-26. VBUS Hot Short to GND Without External  
11-27. VBUS Hot Short to GND With External  
FET  
FET  
FAULT, 2V/Div  
FAULT, 2V/Div  
VBUS, 5V/Div  
VBUS short to 18V BAT  
VBUS, 5V/Div  
2ms/Div  
20ms/Div  
NO LOAD  
NO LOAD  
INT = 5.1 kΩ  
INT = 5.1 kΩ  
11-28. VBUS Short to BAT With External FET  
11-29. VBUS Short to BAT Recovery With  
External FET  
FAULT, 2V/Div  
FAULT, 2V/Div  
VBUS, 5V/Div  
DP, 5V/Div  
DP short to 18V BAT  
DP, 5V/Div  
2ms/Div  
20ms/Div  
NO LOAD  
NO LOAD  
INT = 5.1 kΩ  
INT = 5.1 kΩ  
11-30. DP Short to BAT  
11-31. DP Short to BAT Recovery  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
12 Power Supply Recommendations  
The TPS2584x-Q1 is designed to operate from an input voltage supply range between 6 V and 36 V. This input  
supply must be able to withstand the maximum input current and maintain a stable voltage. The resistance of the  
input supply rail must be low enough that an input current transient does not cause a high enough drop at the  
TPS2584x-Q1 supply voltage that can cause a false UVLO fault triggering and system reset. If the input supply  
is located more than a few inches from the TPS2584x-Q1, additional bulk capacitance can be required in  
addition to the ceramic input capacitors. The amount of bulk capacitance is not critical, but a 47-μF or 100-μF  
electrolytic capacitor is a typical choice.  
13 Layout  
13.1 Layout Guidelines  
Layout is a critical portion of good power supply design. The following guidelines help users design a PCB with  
the best power conversion performance, thermal performance, and minimized generation of unwanted EMI. For  
more detailed EMC design consideration and test report, please see the PCB Layout and Parameters  
Recommendation for TPS2583X EMC Performance application report.  
1. Input capacitor: The input bypass capacitor, CIN, must be placed as close as possible to the IN and PGND  
pins. Grounding for both the input and output capacitors must consist of localized top side planes that  
connect to the PGND pin and PAD. A combination of different values and packages of capacitors can help  
improve the EMC performance (for example: 10 μF + 0.1 μF + 2.2 nF). Besides, the distance between the  
input filter section and the output power section must be at least 15mm to prevent the output high-frequency  
signal from coupling into the input filter. A 10-µF cap cross VIN and PGND pin on top of SW is suggested for  
TPS2584x-Q1.  
2. VCC bypass capacitor: Place bypass capacitors for VCC close to the VCC pin and ground the bypass  
capacitor to device ground.  
3. Use a ground plane in one of the middle layers as noise shielding and heat dissipation path.  
4. Connect the thermal pad to the ground plane. The QFN package has a thermal pad (PAD) connection that  
must be soldered down to the PCB ground plane. This pad acts as a heat-sink connection. The integrity of  
this solder connection has a direct bearing on the total effective RθJA of the application.  
5. Make VIN, VOUT and ground bus connections as wide as possible. This action reduces any voltage drops on  
the input or output paths of the converter and maximizes efficiency.  
6. Provide enough PCB area for proper heat sinking. As stated in the section, enough copper area must be  
used to ensure a low RθJA, commensurate with the maximum load current and ambient temperature. Make  
the top and bottom PCB layers with 2-ounce copper and no less than one ounce. Use an array of heat-  
sinking vias to connect the thermal pad (PAD) to the ground plane on the bottom PCB layer. If the PCB  
design uses multiple copper layers (recommended), thermal vias can also be connected to the inner layer  
heat-spreading ground planes.  
7. The SW pin connecting to the inductor must be as short as possible, and just wide enough to carry the load  
current without excessive heating. Short, thick traces or copper pours (shapes) bring a high current  
conduction capacity to minimize parasitic resistance, but also cause a larger parasitic capacitance. Thus a  
balance must be found between smaller parasitic resistance and larger parasitic capacitance. And the  
current path must be kept straight forward to the inductor, otherwise the L-shaped or T-shaped path makes a  
sudden change of the impedance which causes signal reflection and impacts the performance of EMC. The  
output capacitors must be placed close to the VOUT end of the inductor and closely grounded to PGND pin  
and exposed PAD. Besides, do not punch vias on SW lines. Using shielded inductors or molded inductors to  
reduce high-frequency radiation.  
8. Sense and Set Resistors: The RSNS and RSET resistors connect to the current sense amplifier inputs at the  
CSP and CSN/OUT pins. For best current limit and cable compensation accuracy; short, parallel traces give  
the best performance. If it is not possible to place RSNS and RSET near the CSP and CSN/OUT pins, TI  
recommends that the traces from sense resistor be routed in parallel and of similar lengths. A small filter  
capacitor in parallel with RSNS and a small filter capacitor from CSN/OUT to AGND help decouple noise.  
9. RILIMIT and RIMON resistors must be placed as close as possible to the ILIMIT and IMON pins and connected  
to AGND. If needed, these components can be placed on the bottom side of the PCB with signals routed  
through small vias.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
 
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
10. Trace routing of DP_IN, DM_IN, DP_OUT, and DM_OUT: Route these traces as micro-strips with nominal  
differential impedance of 90 Ω. Minimize the use of vias in the high-speed data lines. Keep the reference  
GND plane devoid from cuts or splits above the differential pairs to prevent impedance discontinuities.  
11. FAULT are open-drain outputs. They can be connected to the VCC pin via pull-up resistors. Suggested  
resistor value is 100 kΩ.  
12. The area enclosed by current loop of input side and output side must be as small as possible; the area  
enclosed by the BOOT circuit must be as small as possible.  
13. Power ground PGND and the signal ground AGND must be separated in the actual PCB layout.  
13.2 Ground Plane and Thermal Considerations  
TI recommends to use one of the middle layers as a solid ground plane. Ground plane provides shielding for  
sensitive circuits and traces. Ground plane also provides a quiet reference potential for the control circuitry. The  
PGND pins must be connected to the ground plane using vias right next to the bypass capacitors. PGND pin is  
connected to the source of the internal LS switch. The PGND net contains noise at switching frequency and can  
bounce due to load variations. PGND trace, as well as VIN and SW traces, must be constrained to one side of  
the ground plane. The other side of the ground plane contains much less noise and must be used for sensitive  
routes. AGND and PGND must be connected under the QFN package PAD.  
TI recommends to provide adequate device heat sinking by using the PAD of the IC as the primary thermal path.  
Use a minimum 2 row, 2 column "+" array of 12 mil thermal vias to connect the PAD to the system ground plane  
heat sink. The vias must be evenly distributed under the PAD. Use as much copper as possible, for system  
ground plane, on the top and bottom layers for the best heat dissipation. Use a four-layer board with the copper  
thickness for the four layers, starting from the top of 2 oz, 1 oz, 1 oz, 2 oz. Four layer boards with enough copper  
thickness provide low current conduction impedance, proper shielding and lower thermal resistance.  
The thermal characteristics of the TPS2584x-Q1 are specified using the parameter, θJA, which characterize the  
junction temperature of silicon to the ambient temperature in a specific system. Although the value of θJA is  
dependent on many variables, it still can be used to approximate the operating junction temperature of the  
device. To obtain an estimate of the device junction temperature, one can use the following relationship:  
TJ = PD x θJA + TA  
(15)  
where  
TJ = Junction temperature is in °C  
PD = VIN × IIN × (1 Efficiency) 1.1 × IOUT 2 × DCR in Watt  
DCR = Inductor DC parasitic resistance in Ω  
θJA = Junction to ambient thermal resistance of the device in °C/W  
TA = Ambient temperature in °C  
θJA is highly related to PCB size and layout, as well as environmental factors such as heat sinking and air flow.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
13.3 Layout Example  
EMI Filter  
VIN  
CHF  
CIN  
PGND  
USB Connector  
A4  
9
8
7
6
5
4
3
2
1
A1  
32  
RT  
BT  
LS_GD 10  
IMON 11  
31  
30  
SW  
ILIM 12  
CSN/OUT 13  
CSP 14  
29  
28  
27  
BUS 15  
26 PGND  
CFILT  
AGND 16  
A3  
25  
A2  
17  
18  
19  
20  
21  
22  
23  
24  
RSET  
CFILT  
COUT  
CFILT  
CFILT  
COUT  
VBUS  
RSNS  
RBUS  
COUT  
Top Trace/Plane  
Inner GND Plane  
Top  
Inner GND Plane  
Signal Layers  
VIA to Signal Layer  
VIA to GND Planes  
VIA to Strap  
Power and GND  
13-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
TPS25840-Q1, TPS25842-Q1  
ZHCSK92E SEPTEMBER 2019 REVISED MARCH 2022  
www.ti.com.cn  
14 Device and Documentation Support  
14.1 Documentation Support  
14.1.1 Related Documentation  
Texas Instruments, How to Improve USB2.0 Eye Diagram Using Long USB Cable application report  
Texas Instruments, TPS2583x-Q1 and TPS2584x-Q1 Short-to- Battery Application application report  
Texas Instruments, How to Pass MFi Overcurrent Protection Test With USB Charger and Switch Device  
application report  
Texas Instruments, PCB Layout and Parameters Recommendation for TPS2583X EMC Performance  
application report  
14.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
14-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TPS25840-Q1  
TPS25842-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
14.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
14.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
14.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
14.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
14.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS25840-Q1 TPS25842-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25840QCWRHBRQ1  
TPS25840QWRHBRQ1  
TPS25840QWRHBTQ1  
TPS25842QCWRHBRQ1  
TPS25842QWRHBRQ1  
TPS25842QWRHBTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
5000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
T25840  
SN  
SN  
T25840  
T25840  
T25842  
T25842  
T25842  
250  
RoHS & Green  
5000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
SN  
250  
RoHS & Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Mar-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS25840QCWRHBRQ1 VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
5000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.25  
5.25  
5.3  
5.3  
5.25  
5.25  
5.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
TPS25840QWRHBRQ1  
TPS25840QWRHBTQ1  
VQFN  
VQFN  
TPS25842QCWRHBRQ1 VQFN  
5000  
3000  
250  
TPS25842QWRHBRQ1  
TPS25842QWRHBTQ1  
VQFN  
VQFN  
5.25  
5.25  
5.25  
5.25  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS25840QCWRHBRQ1  
TPS25840QWRHBRQ1  
TPS25840QWRHBTQ1  
TPS25842QCWRHBRQ1  
TPS25842QWRHBRQ1  
TPS25842QWRHBTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
5000  
3000  
250  
367.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
367.0  
191.0  
367.0  
367.0  
191.0  
35.0  
38.0  
35.0  
35.0  
38.0  
35.0  
5000  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032R  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
0.5  
0.3  
0.3  
0.2  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
5.1  
4.9  
0.1 MIN  
(0.05)  
A
-
A
2
0
.
0
0
0
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.7 0.1  
2X 3.5  
8X (0.2)  
(0.2) TYP  
A2  
9
16  
A3  
28X 0.5  
8
17  
8X (0.375)  
A
A
2X  
33  
SYMM  
3.5  
EXPOSED  
THERMAL PAD  
SEE TERMINAL  
DETAIL  
1
24  
A4  
0.3  
32X  
A1  
0.2  
32  
25  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.5  
0.3  
32X  
0.05  
4223771/A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032R  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
(R0.05)  
TYP  
SYMM  
8X (0.575)  
32X (0.6)  
32  
25  
8X (0.2)  
A4  
A1  
32X (0.25)  
1
24  
4X  
(0.97)  
(
0.2) TYP  
VIA  
33  
SYMM  
4X  
(4.8)  
(1.26)  
28X (0.5)  
(2.225)  
TYP  
8
17  
A2  
A3  
9
16  
4X  
(0.97)  
4X (1.26)  
(4.8)  
(2.225) TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223771/A 06/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032R  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.26 TYP)  
9X ( 1.06)  
32  
8X (0.575)  
8X (0.2)  
32X (0.6)  
25  
32X (0.25)  
33  
1
24  
(1.26)  
TYP  
(R0.05) TYP  
SYMM  
(4.8)  
(2.225)  
TYP  
28X (0.5)  
8
17  
METAL  
TYP  
9
16  
SYMM  
(4.8)  
(2.225) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:18X  
4223771/A 06/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RHB0032AA  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.07 MIN  
(0.13)  
SECTION A-A  
A
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.7 0.1  
2X 3.5  
(0.2) TYP  
9
16  
EXPOSED  
THERMAL PAD  
28X 0.5  
8
(0.16) TYP  
17  
2X  
A
A
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
PIN 1 ID  
32  
25  
SYMM  
0.5  
0.3  
(0.25)  
TYP  
32X  
4227186/A 10/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032AA  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
SYMM  
25  
32  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.97)  
(0.63)  
TYP  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(0.63) TYP  
(0.97)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4227186/A 10/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032AA  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
9X ( 1.06)  
(1.26)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(1.26)  
SYMM  
33  
(4.8)  
METAL  
TYP  
17  
8
(R0.05) TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4227186/A 10/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS25842-Q1

USB Type-A SDP/CDP 汽车充电端口转换器电缆补偿

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25842QCWRHBRQ1

USB Type-A SDP/CDP 汽车充电端口转换器电缆补偿 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25842QWRHBRQ1

USB Type-A SDP/CDP 汽车充电端口转换器电缆补偿 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25842QWRHBTQ1

USB Type-A SDP/CDP 汽车充电端口转换器电缆补偿 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25846-Q1

具有客户端模式支持的 USB BC1.2 5V 3.5A 输出、36V 输入同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25846QCWRHBRQ1

具有客户端模式支持的 USB BC1.2 5V 3.5A 输出、36V 输入同步降压转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25846QWRHBRQ1

具有客户端模式支持的 USB BC1.2 5V 3.5A 输出、36V 输入同步降压转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25846QWRHBTQ1

具有客户端模式支持的 USB BC1.2 5V 3.5A 输出、36V 输入同步降压转换器 | RHB | 32 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25850-Q1

具有可编程电流限制和热管理功能的双路 3A USB Type-C 充电端口控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25850QRPQRQ1

具有可编程电流限制和热管理功能的双路 3A USB Type-C 充电端口控制器 | RPQ | 25 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25851-Q1

具有甩负荷和插头极性检测功能的 2.2MHz 双路 3A USB Type-C® 充电端口控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25851QRPQRQ1

具有甩负荷和插头极性检测功能的 2.2MHz 双路 3A USB Type-C® 充电端口控制器 | RPQ | 25 | -45 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI