TPS259620DDAR [TI]

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125;
TPS259620DDAR
型号: TPS259620DDAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

电子 光电二极管
文件: 总48页 (文件大小:4434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
具有精确电流监控器和快速过压保护功能的 TPS2596 2.7V 19V、  
0.125A 2A89mΩ 电子保险丝  
1 特性  
2 应用  
1
宽输入电压范围:2.7V 19V  
绝对最大值为 21V  
能量计  
UL 60335-1 15W LPC 在电器中的应用  
低导通电阻:Ron = 89mΩ(典型值)  
冰箱  
带有可调节欠压锁定 (UVLO) 的高电平有效使能输  
洗碗机  
洗衣机和烘干机  
可用过压保护选项:  
机顶盒  
快速过压钳位(3.8V5.7V 13.8V 引脚可选  
阈值),响应时间为 5μs(典型值)  
IP 网络摄像头  
可调节过压锁定 (OVLO),响应时间为 1.3μs  
(典型值)  
3 说明  
TPS2596xx 系列电子保险丝(集成式 FET 热插拔器  
件)是采用小型封装且高度集成的电路保护和电源管理  
解决方案。这些设备只需很少的外部组件即可提供多种  
保护模式,能够非常有效地抵御过载、短路、电压浪涌  
和过多浪涌电流。输出电流限制级别可通过单个外部电  
阻设定。还可能通过测量整个电流限制电阻的压降实现  
对输出负载电流的准确感应。对 浪涌电流有特别要求  
的应用可以通过单个外部电容器设定输出转换率。对于  
TPS25962x 型号,发生输入过压情况时,内部钳位电  
路会将输出限制在一个安全的固定最大电压(引脚可  
选),而无需外部组件。TPS25963x 型号使用户可以  
设置指定的过压截止阈值。  
配备负载电流监控器输出 (ILM) 的可调节电流限制  
电流范围:0.125A 2A  
电流限制准确度:  
整个电流范围内为 ±10.4%(最大值)  
1A 电流限制下为 ±5.5%(最大值)  
不受电气快速瞬变干扰 (IEC 61000-4-4)  
可调节的输出压摆率控制 (dVdt)  
提供过热保护 (OTP)  
故障指示引脚 (FLT)  
UL2367 认证正在处理中  
IEC 62368 CB 认证(正在申请中)  
小尺寸:4.91mm × 3.9mm SOIC 封装  
这些器件的额定工作结温范围为 –40°C +125°C。  
器件信息(1)  
器件型号  
TPS259620DDA  
TPS259621DDA  
TPS259630DDA  
TPS259631DDA  
封装  
SOIC (8)  
封装尺寸(标称值)  
4.91mm x 3.9mm  
4.91mm x 3.9mm  
4.91mm x 3.9mm  
4.91mm x 3.9mm  
SOIC (8)  
SOIC (8)  
SOIC (8)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
TPS25963x 1KV EFT 响应  
Power  
Supply  
IN  
OUT  
TPS25963x  
VFLT  
R1  
R2  
RFLT  
EN/UVLO  
Fault  
FLT  
ILM  
CIN  
COUT  
IMON  
OVLO  
dVdt  
ROUT  
GND  
RILM  
R3  
CdVdt  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSET8  
 
 
 
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 25  
Application and Implementation ........................ 27  
9.1 Application Information............................................ 27  
9.2 Typical Application ................................................. 27  
9.3 System Examples ................................................... 31  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 8  
7.7 Switching Characteristics.......................................... 8  
7.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
9
10 Power Supply Recommendations ..................... 34  
10.1 Transient Protection.............................................. 34  
10.2 Output Short-Circuit Measurements ..................... 35  
11 Layout................................................................... 36  
11.1 Layout Guidelines ................................................. 36  
11.2 Layout Example .................................................... 37  
12 器件和文档支持 ..................................................... 38  
12.1 文档支持................................................................ 38  
12.2 接收文档更新通知 ................................................. 38  
12.3 社区资源................................................................ 38  
12.4 ....................................................................... 38  
12.5 静电放电警告......................................................... 38  
12.6 Glossary................................................................ 38  
13 机械、封装和可订购信息....................................... 38  
8
4 修订历史记录  
Changes from Original (May 2019) to Revision A  
Page  
预告信息更改为生产数据” ............................................................................................................................................... 1  
2
版权 © 2019, Texas Instruments Incorporated  
 
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
5 器件比较表  
部件号  
过压响应  
OVC - 3.8V5.7V13.8V(引脚可选)  
OVC - 3.8V5.7V13.8V(引脚可选)  
可调 OVLO  
热关断 (TSD) 响应  
闭锁  
TPS259620  
TPS259621  
TPS259630  
TPS259631  
自动重试  
闭锁  
可调 OVLO  
自动重试  
Copyright © 2019, Texas Instruments Incorporated  
3
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
DDA Package  
8-Pin SOIC  
Top View  
OVLO/OVCSEL  
GND  
dVdt  
GND  
ILM  
FLT  
Thermal Pad  
EN/UVLO  
IN  
OUT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
GND  
1
Ground  
Ground  
Analog  
Output  
A capacitor from this pin to GND sets the output turn on slew rate. Leave this pin floating for  
the fastest turn on slew rate.  
dVdt  
2
3
Active High Enable for the Device. A resistor divider can be used to adjust the Undervoltage  
Lockout threshold. Do not leave floating.  
EN/UVLO  
Analog Input  
IN  
4
5
Power  
Power  
Power Input  
OUT  
Power Output  
Active Low indicator which will be pulled low when a fault is detected. It is an open-drain  
output that requires an external pull-up resistance.  
FLT  
6
Digital Output  
This is a dual function pin used to limit and monitor the output current. An external resistor  
from this pin to GND sets the output current limit. The pin voltage can also be used to  
monitor the output load current.  
Analog  
Output  
ILM  
7
TPS25963x: A resistor divider can be used to adjust the Overvoltage Lockout threshold. Do  
not leave floating.  
OVLO  
8
Analog Input  
Ground  
TPS25962x: Overvoltage Clamp level select pin. Refer to Overvoltage Clamp for more  
details.  
OVCSEL  
Thermal pad  
The Exposed Pad is used primarily for heat dissipation and must be connected to system  
ground plane for best thermal performance.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
PIN  
MIN  
MAX UNITS  
Maximum Input Voltage Range  
Maximum Input Voltage Range (TA = 25 )  
Maximum Output Voltage Range  
–0.3  
21  
V
V
VIN  
IN  
22  
VOUT  
OUT  
EN/UVLO  
OVCSEL/OVLO  
DVDT  
–0.3  
–0.3  
–0.3  
min (21, VIN + 0.3)  
V
VEN/UVLO Maximum Enable Pin Voltage Range  
7
7
V
VOV  
Maximum OVCSEL/OVLO Pin Voltage Range  
Maximum dVdT Pin Voltage Range  
Maximum FLTb Pin Voltage Range  
Maximum FLTb Pin Sink Current  
Maximum Continuous Switch Current  
Junction temperature  
V
VdVdT  
VFLTB  
IFLTB  
IMAX  
TJ  
2.5  
7
V
FLT  
–0.3  
V
FLT  
10  
mA  
A
IN to OUT  
Internally Limited  
Internally Limited  
°C  
°C  
°C  
TLEAD  
Tstg  
Maximum Lead Temperature  
300  
150  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Input Voltage Range  
PIN  
IN  
MIN  
MAX UNITS  
VIN  
2.7  
19(1)  
VIN + 0.3  
6(2)  
V
V
VOUT  
VEN/UVLO  
VOV  
Output Voltage Range  
OUT  
Enable Pin Voltage Range  
OVLO Pin Voltage Range (TPS25963x Only)  
dVdT Pin Capacitor Voltage Rating  
FLTB Pin Voltage Range  
EN/UVLO  
OVLO  
DVDT  
FLT  
V
0.5  
4
2
V
VdVdT  
VFLTB  
RILM  
IMAX  
V
6
7869  
2
V
ILM Pin Resistance  
ILM  
453  
–40  
Ω
A
Continuous Switch Current  
Junction temperature  
IN to OUT  
TJ  
125  
°C  
(1) For TPS25962x, the input voltage should be limited to the selected Output Voltage Clamp Option as listed in the Electrical  
Characteristics section  
(2) For supply voltages below 6V, it is okay to pull up the EN pin to IN through a resistor of 100 Kor higher. For supply voltages greater  
than 6V, it is recommended to use an appropriate resistor divider between IN, EN and GND to ensure the voltage at the EN pin is within  
the specified limits.  
Copyright © 2019, Texas Instruments Incorporated  
5
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.4 Thermal Information  
TPS2596X  
DDA (SOIC-EP)  
8 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJA  
ΨJT  
ΨJT  
ΨJB  
ΨJB  
Junction-to-ambient thermal resistance  
Junction-to-ambient thermal resistance  
Junction-to-top characterization parameter  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-board characterization parameter  
52.7(2)  
119.8(3)  
8.9(2)  
17.5(3)  
27.1(2)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
68.1(3)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) With exposed pad soldered to PCB  
(3) Without exposed pad soldered to PCB  
7.5 Electrical Characteristics  
(Test conditions unless otherwise noted) –40°C TJ 125°C, VIN = 12 V , RILM = 453 Ω , CdVdT = Open, OUT = Open. All  
voltages referenced to GND.  
PARAMETER  
INPUT SUPPLY (IN)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TPS25963x  
193  
206  
259  
266  
µA  
µA  
µA  
µA  
V
IQ  
IN quiescent current  
IN Shutdown Current  
TPS25962x  
VIN < 4 V, VEN/UVLO < VSD  
VIN 4 V, VEN/UVLO < VSD  
VIN Rising  
0.1  
ISD  
0.4  
2.53  
2.42  
1.132  
2.58  
2.46  
VUVP(R)  
VUVP(F)  
2.46  
2.36  
IN Undervoltage Protection  
threshold  
VIN Falling  
V
IN Undervoltage Protection  
Hysteresis  
110  
mV  
OUTPUT VOLTAGE CLAMP (OUT) - TPS25962X  
ROVCSEL = Short to GND,  
ROUT = 10 KΩ  
3.75  
5.54  
3.83  
5.69  
3.92  
5.83  
14.52  
3.7  
V
V
V
V
V
V
Overvoltage Clamp  
Threshold  
ROVCSEL = 400 Kto GND,  
ROUT = 10 KΩ  
VOVC  
ROVCSEL = OPEN, ROUT = 10  
KΩ  
12.97  
3.47  
13.77  
3.59  
ROVCSEL = Short to GND,  
IOUT = 10 mA  
Output Voltage During  
Clamping  
ROVCSEL = 400 Kto GND,  
IOUT = 10 mA  
VCLAMP  
5.28  
5.45  
5.61  
13.97  
ROVCSEL = OPEN, IOUT = 10  
mA  
13.13  
13.58  
OUTPUT CURRENT LIMIT AND MONITOR (ILM)  
Current monitor gain  
as measured on ILM pin (IILM  
IOUT = 0.13 A  
531.22  
635.77  
653.21  
657.15  
800.00  
684.05  
µA/A  
µA/A  
GIMON  
IOUT = 2 A  
/ IOUT  
)
RILM = 7.87 K, VDS = 0.5  
V, –40°C TA 80°C  
0.113  
0.125  
0.139  
A
RILM = 3.83 K, VDS = 0.5 V  
RILM = 909 , VDS = 0.5 V  
RILM = 453 , VDS = 0.5 V  
RILM = OPEN  
0.224  
0.949  
1.83  
0.247  
1.005  
2.004  
0
0.269  
1.051  
2.147  
A
A
A
A
ILIM  
IOUT Current Limit  
IOUT Circuit Breaker  
Threshold  
during RILM Short condition  
RILM = Short to GND (Single  
Point Failure Test IEC  
62368-1)  
ICB  
1.5  
A
6
Copyright © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
Electrical Characteristics (continued)  
(Test conditions unless otherwise noted) –40°C TJ 125°C, VIN = 12 V , RILM = 453 Ω , CdVdT = Open, OUT = Open. All  
voltages referenced to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ON-RESISTANCE (IN TO OUT)  
VIN < 4 V, IOUT = 0.2 A, TJ =  
25 ℃  
97  
99.8  
125.4  
143.4  
92.6  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
VIN < 4 V, IOUT = 0.2 A, TJ =  
-40 to 85 ℃  
VIN < 4 V, IOUT = 0.2 A, TJ =  
-40 to 125 ℃  
RON  
ON State Resistance  
VIN > 4 V, IOUT = 0.2 A, TJ =  
25 ℃  
89  
VIN > 4 V, IOUT = 0.2 A, TJ =  
-40 to 85 ℃  
115.3  
131  
VIN > 4 V, IOUT = 0.2 A, TJ =  
-40 to 125 ℃  
ENABLE/UNDERVOLTAGE LOCK OUT (EN/UVLO)  
VUVLO(R)  
VUVLO(F)  
VEN Rising  
1.18  
1.08  
1.2  
1.1  
95  
1.22  
1.13  
V
V
UVLO Threshold  
UVLO Hysteresis  
VEN Falling  
mV  
VEN threshold for lowest  
shutdown current  
VSD  
VEN Falling  
0.53  
–0.1  
1.05  
0.1  
V
IENLKG  
EN leakage current  
µA  
OVERVOLTAGE LOCKOUT (OVLO) - TPS25963X  
VOVLO(R)  
VOVLO(F)  
VOVLO Rising  
1.17  
1.08  
1.2  
1.1  
95  
1.22  
1.13  
V
V
OVLO Threshold  
VOVLO Falling  
OVLO Hysteresis  
mV  
uA  
IOVLKG  
OVLO pin leakage current  
0.5 VOVLO 1.5V  
–0.1  
0.1  
FAULT INDICATION (FLT)  
FLT Internal Pull-down  
resistance  
RFLTB  
FLT asserted  
11.52  
Ω
FLT de-asserted, pull-up  
voltage 6 V  
IFLTLKG  
FLT pin leakage current  
–1  
1
µA  
OVERTEMPERATURE PROTECTION (OTP)  
Thermal Shutdown Rising  
Threshold  
TSD  
TJ Rising  
TJ Falling  
157  
°C  
°C  
Thermal Shutdown  
Hysteresis  
TSDHYS  
11.5  
DVDT  
IDVDT  
dVdt Pin Charging Current  
DVDT gain  
1.89  
2.11  
2.33  
21.5  
µA  
V
GDVDT  
20.31  
20.93  
Copyright © 2019, Texas Instruments Incorporated  
7
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.6 Timing Requirements  
Typical Values are taken at TJ = 25°C unless specifically noted otherwise.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
87  
5
MAX  
UNITS  
µs  
IOUT > 20% over ILIM to IOUT  
ILIM  
tLIM  
tSC  
tOVLO  
tOVC  
Current limit response time  
Short circuit response time  
V
OUT to IOUT ILIM  
µs  
Overvoltage lockout  
response  
time  
TPS25963x Only  
1.3  
5
µs  
µs  
Output clamp response time TPS25962x Only , IOUT = 2 A  
Thermal Shutdown Auto-  
Retry  
tTSD,RST  
TPS2596x1 Only  
95  
ms  
Interval  
7.7 Switching Characteristics  
The output rising slew rate is internally controlled and constant across the entire operating voltage range to ensure the turn-  
on timing is not affected by the load conditions. The rising slew rate can be adjusted by adding capacitance from the dVdt pin  
to ground. As CdVdt is increased, it will slow the rising slew rate (SR). See Slew Rate and Inrush Current Control (dVdt)  
section for more details. The fall time, however, is dependent on the RC time constant of the load capacitance (COUT) and  
Load Resistance (RL). The Switching Characteristics are only valid for the power-up sequence where the supply is available  
in steady state condition and the load voltage is completely discharged before the device is enabled.Typical Values are taken  
at TJ = 25 °C unless specifically noted otherwise. ROUT = 100 , COUT = 1 µF .  
PARAMETER  
VIN  
CdVdt = Open  
CdVdt = 3300pF  
UNIT  
2.7 V  
5 V  
28.9  
12.1  
SRON  
tD,ON  
tR  
Output Rising slew rate  
42.7  
75.1  
77.5  
78.9  
82.9  
74.7  
94.1  
128.4  
152.2  
173  
13.1  
V/ms  
12 V  
2.7 V  
5 V  
13.6  
216.5  
247.3  
314.9  
182.4  
311.0  
707.8  
398.9  
558.4  
1022.7  
12.3  
Turn on delay  
Rise time  
µs  
µs  
µs  
µs  
12 V  
2.7 V  
5 V  
12 V  
2.7 V  
5 V  
tON  
Turn on time  
Turn off delay  
12 V  
2.7 V  
5 V  
211.3  
12.2  
11.6  
10.3  
tD,OFF  
11.9  
12 V  
10.4  
8
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
VEN  
VUVLO(F)  
VUVLO(R)  
EN/UVLO  
0
tON  
tD,OFF  
90%  
VIN  
SRON  
OUT  
10%  
0V  
tR  
tD,ON  
tF  
Time  
1. TPS2596xx Switching Times  
版权 © 2019, Texas Instruments Incorporated  
9
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.8 Typical Characteristics  
240  
235  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
155  
VIN (V)  
2.7  
3.3  
12  
19  
VIN (V)  
2.7  
4.5  
12  
19  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D002  
D021  
OUT = OPEN  
2. TPS25963x Quiescent Current  
OUT = OPEN  
3. TPS25962x Quiescent Current  
270  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VIN (V)  
2.7  
12  
260  
250  
240  
230  
220  
19  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D022  
D005  
OVCSEL = OPEN, VIN = 19 V  
VEN/UVLO = 1 V  
5. Disabled State Current  
4. TPS25962x Quiescent Current During Overvoltage  
Clamping  
0.75  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
VIN (V)  
2.7  
VIN (V)  
2.7  
3.3  
4
0.7  
0.65  
0.6  
4.5  
12  
19  
0.55  
0.5  
12  
19  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
90  
85  
80  
75  
0.05  
0
70  
-0.05  
65  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D004  
D006  
VEN/UVLO = 0 V  
6. Shutdown Current  
IOUT = 200 mA  
7. ON Resistance  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
2.54  
1.21  
1.2  
2.52  
2.5  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.1  
2.48  
2.46  
2.44  
2.42  
2.4  
Rising  
Falling  
Rising  
Falling  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D007  
D008  
VIN = 12 V  
9. EN/UVLO Disable Threshold  
8. IN Supply Undervoltage Threshold  
0.84  
0.014  
0.012  
0.01  
TJ (èC)  
-40  
0.82  
0.8  
25  
85  
0.78  
0.76  
0.74  
0.72  
0.7  
125  
0.008  
0.006  
0.004  
0.002  
0
VIN (V)  
2.7  
12  
19  
0.68  
0.66  
0.64  
-0.002  
-0.004  
-0.006  
-40  
-20  
0
20  
40  
TJ (èC)  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
VEN (V)  
3.5  
4
4.5  
5
5.5  
6
D014  
D009  
10. EN/UVLO Shutdown Threshold for Lowest Current  
11. EN/UVLO Pin Leakage Current  
Consumption  
1.21  
1.2  
0.018  
0.016  
0.014  
0.012  
0.01  
TJ (èC)  
-40  
25  
1.19  
1.18  
1.17  
85  
125  
1.16  
Rising  
Falling  
1.15  
0.008  
0.006  
0.004  
0.002  
0
1.14  
1.13  
1.12  
1.11  
1.1  
-40  
-20  
0
20  
40  
TJ (èC)  
60  
80  
100 120 140  
0.5  
1
1.5  
2
2.5  
3 3.5  
VOVLO (V)  
4
4.5  
5
5.5  
6
D001  
D003  
12. TPS25963x Overvoltage Lockout Threshold  
13. TPS25963x OVLO Pin Leakage Current  
版权 © 2019, Texas Instruments Incorporated  
11  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
14  
13  
12  
11  
10  
9
3.6  
3.57  
3.54  
3.51  
3.48  
3.45  
3.42  
3.39  
3.36  
3.33  
3.3  
OVCSEL  
Short to GND  
400 KW  
IOUT  
10mA  
150mA  
1A  
OPEN  
8
7
6
5
4
3
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D017  
D018  
ROUT = 10 KΩ  
OVCSEL = Short to GND, VIN = 4.2 V  
14. TPS25962x Overvoltage Clamp Threshold  
15. TPS25962x Overvoltage Clamping Voltage  
5.5  
13.6  
13.55  
13.5  
5.45  
5.4  
13.45  
13.4  
5.35  
5.3  
13.35  
13.3  
IOUT  
5.25  
5.2  
10mA  
150mA  
1A  
IOUT  
13.25  
13.2  
10mA  
150mA  
1A  
5.15  
13.15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D024  
D025  
OVCSEL = 400 KΩ to GND, VIN = 6.1 V  
OVCSEL = OPEN, VIN = 14.4 V  
16. TPS25962x Overvoltage Clamping Voltage  
17. TPS25962x Overvoltage Clamping Voltage  
21.2  
21  
2.2  
2.18  
2.16  
2.14  
2.12  
2.1  
VIN (V)  
2.7  
12  
19  
20.8  
20.6  
20.4  
20.2  
20  
VIN (V)  
2.7  
12  
2.08  
2.06  
2.04  
2.02  
19  
19.8  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D019  
D020  
18. DVDT Charging Current  
19. DVDT Gain  
12  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
2.2  
12  
10  
8
MIN  
TYP  
MAX  
2
1.8  
1.6  
1.4  
1.2  
1
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
0.8  
0.6  
0.4  
0.2  
0
0
1000 2000 3000 4000 5000 6000 7000 8000  
RILM (W)  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
ILIM (A)  
2
2.2  
D010  
D011  
Across Process, Voltage and Temperature Corners, VDS = 0.5 V  
20. Current Limit vs RILM  
21. Current Limit Accuracy  
135  
130  
125  
120  
115  
110  
105  
100  
95  
880  
VIN (V)  
2.7  
VIN (V)  
2.7  
12  
19  
860  
840  
820  
800  
780  
760  
740  
720  
12  
19  
90  
85  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D015  
D016  
VOUT = 0 V, RILM = 7.87 KΩ  
22. Current Limit Foldback  
VOUT = 0 V, RILM = 453 Ω  
23. Current Limit Foldback  
680  
25  
20  
15  
10  
5
MIN  
TYP  
MAX  
TJ (èC)  
-40  
25  
677.5  
675  
85  
125  
672.5  
670  
667.5  
665  
0
662.5  
660  
-5  
-10  
-15  
-20  
657.5  
655  
652.5  
0
0.2 0.4 0.6 0.8  
1
IOUT (A)  
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
IOUT (A)  
2
2.2  
D013  
D012  
Across Process, Voltage and Temperature Corners, All values  
normalized to mean GIMON value of 656 μA/A  
25. Current Monitor Accuracy  
24. Current Monitor Gain  
版权 © 2019, Texas Instruments Incorporated  
13  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
20000  
10000  
5000  
20000  
10000  
5000  
TA (èC)  
-40  
27  
TA (èC)  
-40  
27  
85  
125  
85  
125  
2000  
1000  
500  
2000  
1000  
500  
200  
100  
50  
200  
100  
50  
20  
10  
5
20  
10  
5
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
PD (W)  
12  
14  
16  
18  
20  
PD (W)  
D023  
D026  
2- Layer PCB: 2 oz Cu with GND Plane area: 4.93 cm2 (Top) and  
1.07 cm2 (Bottom)  
1- Layer PCB: 2 oz Cu with GND Plane area: 4.43 cm2 (Top)  
26. Thermal Shutdown Plot  
27. Thermal Shutdown Plot  
VIN = 12 V, COUT = 220 μF, RILM = 453 Ω  
28. Input Hotplug Response  
VIN = 12 V, COUT = 10 μF, RILM = 453 Ω, CDVDT = 2200 pF  
29. Output Voltage Ramp and Inrush Current at Start Up,  
CdVdT = 2200 pF  
VIN = 12 V, COUT = 10 μF, RILM = 453 Ω, CDVDT = OPEN  
VIN = 12 V, VEN = 3.3 V  
30. Output Voltage Ramp and Inrush Current at Start Up,  
31. Turn ON with EN  
CdVdT = OPEN  
14  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
VIN = 12 V, VEN = 3.3 V  
VIN = 12 V, RILM = 453 Ω, ROUT Varied From 8.33 Ω to 4.54 Ω  
33. Overcurrent Response  
32. Turn ON with VIN  
VIN = 12 V, RILM = 453 Ω, ROUT = 5 Ω  
VIN = 12 V, RILM = 453 Ω, ROUT = 5 Ω  
34. Thermal Shutdown Latch-off Response - TPS2596x0  
35. Thermal Shutdown Auto-Retry Response - TPS2596x1  
VIN = 12 V, RILM = 453 Ω  
VIN = 12 V, RILM = 453 Ω  
36. Short-Circuit While ON Response  
37. Short-Circuit While ON Response (Zoomed In)  
版权 © 2019, Texas Instruments Incorporated  
15  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 12 V, RILM = 453 Ω  
VIN = 12 V, RILM = 453 Ω  
38. Power Up Into Short-Circuit  
39. Power Up Into Short-Circuit (Zoomed In)  
VIN increased from 12 V to 15 V  
OVCSEL = Shorted to GND, VIN increased from 3 V to 5 V  
40. TPS25963x Overvoltage Lockout Response  
41. TPS25962x Overvoltage Clamp Response  
OVCSEL = 400 KΩ to GND, VIN increased from 5 V to 7 V  
42. TPS25962x Overvoltage Clamp Response  
OVCSEL = OPEN, VIN increased from 12 V to 14 V  
43. TPS25962x Overvoltage Clamp Response  
16  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
8 Detailed Description  
8.1 Overview  
The TPS2596xx is an integrated eFuse device that is used to manage load voltage and load current. The device  
provides various factory programmed settings and user manageable settings, which allow device configuration  
for handling different transient and steady state supply and load fault conditions, thereby protecting the input  
supply and the downstream circuits connected to the device. The device also uses an in-built thermal shutdown  
mechanism to protect itself during these fault events.  
8.2 Functional Block Diagram  
TPS25962x  
FET Temperature Sense &  
TSD  
Overtemperature Protection  
4
5
OUT  
dVdt  
IN  
x 656 µA/A  
Charge  
Pump  
OVC Threshold  
Select  
2.1 µA  
8
OVCSEL  
2
7
x21  
UVPb  
2.5 V  
2.4 V  
Gate control  
Current Limit Amplifier  
ILM  
3
EN/UVLO  
UVLOb  
1.2 V  
1.1 V  
Short  
detect  
SWEN  
SD  
ILM pin fault  
0.5 V  
SD  
UVPb  
RETRY  
/Q  
Q
R
S
FLTb  
FLT  
6
1
FLTb  
GND  
TSD  
11.5 O  
ILM pin fault  
Retry Timer*  
RETRY  
* Only for Auto-Retry Variant (TPS259621)  
版权 © 2019, Texas Instruments Incorporated  
17  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
TPS25963x  
FET Temperature Sense &  
Overtemperature Protection  
TSD  
4
5
OUT  
dVdt  
IN  
x 656 µA/A  
UVPb  
Charge  
Pump  
2.5 V  
2.4 V  
2.1 µA  
2
7
x21  
8
3
OVLO  
OVPb  
1.2 V  
1.1 V  
SWEN  
Gate control  
Current Limit Amplifier  
EN/UVLO  
UVLOb  
ILM  
1.2 V  
1.1 V  
Short  
detect  
SD  
0.5 V  
ILM pin fault  
SD  
UVPb  
RETRY  
/Q  
Q
R
S
FLTb  
FLT  
6
1
FLTb  
GND  
OVPb  
TSD  
11.5 O  
ILM pin fault  
Retry Timer*  
RETRY  
* Only for Auto-Retry Variant (TPS259631)  
8.3 Feature Description  
8.3.1 Undervoltage Protection (UVP) and Undervoltage Lockout (UVLO)  
TPS2596xx constantly monitors the input supply to ensure that the load is powered up only when the voltage is  
at a sufficient level. During the start-up condition, the device waits for the input supply to rise above an internal  
fixed threshold VUVP(R) before it proceeds to turn ON the FET. Similarly, during the ON condition, if the input  
supply falls below the UVP threshold VUVP(F), the FET is turned OFF. The UVP rising and falling thresholds are  
slightly different, thereby providing some hysteresis and ensuring stable operation around the threshold voltage.  
The TPS2596xx devices also provide an user adjustable UVLO mechanism to ensure that the load is powered  
up only when the voltage is at a sufficient level. This can be achieved by dividing the input supply and feeding it  
to the EN/UVLO pin. Whenever the voltage at the EN/UVLO pin falls below a threshold VUVLO(F), the device turns  
OFF the FET. The FET is turned ON again when the voltage rises above the threshold VUVLO(R). The rising and  
falling thresholds on this pin are slightly different, thereby providing some hysteresis and ensuring stable  
operation around the threshold voltage.  
The user must choose the resistor divider values appropriately to map the desired input undervoltage level to the  
UVLO threshold of the part.  
18  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
Feature Description (接下页)  
VIN  
R1  
EN/UVLO  
R2  
44. Adjustable Undervoltage Lockout  
(R1+ R2)  
R2  
VIN(UV) = VUVLO(F) x  
(1)  
8.3.2 Overvoltage Protection  
The TPS2596xx devices provide 2 ways to handle an input overvoltage condition.  
8.3.2.1 Overvoltage Lockout  
The TPS25963x variants provide an user adjustable OVLO mechanism to ensure that the supply to the load is  
cut off if the input supply voltage exceeds a certain level. This can be achieved by dividing the input supply and  
feeding it to the OVLO pin. Whenever the voltage at the OVLO pin rises above a threshold VOVLO(R), the device  
turns OFF the FET. When the voltage at the OVLO pin falls below the threshold VOVLO(F), the FET is turned ON  
again. The rising and falling thresholds on this pin are slightly different, thereby providing some hysteresis and  
ensuring stable operation around the threshold voltage.  
Input Overvoltage  
Event  
Input Overvoltage  
Removed  
IN  
0
VOVLO(R)  
VOVLO(F)  
OVLO  
0
tOVLO  
VIN  
0
OUT  
VFLT  
FLT  
0
Time  
45. TPS25963x Overvoltage Lockout Response  
版权 © 2019, Texas Instruments Incorporated  
19  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
The user should choose the resistor divider values appropriately to map the desired input overvoltage level to the  
OVLO threshold of the part.  
VIN  
R1  
OVLO  
R2  
46. TPS25963x Adjustable Overvoltage Lockout  
(R1+ R2)  
VIN(OV) = VOVLO(R) x  
R2  
(2)  
8.3.2.2 Overvoltage Clamp  
The TPS25962x variants provide a mechanism to clamp the output voltage to a user-selectable level quickly if  
the input voltage crosses a certain threshold. This ensures the load is not exposed to high voltages during any  
input overvoltage events and lowers the dependence on external protection devices (such as TVS/Zener diodes)  
in this condition. Once the input supply voltage rises above the OVC threshold voltage VOVC, the device responds  
by clamping the voltage to VCLAMP within a very short response time tOVC. As long as an overvoltage condition is  
present on the input, the output voltage will be clamped to VCLAMP. When the input drops below the output clamp  
threshold VOVC, the clamp releases the output voltage as shown in 47.  
20  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
Feature Description (接下页)  
Input Overvoltage  
Removed  
Input Overvoltage  
Event  
Thermal  
Shutdown  
Auto-Retry  
with Input  
Overvoltage  
IN  
VOVC  
0
tOVC  
VCLAMP  
OUT  
0
VFLT  
FLT  
tTSD,RST  
0
TSD  
TSDHYS  
TJ  
Time  
47. TPS25962x Overvoltage Clamp Response  
The OVC threshold can be configured to one of 3 pre-defined levels by connecting the OVCSEL pin as shown in  
1.  
1. TPS25962x Overvoltage Clamp Threshold Selection  
OVCSEL Pin Connection  
Shorted to GND  
OVC Threshold (typ)  
3.8 V  
5.7 V  
Connected to GND through 400 KΩ resistor  
Open  
13.7 V  
During the overvoltage clamp condition, there could be significant heat dissipation in the internal FET depending  
on the VIN - VOUT voltage drop and the current (IOUT) through the FET leading to thermal shutdown if the condition  
persists for an extended period of time. In this case, the device would either stay latched-off or start an auto-retry  
cycle as explained in the Overtemperature Protection (OTP) section.  
8.3.3 Inrush Current, Overcurrent and Short Circuit Protection  
The TPS2596xx devices incorporate three levels of protection against overcurrent:  
Adjustable slew rate for inrush current control (dVdt)  
Active current limiting with adjustable limit (ILIM) for overcurrent protection  
Fast short-circuit response to protect against hard short-circuits  
8.3.3.1 Slew Rate and Inrush Current Control (dVdt)  
The inrush current during turn on is directly proportional to the load capacitance and rising slew rate. 公式 3 can  
be used to find the slew rate SRON required to limit the inrush current IINRUSH for a given load capacitance COUT  
.
IINRUSH  
(
mA  
)
SR mV / ms =  
(
)
CL  
(
mF  
)
(3)  
21  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
For loads requiring a slower rising slew rate, a capacitor can be connected to the dVdt pin to adjust the rising  
slew rate and lower the inrush current during turn on. The required CdVdt capacitance value to produce a given  
slew rate can be calculated using 公式 4.  
42000  
CdVdt pF =  
(
)
SR mV / ms  
(
)
(4)  
8.3.3.2 Active Current Limiting  
The load current is monitored during start-up and normal operation. When the load current exceeds the current  
limit ILIM programmed by RILM resistor, the device regulates the current to the set limit ILIM within tLIM. The device  
exits current limiting when the load current falls below ILIM. 公式 5 can be used to find the RILM value for a desired  
current limit.  
903  
RILM W =  
(
)
ILIM  
( )  
- 0.0112  
A
(5)  
In the current limiting state, the output voltage drops resulting in increased power dissipation in the internal FET  
leading to thermal shutdown if the condition persists for an extended period of time. In this case, the device  
either stays latched-off or starts an auto-retry cycle as explained in the Overtemperature Protection (OTP)  
section.  
Auto-Retry  
into overload  
Auto-Retry  
(Overload removed)  
Overload on OUT  
Current Limit  
Current Limit  
ILIM  
IOUT  
0
VIN  
OUT  
FLT  
dVdt limited  
startup  
0
tLIM  
VFLTB  
tTSD,RST  
tTSD,RST  
0
TSD  
TSDHYS  
TJ  
Time  
48. TPS2596x1 Overcurrent Response (Auto-retry)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
Manual Restart  
(Device Re-enabled)  
Thermal  
Shutdown  
Overload  
Removed  
Overload on OUT  
VUVLO  
EN  
0
Current Limit  
ILIM  
IOUT  
0
VIN  
OUT  
FLT  
dVdt limited  
startup  
0
tLIM  
VFLTB  
0
TSD  
TSDHYS  
TJ  
Time  
49. TPS2596x0 Overcurrent Response (Latch-off)  
8.3.3.3 Short-Circuit Protection  
The current through the device increases very rapidly during a short-circuit event. If the current exceeds 1.5 x  
ILIM, the device engages a fast current clamping circuit to regulate down the current faster than the nominal  
overcurrent response time (tLIM). The device does not completely turn off the power FET to ensure uninterrupted  
power in the event of transient overcurrents or supply transients. The device stops limiting the current once the  
load current falls below the programmed ILIM threshold.  
The output voltage drops in the current limiting state, resulting in increased power dissipation in the internal FET  
and might lead to thermal shutdown if the condition persists for an extended period of time. In this case, the  
device either stays latched-off or starts an auto retry cycle as explained in the Overtemperature Protection (OTP)  
section.  
版权 © 2019, Texas Instruments Incorporated  
23  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Hard Short on Thermal  
Auto-retry into  
Shutdown  
output short  
Thermal  
Shutdown  
output  
Output short  
removed  
IOUT  
ILIM  
Current  
limit with  
foldback  
Current  
limit with  
foldback  
0
VIN  
OUT  
dVdt limited  
startup  
0
tSC  
VFLT  
FLT  
0
tTSD,RST  
tTSD,RST  
TSD  
TSDHYS  
TJ  
Time  
50. TPS2596xx Short Circuit Response  
8.3.4 Analog Load Current Monitor (IMON)  
The device allows the system to monitor the output load current accurately by providing an analog current on the  
ILM pin which is proportional to the current (IOUT) through the FET. The user can sense the voltage (VILM) across  
the RILM to get a measure of the output load current.  
VILM V  
(
)
IOUT A =  
)
(
GIMON mA / A x RILM W  
(
)
( )  
(6)  
8.3.5 Overtemperature Protection (OTP)  
Thermal Shutdown will occur when the junction temperature (TJ) exceeds the thermal shutdown threshold (TSD).  
When the TPS2596x0 variant detects thermal overload, it will be shut down and remain latched off until the  
device is power cycled or re-enabled by toggling the EN/UVLO pin. When the TPS2596x1 variant detects thermal  
overload, it will remain off until it has cooled down sufficiently. Once the TPS2596x1 junction has cooled down  
below TSD - TSDHYS, it will remain off for an additional delay of tTSD,RST after which it will automatically retry to  
turn on if it is still enabled.  
2. TPS2596x Thermal Shutdown  
Device  
Enter TSD  
TJ TSD  
TJ TSD  
Exit TSD  
TJ < TSD - TSDHYS and Power Cycle (VIN < VUVP(F)) / Enable Cycle (VEN  
<
TPS2596x0 (Latch-Off)  
TPS2596x1 (Auto-Retry)  
VSD  
)
TJ < TSD - TSDHYS and tTSD-RST timer expired  
24  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
8.3.6 Fault Indication  
3 summarizes the protection response to various fault conditions.  
3. Fault Response  
Event / Fault  
Overtemperature  
Undervoltage  
Protection Response  
Shutdown  
FLT Asserted  
FLT Delay  
Yes  
No  
Cut-off  
Clamp (OVC - TPS25962x only)  
Cut-off (OVLO - TPS25963x only)  
Current Limit  
No  
Overvoltage  
Yes  
No  
tOVLO  
Overcurrent  
Short-Circuit  
Current Limit  
No  
ILM Pin Short to GND  
ILM Pin Open  
Shut down  
Yes  
No  
Shut down  
When the device turns off due to one of these fault conditions, the FLT pin is pulled low.  
Power cycling the part or pulling the EN/UVLO pin voltage below VSD clears the fault and the FLT pin is de-  
asserted. It also clears the tTSD,RST timer (Auto-retry variants only). Pulling the EN/UVLO just below the UVLO  
threshold (VUVLO(F)) has no impact on the device in this condition. This is true for both Latch-off (TPS2596x0) and  
Auto-retry (TPS2596x1) variants.  
For Auto-retry (TPS2596x1) variants, at the end of the tTSD,RST timer after a fault, the device restarts  
automatically and the FLT pin is de-asserted.  
8.4 Device Functional Modes  
The features of the device depend on the operating mode.  
8.4.1 Enable and Fault Pin Functional Mode 1: Single Device, Self-Controlled  
In this mode of operation, the device is enabled by the VIN voltage without the need of an external processor to  
drive the ENABLE pin. The FLT pin is optionally monitored by an external host as shown in 51.  
VFLT  
TPS2596  
VIN  
IN  
RFLT  
R1  
_
GPIO  
FLT  
EN  
R2  
51. Single Device, Self-Controlled  
8.4.2 Enable and Fault Pin Functional Mode 2: Single Device, Host-Controlled  
In this mode of operation, the device is enabled by the VIN voltage without the need of an external processor to  
drive the ENABLE pin. The FLT pin is optionally monitored by an external host as shown in 53.  
版权 © 2019, Texas Instruments Incorporated  
25  
 
 
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
TPS2596  
VFLT  
VIN  
IN  
RFLT  
_
GPIO  
FLT  
EN  
GPIO  
52. Single Device, Self-Controlled  
8.4.3 Enable and Fault Pin Functional Mode 3: Multiple Devices, Self-Controlled  
In this mode of operation, the devices are self-controlled (no host present). The EN and FLT pins of multiple  
devices are shorted together as shown in 52. In this configuration, when any one of the TPS2596xx devices  
detects a fault, it automatically disables the other TPS2596xx devices in the system.  
TPS2596  
VIN  
_
EN  
FLT  
R1  
TPS2596 EN  
R2  
_
FLT  
_
EN  
FLT  
TPS2596  
53. Multiple Devices, Self-Controlled  
26  
版权 © 2019, Texas Instruments Incorporated  
 
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS2596xx device is an integrated eFuse that is typically used for hot-swap and power rail protection  
applications. The device operates from 2.7 V to 19 V with adjustable current limit and undervoltage protection.  
The device aids in controlling the in-rush current and provides precise current limiting during overload conditions  
for systems such as energy meters, white goods, building automation and adapter input protection. The device  
also provides robust protection for multiple faults on the sub-system rail.  
The following design procedure can be used to select the supporting component values based on the application  
requirement.  
9.2 Typical Application  
9.2.1 Precision Current Limiting and Protection for White Goods  
VIN  
VOUT  
COUT  
2.7 V to 19 V  
CIN  
(Note 1)  
IN  
OUT  
VFLT  
R1  
464 kO  
100 µF  
RFLT  
EN/UVLO  
D1  
(Note 1)  
D2  
(Note 1)  
R2  
33.2 kO  
FLT  
OVLO  
dVdt  
GND  
ILIM  
CdVdt  
2.2 nF  
R3  
47.5 kO  
TPS25963x  
RILM  
909 O  
(1) CIN is optional and 0.1 µF is recommended to suppress transients due to the inductance of PCB routing or from input  
wiring. If system needs to pass IEC 61000-4-4 EFT test, minimum CIN of 1 µF should be used to prevent eFuse from  
turning off during EFT bursts.  
54. Typical Application Schematic: Simple eFuse for White Goods  
9.2.2 Design Requirements  
4. Design Parameters  
DESIGN PARAMETER  
Input voltage , VIN  
EXAMPLE VALUE  
12 V  
8 V  
Undervoltage lockout set point, VUV  
Overvoltage protection set point , VOV  
Overvoltage protection type  
Load at start-up, RL(SU)  
13.7 V  
Lock-out  
24 Ω  
版权 © 2019, Texas Instruments Incorporated  
27  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Application (接下页)  
4. Design Parameters (接下页)  
DESIGN PARAMETER  
Current limit, ILIM  
EXAMPLE VALUE  
1 A  
100 µF  
85°C  
Load capacitance, COUT  
Maximum ambient temperatures, TA  
9.2.3 Detailed Design Procedure  
The designer must know the following:  
Normal input operation voltage  
Maximum output capacitance  
Maximum current limit  
Load during start-up  
Maximum ambient temperature of operation  
This design procedure seeks to control the junction temperature of device under both static and transient  
conditions by proper selection of output ramp-up time and associated support components. The designer can  
adjust this procedure to fit the application and design criteria. A spreadsheet design tool TPS2596 Design  
Calculator is also available for simplified calculations.  
9.2.3.1 Programming the Current-Limit Threshold: RILM Selection  
The RILM resistor at the ILM pin sets the over load current limit, this can be set using 公式 7.  
903  
903  
R
ILM W =  
=
= 913.2  
(
)
I
LIM  
( )  
A
- 0.0112 1- 0.0112  
(7)  
Choose closest standard value resistor: 909 Ω with 1% tolerance.  
9.2.3.2 Undervoltage and Overvoltage Lockout Set Point  
The undervoltage lockout (UVLO) and overvoltage lockout (OVLO) trip point is adjusted using the external  
voltage divider network of R1, R2 and R3as connected between IN, EN/UVLO, OVLO and GND pins of the  
device. The values required for setting the undervoltage and overvoltage are calculated solving 公式 8 and 公式  
9.  
R 2 + R 3  
VUVLO  
=
ì VIN UV  
(
)
R + R + R 3  
(
)
1
2
(8)  
R 3  
VOVLO  
=
ì VIN OV  
(
)
R + R + R 3  
(
)
1
2
(9)  
Where VUVLO(R) is UVLO rising threshold (1.2 V). Because R1, R2 and R3 leak the current from input supply VIN,  
these resistors must be selected based on the acceptable leakage current from input power supply VIN.  
The current drawn by R1, R2 and R3 from the power supply is IR123 = VIN / (R1 + R2 + R3).  
However, leakage currents due to external active components connected to the resistor string can add error to  
these calculations. So, the resistor string current, IR123 must be chosen to be 20 times greater than the leakage  
current expected.  
From the device electrical specifications, VOVLO = 1.2 V and VUVLO = 1.2 V. For design requirements, VOV = 13.7  
V and VUV = 8 V. To solve the equation, first choose the value of R3 = 47 kand use 公式 9 to solve for (R1 +  
R2) = 489.58 kΩ. Use Equation 8 and value of (R1 + R2) to solve for R2 = 33.48 kΩ and finally R1= 456.1 kΩ.  
Using the closest standard 1% resistor values gives R1 = 464 kΩ, R2 = 33.2 kΩ, and R3 = 47.5 kΩ.  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
9.2.3.3 Setting Output Voltage Ramp Time (TdVdT  
)
For a successful design, the junction temperature of device must be kept below the absolute maximum rating  
during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush  
current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.  
The required ramp-up capacitor CdVdT is calculated considering the two possible cases (see Case 1: Start-Up  
Without Load. Only Output Capacitance COUT Draws Current and Case 2: Start-Up With Load. Output  
Capacitance COUT and Load Draw Current ).  
9.2.3.3.1 Case 1: Start-Up Without Load. Only Output Capacitance COUT Draws Current  
During start-up, as the output capacitor charges, the voltage drop as well as the power dissipated across the  
internal FET decreases. The average power dissipated in the device during start-up is calculated using 公式 11.  
For TPS2596xx device, the inrush current is determined as shown in 公式 10.  
VIN  
IINRUSH = COUT  
ì
TdVdT  
(10)  
(11)  
Power dissipation during start-up is shown in 公式 11.  
PD(INRUSH) = 0.5 ì V ì IINRUSH  
IN  
公式 11 assumes that load does not draw any current until the output voltage has reached its final value.  
9.2.3.3.2 Case 2: Start-Up With Load. Output Capacitance COUT and Load Draw Current  
When the load draws current during the turnon sequence, there is additional power dissipated. Considering a  
resistive load during start-up RL(SU), load current ramps up proportionally with increase in output voltage during  
TdVdT time. Equations 12 to 15 show the average power dissipation in the internal FET during charging time due  
to resistive load.  
V2  
1
≈ ’  
IN  
PD(LOAD)  
=
ì
∆ ÷  
6
RL(SU)  
« ◊  
(12)  
(13)  
(14)  
Total power dissipated in the device during start-up is 公式 13.  
PD(STARTUP) = PD(INRUSH) + PD(LOAD)  
Total current during start-up is given by 公式 14.  
ISTARTUP = IINRUSH +IL (t)  
If ISTARTUP > ILIMIT, the device limits the current to ILIMIT and the current-limited charging time is determined by 公  
15.  
»
ÿ
Ÿ
Ÿ
Ÿ
Ÿ
÷
÷
÷
ILIMIT  
IINRUSH  
TdvdT(Current-Limited) = COUT ìRL(SU)  
ì
-1+LN  
V
IINRUSH  
IN  
ILIMIT  
-
«
÷
RL(SU)  
(15)  
The power dissipation, with and without load, for selected start-up time must not exceed the shutdown limits as  
shown in 55.  
版权 © 2019, Texas Instruments Incorporated  
29  
 
 
 
 
 
 
 
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
20000  
TA (èC)  
-40  
27  
10000  
5000  
85  
125  
2000  
1000  
500  
200  
100  
50  
20  
10  
5
0
2
4
6
8
10  
12  
14  
16  
18  
PD (W)  
D023  
55. Thermal Shutdown Limit Plot  
For the design example under discussion, select ramp-up capacitor CdVdt = 22000 pF. The default slew rate for  
CdVdt = 22000 pF is 1.9 mV/µs. With slew rate of 1.9 mV/µs, the ramp-up time TdVdt for 12 V input is 6.3 ms.  
The inrush current drawn by the load capacitance COUT during ramp-up using 公式 16.  
100 F ì 1.9 mV  
IINRUSH  
=
= 190 mA  
s  
(16)  
(17)  
The inrush power dissipation is calculated using 公式 17.  
PD INRUSH = 0.5 ì 12 ì 190 m = 1.14 W  
(
)
For 1.14 W of power loss, the thermal shutdown time of the device must not be less than the ramp-up time TdVdt  
to avoid the false trip at the maximum operating temperature. 55 shows the thermal shutdown limit at TA = 85  
°C, for 1.14 W of power, the shutdown time is infinite. Therefore, it is safe to use 6.3 ms as the start-up time  
without any load on the output.  
The additional power dissipation when a 10-Ω load is present during start-up is calculated using 公式 18.  
1
12ì12  
24  
≈ ’  
PD(LOAD)  
=
ì
=1W  
∆ ÷  
6
« ◊  
(18)  
(19)  
The total device power dissipation during start-up is given in 公式 19.  
PD STARTUP = 1 + 1.14 = 2.24 W  
(
)
55 shows TA = 85 °C and the thermal shutdown time for 2.24 W is approximately 2000 ms, which increases  
the margins further for shutdown time and ensures successful operation during start up and steady state  
conditions.  
When COUT is large, there is a need to decrease the power dissipation during start-up. This can be done by  
increasing the value of the CdVdt capacitor.  
9.2.4 Support Component Selection: RFLT and CIN  
Referring to application schematics, RFLT is required only if FLT is used; The resistor serves as pull-up for the  
open-drain output driver. The current sunk by this pin should not exceed 10 mA. CIN is a bypass capacitor to help  
control transient voltages, unit emissions, and local supply noise. Where acceptable, a value in the range from  
0.001 μF to 0.1 μF is recommended for CIN.  
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
9.2.5 Application Curves  
57. Output Ramp With 24-Ω Load at Start-up  
56. Output Ramp Without Any Load  
59. Overcurrent Protection  
58. Overvoltage Protection (OVLO)  
9.3 System Examples  
The TPS2596xx provides a simple solution for current limiting, inrush current control and supervision of power  
rails for wide range of applications operating at 2.7 V to 19 V and delivering up to 2 A.  
9.3.1 Current Limiting and Overvoltage Protection and for Energy Meter Power Rails  
Energy meters generally use a single AC/DC power supply (for example: flyback converter) with multiple DC  
outputs for powering blocks like Metrology (analog front-end, microcontroller, memory), Real Time Clock (RTC),  
Relay (for remote load connect/disconnect) and Communications module. Metrology is the most critical sub-  
system and is required to operate uninterrupted under all conditions, even if a fault occurs in any of the  
supplementary blocks. One solution would be to oversize the power supply design so that it can handle the  
excess current demands during a fault condition, which increases the cost of the meter. A more elegant and  
cost-optimized solution would be to add an eFuse like TPS2596xx on the supplementary power rails, which  
provides accurate current limiting and fast short-circuit protection, thereby ensuring reliable operation of the  
metrology block without increasing the size or cost of the power supply. Apart from that, the TPS2596xx provides  
additional benefits such as:  
Overvoltage Protection (Lock-out and Clamp) to shield down-stream low voltage circuits from harmful  
overvoltages arising from poor cross-regulation between windings or AC input voltage surges.  
版权 © 2019, Texas Instruments Incorporated  
31  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
System Examples (接下页)  
Disconnect supply to rarely used loads to minimize power consumption  
60 shows a typical energy meter power supply implementation using TPS2596xx.  
VAC(IN)  
Relay Driver  
12 V  
C01  
Rectifier +  
Noise FIlter  
TPS25963x  
OVLO ILM  
R1  
R2  
CB  
RILM  
Communication  
Module  
3.6 V  
C02  
TPS25963x  
OVLO ILM  
Flyback Controller  
ROVO  
RILM  
RS  
Metrology  
5 V  
C03  
TPS25963x  
OVLO  
ILM  
RILM  
R3  
R4  
Feedback  
Opto-coupler  
Circuit  
60. Energy Meter Power Rail Protection Example  
TIDA-010037 demonstrates energy meter design using eFuse for protecting auxiliary rails.  
9.3.2 Precision Current Limiting and Protection in Appliances  
Household and similar electrical appliances are subjected to various tests (for example: needle flame, glow wire)  
as part of the certification for electrical and fire safety compliance as per the regulations. Special precautions  
need to be taken in the design to pass these tests, which include the use of higher grade flame retardant plastic  
material for the housing enclosures. There are certain provisions in the standard which can be leveraged to make  
the certification easier, faster and also reduce the cost of plastic materials. For example, any node which has  
less than 15 W of power available to it is classified as a LPC (Low Power Circuit as per the definition in IEC  
60335-1) and deemed to be safe. All circuits or sub-systems further downstream from a LPC node are exempt  
from the aforementioned tests.  
eFuses like TPS2596xx are a simple and cost effective way to limit the power delivered to the downstream load.  
The key parameter to be considered is the current imit tolerance and accuracy, which determines how high one  
can set the nominal current limit without exceeding the 15-W power limit on the upper end. On the lower end, it  
determines the maximum power the load can draw in normal conditions without hitting the current limit.  
TPS2596xx provides a current limit accuracy of ±5 % (at room temperature), which allows the load to use nearly  
90% out of the 15-W limit under normal operating conditions.  
In contrast, an alternative current limiting solution with wider current limit tolerance, say ±25 % would leave only  
50 % out of 15 W for the load circuit to operate under normal conditions. This places severe constraints on the  
load circuit design and/or capabilities.  
61 shows a sub-system example of a refrigerator and freezer system where TPS2596xx is used for precision  
current limiting and protection of 15-W rails to ease the qualification as low-power circuit as per IEC 60335-1.  
32  
版权 © 2019, Texas Instruments Incorporated  
 
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
System Examples (接下页)  
12 V  
+
TPS2596xx  
TPS2596xx  
LOAD1  
OUT1  
OUT1  
OUT1  
Brushed  
DC Motor  
Surge  
Protection  
Bipolar  
Stepper  
OUT2  
OUT3  
OUT2  
OUT3  
OUT2  
LOAD2  
LOAD3  
Motor Driver  
Motor Driver  
Motor Driver  
OUT3  
OUT4  
OUT4  
OUT4  
œ
12 V  
I2C  
3.3 V  
ESD  
Protection  
I2C  
DC-DC  
Converter  
Microcontroller  
Temperature Sense  
61. Appliances 15-W LPC Implementation Example  
TIDA-010004 demonstrates a multi-load drive using single driver chip with eFuse for protection and 15-W LPC  
implementation.  
Refer to this Designing Low-Power Circuits (LPCs) using TPS2596 for Household and similar Appliances  
application note for a detailed insight into implementing power limited circuits using eFuses.  
版权 © 2019, Texas Instruments Incorporated  
33  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The TPS2596xx devices are designed for a supply voltage range of 2.7 V VIN 19 V. An input ceramic bypass  
capacitor higher than 0.1 μF is recommended if the input supply is located more than a few inches from the  
device. The power supply must be rated higher than the set current limit to avoid voltage droops during  
overcurrent and short-circuit conditions.  
10.1 Transient Protection  
In the case of a short circuit and overload current limit when the device interrupts current flow, the input  
inductance generates a positive voltage spike on the input, and the output inductance generates a negative  
voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on the value of  
inductance in series to the input or output of the device. Such transients can exceed the absolute maximum  
ratings of the device if steps are not taken to address the issue. Typical methods for addressing transients  
include:  
Minimize lead length and inductance into and out of the device.  
Use a large PCB GND plane.  
Use a Schottky diode across the output to absorb negative spikes.  
Use a low-value ceramic capacitor CIN = 0.001 μF to 0.1 μF to absorb the energy and dampen the transients.  
The approximate value of input capacitance can be estimated with 公式 20:  
LIN  
VSPIKE(Absolute) = VIN + ILOAD x  
CIN  
(20)  
where  
VIN is the nominal supply voltage  
ILOAD is the load current  
LIN equals the effective inductance seen looking into the source  
CIN is the capacitance present at the input  
NOTE: Systems which need to pass IEC 61000-4-4 tests for immunity to Electrical Fast Transients (EFT) should  
use a minimum CIN of 1 μF to ensure the TPS2596xx does not turn OFF during the EFT burst.  
Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the absolute maximum ratings of the device. The circuit implementation with optional protection  
components (a ceramic capacitor, TVS and Schottky diode) is shown in 62.  
TPS25963x  
VIN = 2.7 to 19 V  
VOUT  
IN  
OUT  
3.3V  
R4  
R1  
715 YQ  
EN/UVLO  
10 YQ  
R2  
102 YQ  
COUT  
1 µF  
RLOAD  
100 Q  
CIN  
0.1 µF  
FLT  
D2  
D1  
OVLO  
dVdt  
ILM  
GND  
R3  
348 YQ  
RILM  
456 Q  
CdVdt  
3.3nF  
62. Circuit Implementation with Optional Protection Components  
34  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
10.2 Output Short-Circuit Measurements  
It is difficult to obtain repeatable and similar short-circuit testing results. The following contribute to variation in  
results:  
Source bypassing  
Input leads  
Circuit layout  
Component selection  
Output shorting method  
Relative location of the short  
Instrumentation  
The actual short exhibits a certain degree of randomness because it microscopically bounces and arcs. Ensure  
that configuration and methods are used to obtain realistic results. Do not expect to see waveforms exactly like  
those in this data sheet because every setup is different.  
版权 © 2019, Texas Instruments Incorporated  
35  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For all applications, a ceramic decoupling capacitor of 0.01 μF or greater is recommended between the IN  
terminal and GND terminal. For hot-plug applications, where input power-path inductance is negligible, this  
capacitor can be eliminated or minimized.  
The optimal placement of the decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC. See 63 for a PCB layout example.  
High current-carrying power-path connections must be as short as possible and must be sized to carry at  
least twice the full-load current.  
The GND terminal must be tied to the PCB ground plane at the terminal of the IC. The PCB ground must be a  
copper plane or island on the board.  
Locate the following support components close to their connection pins:  
RILM  
CdVdT  
Resistor network for the EN/UVLO pin  
Resistor network for the OVLO pin for TPS25693x variants  
Pull-down resistor on the OVCSEL pin for TPS25692x variants  
Connect the other end of the component to the GND pin of the device with shortest trace length. The trace  
routing from the RILM, CdVdT and ROVCSEL (for TPS25962x variants) components to the device pins must be as  
short as possible to reduce parasitic effects on the current limit, soft-start timing and overvoltage clamp  
response. These traces must not have any coupling to switching signals on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect. These protection devices must be routed with short traces to reduce  
inductance. For example, a protection Schottky diode is recommended to address negative transients due to  
switching of inductive loads, and it must be physically close to the OUT pins.  
Obtaining acceptable performance with alternate layout schemes is possible. The Layout Example shown in  
63 has been shown to produce good results and is intended as a guideline.  
36  
版权 © 2019, Texas Instruments Incorporated  
TPS2596  
www.ti.com.cn  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
11.2 Layout Example  
Bottom/Inner Layer  
Via  
Top Layer  
Power Ground  
GND  
1
8
7
6
*
*
*
2
3
GND  
4
5
IN  
OUT  
VIN  
VOUT  
* Optional: Needed only to suppress the transients caused by inductive load switching  
63. TPS2596xx Layout Example  
版权 © 2019, Texas Instruments Incorporated  
37  
TPS2596  
ZHCSJQ2A MAY 2019REVISED AUGUST 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
《电子保险丝的基本知识》  
TPS2596EVMTPS2596xx 评估模块》  
TPS2596 设计计算器》  
《使用 TPS2596 为家用或类似用途电器设计低功耗电路 (LPC)》  
TIDA-010037 高精度分相 CT 电量计》  
TIDA-010004 基于单个驱动器且受全面保护的 12V 步进、刷式直流和执行器驱动器》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
38  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS259620DDAR  
TPS259620DDAT  
TPS259621DDAR  
TPS259621DDAT  
TPS259630DDAR  
TPS259630DDAT  
TPS259631DDAR  
TPS259631DDAT  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
8
8
8
8
8
8
8
8
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
259620  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
259620  
259621  
259621  
259630  
259630  
259631  
259631  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
2500  
250  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS259620DDAR  
TPS259620DDAT  
TPS259621DDAR  
TPS259621DDAT  
TPS259630DDAR  
TPS259630DDAT  
TPS259631DDAR  
TPS259631DDAT  
SO  
Power  
PAD  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
8
8
8
8
8
8
8
8
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.8  
12.8  
12.8  
12.8  
12.8  
12.8  
12.8  
12.8  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
SO  
Power  
PAD  
SO  
Power  
PAD  
2500  
250  
SO  
Power  
PAD  
SO  
Power  
PAD  
2500  
250  
SO  
Power  
PAD  
SO  
Power  
PAD  
2500  
250  
SO  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
Power  
PAD  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS259620DDAR  
TPS259620DDAT  
TPS259621DDAR  
TPS259621DDAT  
TPS259630DDAR  
TPS259630DDAT  
TPS259631DDAR  
TPS259631DDAT  
SO PowerPAD  
SO PowerPAD  
SO PowerPAD  
SO PowerPAD  
SO PowerPAD  
SO PowerPAD  
SO PowerPAD  
SO PowerPAD  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
8
8
8
8
8
8
8
8
2500  
250  
366.0  
366.0  
366.0  
366.0  
366.0  
366.0  
366.0  
366.0  
364.0  
364.0  
364.0  
364.0  
364.0  
364.0  
364.0  
364.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
50.0  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS259620DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259621DDAR

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259621DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259630DDAR

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259630DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259631DDAR

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259631DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2597

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25970ARPW

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25970ARPWR

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25970LRPW

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25970LRPWR

具有精确电流监视器和瞬态过流消隐功能的 2.7V 至 23V、7A、9.8mΩ 电子保险丝 | RPW | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI