TPS25921LDR [TI]

具有闭锁故障响应功能的 4.5V 至 18V、90mΩ、0.4A 至 1.6A 电子保险丝 | D | 8 | -40 to 85;
TPS25921LDR
型号: TPS25921LDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有闭锁故障响应功能的 4.5V 至 18V、90mΩ、0.4A 至 1.6A 电子保险丝 | D | 8 | -40 to 85

电子 光电二极管
文件: 总38页 (文件大小:1928K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
TPS25921x 具有精密限流和过压保护功能的 4.5V - 18V 熔丝  
1 特性  
3 说明  
1
4.5V - 18V 工作电压,最大绝对值 20V  
TPS25921 是一款具有全套保护功能的紧凑型多功能  
熔丝。 它具有较宽的工作电压,可实现对多种常用直  
(DC) 总线的控制。 室温下限流精度达 ±2%,这种  
优异的精度使得 TPS25921 成为多种系统保护应用的  
理想选择。  
90mΩ RDS(ON)(典型值)  
0.4A 1.6A 可调电流限值  
ILIMIT 1A 且温度为 25°C 时限流精度达 ±2%  
±3% 过压、欠压阈值  
可编程的 dVO/dt 控制  
而且它还具有过流保护、过压保护和欠压保护等多种可  
编程功能,能够对负载、电源和器件提供保护。欠压和  
过压条件下的阈值精度为 3%,无需监控电路即可确保  
对总线电压进行严密控制。 此外,还针对系统状态监  
视和下游负载控制提供了故障标志输出 (FLT)。  
热关断故障输出、欠压闭锁 (UVLO) 和过压保护  
(OVP)  
-40°C 125°C 的结温范围  
自动重试和闭锁型号  
UL2367 认证正在处理中  
UL60950 - 单点故障测试期间安全  
对于热插拔电路板,TPS25921 提供了浪涌电流控制  
和可编程的输出斜坡速率。 为实现设计灵活性的最大  
化,可使用软启动 (SS) 引脚处的电容器编程设定输出  
斜坡速率。  
2 应用范围  
大型家用电器,家用电器  
机顶盒、数字化视频光盘 (DVD) 和游戏机  
硬盘 (HDD) 和固态硬盘 (SSD)  
智能仪表,气体分析仪  
智能负载开关  
器件信息(1)  
部件号  
TPS25921A  
TPS25921L  
封装  
封装尺寸(标称值)  
SOIC  
4.90mm x 3.91mm  
USB 开关  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
电源适配器器件  
4 应用电路原理图  
4.5 to 18 V  
V(IN)  
Load  
IN  
OUT  
12V 短路响应  
FLTb  
90mO  
V(OUT)  
ENUV  
OVP  
FLT  
V(IN)  
I_IN  
SS  
ILIM  
GND  
TPS25921x  
TIME = 20 ms/div  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCE1  
 
 
 
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
10 Applications and Implementation...................... 18  
10.1 Application Information.......................................... 18  
10.2 Typical Application ................................................ 18  
11 System Examples................................................ 25  
应用范围................................................................... 1  
说明.......................................................................... 1  
应用电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 Handling Ratings ...................................................... 3  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Characteristics ........................................... 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Parametric Measurement Information ............... 11  
Detailed Description ............................................ 12  
9.1 Overview ................................................................. 12  
9.2 Functional Block Diagram ....................................... 12  
9.3 Feature Description................................................. 13  
9.4 Device Functional Modes........................................ 17  
11.1 Protection and Current Limiting for Primary-Side  
Regulated Power Supplies....................................... 25  
11.2 Precision Current Limiting in Intrinsic Safety  
Applications.............................................................. 26  
11.3 Smart Load Switch................................................ 27  
12 Power Supply Recommendations ..................... 28  
12.1 Transient Protection.............................................. 28  
12.2 Output Short-Circuit Measurements ..................... 29  
13 Layout................................................................... 30  
13.1 Layout Guidelines ................................................. 30  
13.2 Layout Example .................................................... 30  
14 器件和文档支持 ..................................................... 31  
14.1 相关链接................................................................ 31  
14.2 Trademarks........................................................... 31  
14.3 Electrostatic Discharge Caution............................ 31  
14.4 术语表 ................................................................... 31  
15 机械封装和可订购信息 .......................................... 31  
8
9
5 修订历史记录  
日期  
修订版本  
注释  
2014 8 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
6 Pin Configuration and Functions  
SOIC (D) 8 PIN PACKAGE  
(TOP VIEW)  
1
2
3
4
8
7
6
5
OVP  
ILIM  
GND  
SS  
FLT  
ENUV  
IN  
OUT  
Pin Functions  
NAME  
NUMBER  
DESCRIPTION  
GND  
SS  
1
2
Ground.  
A capacitor from this pin to GND sets the ramp rate of output voltage at device turn-on.  
Input for setting programmable undervoltage lockout threshold. An undervoltage event will open internal FET and  
assert FLT to indicate power-failure. When pulled to GND, resets the thermal fault latch in TPS25921L.  
ENUV  
3
IN  
4
5
Power Input and supply voltage of the device.  
Power Output of the device.  
OUT  
Fault event indicator, goes low to indicate fault condition due to Undervoltage, Overvoltage, and Thermal shutdown  
event. A nuisance fast trip does not trigger fault. It is an open drain output.  
FLT  
ILIM  
OVP  
6
7
8
A resistor from this pin to GND will set the overload and short circuit limit.  
Input for setting programmable overvoltage protection threshold. An overvoltage event will open the internal FET and  
assert FLT to indicate overvoltage.  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE(2)  
MIN  
UNIT  
MAX  
20  
22  
7
IN, OUT, ENUV, OVP, FLT  
–0.3  
V
Input voltage range  
IN (10 ms Transient)  
ILIM, SS  
SS  
–0.3  
5
mA  
mA  
Sink current  
FLT  
100  
Source current  
ILIM, SS, FLT  
Internally Limited  
Internally Limited  
Maximum junction temperature, TJ  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
-65  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
–2  
2
V(ESD)  
Electrostatic discharge  
kV  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
–0.5  
0.5  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2014, Texas Instruments Incorporated  
3
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN TYP  
MAX UNIT  
IN  
4.5  
18  
OUT, OVP, ENUV, FLT  
0
18  
V
Input voltage range  
SS  
0
6
ILIM  
0
3.3  
Resistance  
ILIM  
OUT  
SS  
35.7 95.3  
158  
kΩ  
µF  
nF  
°C  
0.1  
1
1
External capacitance  
1000  
125  
Operating junction temperature range, TJ  
–40  
25  
7.4 Thermal Characteristics(1)  
TPS2592xx  
SOIC (8) PINS  
120.8  
THERMAL METRIC  
UNIT  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
65.5  
51.8  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
17.4  
ψJB  
61.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
7.5 Electrical Characteristics  
Conditions (unless otherwise noted) are –40°C TJ 125°C, 4.5 V V(IN) 18 V, V(EN UV) = 2 V, V(OVP) = 0 V, R(ILIM) = 95.3  
kΩ, CSS = OPEN, FLT = OPEN. Positive current into terminals. All voltages are referenced to GND (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND INTERNAL UNDERVOLTAGE LOCKOUT  
V(IN)  
Operating Input Voltage  
UVLO Threshold, Rising  
UVLO Hysteresis  
4.5  
4.10  
168  
18  
4.40  
279  
V
V(UVR)  
V(UVHys)  
IQ( ON)  
IQ( OFF)  
4.26  
224  
V
mV  
mA  
mA  
Supply Current, Enabled  
Supply Current, Disabled  
V(ENUV) = 2 V, V(IN) = 12 V  
0.22  
0.08  
0.41  
0.58  
0.20  
V(ENUV) = 0 V, V(IN) = 12 V  
0.132  
OVERVOLTAGE PROTECTION (OVP) INPUT  
Overvoltage Threshold Voltage,  
V(OVPR)  
Rising  
1.35  
1.39  
1.43  
V
Overvoltage Threshold Voltage,  
V(OVPF)  
Falling  
1.30  
1.34  
0
1.37  
100  
V
I(OVP)  
OVP Input Leakage Current  
0V V(OVP) 18 V  
–100  
nA  
ENABLE AND UNDERVOLTAGE LOCKOUT (ENUV) INPUT  
V(ENR)  
V(ENF)  
ENUV Threshold voltage, rising  
ENUV Threshold voltage, falling  
1.36  
1.30  
1.39  
1.34  
1.42  
1.37  
V
V
ENUV Threshold voltage to reset  
thermal fault, falling  
V(ENF_RST)  
IEN  
0.5  
0.61  
0
0.8  
V
EN Input leakage current  
0 V(ENUV) 18 V  
–100  
100  
nA  
SOFT START: OUTPUT RAMP CONTROL (SS)  
I(SS)  
SS charging current  
V(SS) = 0 V  
0.9  
60  
1.04  
70  
1.2  
85  
µA  
Ω
R(SS)  
SS discharging resistance  
SS maximum capacitor voltage  
SS to OUT gain  
V(ENUV) = 0 V, I(SS) = 10 mA sinking  
V(SSmax)  
GAIN(SS)  
5.5  
V
ΔV(OUT)/ΔV(SS)  
4.81  
4.86  
4.92  
V/V  
CURRENT LIMIT PROGRAMMING (ILIM)  
I(ILIM)  
ILIM Bias current  
6
0.284  
0.394  
0.98  
10  
0.368  
0.471  
1.0  
16  
0.452  
0.547  
1.02  
µA  
A
R(ILIM) = 35.7 kΩ, (V(IN) - V(OUT)) = 1 V  
R(ILIM) = 45.3 kΩ, (V(IN) - V(OUT)) = 1 V  
R(ILIM) = 95.3 kΩ, (V(IN) - V(OUT)) = 1 V, TA = TJ= 25°C  
R(ILIM) = 95.3 kΩ, (V(IN) - V(OUT)) = 1 V  
R(ILIM) = 150 kΩ, (V(IN) - V(OUT)) = 1 V  
Current Limit(1)  
0.93  
1.0  
1.062  
1.7  
ILIMIT  
1.43  
1.57  
R(ILIM) = SHORT, Shorted resistor current limit  
R(ILIM) = OPEN, Open resistor current limit  
(Single Point Failure Test: UL60950)  
0.12  
0.257  
0.406  
R(ILIM) = 35.7 kΩ, (V(IN) - V(OUT)) = 12 V  
R(ILIM) = 45.3 kΩ, (V(IN) - V(OUT)) = 12 V  
R(ILIM) = 95.3 kΩ, (V(IN) - V(OUT)) = 12 V  
R(ILIM) = 150 kΩ, (V(IN) - V(OUT)) = 12 V  
0.275  
0.376  
0.837  
1.219  
0.356  
0.45  
0.438  
0.522  
0.964  
1.46  
IOS  
Short-circuit current limit(1)  
A
0.9  
1.34  
0.0142 x  
I(FASTRIP)  
V(ILIMopen)  
Fast-Trip comparator threshold  
R(ILIM) in kΩ  
R(ILIM)  
+
A
V
0.36  
ILIM Open resistor detect threshold V(ILIM) Rising, R(ILIM) = OPEN  
2.81  
3.0  
3.25  
MOSFET – POWER SWITCH  
–40°C TJ 85°C  
–40°C TJ 125°C  
55  
55  
87  
87  
120  
135  
FET ON resistance(2)  
RDS(on)  
mΩ  
PASS FET OUTPUT (OUT)  
Ilkg(OUT)  
V(ENUV) = 0 V, V(OUT) = 0 V (Sourcing)  
V(ENUV) = 0V, V(OUT) = 300 mV (Sinking)  
–2  
5
0
7
1
OUT Bias current in off state  
µA  
Isink(OUT)  
10  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(2) The limits for these parameters are specified based on design and characterization data, and are not tested during production.  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Conditions (unless otherwise noted) are –40°C TJ 125°C, 4.5 V V(IN) 18 V, V(EN UV) = 2 V, V(OVP) = 0 V, R(ILIM) = 95.3  
kΩ, CSS = OPEN, FLT = OPEN. Positive current into terminals. All voltages are referenced to GND (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FAULT FLAG (FLT): ACTIVE LOW  
R(FLT)  
I(FLT)  
THERMAL SHUT DOWN (TSD)  
FLT Pull down Resistance  
Device in fault condition, V(ENUV) = 0V, I(FLT) = 100mA  
Device not in fault condition, V(FLT) = 0V, 18V  
22  
26  
0
32  
Ω
FLT Input Leakage Current  
–0.5  
0.5  
µA  
T(TSD)  
TSD Threshold, rising(3)  
TSD Hysteresis(3)  
155  
20  
°C  
°C  
T(TSDhys)  
TPS25921L  
TPS25921A  
LATCHED  
Thermal fault: Latched or Auto Retry  
AUTO-  
RETRY  
(3) The limits for these parameters are specified based on design and characterization data, and are not tested during production.  
7.6 Timing Requirements  
Conditions (unless otherwise noted) are –40°C TJ 125°C, V(IN)= 12 V, V(EN UV) = 2 V, V(OVP) = 0 V, R(ILIM) = 95.3 kΩ, CSS  
OPEN, FLT = OPEN. Positive current into terminals. All voltages are referenced to GND (unless otherwise noted). Refer to  
Figure 26 for the timing diagrams  
=
MIN  
TYP  
MAX  
UNIT  
ENABLE AND UNDERVOLTAGE LOCKOUT (ENUV) INPUT  
tOFF(dly)  
Turn Off delay  
Turn-On delay  
ENUV to V(OUT)  
8
µs  
µs  
ENUV to V(OUT) = 1V,  
C(SS) = OPEN  
96  
14.5 +  
0.5 x (  
70p +  
tON(dly)  
ENUV to V(OUT) = 1V,  
C(SS) > 0.39nF, [C(dVdT) in nF]  
C(SS)  
)
OVERVOLTAGE PROTECTION (OVP) INPUT  
tOVP(dly) OVP Disable delay OVPto V(OUT)  
SOFT START: OUTPUT RAMP CONTROL (SS)  
8
µs  
ENUV to V(OUT) = 11.7 V, with C(SS) = open ,  
C(OUT) = 2.2 µF  
0.2  
2.1  
0.26  
3
0.33  
3.6  
tSS  
Output ramp time  
ms  
ENUV to V(OUT) = 11.7 V, with C(SS) = 1 nF, C(OUT)  
= 2.2 µF  
CURRENT LIMIT PROGRAMMING (ILIM)  
Fast-Trip comparator  
delay  
tFASTRIP(dly)  
I(OUT) > I(FASTRIP)  
3
µs  
THERMAL SHUT DOWN (TSD)  
Retry Delay after TSD  
TPS25921A Only, V(IN) = 12 V  
TPS25921A Only, V(IN) = 4.5 V  
150  
100  
ms  
ms  
tTSD(dly)  
recovery, TJ < [T(TSD)  
-
20oC]  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
7.7 Typical Characteristics  
Conditions (unless otherwise noted) are –40°C TJ 125°C, V(IN)= 12 V, V(EN UV) = 2 V, V(OVP) = 0 V, R(ILIM) = 95.3 kΩ, C(OUT)  
= 2.2 μF, CSS = OPEN, FLT = OPEN. Positive current into terminals. All voltages referenced to GND (unless otherwise  
noted). For all oscilloscope waveforms TA = 25°C.  
4.4  
4.3  
4.2  
4.1  
4
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V(UVR)  
V(UVF)  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = 125qC  
3.9  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
4
6
8
10  
12  
14  
16  
18  
Temperature (qC)  
Input Voltage (V)  
D001  
D002  
Figure 1. UVLO Threshold Voltage vs Temperature  
Figure 2. Input Supply Current vs Supply Voltage During  
Normal Operation  
250  
200  
150  
100  
50  
1.4  
1.38  
1.36  
1.34  
1.32  
1.3  
TA = 25qC  
TA = 125qC  
V(ENR), V(OVPR)  
V(ENF), V(OVPF)  
0
0
5
10  
15  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Temperature (qC)  
D003  
D004  
Figure 3. Input Supply Current vs Supply Voltage at  
Shutdown  
Figure 4. ENUV and OVP Threshold Voltage vs Temperature  
1.2  
1.15  
1.1  
0.8  
0.7  
0.6  
0.5  
0.4  
1.05  
1
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (qC)  
Temperature (qC)  
D007  
D006  
Figure 6. SS Pin Charging Current vs Temperature  
Figure 5. EN Threshold Voltage to Reset Fault Latch vs  
Temperature  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
Conditions (unless otherwise noted) are –40°C TJ 125°C, V(IN)= 12 V, V(EN UV) = 2 V, V(OVP) = 0 V, R(ILIM) = 95.3 kΩ, C(OUT)  
= 2.2 μF, CSS = OPEN, FLT = OPEN. Positive current into terminals. All voltages referenced to GND (unless otherwise  
noted). For all oscilloscope waveforms TA = 25°C.  
5
4.95  
4.9  
1k  
100  
10  
4.85  
4.8  
TA = -40qC  
TA = 25qC  
TA = 85qC  
TA = 125qC  
4.75  
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
1
10  
100  
Temperature (qC)  
Soft Start Capacitor (nF)  
D008  
D009  
Figure 7. GAIN(SS) vs Temperature  
Figure 8. Output Ramp Time vs C(SS)  
2.5  
2
0.275  
0.27  
0.265  
0.26  
1.5  
1
0.255  
0.25  
0.5  
ILIMIT  
I(FASTRIP)  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
20  
40  
60  
80  
100  
120  
140  
160  
Temperature (qC)  
R(ILM) Resistor (k:)  
D010  
D011  
C(SS) = Open  
Figure 9. Output Ramp Time vs Temperature  
Figure 10. Current Limit vs Current Limit Resistor  
2.4  
2
25  
20  
15  
10  
5
35.7 k:  
45.3 k:  
95.3 k:  
150 k:  
1.6  
1.2  
0.8  
0.4  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
0.25  
0.5  
0.75  
Current Limit (A)  
1
1.25  
1.5  
1.75  
Temperature (qC)  
D013  
D012  
Figure 12. Current Limit vs Temperature Across R(ILIM)  
Figure 11. Current Limit Accuracy vs Current Limit  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
Typical Characteristics (continued)  
Conditions (unless otherwise noted) are –40°C TJ 125°C, V(IN)= 12 V, V(EN UV) = 2 V, V(OVP) = 0 V, R(ILIM) = 95.3 kΩ, C(OUT)  
= 2.2 μF, CSS = OPEN, FLT = OPEN. Positive current into terminals. All voltages referenced to GND (unless otherwise  
noted). For all oscilloscope waveforms TA = 25°C.  
0.28  
0.27  
0.26  
0.25  
0.24  
0
R(ILIM) = Short  
R(ILIM) = Open  
-5  
-10  
-15  
-20  
-25  
0
5
10  
15  
20  
25  
-60  
-30  
0
30  
60  
90  
120  
150  
Power Dissipation (W)  
Temperature (qC)  
D014  
D015  
PD = [V(IN)  
-
V(OUT)]*ILIMIT  
Figure 14. Current Limit for R(ILIM) = Open and Short vs  
Temperature  
Figure 13. Current Limit Normalized (%) vs Power  
Dissipation in the Device PD  
135  
120  
105  
90  
100000  
o  
TA = -40 C  
TA =25oC  
10000  
1000  
100  
10  
T
= 85oC  
A
TA = 125oC  
75  
1
60  
0.1  
0.1  
1
10  
100  
45  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
C014  
Power Dissipation (W)  
Temperature (qC)  
D016  
Taken on 1-Layer board, 2oz.(0.08-mm thick) with GND plane  
area: 14 cm2 (bottom)  
Figure 15. RDS(ON) vs Temperature  
Figure 16. Thermal Shutdown Time vs Power Dissipation  
C(SS) = Open  
C(OUT) = 4.7 nF  
C(SS) = 1nF  
C(OUT) = 4.7 nF  
Figure 17. Turn ON with Enable  
Figure 18. Turn ON with Enable  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
Conditions (unless otherwise noted) are –40°C TJ 125°C, V(IN)= 12 V, V(EN UV) = 2 V, V(OVP) = 0 V, R(ILIM) = 95.3 kΩ, C(OUT)  
= 2.2 μF, CSS = OPEN, FLT = OPEN. Positive current into terminals. All voltages referenced to GND (unless otherwise  
noted). For all oscilloscope waveforms TA = 25°C.  
R(FLT) = 100 kΩ  
R(FLT) = 100 kΩ  
Figure 19. EN Turn ON Delay : EN to Output Ramp ↑  
Figure 20. EN Turn OFF Delay : EN to Fault ↓  
RL = 12 Ω  
R(FLT) = 100 kΩ  
RL = 12 Ω  
R(FLT) = 100 kΩ  
Figure 21. OVP Turn OFF delay: OVP to Fault ↓  
Figure 22. OVP Turn ON delay: OVP to Output Ramp ↑  
Figure 23. Hot-Short: Fast Trip Response and Current  
Regulation  
Figure 24. Hot-Short: Fast Trip Response (Zoomed)  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
8 Parametric Measurement Information  
5V  
V(OUT)  
VEN  
10%  
1V  
5V  
90%  
90%  
VEN  
V(OUT)  
time  
0
time  
0
tOFF(dly)  
tON(dly)  
5V  
I(FASTRIP)  
V(OVP)  
50%  
ILIMIT  
I(IN)  
90%  
V(OUT)  
0
time  
0
time  
tFASTRIP(dly)  
tOVP(dly)  
Figure 25. Timing Diagrams  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
TPS25921 is a smart eFuse with enhanced built-in protection circuitry. It provides robust protection for all  
systems and applications powered from 4.5 V to 18 V.  
For hot-plug-in boards, the device provides in-rush current control and programmable output ramp-rate.  
TPS25921 integrates overcurrent and short circuit protection. The precision overcurrent limit helps to minimize  
over design of the input power supply, while the fast response short circuit protection immediately isolates the  
load from input when a short circuit is detected. The device allows the user to program the overcurrent limit  
threshold between 0.4 A and 1.6 A via an external resistor. The device provides precise monitoring of voltage  
bus for brown-out and overvoltage conditions and asserts fault for downstream system. Its threshold accuracy of  
3% ensures tight supervision of bus, eliminating the need for a separate supply voltage supervisor chip.  
TPS25921 is designed to protect systems such as White Goods, STBs, DTVs, Smart Meters and Gas Analyzers.  
The additional features include:  
Over temperature protection to safely shutdown in the event of an overcurrent event  
Fault reporting for brown-out and overvoltage faults  
A choice of latched or automatic restart mode  
9.2 Functional Block Diagram  
OUT  
IN  
4
5
Current  
Sense  
OVP  
90m:  
8
OVP  
1.39V  
1.34V  
Charge  
Pump  
+
+
ENUV  
I to V  
3
EN  
1.39V  
1.34V  
FLT  
6
Thermal  
Shutdown  
TSD  
GATE  
CONTROL  
SWEN  
S
SWEN  
Fault  
Logic  
Q
26:  
R
Retry Timer  
(TPS25921A Only)  
+
0.61V  
10uA  
+
1PA  
ILIMIT  
ILIM  
SS  
7
+
2
1
4.8x  
+
70pF  
Fast Trip  
Comp  
SWEN  
GND  
70:  
I(FASTRIP)  
TPS25921x  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
9.3 Feature Description  
9.3.1 Enable and Adjusting Undervoltage Lockout (UVLO)  
The ENUV pin controls the ON/OFF state of the internal FET. A voltage V(ENUV) < V(ENF) on this pin turns off the  
internal FET, thus disconnecting IN from OUT.  
Toggling the ENUV pin below V(ENF_RST) resets the TPS25921L that has latched off due to a fault condition. The  
internal de-glitch delay on ENUV falling edge is kept low for quick detection of power failure. For applications  
where a higher de-glitch delay on ENUV is desired, or when the supply is particularly noisy, it is recommended to  
use an external filter capacitor from the ENUV terminal to GND.  
The undervoltage lockout threshold can be programmed by using an external resistor divider from the supply IN  
terminal to the ENUV terminal to GND as shown in Figure 26. When an undervoltage or input power fail event is  
detected, the internal FET is quickly turned off, and FLT is asserted. If the undervoltage lockout function is not  
needed, the ENUV pin should be connected to the IN terminal. The ENUV terminal should not be left floating.  
TPS25921 also implements internal undervoltage lockout (UVLO) circuitry on the IN pin. The device gets  
disabled when the IN terminal voltage falls below internal UVLO Threshold V(UVF)  
.
V(IN)  
IN  
TPS25921x  
R1  
ENUV  
+
EN  
1.39V  
R2  
1.34V  
OVP  
+
OVP  
1.39V  
R3  
1.34V  
GND  
Figure 26. UVLO and OVP Thresholds Set By R1, R2 and R3  
9.3.2 Overvoltage Protection (OVP)  
TPS25921 incorporates circuits to protect the system during overvoltage conditions. A resistor divider, connected  
from the supply to OVP terminal to GND (as shown in Figure 26), programs the overvoltage threshold. A voltage  
more than V(OVPR) on the OVP pin turns off the internal FET and protects the downstream load. This pin should  
be tied to GND when not used.  
9.3.3 Hot Plug-in and In-Rush Current Control  
TPS25921 is designed to control the in-rush current upon insertion of a card into a live backplane or other "hot"  
power source. This limits the voltage sag on the backplane’s supply voltage and prevents unintended resets of  
the system power. A slew rate controlled startup (SS) also helps to eliminate conductive and radiated  
interference. An external capacitor from the SS pin to GND defines the slew rate of the output voltage at power-  
on (as shown in Figure 27). The equation governing slew rate at start-up is shown in Equation 1 :  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
Feature Description (continued)  
TPS25921x  
1 PA  
SS  
C(SS)  
70 :  
SWEN  
C(INT)  
GND  
Figure 27. Output Ramp Up Time tdVdT is Set by C(dVdT)  
(C  
(SS)  
+ C  
(INT)  
)
dV  
(OUT)  
I
=
x
(SS)  
Gain  
(SS)  
dt  
(1)  
Where:  
I(SS) = 1 µA (typical)  
space  
dV  
(OUT)  
dt  
= Desired output slew rate  
GAIN(SS) = ΔV(OUT)/ΔV(SS) gain = 4.85  
The total ramp time (tSS) of V(OUT) for 0 to V(IN) can be calculated using Equation 2:  
4
t
= 20.6 x 10 x V  
x
C
(
(SS)  
+ 0.07  
)
SS  
(IN)  
(2)  
(3)  
The inrush current, I(INRUSH) can be calculated as  
V
(IN)  
I
= C x  
(OUT)  
(INRUSH)  
t
SS  
The SS pin can be left floating to obtain a predetermined slew rate (tSS) on the output. When terminal is left  
floating, the device sets an internal ramp rate of ~50V/ms for output (V(OUT)) ramp.  
Figure 36 and Figure 37 illustrate the inrush current control behavior of the device. For systems where load is  
present during start-up, the current never exceeds the overcurrent limit set by R(ILIM) resistor for the application.  
For defining appropriate charging time/rate under different load conditions, refer to the Setting Output Voltage  
Ramp time (tSS) section.  
9.3.4 Overload and Short Circuit Protection :  
At all times load current is monitored by sensing voltage across an internal sense resistor. During overload  
events, current is limited to the current limit (ILIMIT) programmed by R(ILIM) resistor  
-3  
I
= 10.73 x 10 x R  
- 0.018  
LIMIT  
(ILIM)  
(4)  
(5)  
I
+ 0.018  
-3  
LIMIT  
R
=
(ILIM)  
10.73 x 10  
ILIMIT is overload current limit in Ampere  
R(ILIM) is the current limit programming resistor in kΩ  
TPS25921 incorporates two distinct overcurrent protection levels: the current limit (ILIMIT) and the fast-trip  
threshold (I(FASTRIP)). The fast trip and current limit operations are shown in Figure 28.  
Bias current on ILIM pin directly controls current-limiting behavior of the device, and PCB routing of this node  
must be kept away from any noisy (switching) signals.  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
Feature Description (continued)  
9.3.4.1 Overload Protection  
For overload conditions, the internal current-limit amplifier regulates the output current to ILIMIT. The output  
voltage droops during current limit regulation, resulting in increased power dissipation in the device. If the device  
junction temperature reaches the thermal shutdown threshold (T(TSD)), the internal FET is turned off. Once in  
thermal shutdown, The TPS25921L version stays latched off, whereas TPS25921A commences an auto-retry  
cycle tTSD(dly) ms after TJ < [T(TSD) - 20°C]. During thermal shutdown, the fault pin FLT pulls low to signal a fault  
condition. Figure 40 and Figure 41 illustrate overload behavior.  
9.3.4.2 Short Circuit Protection  
During a transient short circuit event, the current through the device increases very rapidly. As current-limit  
amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
comparator, with a threshold I(FASTRIP). When the current through the internal FET exceeds I(FASTRIP) (I(OUT)  
>
I(FASTRIP)), this comparator shuts down the pass device within 3 µs and terminates the rapid short-circuit peak  
current. The I(FASTRIP) threshold is dependent on programmed overload current limit and function of R(ILIM). See  
Equation 6 for the calculation.  
-2  
I
= 1.42 x 10 x R  
+ 0.36  
(FASTRIP)  
(ILIM)  
where  
I(FASTRIP) is fast trip current limit in Ampere  
R(ILIM) is the current limit resistor in kΩ  
(6)  
The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device attempts to turn  
back on normally, allowing the current-limit loop to regulate the output current to ILIMIT. Then, device behaves  
similar to overload condition. Figure 42 through Figure 44 illustrate the behavior of the system when the current  
exceeds the fast-trip threshold.  
9.3.4.3 Start-Up with Short on Output  
During start-up into a short circuit current is limited to ILIMIT. Figure 45 and Figure 46 illustrate start-up with a  
short on the output. This feature helps in quick fault isolation and hence ensures stability of the DC bus.  
9.3.4.4 Constant Current Limit Behavior during Overcurrent Faults  
When power dissipation in the internal FET [PD = (V(IN) - V(OUT)) × I(OUT)] > 2 W, there is a ~1 to 20 % thermal fold  
back in the current limit value so that the regulated current drops from ILIMIT to IOS. Eventually, the device shuts  
down due to over temperature.  
I(FASTRIP)  
I(FASTRIP) = 1.42 x 10-2 x R(ILIM) + 0.36  
ILIMIT  
Thermal Foldback  
1-20%  
IOS  
Figure 28. Overcurrent Protection Levels  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
Feature Description (continued)  
9.3.5 FAULT Response  
The FLT open-drain output is asserted (active low) during undervoltage, overvoltage and thermal shutdown  
conditions. The FLT signal remains asserted until the fault condition is removed and the device resumes normal  
operation. During thermal shutdown, TPS25921L version stays latched off, whereas TPS25921A commences an  
auto-retry cycle tTSD(dly) millisecond after TJ < [T(TSD) - 20°C]. For TPS25921L, thermal fault latch can be reset by  
cycling the ENUV pin below V(ENF_RST) threshold. A nuisance fast trip does not trigger fault.  
Connect FLT with a pull up resistor to Input or Output voltage rail. FLT may be left open or tied to ground when  
not used.  
9.3.6 IN, OUT and GND Pins  
The IN pin should be connected to the power source. A ceramic bypass capacitor close to the device from IN to  
GND is recommended to alleviate bus transients. The recommended operating voltage range is 4.5 V – 18 V.  
The OUT pin should be connected to the load. V(OUT) in the ON condition, is calculated using the Equation 7  
V
= V  
(IN)  
-
R
x I  
DS(ON) (OUT)  
(
)
(OUT)  
(7)  
where, RDS(ON) is the ON resistance of the internal FET.  
GND terminal is the most negative voltage in the circuit and is used as a reference for all voltage reference  
unless otherwise specified.  
9.3.7 Thermal Shutdown:  
Internal over temperature shutdown disables/turns off the FET when TJ > 155°C (typical). The TPS25921L  
version latches off the internal FET, whereas TPS25921A commences an auto-retry cycle tTSD(dly) milliseconds  
after TJ drops below [T(TSD) - 20°C]. During the thermal shutdown, the fault pin FLT is pulled low to signal a fault  
condition.  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
9.4 Device Functional Modes  
9.4.1 Shutdown Control  
The internal FET and hence the load current can be remotely switched off by taking the ENUV pin below its 1.34  
V threshold with an open collector or open drain device as shown in Figure 29. Upon releasing the ENUV pin the  
device turns on with soft-start cycle.  
V(IN)  
IN  
TPS25921x  
R1  
ENUV  
+
EN  
1.39V  
from µC  
R2  
1.34V  
GND  
Figure 29. Shutdown Control  
9.4.2 Operational Overview of Device Functions  
The Table 1 below elucidates the device functionality for various conditions  
Table 1. Operational Overview of Device Functions  
Device  
TPS25921  
Inrush ramp controlled by capacitor at SS pin  
Inrush limited to ILIMIT level as set by R(ILIM)  
If TJ > T(TSD) device shuts off  
Start Up  
Current is limited to I(LIM) level as set by R(ILIM)  
Power dissipation increases as V(IN) - V(OUT) grows  
Device turns off when TJ > T(TSD)  
Overcurrent Response  
Short-Circuit Response  
‘L' Version remains off  
'A' Version will attempt restart tTSD(dly) ms after TJ < [T(TSD) -20°C]  
Fast shut off when I(LOAD) > I(FASTRIP)  
Quick restart and current limited to ILIMIT, follows standard startup cycle  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
10 Applications and Implementation  
10.1 Application Information  
The TPS25921x is a smart eFuse. It is typically used for Hot-Swap and Power rail protection applications. It  
operates from 4.5 V to 18 V with programmable current limit, overvoltage and undervoltage protection. The  
device aids in controlling the in-rush current and provides precise current limiting during overload conditions for  
systems such as White Goods, Set-Top-Box, DTVs, Gaming Consoles, SSDs/HDDs and Smart Meters. The  
device also provides robust protection for multiple faults on the sub-system rail.  
The following design procedure can be used to select component values for the device.  
Alternatively, the WEBENCH® software may be used to generate a complete design. The WEBENCH® software  
uses an iterative design procedure and accesses a comprehensive database of components when generating a  
design. Additionally, a spreadsheet design tool TPS25921 Design Calculator is available on web folder.  
This section presents a simplified discussion of the design process.  
10.2 Typical Application  
10.2.1 Precision Current Limiting and Protection for White Goods  
V(IN) 4.5 to 18 V  
V(OUT)  
IN  
OUT  
(Note 1)  
CIN  
0.1µF  
R1  
470kO  
COUT  
100µF  
90mOꢀ  
R4  
ENUV  
OVP  
R2  
53kOꢀ  
Fault Monitor  
FLT  
SS  
ILIM  
GND  
CSS  
1nF  
R3  
47kOꢀ  
TPS25921x  
RILIM  
95.3kO  
(1) CIN: Optional and only for noise suppression.  
Figure 30. Typical Application Schematics: eFuse for White Goods  
10.2.1.1 Design Requirements  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage range, V(IN)  
EXAMPLE VALUE  
12 V  
8 V  
Undervoltage lockout set point, V(UV)  
Overvoltage protection set point , V(OV)  
Load at Start-Up , RL(SU)  
17 V  
24 Ω  
1 A  
Current limit, ILIMIT  
Load capacitance , C(OUT)  
100 µF  
85°C  
Maximum ambient temperatures , TA  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
10.2.1.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the TPS25921A and TPS25921L.  
10.2.1.2.1 Step by Step Design Procedure  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Normal input operation voltage  
Maximum output capacitance  
Maximum current Limit  
Load during start-up  
Maximum ambient temperature of operation  
This design procedure below seeks to control the junction temperature of device under both static and transient  
conditions by proper selection of output ramp-up time and associated support components. The designer can  
adjust this procedure to fit the application and design criteria.  
10.2.1.2.2 Programming the Current-Limit Threshold: R(ILIM) Selection  
The R(ILIM) resistor at the ILIM pin sets the over load current limit, this can be set using Equation 5.  
1 + 0.018  
R
=
= 94.8 kW  
(ILIM)  
-3  
10.73 x 10  
(8)  
Choose closest standard value: 95.3 kΩ, 1% standard value resistor.  
10.2.1.2.3 Undervoltage Lockout and Overvoltage Set Point  
The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using the external voltage divider  
network of R1, R2 and R3 as connected between IN, ENUV, OVP and GND pins of the device. The values  
required for setting the undervoltage and overvoltage are calculated solving Equation 9 and Equation 10.  
R
3
R +R +R  
V
=
x V  
(OV)  
(OVPR)  
1
2
3
(9)  
R
+R  
2
3
R +R +R  
V
=
x V  
(UV)  
(ENR)  
1
2
3
(10)  
For minimizing the input current drawn from the power supply {I(R123) = V(IN)/(R1 + R2 + R3)}, it is recommended to  
use higher values of resistance for R1, R2 and R3.  
However, leakage currents due to external active components connected to the resistor string can add error to  
these calculations. So, the resistor string current, I(R123) must be chosen to be 20x greater than the leakage  
current expected.  
From the device electrical specifications, V(OVPR) = 1.40 V and V(ENR) = 1.40 V. For design requirements, V(OV) is  
17 V and V(UV) is 8 V. To solve the equation, first choose the value of R3 = 47 kand use Equation 9 to solve for  
(R1 + R2) = 523.71 kΩ. Use Equation 10 and value of (R1 + R2) to solve for R2 = 52.88 kΩ and finally R1= 470.83  
kΩ.  
Using the closest standard 1% resistor values gives R1 = 470 kΩ, R2 = 53 kΩ, and R3 = 47 kΩ.  
The power failure threshold is detected on the falling edge of supply. This threshold voltage is 4% lower than the  
rising threshold, V(UV). This is calculated using Equation 11.  
V(PFAIL) = 0.96 x V(UV)  
(11)  
Power fail threshold set is : 7.68 V  
10.2.1.2.4 Setting Output Voltage Ramp time (tSS  
)
For a successful design, the junction temperature of device should be kept below the absolute-maximum rating  
during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush  
current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.  
The ramp-up capacitor C(SS) needed is calculated considering the two possible cases:  
Copyright © 2014, Texas Instruments Incorporated  
19  
 
 
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
10.2.1.2.4.1 Case1: Start-up Without Load: Only Output Capacitance C(OUT) Draws Current During Start-up  
During start-up, as the output capacitor charges, the voltage difference across the internal FET decreases, and  
the power dissipated decreases as well. Typical ramp-up of output voltage V(OUT) with inrush current limit of 0.5A  
and power dissipated in the device during start-up is shown in Figure 31. The average power dissipated in the  
device during start-up is equal to area of triangular plot (red curve in Figure 32) averaged over tSS  
.
7
14  
12  
10  
8
Input Current  
Power Dissipation  
Output Voltage  
6
5
4
3
2
1
0
6
4
2
0
0
20  
40  
60  
80  
100  
Start-Up Time, tSS (%)  
C013  
V(IN) = 12 V  
C(SS) = 1 nF  
C(OUT)=100 µF  
V(IN) = 12 V  
C(SS) = 1 nF  
C(OUT)=100 µF  
Figure 32. PD(INRUSH) Due to Inrush Current  
Figure 31. Start-up Without Load  
For TPS25921 device, the inrush current is determined as,  
V
dV  
(IN)  
I = C x  
=> I  
(INRUSH)  
= C x  
(OUT)  
dT  
t
SS  
(12)  
(13)  
Power dissipation during start-up is:  
P
= 0.5 x V x I  
(IN) (INRUSH)  
D(INRUSH)  
Equation 13 assumes that load does not draw any current until the output voltage has reached its final value.  
10.2.1.2.4.2 Case 2: Start-up With Load: Output Capacitance C(OUT) and Load Draws Current During Start-up  
When load draws current during the turn-on sequence, there will be additional power dissipated. Considering a  
resistive load RL(SU) during start-up, load current ramps up proportionally with increase in output voltage during  
tSS time. Typical ramp-up of output voltage, load current and power dissipation in the device is shown in  
Figure 33 and power dissipation with respect to time is plotted in Figure 34. The additional power dissipation  
during start-up phase is calculated as follows.  
æ
ö
÷
÷
÷
t
ç
(V - V )(t) = V  
(IN)  
x ç1-  
I
O
ç
ç
è
÷
ø
t
SS  
(14)  
æ
ç
ç
ç
ç
ö
V
÷
÷
÷
÷
÷
t
(IN)  
I (t) =  
x
L
R
t
SS  
ç
è
L(SU) ø  
(15)  
Where RL(SU) is the load resistance present during start-up. Average energy loss in the internal FET during  
charging time due to resistive load is given by:  
tss  
æ
ç
ç
ç
ö
÷
÷
÷
÷
÷
æ
ç
ç
è
ö
÷
÷
÷
V
t
t
(IN)  
ç
W
=
V
x ç1 -  
x
x
dt  
t
(IN)  
ç
ç
è
ò
÷
ø
t
R
t
SS  
L(SU)  
SS ø  
0
(16)  
20  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
 
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
14  
12  
10  
8
Power Dissipation  
Load Current  
Output Voltage  
6
4
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Start-Up Time, tSS (%)  
C013  
V(IN) = 12 V  
C(SS) = 1 nF  
RL(SU) = 24 Ω  
V(IN) = 12 V  
C(SS) = 1 nF ,  
C(OUT)=100 µF  
RL(SU) = 24 Ω  
Figure 34. PD(LOAD) in Device during Start-up with Load  
Figure 33. Start-up With Load  
On solving Equation 16 the average power loss in the internal FET due to load is:  
2
V
æ
ö
÷
÷
ø
1
6
(IN)  
÷
x
÷
ç
P
=
ç
D(LOAD)  
ç
è
R
L(SU)  
(17)  
(18)  
(19)  
Total power dissipated in the device during startup is:  
P
=
P + P  
D(INRUSH) D(LOAD)  
D(STARTUP)  
Total current during startup is given by:  
I
=
I
+ I (t)  
(STARTUP)  
(INRUSH) L  
If I(STARTUP) > ILIMIT, the device limits the current to ILIMIT and the current limited charging time is determined by:  
é
ê
ê
ê
ê
ê
ê
ê
ë
ù
ö
æ
ç
ç
ç
ç
ç
ç
ç
ç
ç
çI  
÷
ú
÷
÷
ú
÷
I
I
(INRUSH)  
÷
ú
÷
(LIMIT)  
÷
ú
÷
÷
t
=
C
x R  
L(SU)  
x
-1+LN  
SS(current-limited)  
(OUT)  
V
I
ú
(IN)  
÷
(INRUSH)  
÷
-
ú
÷
(LIMIT)  
ç
÷
ú
÷
L(SU) ø  
û
R
ç
è
(20)  
The power dissipation, with and without load, for selected start-up time should not exceed the shutdown limits as  
shown in Figure 35.  
100000  
o  
TA = -40 C  
TA =25oC  
10000  
T
= 85oC  
A
TA = 125oC  
1000  
100  
10  
1
0.1  
0.1  
1
10  
100  
C014  
Power Dissipation (W)  
Figure 35. Thermal Shutdown Limit Plot  
For the design example under discussion,  
Select ramp-up capacitor C(SS) = 1nF, using Equation 2.  
4
= 20.6 x 10 x 12 x 1 + 0.07 = 2.64 ms  
t
(
)
SS  
(21)  
21  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
The inrush current drawn by the load capacitance (C(OUT)) during ramp-up using Equation 3.  
æ
ç
ö
÷
ø
12  
-6  
I
=
100 x 10  
x
= 0.454 A  
(INRUSH)  
(
)
-3  
è 2.64 x 10  
(22)  
(23)  
The inrush Power dissipation is calculated, using Equation 13.  
P
= 0.5 x 12 x 0.454 = 2.72 W  
D(INRUSH)  
For 2.72 W of power loss, the thermal shut down time of the device should not be less than the ramp-up time tSS  
to avoid the false trip at maximum operating temperature. From thermal shutdown limit graph Figure 35 at  
TA = 85°C, for 2.72 W of power the shutdown time is ~170 ms. So it is safe to use 2.64 ms as start-up time  
without any load on output.  
Considering the start-up with load 24 Ω, the additional power dissipation, when load is present during start up is  
calculated, using Equation 17.  
1
12 x 12  
æ
ö
æ
ö
P
=
x
= 1 W  
D(LOAD)  
ç
÷
ç
÷
6
24  
è
ø
è
ø
(24)  
(25)  
The total device power dissipation during start up is:  
P
= 2.72 + 1 = 3.72 W  
D(STARTUP)  
From thermal shutdown limit graph at TA = 85°C, the thermal shutdown time for 3.72 W is close to 60 ms. It is  
safe to have 30% margin to allow for variation of system parameters such as load, component tolerance, and  
input voltage. So it is well within acceptable limits to use the 1 nF capacitor with start-up load of 24 Ω.  
If there is a need to decrease the power loss during start-up, it can be done with increase of C(SS) capacitor.  
To illustrate, choose C(SS) = 4.7 nF as an option and recalculate:  
4
= 20.6 x 10 x 12 x 4.7 + 0.07 = 11.8 ms  
t
(
)
SS  
(26)  
æ
ç
ö
÷
ø
12  
-6  
I
=
100 x 10  
x
= 0.102 A  
(INRUSH)  
(
)
-3  
è11.8 x 10  
(27)  
(28)  
P
= 0.5 x 12 x 0.102 = 0.61 W  
D(INRUSH)  
1
6
12 x 12  
24  
æ
ö
æ
ö
P
=
x
= 1 W  
D(LOAD)  
ç
÷
ç
÷
è
ø
è
ø
(29)  
(30)  
P
= 0.61+ 1 = 1.61 W  
D(STARTUP)  
From thermal shutdown limit graph at TA = 85°C, the shutdown time for 1.61 W power dissipation is ~1000 ms,  
which increases the margins further for shutdown time and ensures successful operation during start up and  
steady state conditions.  
The spreadsheet tool available on the web can be used for iterative calculations.  
10.2.1.2.5 Support Component Selections - R4 and CIN  
Reference to application schematics, R4 is required only if FLT is used; The resistor serves as pull-up for the  
open-drain output driver. The current sunk by this pin should not exceed 100 mA (refer to the Absolute Maximum  
Ratings table). CIN is a bypass capacitor to help control transient voltages, unit emissions, and local supply noise.  
Where acceptable, a value in the range of 0.001 μF to 0.1 μF is recommended for C(IN)  
.
22  
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
10.2.1.3 Application Curves  
Figure 36. Hot-Plug Start-Up: Output Ramp Without Load  
on Output  
Figure 37. Hot-Plug Start-Up: Output Ramp With 24 Ω Load  
at Start Up  
Figure 38. Overvoltage Shutdown  
Figure 39. Overvoltage Recovery  
Figure 40. Over Load: Step Change in Load from 19 Ω to 9  
Ω Back  
Figure 41. Overload Condition: Auto Retry and Recovery -  
TPS25921A  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
Figure 42. Hot Short: Fast Trip and Current Regulation  
Figure 43. Hot Short: Latched - TPS25921L  
Figure 44. Hot Short: Auto-Retry and Recovery from Short  
Circuit - TPS25921A  
Figure 45. Hot Plug-in with Short on Output: Latched -  
TPS25921L  
Figure 46. Hot Plug-in with Short on Output: Auto-Retry - TPS25921A  
24  
Copyright © 2014, Texas Instruments Incorporated  
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
11 System Examples  
The TPS25921 provides a simple solution for current limiting, inrush current control and supervision of power  
rails for wide range of applications operating at 4.5 V to 18 V and delivering up to 1.5 A.  
11.1 Protection and Current Limiting for Primary-Side Regulated Power Supplies  
Primary side regulated power supplies and adapters are dominant today in many of the applications such as  
Smart-phones, Portable hand-held devices, White Goods, Set-Top-Box and Gaming consoles. These supplies  
provide efficient, low cost and low component count solutions for power needs ranging from 5W to 30W. But,  
these come with drawbacks of  
No secondary side protection for immediate termination of critical faults such as short circuit and over voltage  
Do not provide precise current limiting for overload transients  
Have poor output voltage regulation for sudden change in AC input voltages - triggering output overvoltage  
condition  
Many of the above applications require precise output current limiting and secondary side protection, driving the  
need for current sensing in the secondary side. This needs additional circuit implementation using precision  
operational amplifiers. This increases the complexity of the solution and also results in sensing losses The  
TPS25921 with its integrated low-ohmic N-channel FET provides a simple and efficient solution. Figure 47 shows  
the typical implementation using TPS25921.  
VDC  
V(OUT)  
VAC(IN)  
Rectifier + Noise  
Filter  
TPS25921  
ILIM  
R1  
R2  
OVP  
CO  
CB  
RILIM  
UCC287xx  
Primary Regulated  
Fly-back Controller  
Rs  
Figure 47. Current Limiting and Protection for AC-DC Power Supplies  
During short circuit conditions, the internal fast comparator of TPS25921 turns OFF the internal FET in less than  
3 µs (typical) as soon as current exceeds I(FASTRIP), set by the current limit R(ILIM) resistor. The OVP comparator  
with 3% precision helps in quick isolation of the load from the input when inputs exceeds the set V(OVPR)  
Figure 42 and Figure 38 shows short circuit and overvoltage response waveforms of implementation using  
TPS25921. In addition to above, the TPS25921 provides inrush current limit when output is hot-plugged into any  
of the system loads.  
Copyright © 2014, Texas Instruments Incorporated  
25  
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
11.2 Precision Current Limiting in Intrinsic Safety Applications  
Intrinsic safety (IS) is becoming prominent need for safe operation of electrical and electronic equipment in  
hazardous areas. Intrinsic safety requires that equipment is designed such that the total amount of energy  
available in the apparatus is simply not enough to ignite an explosive atmosphere. The energy can be electrical,  
in the form of a spark, or thermal, in the form of a hot surface.  
This calls for precise current limiting and precision shutdown of the circuit for over voltage conditions ensuring  
that set voltage and current limits are not exceeded for wide operating temperature range and variable  
environmental conditions. Applications such as Gas Analyzers, Medical equipment (such as  
electrocardiographs), Portal Industrial Equipment, Cabled Power distribution systems and hand-held motor  
operated tools need to meet these critical safety standards.  
The TPS25921 device can be used as simple protection solution for each of the internal rails. Figure 48 shows  
the typical implementation using TPS25921.  
LO  
V(IN)  
V(OUT)  
Sync Buck  
DC-DC Converter  
TPS25921  
R1  
R2  
ILIM  
OVP  
CO  
CB  
RILIM  
V(IN)  
V(OUT)  
TPS25921  
LDO  
R1  
R2  
ILIM  
OVP  
CO  
CB  
RILIM  
Figure 48. Precision current Limit and Protection of Internal Rails  
26  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
11.3 Smart Load Switch  
A smart load switch is a series FET used for switching of the load (resistive or inductive). It also provides  
protection during fault conditions. Typical discrete implementation is shown in Figure 49. Discrete solutions have  
higher component count and require complex circuitry to implement each of the protection fault needs.  
TPS25921 can be used as a smart power switch for applications ranging from 4.5 V to 18 V. TPS25921 provides  
programmable soft start, programmable current limits, over-temperature protection, a fault flag, and under-  
voltage lockout.  
Enable  
EN  
V(IN)  
V(IN)  
Load  
Load  
TPS25921  
ILIM  
OVP  
R1  
R2  
R1  
Over Current  
Protection  
Cs  
UVLO  
OVP  
RILIM  
R2  
Q2  
Enable  
Figure 49. Smart Load Switch Implementation  
Figure 49 shows typical implementation and usage as load switch. This configuration can be used for driving a  
solenoid and FAN control. It is recommended to use a freewheeling diode across the load when load is highly  
inductive.  
Figure 50 shows load switching waveforms using TPS25921 for 12 V Bus  
Figure 50. Smart Load Switch (100 Hz Operation)  
Copyright © 2014, Texas Instruments Incorporated  
27  
 
 
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
12 Power Supply Recommendations  
The device is designed for supply voltage range of 4.5 V VIN 18 V. If the input supply is located more than a  
few inches from the device an input ceramic bypass capacitor higher than 0.1 μF is recommended. Power supply  
should be rated higher than the current limit set to avoid voltage droops during over current and short-circuit  
conditions.  
12.1 Transient Protection  
In case of short circuit and over load current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the  
input or output of the device. Such transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Schottky diode across the output to absorb negative spikes  
A low value ceramic capacitor (C(IN) = 0.001 µF to 0.1 µF) to absorb the energy and dampen the transients.  
The approximate value of input capacitance can be estimated with Equation 31.  
L
(IN)  
V
= V x I x  
(IN) (LOAD)  
SPIKE(Absolute)  
C
(IN)  
(31)  
Where:  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current,  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is  
shown in Figure 51.  
4.5 to 18 V  
OUT  
IN  
IN  
OUT  
(Note 1)  
CIN  
90mO  
ENUV  
OVP  
(Note 1)  
(Note 1)  
FLT  
SS  
ILIM  
GND  
TPS25921x  
(1) Optional components needed for suppression of transients  
Figure 51. Circuit Implementation With Optional Protection Components  
28  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
12.2 Output Short-Circuit Measurements  
It is difficult to obtain repeatable and similar short-circuit testing results. Source bypassing, input leads, circuit  
layout and component selection, output shorting method, relative location of the short, and instrumentation all  
contribute to variation in results. The actual short itself exhibits a certain degree of randomness as it  
microscopically bounces and arcs. Care in configuration and methods must be used to obtain realistic results. Do  
not expect to see waveforms exactly like those in the data sheet; every setup differs.  
Copyright © 2014, Texas Instruments Incorporated  
29  
TPS25921A, TPS25921L  
ZHCSCQ0 AUGUST 2014  
www.ti.com.cn  
13 Layout  
13.1 Layout Guidelines  
For all applications, a 0.01-uF or greater ceramic decoupling capacitor is recommended between IN terminal  
and GND. For hot-plug applications, where input power path inductance is negligible, this capacitor can be  
eliminated/minimized.  
The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC. See Figure 52 for a PCB layout example.  
High current carrying power path connections should be as short as possible and should be sized to carry at  
least twice the full-load current.  
The GND terminal must be tied to the PCB ground plane at the terminal of the IC. The PCB ground should be  
a copper plane or island on the board.  
Locate all TPS25921x support components: R(ILIM), CSS, and resistors for FLT, ENUV and OVP, close to their  
connection pin. Connect the other end of the component to the GND pin of the device with shortest trace  
length.  
The trace routing for the RILIM and CSS components to the device should be as short as possible to reduce  
parasitic effects on the current limit and soft start timing. These traces should not have any coupling to  
switching signals on the board.  
OVP and ENUV signal traces should be routed with sufficient spacing from FLT signal trace, to avoid  
spurious coupling of FLT switching, during fault conditions.  
Protection devices such as TVS, snubbers, capacitors, or diodes should be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, a  
protection Schottky diode is recommended to address negative transients due to switching of inductive loads,  
and it should be physically close to the OUT pins.  
Obtaining acceptable performance with alternate layout schemes is possible; however this layout has been  
shown to produce good results and is intended as a guideline.  
13.2 Layout Example  
Top layer  
Bottom Layer: GND plane (Optional)  
Via to top layer ground plane (only for two layer board)  
Ground  
1
2
3
4
8
7
6
5
OVP  
ILIM  
GND  
SS  
(Note 1)  
(Note 1)  
FLT  
ENUV  
IN  
OUT  
Output  
Input  
(1) Optional: Needed only to suppress the transients caused by inductive load switching.  
Figure 52. Board Layout  
30  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS25921A, TPS25921L  
www.ti.com.cn  
ZHCSCQ0 AUGUST 2014  
14 器件和文档支持  
14.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
Table 3. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS25921A  
TPS25921L  
14.2 Trademarks  
14.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
14.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
15 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
31  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25921AD  
TPS25921ADR  
TPS25921LD  
TPS25921LDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
25921A  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
25921A  
25921L  
25921L  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS25923

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝
TI

TPS259230DRCR

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS259230DRCT

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS259231DRCR

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS259231DRCT

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS25924

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝
TI

TPS259240DRCR

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS259240DRCT

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS259241DRCR

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS259241DRCT

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI

TPS25925

4.5V 至 5.5V、30mΩ、2A 至 5A 电子保险丝
TI

TPS259250DRCR

4.5V 至 5.5V、30mΩ、2A 至 5A 电子保险丝 | DRC | 10 | -40 to 85
TI