TPS25865-Q1 [TI]

具有甩负荷功能的双路 2.4A USB Type-A 充电端口控制器;
TPS25865-Q1
型号: TPS25865-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有甩负荷功能的双路 2.4A USB Type-A 充电端口控制器

控制器
文件: 总53页 (文件大小:3506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
TPS25864-Q1 TPS25865-Q1 具有热管理和电缆补偿功能的EMI USB Type-  
A 充电端口转换器  
• 符USB-IF 标准  
1 特性  
– 自DCP 模式  
• 符合面向汽车应用AEC-Q100 标准:  
• 符BC1.2 YD/T 1591 2009 要求的短路  
模式  
– 温度等1TA 40°C +125°C  
HBM ESD 分类等H2  
1.2V 模式  
CDM ESD 分类等C5  
2.7V 分压3 模式  
针对超EMI 要求进行了优化:  
• 甩负荷和可编TA  
• 器TJ 范围40°C +150°C  
– 符CISPR25 5 类标准  
HotRod封装可更大限度地减少开关节点振铃  
– 展频可降低峰值发射  
2 应用  
• 同步降压稳压器  
USB 充电端口  
USB 媒体中心  
400kHz 下的高效率VIN = 13.5VIPA_BUS  
2.4A IPB_BUS = 2.4A 时效率95.2%  
18m/10mRDS(ON) 降压稳压MOSFET  
– 工作电压范围5.5V 26V可承36V 输入  
– 频率可调节200kHz 800kHz (TPS25865-  
Q1)  
=
3 说明  
TPS2586x-Q1 是一款集成式 USB 充电端口解决方  
其中包括一个同步高效直流/直流转换器而且它  
还集成了检测和控制功能用于在双 Type-A 端口上实  
USB 电池充电规1.2。  
– 频率可调节200kHz 3MHz (TPS25864-Q1)  
– 具有展频频谱抖动FPWM  
器件信息(1)  
– 可选输出电压5.1V5.17V5.3V5.4V  
• 内部电源路径:  
器件型号  
封装  
封装尺寸标称值)  
3.50mm × 4.50mm  
3.50mm × 4.50mm  
TPS25865-Q1  
TPS25864-Q1  
VQFN-HR (25)  
VQFN-HR (25)  
7m/7mRDS(ON) USB MOSFET  
– 具有高精度USB 端口的电流限制2.73A 下  
±10%  
(1) 如需了解所有不同可用选件的详细器件型号请参阅数据表末  
尾的可订购产品附录。  
OUT用于辅助负载5.1V200mA 电源  
• 线路压降补偿2.4A 负载下90mV  
100  
95  
90  
85  
80  
75  
70  
VIN=6V  
400KHz  
65  
60  
VIN=13.5V 400KHz  
VIN=18V 400KHz  
0.1  
1
2
3
4
4.8  
Load Current(A)  
简化版原理TPS25864-Q1TPS25865-Q1  
效率与输出电流间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFP2  
 
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
Table of Contents  
10.2 Functional Block Diagram.......................................18  
10.3 Feature Description.................................................19  
10.4 Device Functional Modes........................................30  
11 Application and Implementation................................ 31  
11.1 Application Information............................................31  
11.2 Typical Applications.................................................31  
12 Power Supply Recommendations..............................40  
13 Layout...........................................................................40  
13.1 Layout Guidelines................................................... 40  
13.2 Layout Example...................................................... 41  
13.3 Ground Plane and Thermal Considerations............41  
14 Device and Documentation Support..........................43  
14.1 接收文档更新通知................................................... 43  
14.2 支持资源..................................................................43  
14.3 Trademarks.............................................................43  
14.4 Electrostatic Discharge Caution..............................43  
14.5 术语表..................................................................... 43  
15 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings ....................................... 7  
8.2 ESD Ratings .............................................................. 7  
8.3 Recommended Operating Conditions ........................8  
8.4 Thermal Information ...................................................9  
8.5 Electrical Characteristics ............................................9  
8.6 Timing Requirements ............................................... 11  
8.7 Switching Characteristics .........................................12  
8.8 Typical Characteristics..............................................13  
9 Parameter Measurement Information..........................16  
10 Detailed Description....................................................17  
10.1 Overview.................................................................17  
Information.................................................................... 44  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (March 2021) to Revision B (September 2021)  
Page  
• 添加TPS25864-Q1 信息.................................................................................................................................1  
Changes from Revision * (November 2020) to Revision A (March 2021)  
Page  
• 向部分添加EMI 要求要点....................................................................................................................... 1  
• 已更新文档标题...................................................................................................................................................1  
Added 11-3 to the Application Curves section............................................................................................. 35  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
5 说明)  
TPS2586x-Q1 是一款用于USB 端口应用的高度集成USB Type-A 充电控制器。  
TPS2586x-Q1 集成了一个具有内部功率 MOSFET 的单片、同步、整流、降压开关模式转换器和两个具有充电端  
口自动检测功能的 USB 限流开关。TPS2586x-Q1 提供了一种紧凑型解决方案可在宽输入电源电压范围内实现  
出色的负载和线路调节。该同步降压稳压器具有峰值电流模式控制而且采用了内部补偿可简化设计。对于  
TPS25865-Q1FREQ 引脚上有一个电阻器可用于在 200kHz 800kHz 之间设置开关频率。对TPS25864-  
Q1FREQ 引脚上有一个电阻器可用于在 200kHz 3MHz 之间设置开关频率。在低于 400kHz 的频率下运行  
可实现更高的系统效率在高于 2.1MHz 的频率下运行则可以避开 AM 无线电频带并且能够使用较小的电感  
器。  
TPS2586x-Q1 集成了标准电池充电1.2 ),可提供 Type-A USB 器件利用 USB 数据线信号来确USB 端  
口的拉电流能力所需的电气特性。TPS2586X-Q1 还集成了一个 OUT 电源开关可为辅助负载提供最大  
200mA 的电流。由于系统集成度高且占用空间小该器件特别适用于双端口应用。由于系统集成度高且占用空间  
该器件特别适用于双端口应用。  
TPS2586x-Q1 支持智能热管理。USB 输出电压可以根据温度检测通过 TS 引脚进行调节。TPS2586x-Q1 必须在  
TS 引脚上连接一个 NTC 热敏电阻以监控环境温度或 PCB 板温度具体取决于 NTC 热敏电阻在 USB 充电模块  
PCB 板中的放置位置。选择不同NTC 热敏电阻和底部串联电阻可以改变甩负荷的温度阈值。  
TPS2586x-Q1 具有四种可选的 USB 输出电压设置5.1V5.17V5.3V 5.4VTPS2586x-Q1 集成了一个精  
密电流检测放大器用于实现电缆压降补偿USB 端口电流限制。电缆补偿仅在输出电压设置为 5.17V 时可用。  
电缆补偿电压在 2.4A 输出电流时为 90mV。电缆补偿可使降压稳压器输出电压随负载电流线性改变以抵消由于  
汽车电缆布线中的导线电阻引起的压降从而帮助便携式设备在重载下实现最佳电流和电压充电。无论负载电流  
如何在连接的便携式器件上测得的总线电压都保持大致恒定这样便携式器件的电池充电器就能够保持理想  
工作状态。  
TPS2586x-Q1 针对 USB 充电和系统运行提供多种安全特性包括外部负热敏电阻监控、逐周期电流限制、断续  
短路保护、欠压锁定、BUS 过流、OUT 过流以及裸片过热保护。  
该器件系列可提25 3.5mm × 4.5mm QFN 封装。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6 Device Comparison Table  
DEVICE NUMBER  
TPS25864-Q1  
TPS25865-Q1  
Type-A ports number  
Dual  
Yes  
Dual  
Yes  
NTC Thermistor Input (TS)  
DC/DC converter switching frequency range  
BC1.2 DCP  
200 kHz to approximately 3 MHz  
200 kHz to approximately 800 kHz  
Yes  
Yes  
Yes  
Yes  
Yes  
Apple or Samsung charging scheme  
Cable compensation  
Yes  
Yes(1)  
Selectable output voltage  
External clock synchronization  
Yes  
Yes, range 200 kHz to approximately 3  
MHz  
Yes, range 200 kHz to approximately 800  
kHz  
Adjustable output short current limit  
FPWM/PFM  
Yes  
Yes  
FPWM  
FPWM  
DCDC always ON (EN pull High)  
Spread spectrum  
Yes  
No  
Yes  
Yes  
Package  
QFN-25 3.5 mm × 4.5 mm  
QFN-25 3.5 mm × 4.5 mm  
(1) VSET short to GND to set 5.17-V output voltage. Compensation voltage is 90 mV when either USB port A or USB port B output 2.4-A  
current.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7 Pin Configuration and Functions  
PGND SW  
IN  
BOOT  
21  
VSET  
1
24  
23  
22  
TS  
BIAS  
EN/UV  
2
20  
3
FREQ/SYNC  
PB_DP  
19  
18  
PA_DP  
4
5
PA_DM  
PB_DM  
PGND  
CFG3  
NC  
17  
16  
25  
11  
6
7
AGND  
CFG1  
15  
14  
NC  
8
10  
12  
9
13  
CFG2  
PB_BUS  
OUT  
PA_BUS SENSE  
7-1. TPS2586x-Q1 RPQ Package 25-Pin (QFN) Top View  
7-1. Pin Functions for TPS2586x-Q1 RPQ Package  
PIN  
TYPE (1)  
DESCRIPTION  
NAME  
NO.  
Output Voltage Setting. Short to GND to set the 5.17-V output voltage. Float or pull up to  
VSENSE to set 5.1-V output voltage. Tie to GND through a 40.2-Kresistor to set 5.3-V  
output voltage. Tie to GND through a 80.6-Kresistor to set 5.4-V output voltage.  
VSET  
1
A
TS  
2
3
A
P
Temperature Sense terminal. Connect the TS input to the NTC thermistor.  
Input of internal bias supply. Must connect to the SENSE pin directly. Power the internal  
circuit.  
BIAS  
PA_DP  
PA_DM  
AGND  
CFG1  
NC  
4
5
A
A
P
A
A
A
P
D+ data line. Connect to USB Port A connector.  
D- data line. Connect to USB Port A connector.  
Analog ground terminal. Connect AGND to PGND.  
Configuration pin. For internal circuit, must connect a 5.1-KΩresistor to AGND.  
Makes no electrical connection.  
6
7
8, 14  
9
CFG2  
Configuration pin. For internal circuit, must connect a 11.8-KΩresistor to AGND.  
Port A BUS output.  
PA_BUS  
SENSE  
PB_BUS  
OUT  
10  
Output Voltage Sensing. External load on this pin is strictly prohibited. Connect to the  
other side of the external inductor.  
11  
12  
13  
15  
P
P
P
A
Port B BUS output.  
Output pin. Provide 5.1-V voltage to power external load with maximum 200-mA capability.  
The voltage follows the VSET setting.  
CFG3  
Configuration pin. For internal circuit, must connect a 5.1-KΩresistor to AGND.  
Power Ground terminal. Connected to the source of LS FET internally. Connect to system  
ground, AGND, and the ground side of the CIN and COUT capacitors. The path to CIN must  
be as short as possible.  
PGND  
16, 24, 25  
P
PB_DM  
PB_DP  
17  
18  
A
A
D- data line. Connect to USB port B connector.  
D+ data line. Connect to USB port B connector.  
Switching Frequency Program and External Clock Input. Connect a resistor from FREQ to  
GND to set the switching frequency.  
FREQ/ SYNC  
EN/UV  
19  
20  
A
A
Enable pin. Precision enable controls the regulator switching action. Do not float. High =  
on, Low = off. Can be tied to SENSE directly. Precision enable input allows adjustable  
UVLO by external resistor divider if tie to IN pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7-1. Pin Functions for TPS2586x-Q1 RPQ Package (continued)  
PIN  
TYPE (1)  
DESCRIPTION  
NAME  
NO.  
Bootstrap capacitor connection. Internally, the BOOT is connected to the cathode of the  
boost-strap diode. Connect the 0.1-μF bootstrap capacitor from SW to BOOT.  
BOOT  
21  
P
Input power. Connected to external DC supply. Expected range of bypass capacitors is 1  
μF to 10 μF, connect from IN to PGND. Can withstand up to 36 V without damage but  
operating is suspended if VIN is above the 26-V OVP threshold.  
IN  
22  
23  
P
P
Switching output of the regulator. Internally connected to source of the HS FET and drain  
of the LS FET. Connect to output inductor.  
SW  
(1) A = Analog, P = Power, G = Ground.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of -40°C to +150°C and AGND = PGND (unless otherwise  
noted)(1)  
PARAMETER  
IN to PGND  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
-0.3  
MAX  
40(2)  
35  
6
UNIT  
IN to SW  
BIAS, SENSE to PGND  
EN to AGND  
Input voltage  
V
11  
6
FREQ/SYNC to AGND  
VSET to AGND  
6
AGND to PGND  
0.3  
35  
35  
6
0.3  
0.3  
3.5  
0.3  
0.3  
0.3  
0.3  
0.3  
35  
-40  
SW to PGND  
SW to PGND (less than 10 ns transients)  
BOOT to SW  
Output voltage  
Voltage range  
V
V
PA_BUS, PB_BUS, OUT to PGND  
CFG1, CFG2, CFG3 to AGND  
DP, DM to AGND  
6
6
6
Voltage range  
I/O current  
TJ  
TS to AGND  
6
V
DP to DM in BC1.2 DCP Mode  
Junction temperature  
Storage temperature  
35  
150  
150  
mA  
°C  
°C  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VIN rising slew rate below 20V/ms if in 0-V to 40-V transient, room temperature, maximum 500-uF cap at SENSE.  
8.2 ESD Ratings  
VALUE  
±2000(2)  
±750(3)  
±750(3)  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD) Electrostatic discharge  
Corner pins  
V
Charged device model (CDM), per  
AEC Q100-011  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
 
 
 
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of -40°C to 150°C. Voltages are with respect to GND (unless  
otherwise noted)  
MIN  
NOM  
MAX UNIT  
IN to PGND  
5.5  
26  
EN  
0
VSENSE  
VI  
Input voltage  
V
TS  
0
VSENSE  
3.3  
FREQ/SYNC when driven by external clock  
0
VO  
Output voltage  
Output current  
PA_BUS, PB_BUS, OUT  
5
5.5  
V
A
A
PA_BUS, PB_BUS  
0
0
2.4  
OUT  
0.2  
IO  
DP to DM Continuous current in BC1.2 DCP Mode  
15 mA  
15  
0
RVSET  
100  
kΩ  
kΩ  
uF  
REXT  
External resistnace  
External capacitance  
RFREQ  
0
100  
CEXT  
TJ  
CBOOT  
0.1  
Operating junction temperature  
150  
°C  
40  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.4 Thermal Information  
TPS2586x-Q1  
THERMAL METRIC(1) (2)  
RPQ (VQFN)  
25 PINS  
37.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.2  
8.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
8.8  
ΨJB  
RθJC(bot)  
20.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Power rating at a specific ambient temperature TA should be determined with a maximum junction temperature of 150 °C.  
8.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW = 400  
kHz, VSET short to GND unless otherwise stated. Minimum and maximum limits are specified through test, design or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE (IN PIN)  
Shutdown quiescent current;  
measured at IN pin.  
ISD  
IQ  
34  
63  
200  
uA  
µA  
VEN/UV = 0, -40TJ 85℃  
VEN = VSENSE, CFG1&CFG3 = open,  
-40TJ 85℃  
Operating quiescent current (DCDC  
disable)  
Voltage on VIN pin when buck  
regulator stops switching  
VOVLO_R  
26.6  
1.26  
27.5  
0.5  
28.4  
V
V
VOVLO_HYS  
Hysteresis  
ENABLE AND UVLO (EN/UVLO PIN)  
Rising threshold for not in External  
UVLO  
VEN/UVLO_R  
VEN/UV rising threshold  
VEN/UVLO falling  
1.3  
1.34  
V
VEN/UVLO_HYS  
BOOTSTRAP  
VBTST_UVLO  
RBOOT  
Hysteresis  
100  
mV  
Bootstrap voltage UVLO threshold  
Bootstrap pull-up resistence  
2.2  
7.7  
V
VSENSE - BOOT = 0.1 V  
BUCK REGULATOR  
IL-SC-HS  
IL-SC-LS  
IL-NEG-LS  
IZC  
High-side current limit  
BOOT - SW = 5 V  
SENSE = 5 V  
10.2  
8.5  
-7  
11.4  
10  
12.6  
11.5  
-3  
A
A
A
A
Low-side current limit  
Low-side negative current limit  
Zero current detector threshold  
SENSE = 5 V  
-5  
0.01  
CFG1 or CFG3 pulldown resistance =  
5.1KΩ, VSET float or pull up to  
VSENSE, TJ = 25℃  
-1%  
-1%  
5.1  
+1%  
+1%  
V
V
CFG1 or CFG3 pulldown resistance =  
5.1KΩ, VSET short to AGND, TJ =  
25℃  
5.17  
VSENSE  
BUCK Output voltage  
CFG1 or CFG3 pulldown resistance =  
5.1KΩ, RVSET = 40.2K, TJ = 25℃  
-1%  
-1%  
5.3  
5.4  
+1%  
+1%  
V
V
CFG1 or CFG3 pulldown resistance =  
5.1KΩ, RVSET = 80.6K, TJ = 25℃  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW = 400  
kHz, VSET short to GND unless otherwise stated. Minimum and maximum limits are specified through test, design or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CFG1 or CFG3 pulldown resistance =  
Rd, -40TJ 150℃  
VSENSE  
BUCK Output voltage accuracy  
2
%
V
2  
VSENSE rising, CFG1 or CFG3 pull  
down resistance = 5.1KΩ  
SENSE input level to enable DCDC  
switching  
VDCDC_UVLO_R  
VDCDC_UVLO_HYS  
VDROP  
3.85  
4
0.4  
300  
18  
4.15  
VSENSE falling, CFG1 or CFG3 pull  
down resistance = 5.1KΩ  
Hysteresis  
V
VIN = VSENSE + VDROP, VSENS = 5.1 V,  
IPA_BUS = 2.4A, IPB_BUS = 2.4A  
Dropout voltage ( VIN-VSENSE  
)
mV  
mΩ  
mΩ  
IPA_BUS = 2.4 A, IPB_BUS = 2.4 A, BOOT  
- SW = 5 V, -40TJ 150℃  
RDS-ON-HS  
RDS-ON-LS  
High-side MOSFET ON-resistance  
Low-side MOSFET ON-resistance  
34  
IPA_BUS = 2.4 A, IPB_BUS = 2.4 A,  
VSENSE = 5 V, -40TJ 150℃  
9.5  
18.5  
POWER SWITCH AND CURRENT LIMIT  
USB Load Switch MOSFET ON-  
resistance  
IPA_BUS = 2.4 A, IPB_BUS = 2.4 A; -40℃  
TJ 150℃  
RDS-ON_USB  
RDS-ON_OUT  
VUSBLS_UVLO_R  
6.8  
230  
4.1  
11.73  
4.25  
mΩ  
OUT Load Switch MOSFET ON-  
resistance  
IOUT = 0.3 A  
mΩ  
Voltage on SENSE pin that will enable  
the USB Load Switch  
3.95  
V
VUSBLS_UVLO_HYS Hysteresis  
200  
4376  
4376  
2735  
2735  
450  
mV  
mA  
mA  
mA  
mA  
mA  
3938  
4157  
2461  
2598  
390  
4814  
4595  
3009  
2872  
495  
BUS output short-circuit secondary  
current limit  
IOS_HI  
TJ = 25℃  
IOS_BUS  
IOS_OUT  
BUS output short-circuit current limit  
OUT output short-circuit current limit  
TJ = 25℃  
Short circuit current limit  
CABLE COMPENSATION VOLTAGE  
IPA_BUS or IPB_BUS = 2.4A, VSET= GND  
(set 5.17V output)  
VDROP_COM  
Cable compensation voltage  
70  
90  
70  
110  
200  
mV  
BC 1.2 DOWNSTREAM CHARGING PORT  
RDPM_SHORT  
DIVIDER 3 MODE  
VDP_DIV3  
DP and DM shorting resistance  
Ω
DP output voltage  
2.57  
2.57  
24  
2.7  
2.7  
30  
2.84  
2.84  
36  
V
V
VDM_DIV3  
DM output voltage  
DP output impedance  
DM output impedance  
RDP_DIV3  
IDP_IN = 5 µA  
IDM_IN = 5 µA  
kΩ  
kΩ  
RDM_DIV3  
24  
30  
36  
1.2-V MODE  
VDP_1.2V  
DP output voltage  
1.12  
1.12  
84  
1.2  
1.2  
1.26  
1.26  
126  
126  
V
V
VDM_1.2V  
DM output voltage  
DP output impedance  
DM output impedance  
RDP_1.2V  
100  
100  
IDP_IN = 5 µA  
IDM_IN = 5 µA  
kΩ  
kΩ  
RDM_1.2V  
84  
FREQ/SYNC THRESHOLD  
FREQ/SYNC high threshold for  
Amplitude of SYNC clock AC signal  
(measured at FREQ/SYNC pin)  
VIH_FREQ/SYNC  
2
V
V
external clock synchronization  
FREQ/SYNC low threshold for  
external clock synchronization  
Amplitude of SYNC clock AC signal  
(measured at FREQ/SYNC pin)  
VIL_FREQ/SYNC  
0.8  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW = 400  
kHz, VSET short to GND unless otherwise stated. Minimum and maximum limits are specified through test, design or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
TEMPERATURE SENSING  
VWARN_HIGH Temperature warning threshold rising As percentage to VSENSE  
VWARN_HYS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.475  
0.5  
0.1  
0.525  
0.683  
V/V  
V/V  
Hysteresis  
As percentage to VSENSE  
As percentage to VSENSE  
As percentage to VSENSE  
Temperature Hot assert threshold  
rising to reduce SENS voltage  
VHOT_HIGH  
VHOT_HYS  
VR_VSENS  
0.618  
0.65  
0.1  
V/V  
V/V  
V
Hysteresis  
VSENSE voltage decay when  
Temperature Hot assert  
TS pin voltage rise above 0.65 *  
VSENSE  
4.77  
THERMAL SHUTDOWN  
TLS_SD USB Load Switch Over Temperature  
Shutdown threshold  
Recovery threshold  
Shutdown threshold  
Recovery threshold  
160  
150  
166  
154  
°C  
°C  
°C  
°C  
TSD  
Thermal shutdown  
8.6 Timing Requirements  
Over the recommended operating junction temperature range of -40 °C to 150 °C (unless otherwise noted)  
MIN NOM MAX UNIT  
BUS DISCHARGE  
POWER SWITCH TIMING  
Deglitch time for USB power switch current  
limit enable  
tIOS_HI_DEG  
tIOS_HI_RST  
tr_USB  
USB port enter overcurrent  
1.228 2.048 2.867 ms  
MFI OCP reset timing  
9.6  
16 22.4 ms  
CL = 1 µF, RL = 100 Ω(measured from 10%  
to 90% of final value)  
PA_BUS, PB_BUS voltage rise time  
PA_BUS, PB_BUS voltage fall time  
1.67  
ms  
ms  
CL = 1 µF, RL = 100 Ω(measured from 90%  
to 10% of final value)  
tf_USB  
0.49  
ton_USB  
toff_USB  
PA_BUS, PB_BUS voltage turnon-time  
PA_BUS, PB_BUS voltage turnoff-time  
2.59  
2.07  
ms  
ms  
CL = 1 µF, RL = 100 Ω  
CL = 1 µF, RL = 100 Ω  
PA_BUS, PB_BUS short-circuit response  
time  
tIOS_USB  
tr_OUT  
1
us  
CL = 1 µF, RL = 1 Ω  
CL = 1 µF, RL = 100 Ω(measured from 10%  
to 90% of final value)  
OUT voltage rise time  
OUT voltage fall time  
0.12  
0.16  
0.2 0.28 ms  
0.22 0.28 ms  
CL = 1 µF, RL = 100 Ω(measured from 90%  
to 10% of final value)  
tf_OUT  
ton_OUT  
OUT voltage turnon-time  
OUT voltage turnoff-time  
OUT short-circuit response time  
0.6  
1.1 1.65 ms  
0.54 0.62 ms  
CL = 1 µF, RL = 100 Ω  
CL = 1 µF, RL = 100 Ω  
CL = 1 µF, RL = 1 Ω  
toff_OUT  
0.45  
tIOS_OUT  
1.4  
4
us  
HICCUP MODE  
OUT, PA_BUS, PB_BUS output hiccup mode  
ON time  
THICP_ON  
THICP_OFF  
OC, VOUT, VPA_BUS, VPB_BUS drop 10%  
2.94  
367  
4.1 5.42 ms  
524 715 ms  
OUT, PA_BUS, PB_BUS output hiccup mode OC, OUT, PA_BUS, PB_BUS connect to  
OFF time  
GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
MAX UNIT  
8.7 Switching Characteristics  
Over the recommended operating junction temperature range of -40 °C to 150 °C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
SW (SW PIN)  
TON_MIN  
Minimum turnon-time  
84  
6
ns  
µs  
Maximum turnon-time, HS timeout in  
dropout  
TON_MAX  
TOFF_MIN  
Dmax  
Minimum turnoff time  
81  
98  
ns  
%
Maximum switch duty cycle  
TIMING RESISTOR AND INTERNAL CLOCK  
Switching frequency range using  
fSW_RANGE  
200  
200  
800  
kHz  
kHz  
9 kΩRFREQ99 kΩ  
FREQ mode (TPS25865-Q1)  
Switching frequency range using  
fSW_RANGE  
3000  
9 kΩRFREQ99 kΩ  
FREQ mode (TPS25864-Q1)  
228  
360  
253  
400  
278  
440  
kHz  
kHz  
kHz  
RFREQ = 80.6 kΩ  
RFREQ = 49.9 kΩ  
RFREQ = 8.45 kΩ  
fSW  
Switching frequency  
fSW  
Switching frequency (TPS25864-Q1)  
1980  
2200  
2420  
Frequency span of spread spectrum  
operation  
FSSS  
±6  
%
EXTERNAL CLOCK(SYNC)  
Switching frequency using external  
fFREQ/SYNC  
clock on FREQ/SYNC pin (TPS25865-  
Q1)  
200  
200  
800  
kHz  
kHz  
Switching frequency using external  
clock on FREQ/SYNC pin (TPS25864-  
Q1)  
fFREQ/SYNC  
3000  
fSYNC = 400kHz, VFREQ/SYNC  
>
TSYNC_MIN  
TLOCK_IN  
Minimum SYNC input pulse width  
PLL lock time  
VIH_FREQ/SYNC, VFREQ/SYNC < VIL_FREQ/  
100  
100  
ns  
µs  
SYNC  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.8 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 3.3 µH, CSENSE = 141 µF, CPA_BUS  
= 1 µF, CPB_BUS = 1 µF, TA = 25 °C.  
70  
60  
50  
40  
30  
20  
1.36  
1.34  
1.32  
1.3  
-40C  
25C  
150C  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
1.28  
1.26  
4
8
12  
16 20  
Input Voltage (V)  
24  
28  
32  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-2. Precision Device Enable Threshold  
VEN/EULVO = 0 V  
8-1. Shutdown Quiescent Current  
5.2  
5.19  
5.18  
5.17  
5.16  
5.15  
5.14  
5.46  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
5.44  
5.42  
5.4  
5.38  
5.36  
5.34  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
VSET = GND  
RVSET = 80.6 kΩ  
8-3. VSENSE Voltage vs Junction Temperature  
8-4. VSENSE Voltage vs Junction Temperature  
3.94  
11.7  
-40C  
25C  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
3.96  
3.98  
4
150C  
11.6  
11.5  
11.4  
11.3  
11.2  
4.02  
4.04  
4.06  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
8-6. High-side Current Limit vs Input Voltage  
VEN/EULVO = VSENSE  
8-5. DCDC UVLO Threshold  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 3.3 µH, CSENSE = 141 µF, CPA_BUS  
= 1 µF, CPB_BUS = 1 µF, TA = 25 °C.  
10.3  
10.2  
10.1  
10  
40  
35  
30  
25  
20  
15  
-40C  
25C  
150C  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
9.9  
9.8  
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-7. Low-side Current Limit vs Input Voltage  
IPA_BUS = 2.4 A  
IPB_BUS = 2.4 A  
8-8. High-side MOSFET on Resistance vs Junction  
Temperature  
18  
16  
14  
12  
520  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
500  
480  
460  
440  
420  
400  
10  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
8
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-10. OUT Power Switch Current Limit vs Junction  
IPA_BUS = 2.4 A  
IPB_BUS = 2.4 A  
Temperature  
8-9. Low-side MOSFET on Resistance vs Junction  
Temperature  
100  
96  
92  
88  
84  
80  
9.6  
8.8  
8
7.2  
6.4  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
5.6  
4.8  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-12. USB Power Switch On Resistance vs Junction  
IPA/B_BUS = 2.4 A  
VSET = GND  
Temperature  
8-11. Cable Compensation Voltage vs Junction Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 3.3 µH, CSENSE = 141 µF, CPA_BUS  
= 1 µF, CPB_BUS = 1 µF, TA = 25 °C.  
400  
360  
320  
280  
240  
200  
160  
424  
416  
408  
400  
392  
384  
376  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-13. OUT Power Switch On Resistance vs Junction  
RFREQ = 49.9 kΩ  
Temperature  
8-14. Switching Frequency vs Junction Temperature  
0.72  
0.7  
4.82  
4.8  
4.78  
4.76  
4.74  
4.72  
4.7  
0.68  
0.66  
0.64  
0.62  
0.6  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-15. TS Temperature Hot Threshold vs Junction  
8-16. SENSE Voltage in Temperature Hot vs Junction  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9 Parameter Measurement Information  
OUT  
90%  
R(L)  
tr  
C(L)  
tf  
V(OUT)  
10%  
9-1. OUT Rise-Fall Test Load Figure  
9-2. Power-On and Power-Off Timing  
V(EN)  
50%  
50%  
5 V  
ton  
toff  
t(DCHG)  
V(OUT)  
90%  
V(OUT)  
0 V  
10%  
9-3. OUT Discharge During Mode Change  
9-4. Enable Timing, Active-High Enable  
IOS  
I(OUT)  
t(IOS)  
9-5. Output Short-Circuit Parameters  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
The TPS2586x-Q1 is a full-featured solution for implementing a compact USB charging port with support BC1.2  
standards. The device contain an efficient buck regulator power source. For dual Type-A ports, the TPS2586x-  
Q1 is capable of providing up to 5 A of output current at 5.17 V (nominal), 2.4 A for each Type-A port, 200 mA for  
the OUT pin. The TPS2586x-Q1 is an automotive-focused USB charging controller and offers a robust solution,  
so TI recommends to add adequate protection (TVS3300 equivalent or better but auto qualified) on the IN pin to  
protect systems from high-power transients or lightning strikes.  
System designers can optimize efficiency or solution size through careful selection of switching frequency in the  
range of 200 kHz2400 kHz with sufficient margin to operate above or below the AM radio frequency band.  
TPS2586x-Q1 protects itself with internal thermal sensing circuits that monitor the operating temperature of the  
junction and disables operation if the temperature exceeds the Thermal Shutdown threshold, so in high ambient  
temperature application, the 5-A output current capability is not assured. In the TPS2586x-Q1, the buck regulator  
operates in forced PWM mode, ensuring fixed switching frequency regardless of load current. Spread-spectrum  
frequency dithering reduces harmonic peaks of the switching frequency, potentially simplifying EMI filter design  
and easing compliance.  
Current sensing through a precision FET current sense amplifier on the USB port enables an accurate  
overcurrent limit setting and linear cable compensation to overcome IR losses when powering remote USB ports.  
The TPS2586x-Q1 includes a TS input for user-programmable thermal protection using a negative temperature  
coefficient (NTC) resistor.  
The device can support the legacy Battery Charging Specification Rev 1.2 (BC1.2) DCP mode with an auto-  
detect feature to charge not only BC1.2-compliant handheld devices, but also popular phones and tablets that  
incorporate their own propriety charging algorithm.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.3 Feature Description  
10.3.1 Power-Down or Undervoltage Lockout  
The device is in low power mode if the IN terminal voltage is less than VUVLO, so the part is considered dead  
and all the terminals are high impedance. Once the IN voltage rises above the VUVLO threshold, the IC enters  
sleep mode or active mode, depending on the EN/UVLO voltage.  
The voltage on the EN/UVLO pin controls the ON/OFF operation of the TPS2586x-Q1. An EN/UVLO pin voltage  
higher than VEN/UVLO-H is required to start the internal regulator. The internal USB monitoring circuitry is on when  
VIN is within the operation range and the EN/UVLO threshold is cleared.  
The EN/UVLO pin is an input and cannot be left open or floating. The simplest way to enable the operation of the  
TPS2586x-Q1 is to connect EN to SENSE. This connection allows self-startup of the TPS2586x-Q1 when VIN is  
within the operation range. Note that you cannot connect the EN to IN pin directly for self-startup.  
Many applications benefit from the employment of enable dividers RENT and RENB to establish a precision  
system UVLO level for the TPS2586x-Q1 shown in 10-1. The system UVLO can be used for sequencing,  
ensuring reliable operation, or supply protection, such as a battery discharge level. To ensure the USB port VBUS  
is within the 5-V operating range as required for USB compliance (for the latest USB specifications and  
requirements, refer to USB.org), TI suggests that the RENT and RENB resistors be chosen such that the  
TPS2586x-Q1 enables when VIN is approximately 6 V. Considering the dropout voltage of the buck regulator and  
IR losses in the system, 6 V provides adequate margin to maintain VBUS within USB specifications. If system  
requirements, such as a warm crank (start) automotive scenario, require operation with VIN < 6 V, the values of  
RENT and RENB can be calculated assuming a lower VIN. An external logic signal can also be used to drive the  
EN/UVLO input when a microcontroller is present and it is desirable to enable or disable the USB port remotely  
for other reasons.  
IN  
RENT  
EN  
RENB  
10-1. System UVLO by Enable Divider  
UVLO configuration using external resistors is governed by the following equations:  
VIN ON  
÷
(
)
RENT  
=
- 1 ì R  
÷
ENB  
VEN/UVLO _H  
«
(1)  
(2)  
VEN/UVLO _HYS  
VIN OFF = VIN ON ì 1 -  
÷
÷
(
)
(
)
VEN/UVLO _H  
«
For example:  
VIN(ON) = 6 V  
RENT = 20 kΩ  
RENB = [(VEN-VOUT-H) / (VIN(ON) VEN)] × RENT  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
RENB = 5 kΩ  
Therefore, VIN(OFF) = 5.5 V  
10.3.2 Input Overvoltage Protection (OVP) - Continuously Monitored  
The operation voltage range of the TPS2586x-Q1 is up to 26 V. If the input source applies an overvoltage, the  
buck regulator HSFET/LSFET turns off immediately. Thus, the USB ports and OUT pin loses their power as well.  
Once the overvoltage returns to a normal voltage, the buck regulator continues switching and provides power on  
the USB ports and OUT pin.  
During the overvoltage condition, the internal regulator regulates the SENSE voltage at 5 V, so the SENSE  
always has power for the internal bias circuit and external NTC pullup reference.  
10.3.3 Buck Converter  
The following operating description of the TPS2586x-Q1 refers to the Functional Block Diagram.  
The TPS2586x-Q1 integrates a monolithic, synchronous, rectified, step-down, switch-mode converter with  
internal power MOSFETs and USB current-limit switches with charging ports auto-detection. The TPS2586x-Q1  
offers a compact solution that achieves up to 5 A of continuous output current with excellent load and line  
regulation over a wide input supply range. The TPS2586x-Q1 supplies a regulated output voltage by turning on  
the high-side (HS) and low-side (LS) NMOS switches with controlled duty cycle. During high-side switch ON  
time, the SW pin voltage swings up to approximately VIN. The inductor current, iL, increases with linear slope  
(VIN VOUT ) / L. When the HS switch is turned off by the control logic, the LS switch is turned on after an anti-  
shoot-through dead time. Inductor current discharges through the LS switch with a slope of VOUT / L. The  
control parameter of a buck converter is defined as Duty Cycle D = tON / TSW, where tON is the high-side switch  
ON time and TSW is the switching period, shown in 10-2. The regulator control loop maintains a constant  
output voltage by adjusting the duty cycle D. In an ideal buck converter, where losses are ignored, D is  
proportional to the output voltage and inversely proportional to the input voltage: D = VOUT / VIN.  
VSW  
D = tON/ TSW  
VIN  
tON  
tOFF  
t
0
-VD  
TSW  
iL  
ILPK  
IOUT  
DiL  
t
0
10-2. SW Node and Inductor Current Waveforms in Continuous Conduction Mode (CCM)  
The TPS2586x-Q1 operates in a fixed-frequency, peak-current-mode control to regulate the output voltage. A  
voltage feedback loop is used to get accurate DC voltage regulation by adjusting the peak current command  
based on voltage offset. The peak inductor current is sensed from the high-side switch and compared to the  
peak current threshold to control the ON time of the high-side switch. The voltage feedback loop is internally  
compensated, which allows for fewer external components, making it easy to design, and provides stable  
operation with a reasonable combination of output capacitors. The TPS2586x-Q1 operates in FPWM mode for  
low output voltage ripple, tight output voltage regulation, and constant switching frequency.  
10.3.4 FREQ/SYNC  
The switching frequency of the TPS2586x-Q1 can be programmed by the resistor, RFREQ, from the FREQ/SYNC  
pin and AGND pin. To determine the FREQ resistance for a given switching frequency, use 方程4:  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
-1.0483  
RFREQ kW = 26660ì ƒ  
kHz  
(
)
(
)
SW  
(4)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
Switching Frequency (kHz)  
D024  
10-3. FREQ Set Resistor vs Switching Frequency  
The normal method of setting the buck regulator switching frequency is by selecting an appropriate value FREQ  
resistor. The typical FREQ resistors value are listed in 10-1. Please note that TPS25865-Q1 can only support  
frequency up to 800 kHz.  
10-1. Setting the Switching Frequency With FREQ  
SWITCHING FREQUENCY (KHz)  
FREQ (KΩ)  
80.6  
253  
400  
49.9  
19.1  
1000  
2100  
2200  
8.87  
8.45  
The FREQ/SYNC pin can be used to synchronize the internal oscillator to an external clock. The internal  
oscillator can be synchronized by AC coupling a positive edge into the FREQ/SYNC pin. When using a low  
impedance signal source, the frequency setting resistor, FREQ, is connected in parallel with an AC coupling  
capacitor, CCOUP, to a termination resistor, RTERM (for example, 50 Ω). The two resistors in series provide the  
default frequency setting resistance when the signal source is turned off. A 10-pF ceramic capacitor can be used  
for CCOUP. The AC coupled peak-to-peak voltage at the FREQ/SYNC pin must exceed the SYNC amplitude  
threshold of 1.2 V (typical) to trip the internal synchronization pulse detector, and the minimum SYNC clock  
HIGH and LOW time must be longer than 100 ns (typical). A 2.5 V or higher amplitude pulse signal coupled  
through a 1-nF capacitor, CSYNC, is a good starting point. 10-4 shows the device synchronized to an external  
system clock. The external clock must be off before startup to allow proper startup sequencing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
CCOUP  
RT  
PLL  
PLL  
Lo-Z  
Hi-Z  
Clock  
Source  
FREQ/  
FREQ/  
SYNC  
Clock  
RTERM  
RT  
SYNC  
Source  
10-4. Synchronize to External Clock  
TPS25864-Q1 switching action can be synchronized to an external clock from 200 KHz to 3 MHz. TPS25865-Q1  
switching action can be synchronized to an external clock from 200 KHz to 800 kHz. Note the higher switching  
frequency results in more power loss on IC, causing the junction temperature and also the board temperature  
rising. Then, the device can enter load shedding under high ambient temperature.  
10.3.5 Bootstrap Voltage (BOOT)  
The TPS2586x-Q1 provides an integrated bootstrap voltage regulator. A small capacitor between the BOOT and  
SW pins provides the gate drive voltage for the high-side MOSFET. The BOOT capacitor is refreshed when the  
high-side MOSFET is off and the low-side switch conducts. The recommended value of the BOOT capacitor is  
100 nF. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or higher is  
recommended for stable performance over temperature and voltage. The BOOT rail has a UVLO to protect the  
chip from operation with too little bias and is typically 2.2 V. If the BOOT capacitor voltage drops below the UVLO  
threshold, the device initiates a charging sequence using the low-side FET before attempting to turn on the high-  
side device.  
10.3.6 Minimum ON-Time, Minimum OFF-Time  
Minimum ON-time, TON_MIN, is the smallest duration of time that the HS switch can be on. TON_MIN is typically 84  
ns in the TPS2586x-Q1. Minimum OFF-time, TOFF_MIN, is the smallest duration that the HS switch can be off.  
TOFF_MIN is typically 81 ns in the TPS2586x-Q1. In CCM (FPWM) operation, TON_MIN and TOFF_MIN limit the  
voltage conversion range given in a selected switching frequency.  
The minimum duty cycle allowed is:  
DMIN = TON_MIN × fSW  
(5)  
And the maximum duty cycle allowed is:  
DMAX = 1 TOFF_MIN × fSW  
(6)  
Given fixed TON_MIN and TOFF_MIN, the higher the switching frequency, the narrower the range of the allowed  
duty cycle.  
Given an output voltage, the choice of the switching frequency affects the allowed input voltage range, solution  
size, and efficiency. The maximum operation supply voltage can be found by:  
VOUT  
V
=
IN_MAX  
f
ì TON_MIN  
(
)
SW  
(7)  
At lower supply voltage, the switching frequency is limited by TOFF_MIN. The minimum VIN can be approximated  
by:  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
VOUT  
V
=
IN_MIN  
1- f  
(
ì TOFF _MIN  
)
SW  
(8)  
Considering power losses in the system with heavy load operation, VIN_MAX is higher than the result calculated in  
方程7.  
If minimum ON-time or minimum OFF-time do not support the desired conversion ratio, frequency is reduced,  
automatically allowing regulation to be maintained during load dump and with very low dropout during cold crank  
even with high operating-frequency setting.  
10.3.7 Internal Compensation  
The TPS2586x-Q1 is internally compensated. The internal compensation is designed such that the loop  
response is stable over the specified operating frequency and output voltage range. TPS25865-Q1 is optimized  
for transient response over the range of 200 kHz fsw 800 kHz.TPS25864-Q1 is optimized for transient  
response over the range of 200 kHz fsw 3 MHz.  
10.3.8 Selectable Output Voltage (VSET)  
The TPS2586x-Q1 provides four different output voltage options. The voltage can be set by an external resistor  
across the VSET pin. The normal method of setting the buck output voltage is by selecting an appropriate value  
VSET resistor as shown in 10-2.  
10-2. VSET Configuration vs BUS Output Voltage  
VSET CONFIGURATION  
Float or pull up to VSENSE  
Short to GND  
VSENSE  
5.1 V  
5.17 V  
5.3 V  
RVSET = 40.2 KΩ  
5.4 V  
RVSET = 80.6 KΩ  
Note that the VSET has an internal weak 20-µA current source to overdrive the pin to SENSE. If this pin is  
floated, the voltage on this pin approaches the SENSE voltage, and sets the output voltage to 5.1 V. TI does not  
recommend to float this pin if there is external noise from the PCB board because the noise interferes with the  
VSET internal logic block.  
10.3.9 Current Limit and Short Circuit Protection  
For maximum versatility, the TPS2586x-Q1 includes both a precision, fixed current limit as well cycle-by-cycle  
current limit to protect the USB port from extreme overload conditions. The cycle-by-cycle current limit serves as  
a backup means of protection.  
10.3.9.1 USB Switch Current Limit  
Because the TPS2586x-Q1 integrates two USB current-limit switches, it provides current limit to prevent USB  
port overheating. The USB current limit threshold is fixed at 2.73 A with a maximum ±10% variation  
overtemperature on each USB port to follow the Type-A specification. The TPS2586x-Q1 provides built-in soft-  
start circuitry that controls the rising slew rate of the output voltage to limit inrush current and voltage surges.  
The TPS2586x-Q1 engages the two-level current limit scheme, which has one typical current limit, IOS_BUS, and  
the secondary current limit, IOS_HI. The secondary current limit, IOS_HI, is 1.6x the primary current limit,  
IOS_BUS.The secondary current limit acts as the current limit threshold for a deglitch time, tIOS_HI_DEG, then the  
USB power switch current limit threshold is set back to IOS_BUS  
.
The secondary current limit, IOS_HI, allows the USB port pull out a larger current for a short time during transient  
overload conditions, which can bring benefits for USB port special overload testing like MFi OCP. In a normal  
application, once the device is powered on and USB port is not in UVLO, the USB port current limit threshold is  
overridden by the secondary current limit, IOS_HI, so the USB port can output as high as a 1.6 × IOS_BUS current  
for typically 2 ms. After the deglitch time, tIOS_HI_DEG, the current limit threshold is set back to the typical current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
with IOS_BUS. The secondary current limit threshold does not resume until after the tIOS_HI_RST deglitch time,  
which is typically 16 ms. If there is an inrush current higher than the IOS_HI threshold, the current limit is set back  
to IOS_BUS immediately, without waiting for a tIOS_HI_DEG  
.
The TPS2586x-Q1 responds to overcurrent conditions by limiting output current to IOS_BUS as shown in previous  
equation. When an overload condition occurs, the device maintains a constant output current and the output  
voltage reduces accordingly. Three possible overload conditions can occur:  
The first condition is when a short circuit or overload is applied to the USB output when the device is powered  
up or enabled. There can be inrush current and once it triggers the approximate 8-A threshold. A fast turnoff  
circuit is activated to turn off the USB power switch within tIOS_USB before the current limit control loop is able  
to respond (shown in 10-5). After the fast turnoff is triggered, the USB power switch current-sense  
amplifier is over-driven during this time and momentarily disables the internal N-channel MOSFET to turn off  
USB port. The current-sense amplifier then recovers and ramps the output current with a soft start. If the USB  
port is still in overcurrent condition, the short circuit and overload hold the output near zero potential with  
respect to ground and the power switch ramps the output current to IOS_BUS. If the overcurrent limit condition  
lasts longer than 4.1 ms, the corresponding USB channel enters hiccup mode with 524 ms of off-time and 4.1  
ms of on-time.  
IBUS  
IOS_BUS  
t
hiccup OFF  
hiccup ON  
tIOS  
10-5. Response Time to BUS Short-Circuit  
The second condition is the load current increases above IOS_BUS but below the IOS_HI setting. The device  
allows the USB port to output this large current for tIOS_HI_DEG, without limiting the USB port current to  
IOS_BUS. After the tIOS_HI_DEG deglitch time, the device limits the output current to IOS_BUS and works in a  
constant current-limit mode. If the load demands a current greater than IOS_BUS, the USB output voltage  
decreases to IOS_BUS × RLOAD for a resistive load, which is shown in 10-6. If the overcurrent limit condition  
lasts longer than 4.1 ms, the corresponding USB channel enters hiccup mode with 524 ms of off-time and 4.1  
ms of on-time. Another USB channel still works normally.  
I
BUS(A)  
V
BUS(V)  
5
IOS_HI  
IOS_BUS  
0
hiccup OFF  
hiccup OFF  
hiccup ON  
hiccup ON  
tIOS_HI_DEG  
t
10-6. BUS Overcurrent Protection  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
The third condition is the load current increases just over the IOS_HI setting. In this case, the load current does  
not trigger the fast turnoff. The USB power switch current limit threshold is set back to the primary current  
limit, IOS_BUS, immediately. If the load still demands a current greater than IOS_BUS, the USB output voltage  
decreases to IOS_BUS × RLOAD for a resistive load, which is shown in 10-7. If the overcurrent limit condition  
lasts longer than 4.1 ms, the corresponding USB channel enters hiccup mode with 524 ms of off-time and 4.1  
ms of on-time. Another USB channel still works normally.  
I
BUS(A)  
V
BUS(V)  
5
IOS_HI  
IOS_BUS  
0
hiccup OFF  
hiccup OFF  
hiccup ON  
hiccup ON  
t
10-7. BUS Overcurrent Protection: Two-Level Current Limit  
The TPS2586x-Q1 thermal cycles if an overload condition is present long enough to activate thermal limiting in  
any of the previously mentioned cases. Thermal limiting turns off the internal NFET and starts when the NFET  
junction temperature exceeds 160°C (typical). The device remains off until the NFET junction temperature cools  
10°C (typical) and then restarts. This extra thermal protection mechanism can help prevent further junction  
temperature rise, which can cause the device to turn off due to junction temperature exceeding the main thermal  
shutdown threshold, TSD  
.
10.3.9.2 Interlocking for Two-Level USB Switch Current Limit  
The TPS2586x-Q1 has two USB ports. Because the secondary current limit, IOS_HI, is 1.6x of the primary current  
limit, IOS_BUS, if the two USB ports pull out large current at the same time, then the DC-DC regulator is  
overloaded, and DC-DC regulator output voltage can be crashed. To avoid these potential issues, the  
TPS2586x-Q1 adopts the interlocking scheme to manage the current limits of the two USB ports.  
For interlocking, if one USB port current is beyond the primary current limit threshold, IOS_BUS, then another USB  
port current limit threshold is overridden to the primary current limit, IOS_BUS, immediately. With this control  
scheme, the TPS2586x-Q1 only allows one USB port to output a large current, which can be as high as 1.6x of  
the primary current limit, IOS_BUS, at the same time. Ensure the DC-DC regulator has enough energy to sustain  
its output voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.3.9.3 Cycle-by-Cycle Buck Current Limit  
There is a buck regulator cycle-by-cycle current limit on both the peak and valley of the inductor current.  
High-side MOSFET overcurrent protection is implemented by the nature of the peak current mode control. The  
HS switch current is sensed when the HS is turned on after a set blanking time. The HS switch current is  
compared to the output of the Error Amplifier (EA) minus slope compensation every switching cycle. The peak  
current of HS switch is limited by a clamped maximum peak current threshold, IHS_LIMIT, which is constant. The  
peak current limit of the high-side switch is not affected by the slope compensation and remains constant over  
the full duty cycle range.  
The current going through LS MOSFET is also sensed and monitored. When the LS switch turns on, the inductor  
current begins to ramp down. The LS switch does not turn OFF at the end of a switching cycle if its current is  
above the LS current limit, ILS_LIMIT. The LS switch is kept ON so that the inductor current keeps ramping down  
until the inductor current ramps below the LS current limit, ILS_LIMIT. Then, the LS switch is turned OFF and the  
HS switch is turned on after a dead time. This action is somewhat different than the more typical peak current  
limit and results in 方程9 for the maximum load current.  
V
IN - VOUT  
(
)
ì
VOUT  
IOUT _MAX = ILS _LIMIT  
+
2ì fSW ìL  
V
IN  
(9)  
10.3.9.4 OUT Current Limit  
The TPS2586x-Q1 can provide 200-mA current at the OUT pin to power the auxiliary loads, such as USB HUB,  
LEDs. The input of the OUT power switch comes from the buck regulator output, so the OUT voltage is the same  
with the SNESE voltage but deducts the OUT RDS-ON voltage loss.  
If the OUT current reaches the current limit level, the OUT pin MOSFET works in a constant current-limit mode.  
If the overcurrent limit condition lasts longer than 4.1 ms, it enters hiccup mode with 4.1 ms of on-time and 524  
ms of off-time.  
10.3.10 Cable Compensation  
When a load draws current through a long or thin wire, there is an IR drop that reduces the voltage delivered to  
the load. In the vehicle from the voltage regulator output VOUT to VBUS (input voltage of portable device), the total  
resistance of PCB trace, connector, and cable resistances causes an IR drop at the portable device input, so the  
charging current of most portable devices is less than their expected maximum charging current. The voltage  
drop is shown in 10-8.  
5.x  
V(DROP)  
VOUT with compensation  
VBUS with compensation  
VBUS without compensation  
3
1
2
Output Current (A)  
10-8. Voltage Drop  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
To handle this case, the TPS2586x-Q1 has a built-in cable compensation function where the droop  
compensation linearly increases the voltage at the SENSE pin of the TPS2586x-Q1 as load current increases, to  
maintain a fairly constant output voltage at the load-side voltage.  
For the TPS2586x-Q1, the internal comparator compares the current-sense output voltage of the two current-  
limit switches and uses the larger current-sense output voltage to compensate for the line drop voltage. The  
cable compensation amplitude increases linearly as the load current increases. The cable compensation also  
has an upper limitation. The cable compensation at output currents greater than 2.4 A is 90 mV and is shown in  
10-9. Note the cable compensation only works when you short the VSET to GND. For the other VSET  
configuration, the cable compensation is not available.  
VSENSE  
5.26V  
5.17V  
IPA/B_BUS  
2.4A  
10-9. Dual Ports Cable Compensation  
10.3.11 Thermal Management With Temperature Sensing (TS) and OTSD  
The TS input pin allows for user-programmable thermal protection (for the TS pin thresholds, see the Electrical  
Characteristics section). The TS input pin threshold is ratiometric with VSENSE. The external resistor divider  
setting, VTS, must be connected to the TPS2586x-Q1 SENSE pin to achieve accurate results (refer to the 图  
10-10).  
VSENSE  
RSER  
VSENSE  
RPARA  
RNTC  
RB  
TS  
CC override  
(3A -> 1.5A)  
Vth9 0.5 x VSENSE  
Vhys 500mV  
TS_TEMP_HOT  
Vth9 0.65 x VSENSE  
Vhys 500mV  
10-10. TS Input  
If the overtemperature condition happens, causing VTS = 0.65 × VSENSE, the TPS2586x-Q1 reduces the BUCK  
regulator output voltage to 4.77 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
If the Overtemperature condition persists, causing TJ to reach the OTSD threshold, then the device thermal  
shuts down.  
The NTC thermistor must be placed near the hottest point on the PCB. In most cases, this placement is close to  
the SW node of the TPS2586x-Q1, near the buck inductor.  
10.3.12 Thermal Shutdown  
The device has an internal overtemperature shutdown threshold, TSD, to protect the device from damage and  
overall safety of the system. When the device temperature exceeds TSD, the device is turned off when thermal  
shutdown activates. Once the die temperature falls below 154°C (typical), the device re-initiates the power-up  
sequence controlled by the internal soft-start circuitry.  
10.3.13 USB Specification Overview  
All USB ports are capable of providing a 5-V output, making them a convenient power source for operating and  
charging portable devices. USB specification documents outline specific power requirements to ensure  
interoperability. In general, a USB 2.0 port host port is required to provide up to 500 mA; a USB 3.0 or USB 3.1  
port is required to provide up to 900 mA; ports adhering to the USB Battery Charging 1.2 Specification provide  
up to 1500 mA; newer Type-C ports can provide up to 3000 mA. Though USB standards governing power  
requirements exist, some manufacturers of popular portable devices created their own proprietary mechanisms  
to extend allowed available current beyond the 1500-mA maximum per BC 1.2. While not officially part of the  
standards maintained by the USB-IF, these proprietary mechanisms are recognized and implemented by  
manufacturers of USB charging ports.  
The TPS2586x-Q1 device supports four of the most-common USB-charging schemes found in popular hand-  
held media and cellular devices:  
USB Battery Charging Specification BC1.2 DCP mode  
Chinese Telecommunications Industry Standard YD/T 1591-2009  
Divider 3 mode  
1.2-V mode  
10.3.14 USB Port Operating Modes  
10.3.14.1 Dedicated Charging Port (DCP) Mode  
A DCP only provides power and does not support data connection to an upstream port. As shown in the  
following sections, a DCP is identified by the electrical characteristics of the data lines. TPS2586x-Q1 only  
emulates one state, DCP-auto state. In the DCP-auto state, the device charge-detection state machine is  
activated to selectively implement charging schemes involved with the shorted, Divider 3 and 1.2-V modes. The  
shorted DCP mode complies with BC1.2 and Chinese Telecommunications Industry Standard YD/T 1591-2009,  
whereas the Divider 3 and 1.2-V modes are employed to charge devices that do not comply with the BC1.2 DCP  
standard.  
10.3.14.1.1 DCP BC1.2 and YD/T 1591-2009  
Both standards specify that the D+ and Ddata lines must be connected together with a maximum series  
impedance of 200 Ω, as shown in 10-11.  
VBUS  
5 V  
D–  
200 Ω  
(ma x.)  
D+  
GND  
10-11. DCP Supporting BC1.2 and YD/T 1591-2009  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.3.14.1.2 DCP Divider-Charging Scheme  
The device supports Divider 3, as shown in 10-12. In the Divider 3 charging scheme, the device applies 2.7 V  
and 2.7 V to D+ and Ddata lines.  
VBUS  
5 V  
D–  
D+  
2.7 V  
2.7 V  
GND  
10-12. Divider 3 Mode  
10.3.14.1.3 DCP 1.2-V Charging Scheme  
The DCP 1.2-V charging scheme is used by some hand-held devices to enable fast charging at 2 A. The  
TPS2586x-Q1 device supports this scheme in DCP-auto state before the device enters BC1.2 shorted mode. To  
simulate this charging scheme, the D+ and Dlines are shorted and pulled up to 1.2 V for a fixed duration.  
Then the device moves to DCP shorted mode as defined in the BC1.2 specification and as shown in 10-13.  
VBUS  
5 V  
200 Ω (ma x.) D–  
D+  
1.2 V  
GND  
10-13. 1.2-V Mode  
10.3.14.2 DCP Auto Mode  
The TPS2586x-Q1 device integrates an auto-detect state machine that supports all the DCP charging schemes  
as shown in 10-14. The auto-detect state machine starts in the Divider 3 scheme. If a BC1.2 or YD/T  
1591-2009 compliant device is attached, the TPS2586x-Q1 device responds by turning the power switch back  
on without output discharge and operating in 1.2-V mode briefly before entering BC1.2 DCP mode. Then, the  
auto-detect state machine stays in that mode until the device releases the data line, in which case, the auto-  
detect state machine goes back to the Divider 3 scheme. When a Divider 3-compliant device is attached, the  
TPS2586x-Q1 device stays in the Divider 3 state.  
5 V  
S1  
Divider 3 Mode  
VBUS  
S1, S2: ON  
S3, S4: OFF  
DM_IN  
DP_IN  
GND  
D–  
D+  
S2  
S3  
S4  
Shorted Mode  
S4 ON  
S1, S2, S3: OFF  
GND  
1.2-V Mode  
S1, S2: OFF  
S3, S4: ON  
2.7 V 2.7 V 1.2 V  
10-14. DCP Auto Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10.4 Device Functional Modes  
10.4.1 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPS2586x-Q1. When VEN is below 1.2 V (typical), the  
device is in shutdown mode. The TPS2585x-Q1 also employs VIN overvoltage lock out protection and VSENSE  
undervoltage lock out protection. If VIN voltage is above its respective OVLO level, VOVLO, or VSENSE voltage is  
below its respective UVLO level, VDCDC_UVLO, the DC/DC converter turns off.  
10.4.2 Active Mode  
The TPS2586x-Q1 is in active mode when VEN is above the precision enable threshold and VSENSE is above its  
respective UVLO levels. The simplest way to enable the TPS2586x-Q1 is to connect the EN pin to SENSE pin.  
This connection allows self startup when the input voltage is in the operating range (5.5 V to 26 V) and a UFP  
detection is made.  
In active mode, the TPS25865-Q1 buck regulator does not operate unless CFG1/3 resistors are attached, the  
TPS25854-Q1 buck regulator operates even though CFG1/3 resistors are not attached. Then the buck regulator  
operates with Forced Pulse Width Modulation (FPWM), also referred to as Forced Continuous Conduction Mode  
(FCCM). This operation ensures the buck regulator switching frequency remains constant under all load  
conditions. FPWM operation provides low output voltage ripple, tight output voltage regulation, and constant  
switching frequency. Built-in spread-spectrum modulation aids in distributing spectral energy across a narrow  
band around the switching frequency programmed by the FREQ/SYNC pin. Under light load conditions the  
inductor current is allowed to go negative. A negative current limit of IL-NEG-LS is imposed to prevent damage to  
the regulator's low side FET. During operation, the TPS2586x-Q1 synchronizes to any valid clock signal on the  
FREQ/SYNC input.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
11.1 Application Information  
The TPS2586x-Q1 is a step down DC-to-DC regulator and USB charge port controller. The TPS2586x-Q1 is  
typically used in automotive systems to convert a DC voltage from the vehicle battery to 5-V DC with a maximum  
output current of 5 A in dual Type-A ports applications. The TPS2586x-Q1 engages a high efficiency buck  
converter, letting the device operate at as high as 85°C ambient temperature with full load. The following design  
procedure can be used to select components for the TPS2586x-Q1.  
11.2 Typical Applications  
The TPS2586x-Q1 only requires a few external components to convert from a wide voltage range supply to a 5-  
V output to power USB devices. 11-1 shows the TPS2586x-Q1 typical application schematic for Dual Type-A  
charging ports under 400-kHz operating frequency.  
11-1. TPS2586x-Q1 Typical Application Circuit for 400-KHz fSW  
As a quick start guide, 11-1 provides typical component values for some of the most common configurations.  
The values given in 11-1 are typical. Other values can be used to enhance certain performance criterion as  
required by the application. The integrated buck regulator of TPS2586x-Q1 is internally compensated and  
optimized for a reasonable selection of external inductance and capacitance. The external components have to  
fulfill the needs of the application, but also the stability criteria of the control loop of the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11-1. L and COUT Typical Values  
VOUT WITHOUT CABLE  
COMPENSATION  
fSW  
L
CHF + CIN  
CBOOT  
RATED COUT  
400 KHZ  
2.1 MHz  
5.17 V  
5.17 V  
3.3 µH  
1 × 100 nF + 1 × 47 µF  
1 × 100 nF + 1 × 22 µF  
1 × 100 nF  
1 × 100 nF  
3 × 47 µF  
3 × 22 µF  
0.68 µH  
1. The inductance value is calculated based on max VIN = 18 V.  
2. All the COUT values are after derating and use low ESR ceramic capacitors.  
3. The COUT is the buck regulator output capacitors at the SENSE pin.  
11.2.1 Design Requirements  
The detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in 11-2 as the input parameters.  
11-2. Design Example Parameters  
Input voltage, VIN  
13.5-V typical, range from 8 V to 18 V  
Output voltage, VSENSE  
Maximum output current  
Switching frequency, fSW  
5.17 V  
5 A  
400 KHz  
11.2.2 Detailed Design Procedure  
11.2.2.1 Output Voltage Setting  
The output voltage of TPS2586x-Q1 is programmed by the VSET pin, and if short VSET to GND sets the output  
voltage at 5.17 V and enables the cable compensation function, the output voltage increases linearly with  
increasing load current. Refer to List item for more details on output voltage setting. Cable compensation can be  
used to increase the voltage on the SENSE pin linearly with increasing load current. Refer to List  
item.referenceTitle for more details on cable compensation setting. If cable compensation is not desired, use a  
0-ΩRIMON resistor.  
11.2.2.2 Switching Frequency  
The recommended switching frequency of the TPS2586x-Q1 is in the range of 250 KHz400 KHz for high  
efficiency. Choose RFREQ = 49.9 kΩ for 400-KHz operation. To choose a different switching frequency, refer to  
10-1.  
The choice of switching frequency is a compromise between conversion efficiency and overall solution size.  
Lower switching frequency implies reduced switching losses and usually results in higher system efficiency.  
However, higher switching frequency allows the use of smaller inductors and output capacitors, and hence, a  
more compact design. In automotive USB charging applications, switching frequency tends to operate at either  
400 kHz below the AM band, or 2.1 MHz above the AM band. In this example, 400 kHz is chosen.  
11.2.2.3 Inductor Selection  
The most critical parameters for the inductor are the inductance, saturation current, and the rated current. The  
inductance is based on the desired peak-to-peak ripple current, ΔiL. Because the ripple current increases with  
the input voltage, the maximum input voltage is always used to calculate the minimum inductance LMIN. Use 方  
程式 11 to calculate the minimum value of the output inductor. KIND is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current of the device. A reasonable value of KIND must be  
20% to 40%. Note that when selecting the ripple current for applications with much smaller maximum load than  
the maximum available from the device, the maximum device current must still be used. During an instantaneous  
short or overcurrent operation event, the RMS and peak inductor current can be high. The inductor current rating  
must be higher than the current limit of the device.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
VOUT ì V  
- VOUT  
(
)
IN_MAX  
DiL =  
VIN_MAX ìL ì fSW  
(10)  
(11)  
V
- VOUT  
VOUT  
IN_MAX  
LMIN  
=
ì
IOUT ìKIND  
V
IN_MAX ì fSW  
In general, choose lower inductance in switching power supplies because it usually corresponds to faster  
transient response, smaller DCR, and reduced size for more compact designs. Too low of an inductance can  
generate too large of an inductor current ripple such that overcurrent protection at the full load can be falsely  
triggered. This low inductance also generates more conduction loss and inductor core loss. Larger inductor  
current ripple also implies larger output voltage ripple with the same output capacitors. With peak current mode  
control, TI recommends to not have too small of an inductor current ripple. A larger peak current ripple improves  
the comparator signal to noise ratio.  
For this design example, choose KIND = 0.3, and find an inductance of approximately 3.58 µH. Select the next  
standard value of 3.3 μH.  
11.2.2.4 Output Capacitor Selection  
The output capacitor or capacitors, COUT, must be chosen with care because it directly affects the steady state  
output voltage ripple, loop stability, and the voltage overshoot/undershoot during load current transients.  
The value of the output capacitor and its ESR, determine the output voltage ripple and load transient  
performance. The output capacitor is usually limited by the load transient requirements rather than the output  
voltage ripple if the system requires tight voltage regulation with presence of large current steps and fast slew  
rate. When a fast large load increase happens, output capacitors provide the required charge before the inductor  
current can slew up to the appropriate level. The control loop of the regulator usually needs four or more clock  
cycles to respond to the output voltage droop. The output capacitance must be large enough to supply the  
current difference for four clock cycles to maintain the output voltage within the specified range. 11-3 can be  
used to find output capacitors for a few common applications. In this example, good transient performance is  
desired giving 3 × 47-µF ceramic as the output capacitor.  
11-3. Selected Output Capacitor  
FREQUENCY  
400 KHz  
COUT  
SIZE and COST  
TRANSIENT PERFORMANCE  
3 × 47-µF ceramic  
Small size  
Good  
Minimum  
Good  
400 KHz  
2 × 47-µF ceramic  
Small size  
400 KHz  
Larger size, low cost  
4 × 22 µF + 1 × 260 µF, < 50-melectrolytic  
1 × 4.7 µF + 2 × 10 µF + 1 × 260 µF, < 50-  
400 KHz  
Lowest cost  
Minimum  
melectrolytic  
2.1 MHz  
2.1 MHz  
2.1 MHz  
3 × 22 µF ceramic  
2 × 47 µF ceramic  
2 × 22 µF ceramic  
Small size  
Small size  
Good  
Better  
Smallest size  
Minimum  
11.2.2.5 Input Capacitor Selection  
The TPS2586x-Q1 device requires a high frequency input decoupling capacitor or capacitors, depending on the  
application. A high-quality ceramic capacitor type X5R or X7R with sufficient voltage rating is recommended. The  
ceramic input capacitors provide a low impedance source to the converter in addition to supplying the ripple  
current and isolating switching noise from other circuits. The typical recommended value for the high frequency  
decoupling capacitor is 10 μF of ceramic capacitance. This capacitance must be rated for at least the maximum  
input voltage that the application requires; preferably twice the maximum input voltage. This capacitance can be  
increased to help reduce input voltage ripple, maintain the input voltage during load transients, or both. In  
addition, a small case size 100-nF ceramic capacitor must be used at IN and PGND, immediately adjacent to the  
converter. This action provides a high frequency bypass for the control circuits internal to the device. For this  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
example a 10-μF, 50-V, X7R (or better) ceramic capacitor is chosen, and the 100-nF ceramic capacitor must  
also be rated at 50 V with an X7R or better dielectric.  
Additionally, an electrolytic capacitor on the input in parallel with the ceramics can be required, especially if long  
leads from the automotive battery to the IN pin of the TPS2586x-Q1, cold or warm engine crank requirements,  
and so forth. The moderate ESR of this capacitor is used to provide damping to the voltage spike due to the lead  
inductance of the cable or the trace.  
11.2.2.6 Bootstrap Capacitor Selection  
The TPS2586x-Q1 design requires a bootstrap capacitor (CBOOT). The recommended capacitor is 100 nF and  
rated 16 V or higher. The bootstrap capacitor is located between the SW pin and the BOOT pin. The bootstrap  
capacitor stores energy that is used to supply the gate drivers for the power MOSFETs. The bootstrap capacitor  
must be a high-quality ceramic type with an X7R or X5R grade dielectric for temperature stability.  
11.2.2.7 Undervoltage Lockout Set-Point  
The system undervoltage Lockout (UVLO) is adjusted using the external voltage divider network of RENT and  
RENB. The UVLO has two thresholds, one for power up when the input voltage is rising and one for power down  
or brownouts when the input voltage is falling. 方程12 can be used to determine the VIN UVLO level.  
RENT + RENB  
RENB  
V
= VENH ì  
IN_RISING  
(12)  
The EN rising threshold (VENH) for the TPS2586x-Q1 is set to be 1.3 V (typical). Choose 10 kΩ for RENB to  
minimize input current from the supply. If the desired VIN UVLO level is at 6 V, then the value of RENT can be  
calculated using 方程13:  
V
IN_RISING  
RENT  
=
-1 ìR  
÷
ENB  
÷
VENH  
«
(13)  
方程式 13 yields a value of 36.1 kΩ. The resulting falling UVLO threshold equals 5.5 V and can be calculated by  
方程14, where EN hysteresis (VEN_HYS) is 0.1 V (typical).  
RENT + RENB  
RENB  
V
= VENH - VEN_HYS  
(
ì
)
IN_FALLING  
(14)  
Note that it cannot connect EN to IN pin directly for self-startup. Because the voltage rating of EN pin is 11 V,  
tying it to VIN directly damages the device. The simplest way to enable the operation of the TPS2586x-Q1 is to  
connect the EN to VSENSE. This connection allows the automatic startup when VIN is within the operation range.  
11.2.2.8 Cable Compensation Set-Point  
The TPS2586x-Q1 must short the VSET pin to ground to enable the cable compensation. With that setting, the  
buck regulator increases its output voltage linearly as the load current increases, and the voltage compensation  
at the currents of the USB ports greater than 2.4 A is 90 mV.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11.2.3 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 400 kHz, L = 3.3 µH, CSENSE = 141 µF, CPA_BUS  
= 1 µF, CPB_BUS = 1 µF, TA = 25 °C.  
Level[dBuV]  
100  
95  
90  
85  
80  
75  
70  
VIN=6V  
VIN=13.5V  
VIN=18V  
VIN=26V  
65  
PA_BUS = 2.4A,  
PB_BUS = 2.4A  
fSW = 400 kHz  
L = 3.3 uH  
60  
0.1  
1
6
Load Current(A)  
11-3. 400-khz EMI Results (Without CM Filter)  
VSET = GND  
fSW = 400 kHz  
L = 3.3 uH  
11-2. Buck Only Efficiency  
0.4  
Level[dBuV]  
VIN=6V  
VIN=13.5V  
0.2  
VIN=18V  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1.2  
-1.4  
Load = 6A  
fSW = 2100 kHz  
L = 0.68 uH  
3
0
6
11-4. 2.1-Mhz EMI Results (Without CM Filter)  
Load Current(A)  
VSET = GND  
fSW = 400 kHz  
11-5. Load Regulation  
Load=2A  
0.1  
Load=4A  
Load=6A  
-0.1  
VPA_BUS  
200mV/Div  
-0.3  
-0.5  
-0.7  
-0.9  
-1.1  
-1.3  
-1.5  
IPA_BUS  
1A/Div  
5
12  
18  
26  
Input Voltage(V)  
200.0us/Div  
VSET = GND  
fSW = 400 kHz  
11-6. Line Regulation  
VSET =  
VSENSE  
IPA_BUS = 0 A to 2.4 A IPB_BUS = 2.4 fSW = 400  
KHZ  
A
11-7. Load Transient Without Cable  
Compensation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
VPB_BUS  
200mV/Div  
VPB_BUS  
200mV/Div  
IPB_BUS  
1A/Div  
IPB_BUS  
1A/Div  
200.0us/Div  
200.0us/Div  
VSET =  
VSENSE  
IPB_BUS = 0 A to 2.4 A IPA_BUS = 2.4 fSW = 400  
kHZ  
VSET =  
VSENSE  
IPB_BUS = 0.75 A to IPA_BUS = 0 A  
2.25 A  
fSW = 400  
kHZ  
A
11-8. Load Transient Without Cable  
11-9. Load Transient Without Cable  
Compensation  
Compensation  
VPB_BUS  
200mV/Div  
VPB_BUS  
200mV/Div  
IPB_BUS  
1A/Div  
IPB_BUS  
1A/Div  
200us/Div  
200us/Div  
VSET = IPB_BUS = 0.75 A to  
GND 2.25 A  
IPA_BUS = 0 A fSW = 400  
kHZ  
VSET =  
GND  
IPB_BUS = 0 A to 2.4 A IPA_BUS = 2.4 fSW = 400  
kHZ  
A
11-11. Load Transient With Cable Compensation  
11-10. Load Transient With Cable Compensation  
5.2  
Load=2A  
Load=4A  
Load=6A  
5.15  
SW  
5V/Div  
5.1  
5.05  
5.0  
4.95  
VPA_BUS  
50mV/Div  
4.9  
5.5  
10.5  
15.5  
20.5  
26  
Input Voltage(V)  
1us/Div  
11-12. Dropout Characteristic  
VSET = GND IPA_BUS = 2.4 IPB_BUS = 2.4 fSW = 400 kHZ  
A
A
11-13. 4.8-A Output Ripple  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
SW  
5V/Div  
SW  
5V/Div  
VPA_BUS  
50mV/Div  
VPA_BUS  
50mV/Div  
1us/Div  
1us/Div  
VSET =  
GND  
IPA_BUS = 0.1 A IPB_BUS = 0 A fSW = 400 kHZ  
VSET = GND IPA_BUS = 0 A IPB_BUS = 0 A fSW = 400 kHZ  
11-15. No Load Output Ripple  
11-14. 100-mA Output Ripple  
EN  
5V/Div  
EN  
5V/Div  
VIN  
5V/Div  
VIN  
5V/Div  
VPA_BUS  
5V/Div  
VPA_BUS  
5V/Div  
VSENSE  
5V/Div  
VSENSE  
5V/Div  
50ms/Div  
20ms/Div  
VIN = 0 V to 13.5  
IPA_BUS = 2.4 A  
VIN = 13.5 V to 0 V  
IPA_BUS = 2.4 A  
11-16. Startup Relate to VIN  
11-17. Shutdown Relate to VIN  
EN  
5V/Div  
EN  
5V/Div  
VIN  
2V/Div  
VIN  
5V/Div  
VPB_BUS  
5V/Div  
VPB_BUS  
5V/Div  
VSENSE  
5V/Div  
VSENSE  
5V/Div  
50ms/Div  
50ms/Div  
EN = 0 V to 5 V  
IPB_BUS = 2.4 A  
EN = 5 V to 0 V  
IPB_BUS = 2.4 A  
11-18. Startup Relate to EN  
11-19. Shutdown Relate to EN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
EN  
5V/Div  
EN  
5V/Div  
VPB_BUS  
2V/Div  
VPB_BUS  
2V/Div  
VPA_BUS  
2V/Div  
VPA_BUS  
2V/Div  
IPB_BUS  
2A/Div  
IPB_BUS  
2A/Div  
200.0ms/Div  
200.0ms/Div  
EN to High  
PA_BUS = GND  
PB_BUS = GND  
11-21. Short Circuit Recovery  
11-20. Enable Into Short  
EN  
5V/Div  
EN  
5V/Div  
VPB_BUS  
2V/Div  
VPB_BUS  
2V/Div  
VPA_BUS  
2V/Div  
VPA_BUS  
2V/Div  
IPB_BUS  
2A/Div  
IPB_BUS  
2A/Div  
400.0ms/Div  
400.0ms/Div  
EN to High  
PA_BUS = 1 Ω  
PB_BUS = 1 Ω  
11-23. 1-ΩLoad Recovery  
11-22. Enable Into 1-ΩLoad  
EN  
5V/Div  
EN  
5V/Div  
VOUT  
2V/Div  
VPB_BUS  
2V/Div  
VPA_BUS  
2V/Div  
IOUT  
500mA/Div  
5ms/Div  
IPB_BUS  
5A/Div  
PA/B_BUS NO  
LOAD  
OUT = 5.1 Ω  
2ms/Div  
11-25. OUT short to 5.1-ΩLoad  
11-24. VBUS Hot Short to GND  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
EN  
5V/Div  
VTS  
2V/Div  
VOUT  
2V/Div  
VPA_BUS  
5V/Div  
VPA_BUS  
2V/Div  
IOUT  
500mA/Div  
SW  
10V/Div  
100.0ms/Div  
5ms/Div  
VTS = 0 V to 4 V  
OUT = GND  
PA/B_BUS NO  
LOAD  
11-27. Thermal Sensing - NTC Temperature HOT  
Behavior  
11-26. OUT Hot Short to GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
12 Power Supply Recommendations  
The input supply must be able to withstand the maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the TPS2586x-Q1 supply voltage that it causes a false UVLO fault triggering and system reset. If  
the TPS2586x-Q1 is connected to the input supply through long wires or PCB traces, special care is required to  
achieve good performance. An additional bulk capacitance can be required in addition to the ceramic input  
capacitors. The amount of bulk capacitance is not critical, but a 100-μF electrolytic capacitor is a typical choice.  
The input voltage must not be allowed to fall below the output voltage. In this scenario, such as a shorted input  
test, the output capacitors discharge through the internal parasitic diode found between the VIN and SW pins of  
the device. During this condition, the current can become uncontrolled, possibly causing damage to the device. If  
this scenario is considered likely, then a Schottky diode between the input supply and the output must be used.  
13 Layout  
13.1 Layout Guidelines  
The PCB layout of any bulk converter is critical to the optimal performance of the design. Bad PCB layout can  
disrupt the operation of an otherwise good schematic design. Even if the converter regulates correctly, bad PCB  
layout can mean the difference between a robust design and one that cannot be mass produced. Furthermore,  
the EMI performance of the converter is dependent on the PCB layout to a great extent. The following guidelines  
will help users design a PCB with the best power conversion performance, thermal performance, and minimized  
generation of unwanted EMI.  
1. The input bypass capacitor, CIN, must be placed as close as possible to the IN and PGND pins. The high  
frequency ceramic bypass capacitors at the input side provide a primary path for the high di/dt components  
of the pulsing current. Use a wide VIN plane on a lower layer to connect both of the VIN pairs together to the  
input supply. Grounding for both the input and output capacitors must consist of localized top-side planes  
that connect to the PGND pin and PAD.  
2. Use ground plane in one of the middle layers as noise shielding and heat dissipation path.  
3. Use wide traces for the CBOOT capacitor. Place the CBOOT capacitor as close to the device with short, wide  
traces to the BOOT and SW pins.  
4. The SW pin connecting to the inductor must be as short as possible, and just wide enough to carry the load  
current without excessive heating. Short, thick traces or copper pours (shapes) must be used for a high  
current conduction path to minimize parasitic resistance. The output capacitors must be placed close to the  
VSENSE end of the inductor and closely grounded to PGND pin and exposed PAD.  
5. RFREQ resistors must be placed as close as possible to the FREQ pins and connected to AGND. If needed,  
these components can be placed on the bottom side of the PCB with signals routed through small vias, and  
the traces need far away from noisy nets like SW, BOOT.  
6. Make VIN, VSENSE, and ground bus connections as wide as possible. This action reduces any voltage drops  
on the input or output paths of the converter and maximizes efficiency.  
7. Provide enough PCB area for proper heat sinking. Enough copper area must be used to ensure a low RθJA  
commensurate with the maximum load current and ambient temperature. Make the top and bottom PCB  
layers with 2-ounce copper; and no less than 1 ounce. If the PCB design uses multiple copper layers  
(recommended), thermal vias can also be connected to the inner layer heat-spreading ground planes. Note  
,
that the package of this device dissipates heat through all pins. Wide traces must be used for all pins except  
where noise considerations dictate minimization of area.  
8. Use an array of heat-sinking vias to connect the exposed pad to the ground plane on the bottom PCB layer.  
If the PCB has multiple copper layers, these thermal vias can also be connected to inner layer heat-  
spreading ground planes. Ensure enough copper area is used for heat-sinking to keep the junction  
temperature below 150°C.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
13.2 Layout Example  
EMI Filter  
USB  
PGND  
BATT  
PGND  
L
CIN  
CIN  
VIN  
RBOOT  
20  
19  
18  
17  
16  
14  
15  
13  
21  
22  
C
BOOT  
RBOOT  
12  
11  
VIN  
SW  
PB_BUS  
SENSE  
23  
24 PGND  
PA_BUS 10  
USB  
8
9
2
3
4
5
6
7
1
L
VSENSE  
PGND  
Top Trace/Plane  
Inner GND Plane  
Top  
Inner GND Plane  
VIA to Signal Layer  
VIA to GND Planes  
VIA to Strap  
Signal Layers  
Power and GND  
13-1. Layout Example  
13.3 Ground Plane and Thermal Considerations  
TI recommends to use one of the middle layers as a solid ground plane. Ground plane provides shielding for  
sensitive circuits and traces. Ground plane also provides a quiet reference potential for the control circuitry. The  
AGND and PGND pins must be connected to the ground plane using vias right next to the bypass capacitors.  
The PGND pin is connected to the source of the internal low-side MOSFET switch, and also connected directly  
to the grounds of the input and output capacitors. The PGND net contains noise at the switching frequency and  
can bounce due to load variations. The PGND trace, as well as VIN and SW traces, must be constrained to one  
side of the ground plane. The other side of the ground plane contains much less noise and must be used for  
sensitive routes.  
TI recommends to provide adequate device heat sinking by using the PAD of the IC as the primary thermal path.  
Use a minimum 4 × 2 array of 12-mil thermal vias to connect the PAD to the system ground plane heat sink. The  
vias must be evenly distributed under the PAD. Use as much copper as possible, for system ground plane, on  
the top and bottom layers for the best heat dissipation. Use a four-layer board with the copper thickness for the  
four layers, starting from the top of 2 oz / 1 oz / 1 oz / 2 oz. Four layer boards with enough copper thickness  
provide low current conduction impedance, proper shielding, and lower thermal resistance.  
The thermal characteristics of the TPS2586x-Q1 are specified using the parameter θJA, which characterizes the  
junction temperature of silicon to the ambient temperature in a specific system. Although the value of θJA is  
dependent on many variables, it still can be used to approximate the operating junction temperature of the  
device. To obtain an estimate of the device junction temperature, one can use the following relationship:  
TJ = PD × θJA + TA  
(15)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
where  
TJ = Junction temperature in °C  
PD = VIN × IIN × (1 Efficiency) 1.1 × IOUT 2 × DCR in Watt  
DCR = Inductor DC parasitic resistance in Ω  
• θJA = Junction-to-ambient thermal resistance of the device in °C/W  
TA = Ambient temperature in °C  
The maximum operating junction temperature of the TPS2586x-Q1 is 150°C. θJA is highly related to PCB size  
and layout, as well as environmental factors such as heat sinking and air flow.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
14 Device and Documentation Support  
14.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
14.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
14.3 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
14.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
14.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
 
 
 
 
 
TPS25865-Q1, TPS25864-Q1  
ZHCSMS4B NOVEMBER 2020 REVISED SEPTEMBER 2021  
www.ti.com.cn  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS25865-Q1 TPS25864-Q1  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25864QRPQRQ1  
TPS25865QRPQRQ1  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RPQ  
RPQ  
25  
25  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-45 to 125  
-40 to 125  
T25864  
T25865  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS25864QRPQRQ1  
TPS25865QRPQRQ1  
VQFN-  
HR  
RPQ  
RPQ  
25  
25  
3000  
3000  
330.0  
12.4  
3.8  
4.8  
1.18  
8.0  
12.0  
Q1  
VQFN-  
HR  
330.0  
12.4  
3.8  
4.8  
1.18  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS25864QRPQRQ1  
TPS25865QRPQRQ1  
VQFN-HR  
VQFN-HR  
RPQ  
RPQ  
25  
25  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RPQ0025A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
1.0  
0.8  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.325 0.1  
0.75  
0.55  
PINS 7,8,14 & 15  
0.975  
0.775  
4X  
2X 1  
8X (0.25)  
10  
EXPOSED  
THERMAL PAD  
SYMM  
(DIM A) TYP  
12  
9
13  
1.45  
1.25  
3X  
0.65 0.1  
PKG  
25  
2X 4  
0.7  
0.5  
PINS 3 &19  
PIN 1 ID  
20X 0.5  
0.3  
24X  
0.2  
1
21  
24  
22  
0.1  
C A B  
1.8  
1.6  
0.725  
0.525  
PINS 2 & 20  
3X  
0.05  
0.9  
0.7  
PINS 4-6 & 16-18  
4224966/B 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RPQ0025A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.1)  
(3.05)  
(1.325)  
4X (1.075)  
4X (0.675)  
3X  
(1.9)  
SYMM  
24  
22  
4X (0.575)  
21  
2X (0.825)  
1
4X (0.25)  
2X (0.8)  
20X (0.5)  
6X (1)  
(1.5)  
PKG  
25  
(0.65)  
(R0.05) TYP  
(1.675)  
20X (0.25)  
4X (0.85)  
SEE SOLDER MASK  
DETAIL  
13  
9
10  
12  
3X  
(1.55)  
(2.9)  
(3.075)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224966/B 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RPQ0025A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.1)  
(3.05)  
4X (1.075)  
4X (0.675)  
SYMM  
6X (0.85)  
22  
24  
4X (0.575)  
21  
1
2X (0.825)  
4X (0.25)  
20X (0.5)  
2X (0.8)  
(2.025)  
6X (1)  
(0.975)  
2X  
(0.563)  
PKG  
25  
2X (0.325)  
(1.237)  
2X (0.65)  
26X (0.25)  
(2.112)  
4X (0.85)  
13  
9
(R0.05) TYP  
10  
12  
6X  
(0.675)  
EXPOSED METAL  
TYP  
(0.763)  
(2.9)  
(3.075)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 25  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224966/B 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS25865QRPQRQ1

具有甩负荷功能的双路 2.4A USB Type-A 充电端口控制器 | RPQ | 25 | -40 to 125
TI

TPS25868-Q1

具有可编程电流限制和甩负荷功能的 USB Type-C® + Type-A 双路充电端口控制器
TI

TPS25868QRPQRQ1

具有可编程电流限制和甩负荷功能的 USB Type-C® + Type-A 双路充电端口控制器 | RPQ | 25 | -45 to 125
TI

TPS25869-Q1

具有甩负荷和 USB 开/关控制功能的 USB Type-C® + Type-A 双路充电端口控制器
TI

TPS25869QRPQRQ1

具有甩负荷和 USB 开/关控制功能的 USB Type-C® + Type-A 双路充电端口控制器 | RPQ | 25 | -45 to 125
TI

TPS2586X-Q1

TPS2586x-Q1 2.2-MHz, Low EMI Dual USB Type-A and Type-C® Charging Ports Controller With Sync DC/DC Converter and Programmable Current Limit
TI

TPS2590RSA

3-V to 20-V High-Current Load Switch
TI

TPS2590RSAR

3-V to 20-V High-Current Load Switch
TI

TPS2590RSAT

3-V to 20-V High-Current Load Switch
TI

TPS25910

3-V to 20-V High-Current Load Switch with Programmable Inrush Slew Rate
TI

TPS25910RSAR

3-V to 20-V High-Current Load Switch with Programmable Inrush Slew Rate
TI