TPS25944ARVCR [TI]

具有反向电流阻断和 4ms 断路器功能的 2.7V 至 18V、42mΩ、0.6A 至 5.2A 电子保险丝 | RVC | 20 | -40 to 125;
TPS25944ARVCR
型号: TPS25944ARVCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有反向电流阻断和 4ms 断路器功能的 2.7V 至 18V、42mΩ、0.6A 至 5.2A 电子保险丝 | RVC | 20 | -40 to 125

电子 断路器
文件: 总59页 (文件大小:3276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
TPS25942x/44x 具有多种保护模式的 2.7V-18 V5A 电子熔丝电源多路复  
用器  
1 特性  
3 说明  
1
工作电压范围:2.7V 18V,最大值为 20V  
TPS25942TPS25944 eFuse 电源 MUX 是一款紧凑  
型且功能丰富的电源管理器件,此器件具有一整套的保  
护功能。宽工作范围可实现对很多常用直流总线电压的  
控制。集成背靠背场效应晶体管 (FET) 提供双向电流  
控制,从而使得此器件非常适合于电源复用和具有多个  
电源的系统。  
42mΩ RON(典型值)  
0.6A 5.3A 可调电流限值 (±8%)  
IMON 电流指示器输出 (±8%)  
工作时的 IQ 典型值为 200µA  
禁用时的 IQ 典型值为 15µA  
±2% 过压、欠压阈值  
该器件还为负载、电源和器件提供了许多可编程保护  
特性。为了满足特定的系统要求,可设定针对欠压,过  
压,过流,dVo/dt 斜率,电源正常和涌入电流保护的  
阈值。为了实现系统状态监视和下游负载控制,此器件  
提供 PGOODFLT 和精确地电流监视输出。  
反向电流阻断  
1μs 反向电压关断时间  
可编程 dVo/dt 控制  
电源正常和故障输出  
两个过流故障响应选项  
TPS25942TPS25944 可监视 V(IN) V(OUT),从而  
V(IN) < (V(OUT) – 10mV) 时提供真正的反向输出阻  
断。该器件经过配置可使用 FLT DMODE 引脚来分  
配主/辅助电源优先级。  
TPS25942:热关断时的 I(LIMIT)  
TPS259444ms 故障定时器,然后关闭  
结温范围为 -40°C +125°C  
已通过 UL 2367 认证  
器件信息(1)  
封装  
文件编号169910  
ILIM 20kΩ(最大电流为 4.81A)  
产品型号(2)  
TPS25942L  
TPS25942A  
封装尺寸(标称值)  
R
单点故障期间,符合 UL60950 安规  
开路-短路 ILIM 检测  
超薄四方扁平无引线  
(WQFN) (20)  
3.00mm x 4.00mm  
TPS25944L中删除注释  
产品预览”  
2 应用范围  
TPS25944A  
电源路径管理  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
冗余电源系统  
(2) TPS2594xL = 已锁断,TPS2594xA = 自动重试  
PCIe 卡、网络接口卡 (NIC) RAID 系统  
USB 移动电源、电源 MUX  
固态硬盘 (SSD) 和硬盘 (HDD)  
平板电脑和笔记本电脑  
电源适配器器件  
可编程逻辑控制器 (PLC)SS 中继和风扇控制  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SLVSCE9  
 
 
 
 
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
简化电路原理图  
V(MAIN) = 12V V(AUX) = 12.3V 的故障恢复  
使用二极管模式控制  
2.7 ꢃo 18 ë  
IN  
OUT  
Ço [oꢂd  
ë(Lb)  
wÇhÇ![  
=
C[Ç  
tDhhꢁ  
tDÇI  
ꢀb/Üë[h  
hët  
42 mW  
ꢁahꢁꢀ  
Lahb  
L[La  
dëdÇ  
Dbꢁ  
Çt{25942x  
Çt{25944x  
C
= 150 mF, R = 4 W  
L
OUT  
2
版权 © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
10 Application and Implementation........................ 30  
10.1 Application Information.......................................... 30  
10.2 Typical Application ................................................ 30  
10.3 System Examples ................................................ 38  
11 Power Supply Recommendations ..................... 45  
11.1 Transient Protection.............................................. 45  
11.2 Output Short-Circuit Measurements ..................... 46  
12 Layout................................................................... 47  
12.1 Layout Guidelines ................................................. 47  
12.2 Layout Example .................................................... 48  
13 器件和文档支持 ..................................................... 49  
13.1 器件支持................................................................ 49  
13.2 文档支持................................................................ 49  
13.3 相关链接................................................................ 49  
13.4 接收文档更新通知 ................................................. 49  
13.5 社区资源................................................................ 49  
13.6 ....................................................................... 49  
13.7 静电放电警告......................................................... 49  
13.8 Glossary................................................................ 49  
14 机械、封装和可订购信息....................................... 50  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Device Comparison Table..................................... 5  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements.............................................. 10  
7.7 Typical Characteristics............................................ 11  
Parameter Measurement Information ................ 19  
Detailed Description ............................................ 20  
9.1 Overview ................................................................. 20  
9.2 Functional Block Diagram ....................................... 21  
9.3 Feature Description................................................. 23  
9.4 Device Functional Modes........................................ 27  
8
9
4 修订历史记录  
Changes from Revision C (January 2017) to Revision D  
Page  
已添加 将“9.3.5 反向电流保护一节添加至 Feature Description............................................................................................. 1  
Changes from Revision B (October 2017) to Revision C  
Page  
Changed internal ramp rate of 12 V/ms for output to 30 V/ms in the Hot Plug-In and In-Rush Current Control section..... 24  
Changes from Revision A (March 2015) to Revision B  
Page  
Changed Figure 49: Added Logic Inversion......................................................................................................................... 22  
Changes from Original (June 2014) to Revision A  
Page  
特性“UL2367 认证正在审理中更改为已通过 UL 2367 认证,RILIM 20kΩ(最大电流为 4.81A),文件编号169910” 1  
已将说明中的文本从“FLT ENBLK 引脚更改为“FLT DMODE 引脚.......................................................................... 1  
已从器件信息....................................................................................................................................................................... 1  
Changed Pin 1 From ENBLK To: DMODE throughout the data sheet .................................................................................. 5  
Changed ENBLK To: DMODE in the Pin Functions table and updated the DESCRIPTION ................................................ 5  
Moved the Storage Temperature From the Handling Ratings table To Absolute Maximum Ratings table .......................... 7  
Changed the Handling Ratings table To: ESD Ratings table ................................................................................................ 7  
Changed DIODE MODE INPUT (ENBLK): ACTIVE LOW To: DIODE MODE INPUT (DMODE): ACTIVE HIGH in the  
Electrical Characteristics ........................................................................................................................................................ 8  
Added Test Condition to I(LIM): "R(ILIM) = 20 kΩ" in the Electrical Characteristics .................................................................. 9  
Changed Test Condition in I(LIM) From: "ENBLK = High; Diode Mode" To: "DMODE = High; Non-ideal Diode Mode"  
in the Electrical Characteristics ............................................................................................................................................. 9  
Changed "DIODE MODE INPUT: ACTIVE LOW (ENBLK)" To: DIODE MODE INPUT: ACTIVE HIGH (DMODE)" in  
版权 © 2014–2017, Texas Instruments Incorporated  
3
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
the Timing Requirements .................................................................................................................................................... 10  
Changed Figure 22............................................................................................................................................................... 13  
Added condition R(ILIM) = 17.8 KΩ to Figure 39 and Figure 40 ............................................................................................ 16  
Changed Figure 43. Added Figure 44, Figure 45, and Figure 46 ........................................................................................ 17  
Changed Figure 48: ENBLK To: DMODE and Diode Mode To: Non-Ideal Diode Mode ..................................................... 21  
Changed Figure 49: ENBLK To: DMODE and Diode Mode To Non-Ideal Diode Mode ...................................................... 22  
Changed Equation 6 to include I(IMON_OS).............................................................................................................................. 26  
Change text in Diode Mode From:" ENBLK...active low terminal" To: "DMODE ...active high terminal"............................. 27  
Changed text in the last sentence of Diode Mode From: "In this mode, the overload current..." To:"In this mode, the  
circuit breaker functionality.."................................................................................................................................................ 27  
Added the NOTE to Application and Implementation .......................................................................................................... 30  
Added Note A to Figure 60 .................................................................................................................................................. 34  
Changed Equation 37 From: V(IN) x I(LOAD) To: V(IN) + I(LOAD)................................................................................................. 45  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
5 Device Comparison Table  
DEVICE  
TJ  
OPERATION(1)  
Current limiter  
Current limiter  
Circuit breaker  
Circuit breaker  
TYPE  
TPS25942A  
TPS25942L  
Auto retry  
Latched  
Auto retry  
Latched  
–40°C to +125°C  
TPS25944A  
TPS25944L  
(1) See the Operational Differences Between the TPS25942 and TPS25944 section for detailed information.  
6 Pin Configuration and Functions  
RVC Package  
20-Pin WQFN  
Top View  
16  
15  
Dbꢀ  
hët  
1
2
ꢀahꢀꢁ  
tDhhꢀ  
tDÇI  
3
4
14 ꢁb  
hÜÇ  
hÜÇ  
hÜÇ  
13  
Lb  
Lb  
Lb  
Çꢂermꢃl  
tꢃd  
5
6
12  
11  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
1
2
DMODE  
I
O
I
Diode Mode control pin. A high at this pin activates the non-ideal diode mode  
Active High. A high indicates PGTH has crossed the threshold value. It is an open drain  
output  
PGOOD  
PGTH  
3
Positive input of PGOOD comparator  
Power output of the device  
4
5
6
OUT  
O
7
8
9
10  
11  
12  
13  
IN  
I
I
Power input and supply voltage  
Input for setting programmable undervoltage lockout threshold. An undervoltage event opens  
internal FET and assert FLT to indicate power-failure. When pulled to GND, resets the fault  
latch in TPS25942L, TPS25944L  
14  
EN/UVLO  
Input for setting programmable overvoltage protection threshold. An overvoltage event opens  
the internal FET and assert FLT to indicate overvoltage  
15  
16  
OVP  
GND  
I
Ground  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
ILIM  
17  
18  
I/O  
I/O  
A resistor from this pin to GND sets the overload and short-circuit current limit  
A capacitor from this pin to GND sets the ramp rate of output voltage  
dVdT  
This pin sources a scaled down ratio of current through the internal FET. A resistor from this  
pin to GND converts current to proportional voltage, used as analog current monitor  
19  
20  
IMON  
FLT  
O
O
Fault event indicator, goes low to indicate fault condition due to undervoltage, pvervoltage,  
reverse voltage, circuit breaker timeout (TPS25944 only) and thermal shutdown events. It is  
an open drain output  
The GND terminal must be connected to the exposed PowerPAD. This PowerPAD must be  
connected to a PCB ground plane using multiple vias for good thermal performance  
PowerPADTM  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
20  
UNIT  
V
IN, OUT, PGTH, PGOOD, EN, OVP, DMODE, FLT  
–0.3  
IN (10-ms transient)  
dVdT, ILIM  
22  
Input voltage  
–0.3  
–0.3  
3.6  
7
IMON  
Sink current  
PGOOD, FLT, dVdT  
dVdT, ILIM, IMON  
10  
mA  
Source current  
Internally Limited  
See the Thermal  
Information  
Continuous power dissipation  
TJ  
Maximum junction temperature  
Storage temperature  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001s(1)  
±2000  
VESD  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM MAX UNIT  
IN  
2.7  
0
18  
18  
3
EN, OVP, DMODE, OUT, PGTH, PGOOD, FLT  
Input voltage  
V
dVdT, ILIM  
IMON  
ILIM  
0
0
6
16.9  
1
150  
Resistance  
kΩ  
IMON  
OUT  
0.1  
µF  
nF  
°C  
External capacitance  
dVdT  
470  
125  
TJ  
Operating junction temperature  
–40  
25  
7.4 Thermal Information  
TPS25942  
TPS25944  
THERMAL METRIC(1)  
UNIT  
RVC (WQFN)  
20 PINS  
38.1  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
40.5  
Junction-to-board thermal resistance  
13.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.6  
ψJB  
13.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Thermal Information (continued)  
TPS25942  
TPS25944  
THERMAL METRIC(1)  
UNIT  
RVC (WQFN)  
20 PINS  
3.4  
RθJCbot  
Junction-to-case (bottom) thermal resistance  
°C/W  
7.5 Electrical Characteristics  
Conditions are –40°C TJ = TA +125°C, 2.7 V V(IN) 18 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150  
kΩ, C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. Positive current into terminals. All voltages referenced to  
GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE AND INTERNAL UNDERVOLTAGE LOCKOUT  
V(IN)  
Operating input voltage  
2.7  
2.2  
105  
140  
140  
140  
4
18  
2.4  
125  
300  
260  
270  
15  
V
V
V(UVR)  
V(UVRhys)  
Internal UVLO threshold, rising  
Internal UVLO hysteresis  
2.3  
116  
210  
199  
202  
8.6  
mV  
V(EN/UVLO) = 2 V, V(IN) = 3 V  
IQ(ON)  
Supply current, enabled  
Supply current, disabled  
V(EN/UVLO) = 2 V, V(IN) = 12 V  
V(EN/UVLO) = 2 V, V(IN) = 18 V  
V(EN/UVLO) = 0 V, V(IN) = 3 V  
V(EN/UVLO) = 0 V, V(IN) = 12 V  
V(EN/UVLO) = 0 V, V(IN) = 18 V  
µA  
µA  
IQ(OFF)  
6
15  
20  
8
18.5  
25  
ENABLE AND UNDERVOLTAGE LOCKOUT (EN/UVLO) INPUT  
V(ENR)  
V(ENF)  
EN/UVLO threshold voltage, rising  
EN/UVLO threshold voltage, falling  
0.97  
0.9  
0.99  
0.92  
1.01  
0.94  
V
V
EN threshold voltage for Low IQ  
shutdown, falling  
V(SHUTF)  
0.3  
0.47  
0.63  
V
EN hysteresis for low IQ shutdown,  
hysteresis(1)  
V(SHUTFhys)  
IEN  
66  
0
mV  
nA  
EN input leakage current  
0 V V(EN/UVLO) 18 V  
–100  
0.97  
100  
OVER VOLTAGE PROTECTION (OVP) INPUT  
Overvoltage threshold voltage,  
rising  
V(OVPR)  
V(OVPF)  
I(OVP)  
0.99  
1.01  
V
Overvoltage threshold voltage,  
falling  
0.9  
0.92  
0
0.94  
100  
V
OVP input leakage current  
0 V V(OVP) 5 V  
–100  
nA  
DIODE MODE INPUT (DMODE)—ACTIVE HIGH  
DMODE threshold voltage, rising  
V(DMODE)  
1.6  
0.8  
0.6  
1.85  
0.96  
1
2
1.1  
V
V
DMODE threshold voltage, falling  
I(DMODE)  
DMODE input leakage current  
0.2 V V(DMODE) 18 V  
1.25  
µA  
OUTPUT RAMP CONTROL (dVdT)  
I(dVdT)  
dVdT charging current  
V(dVdT) = 0 V  
0.85  
1
16  
1.15  
24  
µA  
Ω
R(dVdT)  
dVdT discharging resistance  
dVdT maximum capacitor voltage  
dVdT to OUT gain  
EN/UVLO = 0 V, I(dVdT) = 10 mA sinking  
V(dVdTmax)  
GAIN(dVdT)  
2.6  
2.88  
11.9  
3.1  
V
ΔV(OUT)/ΔV(dVdT)  
11.65  
12.05  
V/V  
CURRENT LIMIT PROGRAMMING (ILIM  
)
V(ILIM) ILIM bias voltage  
0.87  
V
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Electrical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, 2.7 V V(IN) 18 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150  
kΩ, C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. Positive current into terminals. All voltages referenced to  
GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
R(ILIM) = 150 kΩ, (V(IN) – V(OUT)) = 1 V  
R(ILIM) = 88.7 kΩ, (V(IN) – V(OUT)) = 1 V  
R(ILIM) = 42.2 kΩ, (V(IN) – V(OUT)) = 1 V  
R(ILIM) = 24.9 kΩ, (V(IN) – V(OUT)) = 1 V  
R(ILIM) = 20 kΩ, (V(IN) – V(OUT)) = 1 V  
R(ILIM) = 16.9 kΩ, (V(IN) – V(OUT)) = 1 V  
MIN  
0.53  
0.9  
TYP  
0.58  
0.99  
2.08  
3.53  
4.45  
5.2  
MAX UNIT  
0.63  
1.07  
1.92  
3.25  
4.09  
4.78  
2.25  
3.81  
4.81  
Current limit  
I(LIM)  
I(LIM) for TPS25942(2)  
I(FAULT) forTPS25944  
A
5.62  
(2)(3)  
R(ILIM) = OPEN, open resistor current limit (single point  
failure test: UL60950)  
0.35  
0.55  
0.45  
0.67  
0.55  
0.8  
R(ILIM) = SHORT, shorted resistor current limit (single point  
failure test: UL60950)  
0.5 ×  
I(LIM)  
DMODE = High; Non-ideal diode mode(1)  
R(ILIM) = 42.2 kΩ, V(VIN) = 12 V, (V(IN) – V(OUT)) = 5 V  
R(ILIM) = 24.9 kΩ, V(VIN) = 12 V, (V(IN) – V(OUT)) = 5 V  
1.91  
3.21  
2.07  
3.49  
2.24  
3.77  
A
I(OS)  
Short-circuit current limit  
R(ILIM) = 16.9 kΩ, V(VIN) = 12 V, (V(IN) – V(OUT)) = 5 V,  
–40°C TJ +85°C  
4.7  
5.11  
5.52  
1.5 ×  
I(FASTRIP)  
Fast-trip comparator threshold(1)(2)  
I(LIM)  
+
A
0.375  
CURRENT MONITOR OUTPUT (IMON)  
GAIN(IMON) Gain factor I(IMON):I(OUT)  
MOSFET—POWER SWITCH  
1 A I(OUT) 5 A  
47.78  
52.3  
57.23 µA/A  
49  
1 A I(OUT) 5 A, TJ = 25°C  
34  
26  
26  
42  
42  
42  
RON  
IN to OUT - ON resistance  
1 A I(OUT) 5 A, –40°C TJ +85°C  
1 A I(OUT) 5 A, –40°C TJ +125°C  
58  
64  
mΩ  
PASS FET OUTPUT (OUT)  
V(IN) = 18 V, V(EN/UVLO) = 0 V, V(OUT) = 0 V (sourcing)  
V(IN) = 2.7 V, V(EN/UVLO) = 0 V, V(OUT) = 18 V (sinking)  
–2  
6
0
2
Ilkg(OUT)  
OUT leakage current in off state  
µA  
13  
20  
V(IN) – V(OUT) threshold for reverse  
protection comparator, falling  
V(REVTH)  
V(FWDTH)  
–15  
86  
–9.3  
100  
–3  
mV  
mV  
V(IN) – V(OUT) threshold for reverse  
protection comparator, rising  
114  
FAULT FLAG (FLT)—ACTIVE LOW  
R(FLT) FLT internal pull-down resistance  
I(FLT) FLT input leakage current  
V(OVP) = 2 V, I(FLT) = 5 mA sinking  
10  
–1  
18  
0
30  
1
Ω
0 V V(FLT) 18 V  
µA  
POSITIVE INPUT for POWER-GOOD COMPARATOR (PGTH)  
V(PGTHR)  
V(PGTHF)  
I(PGTH)  
PGTH threshold voltage, rising  
PGTH threshold voltage, falling  
PGTH input leakage current  
0.97  
0.9  
0.99  
0.92  
0
1.01  
0.94  
100  
V
V
0 V V(PGTH) 18 V  
–100  
nA  
POWER-GOOD COMPARATOR OUTPUT (PGOOD): ACTIVE HIGH  
PGOOD internal pull-down  
resistance  
R(PGOOD)  
I(PGOOD)  
V(PGTH) = 0V, I(PGOOD) = 5 mA sinking  
10  
–1  
20  
0
35  
1
Ω
PGOOD input leakage current  
0 V V(PGOOD) 18 V  
µA  
THERMAL SHUT DOWN (TSD)  
T(TSD)  
TSD threshold(1)  
TSD hysteresis(1)  
160  
12  
°C  
°C  
T(TSDhys)  
TPS25942L, TPS25944L  
TPS25942A, TPS25944A  
Latched  
Auto-retry  
Thermal fault: (latched or auto-retry)  
(2) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(3) The TPS25942 limits current to the programmed I(LIM) level. TPS25944 does not limit current but runs the fault timer when I(LOAD)  
>
I(LIM)  
.
Copyright © 2014–2017, Texas Instruments Incorporated  
9
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
7.6 Timing Requirements  
Conditions are –40°C TJ = TA +125°C, 2.7 V V(IN) 18 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150  
kΩ, C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. Positive current into terminals. All voltages referenced to  
GND (unless otherwise noted). See Figure 47 for timing diagrams.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ENABLE AND UVLO INPUT  
EN/UVLO (100 mV above V(ENR)) to V(OUT) = 100 mV,  
C(dVdT) < 0.8 nF  
220  
µs  
tON(dly)  
EN turnon delay  
EN turnoff delay  
EN/UVLO (100 mV above V(ENR)) to V(OUT) = 100 mV,  
100 + 150  
× C(dVdT)  
µs  
µs  
C(dVdT) 0.8 nF, see , [C(dVdT) in nF]  
tOFF(dly)  
EN/UVLO (100 mV below V(ENF)) to FLT↓  
2
OVERVOLTAGE PROTECTION INPUT (OVP)  
tOVP(dly) OVP disable delay  
OVP(100 mV above V(OVPR)) to FLT↓  
2
µs  
DIODE MODE INPUT: ACTIVE HIGH (DMODE)  
DMODEto (V(IN) – V(OUT)) 200 mV, with 1 A resistive load at  
OUT  
DMODE turnon delay  
tDMODE  
2
µs  
ns  
DMODE turnoff delay  
DMODEto (V(IN) – V(OUT)) > 200 mV, 1 A resistive load at OUT  
220  
OUTPUT RAMP CONTROL (dVdT)  
EN/UVLO to V(OUT) = 4.5 V, with C(dVdT) = open  
EN/UVLO to V(OUT) = 11 V, with C(dVdT) = open  
EN/UVLOto V(OUT) = 11 V, with C(dVdT) = 1 nF  
0.12  
0.37  
0.97  
tdVdT  
Output ramp time  
0.25  
0.5  
ms  
ns  
µs  
CURRENT LIMIT  
tFASTRIP(dly)  
Fast-trip comparator delay  
I(OUT) > I(FASTRIP)  
200  
REVERSE PROTECTION COMPARATOR  
(V(IN) – V(OUT))(1 mV overdrive below V(REVTH)) to FLT↓  
(V(IN) – V(OUT))(10 mV overdrive below V(REVTH)) to FLT↓  
(V(IN) – V(OUT))(10 mV overdrive above V(FWDTH)) to FLT↑  
10  
1
tREV(dly)  
Reverse protection  
comparator delay  
tFWD(dly)  
3.1  
POWER-GOOD COMPARATOR OUTPUT (PGOOD): ACTIVE HIGH  
TPS25942: rising edge  
0.42  
0.54  
4
0.66  
tPGOODR  
ms  
µs  
PGOOD delay (de-glitch) time TPS25944: rising edge  
tPGOODF  
TPS25942 and TPS25944: falling edge  
10  
FAULT FLAG (FLT)  
FLT assertion delay in circuit  
breaker mode  
TPS25944 only; delay from I(OUT) > I(LIM) to FLT(and internal  
FET turned off)  
tCB(dly)  
4
ms  
ms  
Retry delay in circuit breaker  
mode  
TPS25944A only; circuit breaker fault asserted, delay from to  
FLTto FLTedge  
tCB(Retrydly)  
128  
THERMAL SHUT DOWN (TSD)  
Retry delay in TSD  
TPS25942A and TPS25944A only  
128  
ms  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
7.7 Typical Characteristics  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
300  
250  
200  
150  
100  
50  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
V(UVR)  
V
(UVF)  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
0
œ50  
œ20  
10  
40  
70  
100  
130  
0
5
10  
15  
20  
Temperature (oC)  
C014  
Input Voltage (V)  
D002  
Figure 1. Internal UVLO Threshold Voltage vs Temperature  
Figure 2. Input Supply Current vs Supply Voltage During  
Normal Operation  
25  
20  
15  
1.00  
0.98  
0.96  
V(ENR)  
V
(ENF)  
0.94  
0.92  
0.90  
10  
TA = -40èC  
TA = 25èC  
5
TA = 85èC  
TA = 125èC  
0
œ50  
œ20  
10  
40  
70  
100  
130  
0
5
10  
15  
20  
Temperature (oC)  
C014  
Input Voltage (V)  
D003  
Figure 4. EN Threshold Voltage vs Temperature  
Figure 3. Input Supply Current vs Supply Voltage at  
Shutdown  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
V(PGTHR)  
V(OVPR)  
V
V(OVPF)  
(PGHTF)  
œ50  
œ20  
10  
40  
70  
100  
130  
œ50  
œ20  
10  
40  
70  
100  
130  
Temperature (oC)  
Temperature (oC)  
C014  
C014  
Figure 6. PGTH Threshold Voltage vs Temperature  
Figure 5. OVP Threshold Voltage vs Temperature  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
0.60  
0.55  
0.50  
0.45  
0.40  
300  
250  
200  
150  
100  
50  
E
V(SHUTR)  
V
E
(SHUTF)  
œ50  
œ20  
10  
40  
70  
100  
130  
œ50  
œ20  
10  
40  
70  
100  
130  
Temperature (oC)  
Temperature (oC)  
C014  
C014  
Figure 7. EN Threshold Voltage for Low IQ Mode vs  
Temperature  
Figure 8. Enable Turnon Delay vs Temperature  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
œ50  
œ20  
10  
40  
70  
100  
130  
œ50  
œ20  
10  
40  
70  
100  
130  
Temperature (oC)  
Temperature (oC)  
C014  
C014  
Figure 9. Enable Turnoff Delay vs Temperature  
Figure 10. OVP Disable Delay vs Temperature  
2.1  
1.2  
1.1  
1.0  
0.9  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
V(DMODER)  
V(DMODEF)  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Temperature (èC)  
Temperature (èC)  
Figure 11. DMODE Threshold Voltage vs Temperature  
Figure 12. DMODE Pulldown Current vs Temperature  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Typical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
1000  
100  
10  
1
11.90  
11.89  
11.88  
11.87  
11.86  
11.85  
11.84  
11.83  
11.82  
0
1
10  
100  
1000  
œ50  
œ20  
10  
40  
70  
100  
130  
Temperature (oC)  
C(dVdT) (nF)  
C014  
C014  
Figure 13. GAIN(dVdT) vs Temperature  
Figure 14. Output Ramp Time vs C(dVdT)  
10  
9.5  
9.0  
8.5  
8.0  
7.5  
1
0
10  
100  
0
1
2
3
4
5
6
R(ILIM) Resistor (kW)  
Current Limit(A)  
C014  
C014  
Figure 16. Current Limit Accuracy vs Current Limit  
Figure 15. Current Limit vs Current Limit Resistor  
6
5
4
3
2
1
0
2%  
150 kO  
88.6 kO  
42.4 kO  
24.9 kO  
16.9 kO  
1.5%  
1%  
0.5%  
0
150 kW 88.6 kW 42.4 kW 24.9 kW 16.9 kW  
-0.5%  
-1%  
-1.5%  
-2%  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
Figure 17. Current Limit vs Temperature Across R(ILIM)  
Figure 18. Current Limit (% Normalized) vs Temperature  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
0.5%  
0
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
I(LIM) = 1 A  
I(LIM) = 2.1 A  
I(LIM) = 3.6 A  
I(LIM) = 5.3 A  
-0.5%  
-1%  
R(ILIM) = Short  
R
= Open  
(ILIM)  
-1.5%  
-2%  
-2.5%  
-3%  
œ50  
0
50  
100  
150  
0
2
4
6
8
10  
12  
Temperature (oC)  
C014  
V(IN) - V(OUT) (V)  
D030  
For I(LIM) = 5.3 A, device goes into thermal shutdown for  
[V(IN) – V(OUT)] > 8 V  
Figure 20. Current Limit for R(ILIM) = Open and Short vs  
Temperature  
Figure 19. Current Limit Normalized (%) vs V(IN) – V(OUT)  
1.2  
9
8
7
6
5
4
3
2
1
0
1.1  
1
0.9  
0.8  
0.7  
0.6  
0
1
2
3
4
5
6
-50  
-20  
10  
40  
70  
100  
130  
Current Limit I(LIM) (A)  
C014  
Temperature (èC)  
D022  
Figure 21. Fast Trip Threshold vs Current Limit  
Figure 22. IMON Offset vs Temperature  
500  
50  
5
54.0  
53.5  
53.0  
52.5  
52.0  
51.5  
51.0  
o
TA = -40 C  
T
T
T
= 25oC  
A
= 85oC  
A
= 125oC  
A
0.1  
1.0  
10.0  
œ50  
œ20  
10  
40  
70  
100  
130  
Temperature (oC)  
Output Current , IOUT (A)  
C014  
C014  
Figure 24. Current Monitor Output vs Output Current  
Figure 23. GAIN(IMON) vs Temperature  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Typical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
60  
55  
50  
45  
40  
35  
30  
25  
16  
14  
12  
10  
8
V(OUT) = 0 V  
V(OUT) = 18 V  
6
4
1A  
2A  
3A  
4A  
5A  
2
0
œ2  
œ50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (oC)  
C014  
Temperature (èC)  
D025  
Figure 26. OUT Leakage Current in Off State vs Temperature  
Figure 25. RON vs Temperature Across Load Current  
102.0  
101.5  
101.0  
100.5  
100.0  
99.5  
œ9.0  
œ9.1  
œ9.2  
œ9.3  
œ9.4  
œ9.5  
œ9.6  
œ9.7  
œ9.8  
œ9.9  
œ10.0  
99.0  
98.5  
98.0  
œ50  
0
50  
100  
150  
œ50  
0
50  
100  
150  
Temperature (oC)  
Temperature (oC)  
C014  
C014  
Figure 27. V(REVTH) vs Temperature  
Figure 28. V(FWDTH) vs Temperature  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
100000  
10000  
1000  
100  
o  
TA = -40 C  
TA =25oC  
T
= 85oC  
A
TA = 125oC  
10  
1
0.1  
œ50  
0
50  
100  
150  
1
10  
100  
Temperature (oC)  
C014  
C014  
Power Dissipation (W)  
Taken on 2-Layer board, 2oz.(0.08-mm thick) with GND plane  
area: 14 cm2 (Top) and 20 cm2 (Bottom)  
Figure 30. Thermal Shutdown Time vs Power Dissipation  
Figure 29. Circuit Breaker Timer Fault Assertion Delay vs  
Temperature  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
V(IN) = 4.5 V  
V(IN) = 11 V  
Figure 31. Turnon With Enable  
Figure 32. Turnon and Turnoff With Enable  
R(FLT) = 100 kΩ  
R(FLT) = 100 kΩ  
Figure 33. EN Turnon Delay : EN to Output Ramp ↑  
Figure 34. EN Turnoff Delay : EN to Fault ↓  
V(IN) = 12 V  
RL = 12 Ω  
R(FLT) = 100 kΩ  
V(IN) = 12 V  
RL = 12 Ω  
R(FLT) = 100 kΩ  
Figure 35. OVP Turnoff Delay: OVP to Fault ↓  
Figure 36. OVP Turnon Delay: OVP to Output Ramp ↑  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Typical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
V(IN) = 12 V  
RL = 12 Ω  
R(FLT) = 100 kΩ  
V(IN) = 12 V  
RL = 12 Ω  
R(FLT) = 100 kΩ  
R(PGOOD) = 100 kΩ  
R(PGOOD) = 100 kΩ  
Figure 37. Power Good Delay (Rising)  
Figure 38. Power Good Delay (Falling)  
V(IN) = 12 V  
R(IMON) = 16.9 kΩ  
R(FLT) = 100 kΩ  
R(ILIM) = 17.8 KΩ  
V(IN) = 12 V  
R(IMON) = 16.9 kΩ  
R(FLT) = 100 kΩ  
R(ILIM) = 17.8 KΩ  
Figure 39. Hot-Short: Fast Trip Response and Current  
Regulation  
Figure 40. Hot-Short: Fast Trip Response (Zoomed)  
Figure 42. Transition from Non-Ideal Diode Mode to Normal  
Mode  
Figure 41. Transition from Normal Mode to Non-Ideal Diode  
Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Conditions are –40°C TJ = TA +125°C, V(IN) = 12 V, V(EN/UVLO) = 2 V, V(OVP) = V(DMODE) = V(PGTH) = 0 V, R(ILIM) = 150 kΩ,  
C(OUT) = 1 µF, C(dVdT) = OPEN, PGOOD = FLT = IMON = OPEN. (unless stated otherwise)  
V(IN) = 12 V  
RL = 3 Ω to 2 Ω  
R(ILIM) = 17.8 KΩ  
R(IMON) = 16.9 kΩ  
R(FLT) = 100 kΩ  
Figure 43. Overload: TPS25944A Circuit Break Function  
Figure 44. Overload: Zoomed In (First Cycle)  
V(IN) = 12  
V
R(IMON)  
16.9 kΩ  
=
R(FLT) = 100 kΩ  
R(ILIM) = 17.8 KΩ  
V(IN) = 5 V  
R(IMON) = 16.9 kΩ  
R(FLT) = 100 kΩ  
R(ILIM) = 17.8 KΩ  
Figure 45. Hot Short Response: TPS25944A  
Device Turns Off after the Fault Timer tCB(dly) (4 ms) Expires  
Figure 46. Hot Short Response: TPS25944A  
Device Turns Off When TJ > T(TSD) Before Timer Expires  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
8 Parameter Measurement Information  
ë(hÜÇ)  
ë9b  
C[Ç  
ë(9bC)-0.1ë  
0.1ë  
ë9b  
ë(9bw)+0.1ë  
10%  
time  
0
time  
0
thb(dly)  
thCC(dly)  
-20më  
110më  
ë(Lb)-ë(hÜÇ)  
ë(Lb)-ë(hÜÇ)  
ꢀ0%  
C[Ç  
C[Ç  
10%  
0
time  
tw9ë(dly)  
0
time  
tCí5(dly)  
L(C!{ÇwLꢁ)  
ë(hëꢁw) + 0.1ë  
ë(hëꢁ)  
L([La)  
L(hÜÇ)  
C[Ç  
10%  
0
time  
0
time  
thëꢁ(dly)  
tC!{ÇwLꢁ(dly)  
Figure 47. Timing Diagrams  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS25942, TPS25944 is an eFuse Power Mux with integrated back-to-back FETs and enhanced built-in  
protection circuitry. It provides robust protection for all systems and applications powered from 2.7 V to 18 V.  
For hot-plug-in boards, the device provides hot-swap power management with in-rush current control and  
programmable output ramp-rate. The device integrates overcurrent and short circuit protection. The precision  
overcurrent limit helps to minimize over design of the input power supply, while the fast response short circuit  
protection immediately isolates the load from input when a short circuit is detected. The device allows the user to  
program the overcurrent limit threshold between 0.6 A and 5.3 A via an external resistor.  
The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault  
for downstream system. Its overall threshold accuracy of 2% ensures tight supervision of bus, eliminating the  
need for a separate supply voltage supervisor chip. The TPS25942, TPS25944 is designed to control redundant  
power supply systems. The devices monitor V(IN) and V(OUT) to provide true reverse blocking from output when  
reverse condition or input power fail condition is detected. Also, a pair of the TPS25942 or TPS25944 devices  
can be configured to assign priority to the main power supply over the auxiliary power supply.  
The additional features include:  
Precise current monitor output for health monitoring of the system  
Additional power good comparator with precision internal reference for output or any other rail voltage  
monitoring  
Electronic circuit breaker operation with overload timeout – TPS25944 only  
Over temperature protection to safely shutdown in the event of an overcurrent event  
De-glitched fault reporting for brown-out and overvoltage faults  
A choice of latched or automatic restart mode  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
9.2 Functional Block Diagram  
9-13  
IN  
4-8  
OUT  
œ
-10 mV  
+
+
Charge  
Pump  
42 mΩ  
UVLO  
EN  
+100 mV  
2.30 V  
x52 µ  
Current  
œ
CP  
2.18 V  
14  
+
EN/UVLO  
OVP  
Sense  
0.99 V  
0.92 V  
REVERSE  
19  
œ
SWEN  
IMON  
Gate Control Logic  
Current Limit Amp  
Fast-Trip Comp  
15  
1
+
OVP  
TSD  
Thermal  
Shutdown  
0.99 V  
0.92 V  
œ
Non-ideal Diode Mode  
Shutdown  
+
DMODE  
0.96 V  
0.92 V  
œ
0.87 V  
+
1 µA  
EN/  
UVLO  
œ
17  
20  
ILIM  
FLT  
Ramp Control  
Short Detect  
1 µA  
18  
16  
SET  
CLR  
Q
Q
S
R
12x  
dVdt  
GND  
UVLO  
18 Ω  
20 Ω  
16 Ω  
UVLO  
EN  
TSD  
SWEN  
2
Fault Latch  
dVdt  
over  
PGOOD  
0.5 ms  
10 µs  
+
0.99 V  
0.92 V  
œ
TPS25942A/L  
3
PGTH  
Copyright © 2017, Texas Instruments Incorporated  
Figure 48. TPS25942A/L Block Diagram  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Functional Block Diagram (continued)  
9-13  
4-8  
IN  
OUT  
œ
-10 mV  
+
+
Charge  
Pump  
42 mΩ  
UVLO  
EN  
+100 mV  
2.30 V  
2.18 V  
x52 µ  
Current  
œ
CP  
14  
15  
1
+
EN/UVLO  
OVP  
Sense  
0.99 V  
0.92 V  
REVERSE  
19  
œ
SWEN  
IMON  
Gate Control Logic  
Current Limit Amp  
Fast-Trip Comp  
+
OVP  
TSD  
Thermal  
Shutdown  
0.99 V  
0.92 V  
œ
Non-ideal Diode Mode  
Shutdown  
+
DMODE  
1.85 V  
0.96 V  
œ
0.87 V  
+
1 µA  
EN/  
UVLO  
œ
17  
20  
ILIM  
FLT  
1 µA  
Ramp Control  
Short Detect  
18  
12x  
dVdt  
I(ILIM) > I(LIM)  
S
Timeout  
SET  
Q
Q
UVLO  
18 Ω  
Timer  
(4 ms)  
SWEN  
R
CLR  
16 Ω  
Fault Latch  
2
EN  
16  
PGOOD  
TSD  
GND  
UVLO  
4 ms  
+
0.99 V  
0.92 V  
œ
10 µs  
20 Ω  
TPS25942A/L  
3
PGTH  
Copyright © 2017, Texas Instruments Incorporated  
Figure 49. TPS25944A/L Block Diagram  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
9.3 Feature Description  
9.3.1 Enable and Adjusting Undervoltage Lockout  
The EN/UVLO pin controls the ON and OFF state of the internal FET. A voltage V(EN/UVLO) < V(ENF) on this pin  
turns off the internal FET, thus disconnecting IN from OUT, while voltage below 0.6 V takes the device into  
shutdown mode, with IQ less than 20 µA to ensure minimal power loss. Cycling EN/UVLO low and then back high  
resets the TPS2594xL that has latched off due to a fault condition.  
The internal de-glitch delay on EN/UVLO falling edge is kept low for quick detection of power failure. For  
applications where a higher de-glitch delay on EN/UVLO is desired, or when the supply is particularly noisy, it is  
recommended to use an external bypass capacitor from EN/UVLO terminal to GND.  
The undervoltage lock out can be programmed by using an external resistor divider from supply IN terminal to  
EN/UVLO terminal to GND as shown in Figure 50. When an undervoltage or input power fail event is detected,  
the internal FET is quickly turned off, and FLT is asserted. If the Under-Voltage Lock-Out function is not needed,  
the EN/UVLO terminal must be connected to the IN terminal. EN/UVLO terminal must not be left floating.  
The device also implements internal undervoltage-lockout (UVLO) circuitry on the IN terminal. The device  
disables when the IN terminal voltage falls below internal UVLO Threshold V(UVF). The internal UVLO threshold  
has a hysteresis of 115 mV.  
ë(Lb)  
Lb  
Çt{2ꢀꢁ42x/4x  
w1  
9b/Üë[h  
+
9b  
0.ꢀꢀë  
w2  
0.ꢀ2ë  
hët  
+
hët  
0.ꢀꢀë  
w3  
0.ꢀ2ë  
Db5  
Figure 50. UVLO and OVP Thresholds Set By R1, R2 and R3  
9.3.2 Overvoltage Protection (OVP)  
The device incorporates circuit to protect system during overvoltage conditions. A resistor divider connected from  
the supply to OVP terminal to GND (as shown in Figure 50) programs the overvoltage threshold. A voltage more  
than V(OVPR) on OVP pin turns off the internal FET and protects the downstream load. This pin must be tied to  
GND when not used.  
9.3.3 Hot Plug-In and In-Rush Current Control  
The device is designed to control the in-rush current upon insertion of a card into a live backplane or other "hot"  
power source. This limits the voltage sag on the backplane’s supply voltage and prevents unintended resets of  
the system power. A slew rate controlled start-up (dVdT) also helps to eliminate conductive and radiative  
interferences. An external capacitor connected from the dVdT pin to GND defines the slew rate of the output  
voltage at power-on (as shown in Figure 51). Equation governing slew rate at start-up is shown in Equation 1.  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
Çt{2ꢀ942x/4x  
1u!  
dëdÇ  
/
(dëdÇ)  
16W  
{í9b  
Db5  
Figure 51. Output Ramp Up Time tdVdT is Set by C(dVdT)  
æ
ç
ç
è
ö
÷
÷
ø
C
dV  
(OUT)  
æ
ö
(dVdT)  
GAIN  
I
=
x
ç
÷
(dVdT)  
ç
÷
dt  
(dVdT)  
è
ø
where  
I(dVdT) = 1 µA (typical)  
dV  
(OUT)  
dt  
= Desired output slew rate  
GAIN(dVdT) = dVdT to OUT gain = 12  
(1)  
(2)  
The total ramp time (tdVdT) of V(OUT) for 0 to V(IN) can be calculated using Equation 2.  
tdVdT = 8.3 x 104 x V(IN) x C(dVdT)  
The inrush current, I(INRUSH) can be calculated as shown in Equation 3.  
I(INRUSH) = C(OUT) x V(IN) / tdVdT  
.
(3)  
The dVdT pin can be left floating to obtain a predetermined slew rate (tdVdT) on the output. When terminal is left  
floating, the device sets an internal ramp rate of 30 V/ms for output (V(OUT)) ramp.  
Figure 61 and Figure 62 illustrate the inrush current control behavior of the TPS25942, TPS25944. For systems  
where load is present during start-up, the current never exceeds the overcurrent limit set by R(ILIM) resistor for the  
application. For defining appropriate charging time/rate under different load conditions, see the Setting Output  
Voltage Ramp Time (tdVdT) section.  
9.3.4 Overload and Short Circuit Protection  
The device monitors load current by sensing the voltage across the internal sense resistor. The FET current is  
monitored at both the start-up and during normal operation. During overload events, the device keeps the over  
current limited to the overcurrent limit (I(LIM)) programmed by R(ILIM) resistor as shown in Equation 4.  
89  
I
=
(LIM)  
R
(ILIM)  
where  
I(LIM) is overload current limit in Ampere.  
R(ILIM) is the current limit resistor in kΩ  
(4)  
The device incorporates two distinct levels: an overcurrent-limit (I(LIM)) and a fast-trip threshold (I(FASTRIP)). The  
illustration of fast trip and current limit operation is shown in Figure 52.  
Since the bias current on ILIM pin directly controls the current-limiting behavior of the device, the PCB routing of  
this node must be kept away from any noisy (switching) signals.  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Feature Description (continued)  
9.3.4.1 Overload Protection  
During overload conditions, the internal current-limit amplifier in the TPS25942 regulates the output current to  
I(LIM). The output voltage droops during current regulation, resulting in increased device power dissipation. If the  
device junction temperature reaches the thermal shutdown threshold (T(TSD)), the internal FET is turned off. Once  
in thermal shutdown, The TPS25942L and 44L version stays latched off, whereas the TPS25942A and 44A  
commences an auto-retry cycle 128 ms after TJ < [T(TSD) – 12°C]. During thermal shutdown, the fault pin FLT  
pulls low to signal a fault condition. Figure 65 and Figure 66 illustrate the behavior of the system for overload  
conditions in the TPS25942.  
The TPS25944 allows the overload current to flow through the device until I(LOAD) < I(FASTRIP). It starts the timer  
when I(LIM) < I(LOAD) < I(FASTRIP), and once the timer exceeds tCB(dly), the internal FET is turned off and FLT is  
asserted.  
9.3.4.2 Short Circuit Protection  
During a transient short circuit event, the current through the device increases very rapidly. As current-limit  
amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
comparator, with a threshold I(FASTRIP). This comparator shuts down the pass device within 1 µs, when the current  
through internal FET exceeds I(FASTRIP) (I(OUT) > I(FASTRIP)), and terminates the rapid short-circuit peak current. The  
trip threshold is set to more than 50% of the programmed overload current limit (I(FASTRIP) = 1.5 × I(LIM) + 0.375).  
The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device turns back on  
slowly, allowing the current-limit loop to regulate the output current to I(LIM). Then, device behaves similar to  
overload condition. Figure 67 through Figure 69 illustrate the behavior of the system when the current exceeds  
the fast-trip threshold.  
9.3.4.3 Start-Up With Short on Output  
During start-up with short, the device limits the current to I(LIM) and behaves similar to the overload condition  
afterwards. Figure 70 and Figure 71 illustrate the behavior of the device for start-up with short on the output. This  
feature helps in quick isolation of the fault and hence ensures stability of the DC bus.  
9.3.4.4 Constant Current Limit Behavior During Overcurrent Faults  
If during current limit, power dissipation of the internal FET PD = (V(IN) – V(OUT)) × I(OUT)] exceeds 10 W, there is  
an approximately 0% to 5% thermal fold back in the current limit value so that I(LIM) drops to IOS. Eventually, the  
device shuts down due to over temperature.  
L(C!{ÇwLꢀ)  
L
(C!{ÇwLꢀ) = 1.5 x L([La) + 0.375  
L([La)  
Lh{  
Çꢁermꢂl Coldbꢂck  
0-5%  
Figure 52. Fast-Trip Current  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
9.3.5 Reverse Current Protection  
A fast reverse comparator controls the internal FET and turns off the FET whenever the output voltage V(OUT)  
exceeds the input voltage V(IN) by 10 mV (typical) for 1 μs (typical). This prevents damage to the devices on the  
input side of the TPS2594xx by preventing significant current from sinking into the input side. However, a reverse  
current of (V(OUT) - V(IN))/ RON) should flow from the output to the input to establish reverse voltage V(REVTH) of  
–10 mV across the device. The typical value of reverse current, needed for reverse voltage detection is –10 mV/  
42 m= –238 mA  
In power muxing applications, the reverse current magnitude I(REV) depends on the slew-rate of the output  
voltage V(OUT) and the system input capacitance CIN as shown in Equation 5.  
dV  
«
÷
(OUT)  
I(REV) = C ì  
IN  
dt  
(5)  
For example, if the ramp rate of the output voltage is set at 10 mV/ μs then the required input capacitance CIN to  
achieve reverse current greater than 238 mA is 23.8 µF. Considering tolerance of ±10% in capacitance and a  
standard value, capacitor of 33 µF should be used as CIN in this case.  
9.3.6 FAULT Response  
The FLT open-drain output is asserted (active low) during undervoltage, overvoltage, reverse voltage-current and  
thermal shutdown conditions. Additionally, in the TPS25944, the FLT is asserted when overload condition exists  
for more than the fault time period (tCB(dly)). The FLT signal remains asserted until the fault condition is removed  
and the device resumes normal operation. The device is designed to eliminate false fault reporting by using an  
internal "de-glitch" circuit for undervoltage and overvoltage (2.2-µs typical) conditions without the need for  
external circuitry. This ensures that fault is not accidentally asserted during transients on input bus.  
Connect FLT with a pull up resistor to Input or Output voltage rail. FLT may be left open or tied to ground when  
not used. V(IN) falling below V(UVF) = 2.1 V resets FLT.  
9.3.7 Current Monitoring  
The current source at IMON terminal is configured to be proportional to the current flowing from IN to OUT. This  
current can be converted to a voltage using a resistor R(IMON) from IMON terminal to GND terminal. This voltage,  
computed using Equation 7, can be used as a means of monitoring current flow through the system.  
The maximum voltage range for monitoring the current (V(IMONmax)) is limited to minimum([V(IN) – 2.2 V], 6 V) to  
ensure linear output. This puts limitation on maximum value of R(IMON) resistor and is determined by Equation 6.  
minimum (V  
- 2.2, 6)  
(IN)  
x GAIN  
R
=
(IMONmax)  
1.6 x I  
(LIM)  
(IMON)  
(6)  
The output voltage at IMON terminal is calculated from Equation 7.  
é
ù
x R  
(IMON)  
V
=
I
x GAIN  
(OUT) (IMON) (IMON_OS)  
+ I  
(IMON)  
ë
û
where  
GAIN(IMON) = Gain factor I(IMON):I(OUT) = 52 µA/A  
I(OUT) = Load current  
I(IMON_OS) = 0.8 µA (typical)  
(7)  
This pin must not have a bypass capacitor to avoid delay in the current monitoring information.  
The voltage at IMON pin can be digitized using an ADC (such as ADS1100, SBAS239) to read the current  
monitor information over an I2C bus.  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Feature Description (continued)  
9.3.8 Power Good Comparator  
The devices incorporate a Power Good comparator for co-ordination of status to downstream DC-DC converters  
or system monitoring circuits. The comparator has an internal reference of V(PGTHR) = 0.99 V at negative terminal  
and positive terminal PGTH can be utilized for monitoring of either input or output of the device. The comparator  
output PGOOD is an open-drain active high signal, which can be used to indicate the status to downstream units.  
PGOOD is asserted high when internal FET is fully enhanced and PGTH pin voltage is higher than internal  
reference V(PGTHR)  
.
The PGOOD signal has deglitch time incorporated to ensure that internal FET is fully enhanced before heavy  
load is applied by downstream converters. Rising deglitch delay is determined by Equation 8.  
tPGOOD(degl) = Maximum {(3.5 x 106 x C(dVdT)), tPGOODR  
}
(8)  
Connect the PGOOD pin with a pull up resistor to Input or Output voltage rail. PGOOD may be left open or tied  
to ground when not used.  
9.3.9 IN, OUT and GND Pins  
The device has multiple pins for input (IN) and output (OUT).  
All IN pins must be connected together and to the power source. A ceramic bypass capacitor close to the device  
from IN to GND is recommended to alleviate bus transients. The recommended operating voltage range is 2.7 V-  
18 V.  
Similarly all OUT pins must be connected together and to the load. V(OUT) in the ON condition, is calculated using  
Equation 9.  
V
= V  
- (R  
ON  
× I )  
(OUT)  
(OUT)  
(IN)  
(9)  
where, RON is the total ON resistance of the internal FET.  
GND terminal is the most negative voltage in the circuit and is used as a reference for all voltage reference  
unless otherwise specified.  
9.3.10 Thermal Shutdown  
The device has built-in over temperature shutdown circuitry designed to disable the internal FET, if the junction  
temperature exceeds 160°C (typical). The TPS25942L, 44L version latches off the internal FET, whereas the  
TPS25942A, 44A commences an auto-retry cycle 128 ms after TJ < [T(TSD) – 12°C]. During the thermal  
shutdown, the fault pin FLT pulls low to signal a fault condition.  
9.4 Device Functional Modes  
9.4.1 Diode Mode  
The device provides a Diode Mode, where the power path from IN to OUT acts as a non-ideal diode rather than  
a FET, as shown in Figure 53. This mode is activated through DMODE terminal. This is an active high terminal  
with internal pull-down. The terminal is useful in Power-Mux applications to switch over from master to slave  
supplies and vice-versa smoothly, when two supplies are within a diode drop of each other. A high at this  
terminal activates the non-ideal diode mode. In this mode, the circuit breaker functionality (TPS25944x) is  
disabled and the overload current limit is set to 50 % of current limit determined by R(ILIM) resistor.  
Lb  
hÜÇ  
Lb  
hÜÇ  
42mW  
Figure 53. Diode Mode: IN to OUT Power Path  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
 
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
9.4.2 Shutdown Control  
The internal FET and hence the load current can be remotely switched off by taking the UVLO pin below its 0.6 V  
threshold with an open collector or open drain device as shown in Figure 54. The device quiescent current is  
reduced to less than 20 µA in this state. Upon releasing the UVLO pin the device turns on with soft-start cycle.  
ë(Lb)  
Lb  
Çt{2ꢀꢁ42x/4x  
w1  
9b/Üë[h  
+
9b  
0.ꢀꢀë  
from µ/  
w2  
0.ꢀ2ë  
Db5  
Figure 54. Shutdown Control  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Device Functional Modes (continued)  
9.4.3 Operational Differences Between the TPS25942 and TPS25944  
The TPS25942 and TPS25944 respond differently to overload and short circuit conditions. The operational  
differences are explained in Table 1.  
Table 1. Device Operational Differences  
TPS25942  
(Current Limiter)  
TPS25944  
(Circuit Breaker)  
Device  
Inrush ramp controlled by dVdT  
Inrush ramp controlled by dVdT  
Inrush limited to I(LIM) level as set by R(ILIM)  
Inrush limited to I(LIM) level as set by R(ILIM)  
Fault Timer runs when current is limited to I(LIM)  
Start-up  
Fault timer expires after tCB(dly) (4 ms) causing device  
shutoff  
If TJ > T(TSD) device shuts off  
Device turns off if TJ > T(TSD) before timer expires  
Current is allowed through the device if I(LOAD)  
I(FASTRIP)  
<
Current is limited to I(LIM) level as set by R(ILIM)  
Power dissipation increases as V(IN) – V(OUT) grows  
Fault Timer runs when current goes above I(LIM)  
Fault timer expires after tCB(dly) (4 ms) causing device  
shutoff  
Over current response  
Short-circuit response  
Device turns off when TJ > T(TSD)  
‘L' Version remains off  
Device turns off if TJ > T(TSD) before timer expires  
‘L' Version remains off  
'A' Version attempts restart 128 ms after TJ < [T(TSD)  
–12°C]  
'A' Version attempts restart 128 ms after TJ < [T(TSD)  
12°C]  
Fast shut off when I(LOAD) > I(FASTRIP)  
Fast shut off when I(LOAD) > I(FASTRIP)  
Quick restart and current limited to I(LIM), follows  
standard TPS25942 start-up  
Quick restart and current limited to I(LIM), follows  
standard TPS25944 start-up  
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The device is a smart eFuse. It is typically used for Active ORing and Power Multiplexing applications. It operates  
from 2.7 V to 18 V with programmable current limit, overvoltage and undervoltage protection. The device aids in  
controlling the in-rush current and in seamless power path management of multiple voltage rails for systems such  
as PCIe cards, Network and Graphic Cards and SSDs. The device also provides robust protection for multiple  
faults on the sub-system rail.  
The following design procedure can be used to select component values for the TPS25942, TPS25944.  
Alternatively, the WEBENCH® software may be used to generate a complete design. The WEBENCH® software  
uses an iterative design procedure and accesses a comprehensive database of components when generating a  
design. Additionally, a spreadsheet design tool TPS25942_44 Design Calculator is available on web folder.  
This section presents a simplified discussion of the design process.  
10.2 Typical Application  
2.7 ꢃo 18 ë  
Lb1  
hÜÇ  
w7  
Lb  
hÜÇ  
/
100µC  
hÜÇ  
/
0.1µC  
Lb  
w1  
475kO  
42mO  
w4  
475kO  
w6  
({ee boꢃe !)  
9bꢀÜë[h  
hët  
C[Ç  
tDhhꢁ  
tDÇI  
Ieꢄlꢃꢅ  
aoniꢃor  
w2  
16.7kO  
from µ/  
ꢁahꢁ9  
Lahb  
L[La  
[oꢄd aoniꢃor  
dëdÇ  
Dbꢁ  
w3  
31.2kO  
/
1.5nC  
wLahb  
1ꢂ.1kO  
dëdÇ  
w5  
47kO  
wL[La  
17.8kO  
Çt{25942x  
2.7 ꢃo 18 ë  
Lb2  
Çt{25942 /ircuiꢀ  
for Lb2 wail  
A. CIN: Optional and only for noise suppression.  
Figure 55. Typical Application Schematics: Active ORing Configuration  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Typical Application (continued)  
10.2.1 Design Requirements  
Table 2 lists the TPS25942, TPS25944 design parameters.  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage, V(IN)  
EXAMPLE VALUE  
12 V  
Undervoltage lockout set point, V(UV)  
Overvoltage protection set point , V(OV)  
Load at start-up , RL(SU)  
10.8 V  
16.5 V  
4.8 Ω  
Current limit, I(LIM)  
5 A  
Load capacitance , C(OUT)  
100 µF  
85°C  
Maximum ambient temperatures , TA  
10.2.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the TPS25942, TPS25944.  
10.2.2.1 Step by Step Design Procedure  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Normal input operation voltage  
Maximum output capacitance  
Maximum current Limit  
Load during start-up  
Maximum ambient temperature of operation  
This design procedure below seeks to control the junction temperature of device under both static and transient  
conditions by proper selection of output ramp-up time and associated support components. The designer can  
adjust this procedure to fit the application and design criteria.  
10.2.2.2 Programming the Current-Limit Threshold: R(ILIM) Selection  
R(ILIM) sets the current limit. Using Equation 4.  
89  
(ILIM)  
R
=
= 17.8kW  
5
(10)  
Choose the closest standard value: 17.8k, 1% standard value resistor.  
10.2.2.3 Undervoltage Lockout and Overvoltage Set Point  
The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using the external voltage divider  
network of R1, R2 and R3 as connected between IN, EN, OVP and GND pins of the TPS25942, TPS25944  
devices. The values required for setting the undervoltage and overvoltage are calculated solving Equation 11 and  
Equation 12.  
R
3
V
=
x V  
(OV)  
(OVPR)  
R +R +R  
3
1
2
where  
V(OVPR) = OVP Threshold for rising voltage  
+R  
(11)  
R
2
3
V
=
x V  
(UV)  
(ENR)  
R +R +R  
3
1
2
where  
V(ENR) = Enable threshold for rising voltage  
(12)  
For minimizing the input current drawn from the power supply {I(R123) = V(IN)/(R1 + R2 + R3)}, it is recommended to  
use higher values of resistance for R1, R2 and R3.  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
However, leakage currents due to external active components connected to the resistor string can add error to  
these calculations. So, the resistor string current, I(R123) must be chosen to be 20x greater than the leakage  
current expected.  
From the device electrical specifications, V(OVPR) = 0.99 V and V(ENR) = 0.99 V. For design requirements, V(OV) is  
16.5 V and V(UV) is 10.8 V. To solve the equation, first choose the value of R3 = 31.2 kand use Equation 11 to  
solve for (R1 + R2) = 488.8 kΩ. Use Equation 12 and value of (R1 + R2) to solve for R2 = 16.47 kΩ and finally R1=  
472.33 kΩ.  
Using the closest standard 1% resistor values gives R1 = 475 kΩ, R2 = 16.7 kΩ, and R3 = 31.2 kΩ.  
The power fail threshold V(PFAIL) is detected on the falling edge of the power supply. The falling voltage threshold  
is 7% lower than the rising voltage threshold, so for a set V(UV) the power fail voltage V(PFAIL) is given by  
Equation 13.  
V(PFAIL) = 0.93 x V(UV)  
(13)  
10.2.2.4 Programming Current Monitoring Resistor—RIMON  
Voltage at IMON pin V(IMON) represents the voltage proportional to load current. This can be connected to an  
ADC of the downstream system for health monitoring of the system. The R(IMON) need to be configured based on  
the maximum input voltage range of the ADC used. R(IMON) is set using Equation 14.  
V
(IMONmax)  
R
=
kW  
(IMON)  
-6  
I
x 52 x 10  
(LIM)  
(14)  
For I(LIM) = 5 A, and considering the operating range of ADC from 0 V to 5 V, V(IMONmax) is 5 V and R(IMON) is  
determined by Equation 15:  
5
R
=
= 19.23 kW  
(IMON)  
-6  
5 x 52 x 10  
(15)  
Selecting R(IMON) value less than determined by Equation 15 ensures that ADC limits are not exceeded for  
maximum value of load current.  
If the IMON pin voltage is not being digitized with an ADC, R(IMON) can be selected to produce a 1V/1A voltage at  
the IMON pin, using Equation 14.  
Choose closest 1 % standard value: 19.1 kΩ.  
If current monitoring up to I(FASTRIP) is desired, R(IMON) can be reduced by a factor of 1.6, as in Equation 6.  
10.2.2.5 Setting Output Voltage Ramp Time (tdVdT  
)
For a successful design, the junction temperature of device must be kept below the absolute-maximum rating  
during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush  
current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.  
The ramp-up capacitor C(dVdT) needed is calculated considering the two possible cases:  
10.2.2.5.1 Case1: Start-Up Without Load: Only Output Capacitance C(OUT) Draws Current During Start-Up  
During start-up, as the output capacitor charges, the voltage difference across the internal FET decreases, and  
the power dissipated decreases as well. Typical ramp-up of output voltage V(OUT) with inrush current limit of 1.2 A  
and power dissipated in the device during start-up is shown in Figure 56. The average power dissipated in the  
device during start-up is equal to area of triangular plot (red curve in Figure 57) averaged over tdVdT  
.
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
Input Current (A)  
Power Dissioation (W)  
Output Voltage (V)  
6
6
4
4
2
2
0
0
0
20  
40  
60  
80  
100  
Start-Up Time, tdVdt (%)  
C(dVdT) = 1 nF  
C013  
V(IN) = 12 V  
C(OUT) = 100 µF  
V(IN) = 12 V  
C(dVdT) = 1 nF  
C(OUT) = 100 µF  
Figure 57. PD(INRUSH) Due to Inrush Current  
Figure 56. Typical Start-Up Without Load  
For the TPS25944, TPS25944 device, the inrush current is determined as shown in Equation 16.  
V
dV  
(IN)  
I = C x  
=> I  
(INRUSH)  
= C x  
(OUT)  
dT  
t
dVdT  
(16)  
(17)  
Power dissipation during start-up is given by Equation 17.  
P
= 0.5 x V x I  
(IN) (INRUSH)  
D(INRUSH)  
Equation 17 assumes that load does not draw any current until the output voltage has reached its final value.  
10.2.2.5.2 Case 2: Start-Up With Load: Output Capacitance C(OUT) and Load Draws Current During Start-Up  
When load draws current during the turn-on sequence, there is additional power dissipated. Considering a  
resistive load RL(SU) during start-up, load current ramps up proportionally with increase in output voltage during  
tdVdT time. Typical ramp-up of output voltage, load current and power dissipated in the device is shown in  
Figure 58 and power dissipation with respect to time is plotted in Figure 59. The additional power dissipation  
during start-up phase is calculated as follows shown in Equation 18 and Equation 19.  
æ
ö
÷
÷
÷
t
ç
(V - V )(t) = V  
(IN)  
x ç1-  
I
O
ç
ç
è
÷
ø
t
dVdT  
(18)  
æ
ç
ç
ç
ç
ö
V
÷
÷
÷
÷
÷
t
(IN)  
I (t) =  
x
L
R
t
dVdT  
ç
è
L(SU) ø  
(19)  
Where RL(SU) is the load resistance present during start-up. Average energy loss in internal FET during charging  
time due to resistive load is given by Equation 20.  
tdVdT  
æ
ç
ç
ç
ö
÷
÷
÷
÷
÷
æ
ç
ç
è
ö
÷
÷
÷
V
t
t
(IN)  
ç
W
=
V
x ç1 -  
x
x
dt  
t
(IN)  
ç
ç
è
ò
÷
ø
t
R
t
dVdT  
L(SU)  
dVdT ø  
0
(20)  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
 
 
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
14  
12  
10  
8
14  
12  
10  
8
Output Voltage (V)  
Power Dissipoation (W)  
Load Current (A)  
6
6
4
4
2
2
0
0
0
20  
40  
60  
80  
100  
Start-Up Time, tdVdT (%)  
C013  
V(IN) = 12 V  
C(dVdT) = 1 nF,  
C(OUT) = 100 µF  
RL(SU) = 4.8 Ω  
V(IN) = 12 V  
C(dVdT) = 1 nF,  
C(OUT) = 100 µF  
RL(SU) = 4.8 Ω  
Figure 59. PD(LOAD) in Load During Start-Up  
Figure 58. Typical Start-Up With Load  
Solving Equation 20 the average power loss in the device due to load is given by Equation 21.  
2
V
æ
ö
÷
÷
ø
1
6
(IN)  
÷
x
÷
ç
P
=
ç
D(LOAD)  
ç
è
R
L(SU)  
(21)  
(22)  
(23)  
Total power dissipated in the device during start-up is given by Equation 22.  
P
=
P + P  
D(INRUSH) D(LOAD)  
D(STARTUP)  
Total current during start-up is given by Equation 23.  
I
=
I
+ I (t)  
(STARTUP)  
(INRUSH) L  
If I(STARTUP) > I(LIM), the device limits the current to I(LIM) and the current limited charging time is determined by  
Equation 24.  
V
(IN)  
t
=
C
x
dVdT(current limited)  
(OUT)  
I
(LIM)  
(24)  
The power dissipation, with and without load, for selected start-up time must not exceed the shutdown limits as  
shown in Figure 60.  
100000  
o  
TA = -40 C  
TA =25oC  
10000  
T
= 85oC  
A
TA = 125oC  
1000  
100  
10  
1
0.1  
1
10  
100  
C014  
Power Dissipation (W)  
Taken on 2-Layer board, 2oz.(0.08-mm thick) with GND plane area: 14 cm2 (Top) and 20 cm2 (Bottom)  
Figure 60. Thermal Shutdown Limit Plot  
For the design example under discussion,  
Select ramp-up capacitor C(dVdT) = 1nF, using Equation 2, we get Equation 25.  
4
8.3 x 10 x 12 x 1 x 10  
-9  
t
=
= 0.996ms = : 1ms  
dvdt  
(25)  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
The inrush current drawn by the load capacitance (C(OUT)) during ramp-up is calculated using Equation 3 and  
Equation 26.  
æ
ö
÷
÷
÷
12  
-6  
ç
I
=
100 x 10  
(
x ç  
ç
= 1.2 A  
)
(INRUSH)  
-3  
÷
ø
ç
è
1 x 10  
(26)  
The inrush Power dissipation is calculated, using Equation 17 and Equation 27.  
P
= 0.5 x 12 x 1.2 = 7.2 W  
D(INRUSH)  
(27)  
For 7.2 W of power loss, the thermal shut down time of the device must not be less than the ramp-up time tdVdT  
to avoid the false trip at maximum operating temperature. From thermal shutdown limit graph Figure 60 at TA =  
85°C, for 7.2 W of power the shutdown time is approximately 60 ms. So it is safe to use 1 ms as start-up time  
without any load on output.  
Considering the start-up with load 4.8 Ω, the additional power dissipation, when load is present during start-up is  
calculated, using Equation 21 and Equation 28.  
æ
ö
÷
÷
ø
1
12 x 12  
÷
ç
P
=
x
= 5 W  
÷
ç
D(LOAD)  
ç
è
6
4.8  
(28)  
(29)  
The total device power dissipation during start up is given by Equation 29.  
P
=
7.2 + 5 = 12.2 W  
( )  
D(STARTUP)  
From thermal shutdown limit graph at TA = 85°C, the thermal shutdown time for 12.2 W is close to 7.5 ms. It is  
safe to have 30% margin to allow for variation of system parameters such as load, component tolerance, and  
input voltage. So it is well within acceptable limits to use the 1 nF capacitor with start-up load of 4.8 Ω.  
If there is a need to decrease the power loss during start-up, it can be done with increase of C(dVdT) capacitor.  
To illustrate, choose C(dVdT) = 1.5 nF as an option and recalculate as shown in Equation 30 to Equation 34.  
t
= 1.5ms  
dvdt  
(30)  
æ
ç
ç
è
ö
÷
÷
÷
12  
-6  
I
=
100 x 10  
(
x ç  
ç
= 0.8 A  
)
(INRUSH)  
-3  
÷
ø
1.5 x 10  
(31)  
(32)  
P
= 0.5 x 12x 0.8 = 4.8 W  
D(INRUSH)  
æ
ö
æ
ö
÷
÷
1
6
12 x 12  
ø
4.8  
÷
÷
= 5 W  
÷
ç
ç
P
=
x
÷
ç
ç
D(LOAD)  
÷
÷
ç
è
ç
è
ø
(33)  
(34)  
P
= 4.8 + 5 = 9.8 W  
D(STARTUP)  
From thermal shutdown limit graph at TA = 85°C, the shutdown time for 10 W power dissipation is approximately  
17 ms, which increases the margins further for shutdown time and ensures successful operation during start-up  
and steady state conditions.  
The spreadsheet tool available on the web can be used for iterative calculations.  
10.2.2.6 Programing the Power Good Set Point  
As shown in Figure 55, R4 and R5 sets the required limit for PGOOD signal as needed for the downstream  
converters. Considering a power good threshold of 11 V for this design, the values of R4 and R5 are calculated  
using Equation 35.  
æ
ö
÷
÷
÷
R
R
ç
4
5
V
= 0.99 x ç1 +  
(PGTH)  
ç
ç
è
÷
ø
(35)  
It is recommended to have high values for these resistors to limit the current drawn from the output node.  
Choosing a value of R4 = 475 kΩ, R5 = 47 kΩ provides V(PGTH) = 11 V.  
10.2.2.7 Support Component Selections—R6, R7 and CIN  
Reference to application schematics, R6 and R7 are required only if PGOOD and FLT are used; these resistors  
serve as pull-ups for the open-drain output drivers. The current sunk by each of these pins must not exceed 10  
mA (see the Absolute Maximum Ratings table). CIN is a bypass capacitor to help control transient voltages, unit  
emissions, and local supply noise. Where acceptable, a value in the range of 0.001 μF to 0.1 μF is  
recommended for CIN.  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
 
 
 
 
 
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
10.2.3 Application Curves  
Figure 61. Hot-Plug Start-Up: Output Ramp Without Load  
on Output  
Figure 62. Hot-Plug Start-Up: Output Ramp With Start-Up  
load of 4.8 Ω  
Figure 63. Overvoltage Shutdown  
Figure 64. Overvoltage Recovery  
IMON  
IMON  
Figure 65. Over Load: Step Change in Load From 12 Ω to  
2 Ω and Back  
Figure 66. Overload Condition: Auto Retry and  
Recovery—TPS25942A  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
Figure 67. Hot Short: Fast Trip and Current Regulation  
Figure 68. Hot Short: Latched—TPS25942L  
Figure 69. Hot Short: Auto-Retry and Recovery from Short  
Circuit—TPS25942A  
Figure 70. Hot Plug-In with Short on Output:  
Latched—TPS25942L  
Figure 71. Hot Plug-In With Short on Output: Auto-  
Retry—TPS25942A  
Figure 72. Power Good Response During Turnon  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Figure 73. Power Good Response During Turnoff  
10.3 System Examples  
The TPS25942 and TPS25944 provide a simple solution for power multiplexing applications through seamless  
transition between two power supplies, each operating at 2.7 V to 18 V and delivering up to 5 A. The devices  
with a distinctive feature set of true-reverse blocking, auto-forward conduction and fast switch over, support  
applications for both Active ORing and Priority power multiplexing.  
10.3.1 Active ORing (Auto-Power Multiplexer) Operation  
A typical redundant power supply configuration of the system is shown in Figure 74. Schottky ORing diodes have  
been popular for connecting parallel power supplies, such as parallel operation of wall adapter with a battery or a  
hold-up storage capacitor. The disadvantage of using ORing diodes is high voltage drop and associated power  
loss. The TPS25942 and TPS25944 with an integrated, low-ohmic N-channel FET provide a simple and efficient  
solution. Figure 74 shows the Active ORing implementation using the devices.  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
System Examples (continued)  
Lmplemenꢀaꢀion  
Lb  
hÜÇ  
C[Ç  
({ee bote !)  
Lb1  
2.7 to 18 ë  
trimary {upply  
/
Lb  
42mW  
w1  
w2  
wꢁ  
9bꢂÜë[h  
hëꢃ  
/oncepꢀ  
5ah59  
dëdÇ  
/ommon ꢅus  
Lahb  
L[La  
hÜÇ  
Db5  
w3  
/
dëdÇ  
wL[La  
wLahb  
/
Çt{25942x  
hÜÇ  
Iot-sꢄꢀp  
{ystem [oꢀd  
Çt{25942/44 inꢀegraꢀes Ioꢀ-swap  
and ꢁurrenꢀ limiꢀing funcꢀions  
({ee bote !)  
Lb  
hÜÇ  
Lb2  
2.7 to 18 ë  
!uxiliary {upply  
/
Lb  
42mW  
w4  
Lb2 Lb1  
9bꢂÜë[h  
5ah59  
Lahb  
L[La  
dëdÇ  
Db5  
/
dëdÇ  
wL[La  
Çt{25942x  
A. CIN: Optional and only for noise suppression.  
Figure 74. Active ORing Implementation  
A fast reverse comparator controls the internal FET and it is turned ON or OFF with hysteresis as shown in  
Figure 75. The internal FET is turned ON in less than 4 us (typical) when the forward voltage drop V(IN) – V(OUT)  
exceeds 100 mV and is turned off in 1 µs (typical) as soon as V(IN) – V(OUT) falls below –10 mV. When internal  
FET is turned ON, the ORed input supply experiences momentary in-rush current drawn as the FET turns on  
charging the bus capacitance. In addition, device can be operated in Diode Mode by independently controlling  
DMODE pin.  
Corꢀard conduction  
weverse .locking  
100  
-10  
ë(Lb)(hÜÇ) (më)  
Figure 75. Active ORing Thresholds  
Figure 75 shows typical switch-over waveforms of Active ORing implementation using the TPS25942 or  
TPS25944.  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
System Examples (continued)  
V(IN1) = 12.2 V  
V(IN2) = 12 V  
C(OUT) = 100 µF  
V(IN1) = 12.2 V  
V(IN2) = 12 V  
C(OUT) = 100 µF  
RL = 14 Ω  
C(dVdT) = 1.5 nF  
RL = 14 Ω  
C(dVdT) = 1.5 nF  
Figure 76. IN1 Power Recovery: Change Over from IN2 to  
IN1 (V(OUT) is AC Coupled)  
Figure 77. IN1 Brownout Condition: Change Over from IN2  
to IN1 (V(OUT) is AC Coupled)  
When bus voltages (IN1 and IN2) are matched, device in each rail sees a forward voltage drop and is ON  
delivering the load current. During this period, current is shared between the rails in the ratio of differential  
voltage drop across each device.  
In addition to above, the devices provide inrush current limit and protects each rail from potential overload and  
short circuit faults.  
10.3.1.1 N+1 Power Supply Operation  
The devices can be used to combine multiple power supplies to a common bus in an N+1 configuration. The N+1  
power supply configuration as shown in Figure 78, is used where multiple power supplies are paralleled for either  
higher capacity, redundancy or both. If it takes N supplies to power the load, adding an extra identical unit in  
parallel permits the load to continue operation in the event that any one of the N supplies fails. The devices  
emulate the function of the ORing diode and provides with all protections as needed to isolate the rail during hot-  
plug, overvoltage, undervoltage, overcurrent and short-circuit conditions.  
/oncept  
Lmplementation  
ë1  
Çt{25942  
ë1  
ë2  
ꢀ/-ꢀ/  
/onverꢁer  
ꢀ/-ꢀ/  
/onverꢁer  
ë2  
ë3  
Çt{25942  
Çt{25942  
ꢀ/-ꢀ/  
/onverꢁer  
ë3  
Figure 78. N+1 Configuration Implementation  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
System Examples (continued)  
10.3.1.2 Priority Power MUX Operation  
Applications having two energy sources such as PCIe cards, Tablets and Portable battery powered equipment  
require preference of one source to another. For example, mains power (wall-adapter) has the priority over the  
internal back-up power or auxiliary power. These applications demand for switch over from mains power to back-  
up power only when main input voltage falls below a user defined threshold. The devices provide a simple  
solution for priority power multiplexing needs.  
Figure 79 shows a typical priority power multiplexing implementation using devices. When primary power IN1 is  
present, the device in IN1 path powers the OUT bus irrespective of whether auxiliary power IN2 is greater than or  
less than IN1. Once the voltage on the IN1 rail falls below the user-defined threshold, the device IN1 issues a  
signal to switch over to auxiliary power IN2. The transition happens seamlessly in less than 125 µs, with minimal  
voltage droop on the bus. The voltage droop during transition is a function of load current and bus capacitance  
(see Equation 36).  
I
x 125 ms  
(Load)  
V
=
(droop)  
C
(BUS)  
where  
V(droop) in Volts, I(Load) is load current in Ampere, C(BUS) is bus capacitance in µF  
(36)  
When the main voltage supply (IN1) is not present or during brown-out conditions, the device in auxiliary supply  
rail (IN2) provides power to the output. When IN1 recovers, the device connected to IN1 is turned on at defined  
slew rate and the device in IN2 path is turned off, allowing a seamless transition from auxiliary to the main  
voltage supply with minimal droop and with no shoot-through current.  
Priority power multiplexing can be done either between two similar rails (such as 12 V Primary to 12 V Aux, 3.3 V  
Primary to 3.3 V Aux) or between dissimilar rails (such as 12 V Primary to 5 V Aux or 3.3 V Aux; or vice versa).  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
System Examples (continued)  
hÜÇ  
Lb  
Lb1  
/
2.7 to 18 ë  
trimary {upply  
Lb  
42mW  
w1  
w2  
({ee bote !)  
wꢁ  
9bꢂÜë[h  
hëꢃ  
ꢃDhh5  
w6  
ëLb1  
aꢀster  
ꢃDÇI  
Lahb  
L[La  
5ah59  
dëdÇ  
Db5  
w7  
wLahb  
hÜÇ  
w3  
/
dëdÇ  
wL[La  
/
hÜÇ  
Çt{25942x  
prioriꢀy signal  
{ystem [oꢀd  
hÜÇ  
Lb  
({ee bote !)  
Lb2  
/
Lb  
2.7 to 18 ë  
!uxiliary {upply  
42mW  
w4  
9bꢂÜë[h  
hëꢃ  
{lꢀve  
Lahb  
L[La  
dëdÇ  
Db5  
/
dëdÇ  
wL[La  
Çt{25942x  
A. CIN: Optional and only for noise suppression.  
B. Master controls the slave using priority signal for switch over to Auxiliary power.  
Figure 79. Priority Power Multiplexing Implementation  
Figure 80 and Figure 81 show typical switch-over waveforms of Priority Muxing implementation using the  
TPS25942 or TPS25944 for 11.5 V Primary and 14.5 V Auxiliary Bus.  
Figure 82 and Figure 83 show typical switch-over waveforms of Priority Muxing implementation using the  
TPS25942 or TPS25944 for 12 V Primary and 3.3 V Auxiliary Bus.  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
System Examples (continued)  
V(IN1) = 11.5 V  
V(IN2) = 14.5 V  
RL = 5.6 Ω  
R(ILIM1) = 24.6 kΩ,  
R(ILIM2) = 33.2 kΩ  
R(IMON) = 16.2 kΩ  
C(OUT) = 150 µF  
C(dVdT) = 1.2 nF  
V(IN1) = 11.5 V  
V(IN2) = 14.5 V  
RL = 5.6 Ω  
R(ILIM1) = 24.6 kΩ  
R(ILIM2) = 33.2 kΩ  
R(IMON) = 16.2 kΩ  
C(OUT) = 150 µF  
C(dVdT) = 1.2 nF  
V(UVLO-Low) = 10.2 V  
V(UVLO-High) = 10.8 V  
Figure 80. IN1 Power Recovery: Change Over from  
Auxiliary IN2 to Primary Power IN1  
Figure 81. IN1 Brownout Condition: Change Over from  
Main IN1 to Auxiliary Power IN2  
V(IN1) = 12 V  
V(IN2) = 3.3 V  
RLoad = 5.6 Ω  
R(ILIM1) = 24.6 kΩ  
R(ILIM2) = 33.2 kΩ  
R(IMON) = 16.2 kΩ  
C(OUT) = 150 µF  
C(dVdT) = 1.2 nF  
V(IN1) = 12 V  
V(IN2) = 3.3 V  
RL = 5.6 Ω  
R(ILIM1) = 24.6 kΩ  
R(ILIM2) = 33.2 kΩ  
R(IMON) = 16.2 kΩ  
C(OUT) = 150 µF  
C(dVdT) = 1.2 nF  
V(UVLO-Low) = 10.2 V  
V(UVLO-High) = 10.8 V  
Figure 82. IN1 Power Recovery: Change Over from  
Auxiliary IN2 to Main Power IN1  
Figure 83. IN1 Brownout Condition: Change Over from  
Main IN1 to Auxiliary Power IN2  
10.3.1.3 Priority MUXing With Almost Equal Rails (VIN1 ~ VIN2  
)
Most of the redundant power supply systems used in servers, storage and telecom, multiplex tightly regulated  
power rails to provide uninterrupted power to the load. In these systems, the primary and auxiliary rails are close  
to each other, typically within one diode drop when both rails are active.  
For priority multiplexing in these systems, the TPS25942 or TPS25944 device in auxiliary rail path can be  
operated in Diode Mode for a fast switch-over (1 µs typical). The fast switch-over reduces the required hold-up  
capacitor on the output rail for a given droop specification.  
The circuit implementation of this configuration is shown in Figure 84. During power-fail (brown-out) conditions of  
primary rail IN1, it changes IN2 from ‘Diode-Mode’ to normal operation using PGOOD. Similarly during power  
recovery of primary rail IN1, the auxiliary rail IN2 is driven into ‘Diode-Mode’.  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
System Examples (continued)  
hÜÇ  
Lb  
Lb1  
*
/
2.7 to 18 ë  
Lb  
42mW  
w1  
w2  
trimary {upply  
wꢁ  
9bꢂÜë[h  
hëꢃ  
ꢃDhh5  
w6  
ëLb1  
aꢀster  
ꢃDÇI  
Lahb  
L[La  
5ah59  
dëdÇ  
Db5  
w7  
wLahb  
hÜÇ  
w3  
/
dëdÇ  
wL[La  
/
Çt{25942x  
hÜÇ  
*hpꢀional & only for noise  
suppression  
prioriꢀy signal  
{ystem [oꢀd  
hÜÇ  
Lb  
Lb2  
*
Lb  
/
2.7 to 18 ë  
!uxiliary {upply  
42mW  
w4  
9bꢂÜë[h  
5ah59  
{lꢀve  
Lahb  
L[La  
dëdÇ  
Db5  
/
dëdÇ  
wL[La  
Çt{25942x  
Figure 84. Priority Power Multiplexing Configuration for Almost Equal Rails  
The fast switch-over performance is shown in Figure 85.  
C(OUT) = 150 µF  
RL = 4 Ω  
Figure 85. Brownout Condition: Diode Mode for Multiplexing  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
System Examples (continued)  
10.3.1.4 Reverse Polarity Protection  
In applications demanding reverse polarity or reverse battery protection, the TPS25942 and TPS25944 can be  
used as an eFuse or ideal diode. A typical reverse polarity protection circuitry is shown in Figure 86. The signal  
diode in the GND terminal path ensures that device is not functional during reverse polarity conditions and  
internal FET blocks the reverse path.  
5/ꢀ5/  
/onverꢁer  
hÜÇ  
C[Ç  
Lb  
hÜÇ  
Lb  
2.7 ꢁo 18 ë  
*
Lb  
/
hÜÇ  
/
42mW  
w1  
w2  
w4  
9bꢀÜë[h  
hët  
5ah59  
dëdÇ  
Lahb  
L[La  
Db5  
w3  
/
dëdÇ  
wL[La  
wLahb  
Çt{25942x  
{ignꢂl 5iode  
(30ë, 0.2!)  
*hptional & only for noise  
suppression  
Figure 86. Reverse Polarity Protection Implementation  
11 Power Supply Recommendations  
The devices are designed for supply voltage range of 2.7 V VIN 18 V. If the input supply is located more than  
a few inches from the device an input ceramic bypass capacitor higher than 0.1 μF is recommended. Power  
supply must be rated higher than the current limit set to avoid voltage droops during over current and short-circuit  
conditions.  
11.1 Transient Protection  
In case of short circuit and over load current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the  
input or output of the device. Such transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Schottky diode across the output to absorb negative spikes  
A low value ceramic capacitor (C(IN) = 0.001 µF to 0.1 µF) to absorb the energy and dampen the transients.  
The approximate value of input capacitance can be estimated with Equation 37.  
L
(IN)  
V
= V  
(IN)  
+ I x  
(LOAD)  
SPIKE(Absolute)  
C
(IN)  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current,  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
(37)  
45  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
Transient Protection (continued)  
Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is  
shown in Figure 87.  
Lb  
hÜÇ  
2.7 ꢂo 18 ë  
Lb  
hÜÇ  
/
hÜÇ  
42mO  
/
Lb  
w1  
w2  
w3  
({ee boꢂe !)  
w6  
w7  
w4  
9bꢀÜë[h  
hët  
C[Ç  
tDhh5  
tDÇI  
({ee boꢂe !)  
5ah59  
({ee boꢂe !)  
Lahb  
L[La  
dëdÇ  
Db5  
/
dëdÇ  
wL[La  
wwLahb  
Çt{25942x  
A. Optional components needed for suppression of transients  
Figure 87. Circuit Implementation With Optional Protection Components  
11.2 Output Short-Circuit Measurements  
It is difficult to obtain repeatable and similar short-circuit testing results. Source bypassing, input leads, circuit  
layout and component selection, output shorting method, relative location of the short, and instrumentation all  
contribute to variation in results. The actual short itself exhibits a certain degree of randomness as it  
microscopically bounces and arcs. Care in configuration and methods must be used to obtain realistic results. Do  
not expect to see waveforms exactly like those in the data sheet; every setup differs.  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
12 Layout  
12.1 Layout Guidelines  
For all applications, a 0.1-uF or greater ceramic decoupling capacitor is recommended between IN terminal  
and GND. For hot-plug applications, where input power path inductance is negligible, this capacitor can be  
eliminated or minimized.  
The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC. See Figure 88 for a PCB layout example.  
High current carrying power path connections must be as short as possible and must be sized to carry at  
least twice the full-load current.  
Low current signal ground (SGND), which is the reference ground for the device must be a copper plane or  
island.  
Locate all the TPS25942, TPS25944 support components: R(ILIM), CdVdT, R(IMON), and resistors for UVLO and  
OVP, close to their connection pin. Connect the other end of the component to the SGND with shortest trace  
length.  
The trace routing for the RILIM and R(IMON) components to the device must be as short as possible to reduce  
parasitic effects on the current limit and current monitoring accuracy. These traces must not have any  
coupling to switching signals on the board.  
The SGND plane must be connected to high current ground (main power ground) at a single point, that is at  
the negative terminal of input capacitor.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, a  
protection Schottky diode is recommended to address negative transients due to switching of inductive loads,  
and it must be physically close to the OUT pins.  
Thermal Considerations: When properly mounted the PowerPAD™ package provides significantly greater  
cooling ability than an ordinary package. To operate at rated power, the PowerPAD must be soldered directly  
to the board GND plane directly under the device. The PowerPAD is at GND potential and can be connected  
using multiple vias to inner layer GND. Other planes, such as the bottom side of the circuit board can be used  
to increase heat sinking in higher current applications. See the Technical Briefs: PowerPad™ Thermally  
Enhanced Package ( SLMA002) and PowerPAD™ Made Easy (SLMA004) for more information on using this  
PowerPAD™ package.  
The thermal via land pattern specific to the TPS25942, TPS25944 can be downloaded from device webpage.  
Obtaining acceptable performance with alternate layout schemes is possible; however this layout has been  
shown to produce good results and is intended as a guideline.  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
12.2 Layout Example  
Çop lꢂyer  
Çop lꢂyer signꢂl ground plꢂne  
.oꢃꢃom lꢂyer signꢂl ground plꢂne  
ëiꢂ ꢃo signꢂl ground plꢂne  
tower Dround  
Iigꢄ  
Crequency  
({ee boꢃe !)  
.ypꢂss  
/ꢂpꢂciꢃor  
Lnpuꢀ  
huꢀpuꢀ  
ëL  
ëh  
11  
12  
6
5
Lb  
Lb  
hÜÇ  
hÜÇ  
hÜÇ  
Lb  
13  
4
3
ꢁb 14  
tDÇI  
tDhhꢀ  
ꢀahꢀꢁ  
2
1
hët  
15  
16  
Dbꢀ  
{ignꢂl  
Dround  
.oꢃꢃom  
lꢂyer  
{ignꢂl Dround  
Çop [ꢂyer  
A. Optional: Needed only to suppress the transients caused by inductive load switching.  
Figure 88. Board Layout  
48  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
www.ti.com.cn  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
13 器件和文档支持  
13.1 器件支持  
有关 TPS25942A PSpice 瞬态模型,请参阅 SLVMAA3B。  
有关 TPS25942L PSpice 瞬态模型,请参阅 SLVMAA4A。  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
使用集成电源多路复用器减少冗余系统中的二极管损耗  
TPS25942x635EVMTPS25942x 评估模块用户指南》  
TPS25944X635EVM:适用于 TPS25944X 的评估模块》  
《使用负载开关和电子保险丝的电源多路复用》  
13.3 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
TPS25942A  
TPS25942L  
TPS25944A  
TPS25944L  
13.4 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2014–2017, Texas Instruments Incorporated  
49  
TPS25942A, TPS25942L, TPS25944A, TPS25944L  
ZHCSCJ3D JUNE 2014REVISED OCTOBER 2017  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
50  
版权 © 2014–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25942ARVCR  
TPS25942ARVCT  
TPS25942LRVCR  
TPS25942LRVCT  
TPS25944ARVCR  
TPS25944ARVCT  
TPS25944LRVCR  
TPS25944LRVCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
20  
20  
20  
20  
20  
20  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
25942A  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
25942A  
25942L  
25942L  
25944A  
25944A  
25944L  
25944L  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS25942ARVCR  
TPS25942ARVCT  
TPS25942LRVCR  
TPS25942LRVCR  
TPS25942LRVCT  
TPS25942LRVCT  
TPS25944ARVCR  
TPS25944ARVCT  
TPS25944LRVCR  
TPS25944LRVCT  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
3000  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
3000  
250  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS25942ARVCR  
TPS25942ARVCT  
TPS25942LRVCR  
TPS25942LRVCR  
TPS25942LRVCT  
TPS25942LRVCT  
TPS25944ARVCR  
TPS25944ARVCT  
TPS25944LRVCR  
TPS25944LRVCT  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
RVC  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
3000  
250  
367.0  
210.0  
367.0  
346.0  
210.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
346.0  
185.0  
185.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
33.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
3000  
250  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVC0020A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
0.45  
0.35  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
7
10  
16X 0.5  
11  
6
2X  
SYMM  
21  
2.5  
2.6 0.1  
SEE TERMINAL  
DETAIL  
1
16  
0.25  
20X  
0.15  
20  
17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
1.6 0.1  
0.05  
0.45  
0.35  
20X  
4219150/B 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.6)  
SYMM  
(R0.05)  
TYP  
17  
20  
20X (0.6)  
1
16  
20X (0.2)  
(1)  
TYP  
21  
(3.8)  
(2.6)  
SYMM  
16X (0.5)  
11  
6
(
0.2) TYP  
VIA  
7
10  
(1 TYP)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219150/B 03/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (1.47)  
20  
17  
20X (0.6)  
1
21  
16  
20X (0.2)  
(R0.05) TYP  
SYMM  
2X  
(1.15)  
(3.8)  
(0.675)  
TYP  
16X (0.5)  
11  
6
METAL  
TYP  
7
10  
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD X  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219150/B 03/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS25944ARVCT

具有反向电流阻断和 4ms 断路器功能的 2.7V 至 18V、42mΩ、0.6A 至 5.2A 电子保险丝 | RVC | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25944L

具有反向电流阻断功能的 2.7V 至 18V、42mΩ、0.6A 至 5.2A 电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25944LRVCR

具有反向电流阻断功能的 2.7V 至 18V、42mΩ、0.6A 至 5.2A 电子保险丝 | RVC | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25944LRVCT

具有反向电流阻断功能的 2.7V 至 18V、42mΩ、0.6A 至 5.2A 电子保险丝 | RVC | 20 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25946

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259460ARPWR

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259460LRPWR

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259461ARPWR

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259461LRPWR

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25946XX

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25946XXRPW

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25946_V01

TPS25946xx 2.7–23 V, 5.5-A, 28-mΩ eFuse With Bidirectional Current Support

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI