TPS26602PWPT [TI]

具有集成输入反极性保护功能的 4.2V 至 60V、150mΩ、0.1A 至 2.23A 电子保险丝

| PWP | 16 | -40 to 125;
TPS26602PWPT
型号: TPS26602PWPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成输入反极性保护功能的 4.2V 至 60V、150mΩ、0.1A 至 2.23A 电子保险丝

| PWP | 16 | -40 to 125

电子 PC 光电二极管
文件: 总54页 (文件大小:4143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
具有集成反向输入极性保护的 TPS2660x 60V 2A 工业电子保险丝  
1 特性  
3 说明  
1
4.2V 60V 工作电压,绝对最大值为 62V  
集成反向输入极性保护,低至 –60V  
TPS2660x 器件是一系列功能丰富的紧凑型高电压电子  
保险丝,具有一整套保护 功能)。4.2V 60V 的宽  
电源输入范围可实现对众多常用直流总线电压的控制。  
器件可以承受并保护由高达 ±60V 的正负电源供电的负  
载。集成的背靠背 FET 提供反向电流阻断功能,因此  
器件非常适合在电源故障和欠压条件下要求保持输出电  
压的系统。该器件还具备许多可调功能,可提供负载、  
电源和器件保护 功能 包括过流保护、输出转换率和过  
压保护以及欠压保护。TPS2660x 内部可靠的保护控制  
模块以及高耐压值有助于简化针对浪涌保护的系统设  
计。  
无需额外组件  
RON 150mΩ 的集成背对背 MOSFET  
0.1A 2.23A 可调节电流限制  
1A 时精确度为 ±5%)  
提供功能安全  
提供文档以帮助创建功能安全系统设计  
使用最少的外部组件在浪涌期间提供负载保护 (IEC  
61000-4-5)  
IMON 电流指示器输出(精度为 ±8.5%)  
低静态电流,工作时为 300µA,关断时为 20µA  
可调节的 UVLOOVP 切断、输出压摆率控制  
反向电流阻断  
借助关断引脚,可以从外部控制内部 FET 的启用/禁  
用,还可以将器件置于低电流关断模式。为实现系统状  
态监视和下游负载控制,器件提供故障和精密电流监视  
输出。MODE 引脚有助于在三个限流故障响应(断路  
器模式、闭锁模式和自动重试模式)之间灵活地对器件  
进行配置。  
38V 固定过压钳位(仅限 TPS26602)  
采用易于使用的 16 引脚 HTSSOP 24 引脚  
VQFN 封装  
可选电流限制故障响应选项(自动重试、闭锁、断  
路器模式)  
器件采用 5mm × 4.4mm16 引脚 HTSSOP 封装和  
5mm x 4mm24 引脚 VQFN 封装;额定温度范围为  
–40°C +125°C。  
UL 2367 认证  
文件编号169910  
ILIM 5.36kΩ(最大电流为 2.35A)  
R
器件信息(1)  
UL60950 - 单点故障测试期间安全  
开路/短路 ILIM 检测  
器件型号  
TPS26600  
TPS26602  
封装  
封装尺寸(标称值)  
HTSSOP (16)  
5.00mm × 4.40mm  
2 应用  
TPS26600  
TPS26601  
TPS26602  
VQFN (24)  
5.00mm × 4.00mm  
可编程逻辑控制器  
分布式控制系统 (DCS)  
控制和自动化  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
冗余电源 ORing  
工业级浪涌保护  
–60V 电源时的反向输入极性保护  
简化电路原理图  
VOUT  
VIN: 4.2 V - 60 V  
OUT  
IN  
CIN  
COUT  
150 mΩ  
R1  
RFLTb  
UVLO  
OVP  
FLT  
Health Monitor  
TPS26600  
R2  
ON/OFF Control  
SHDN  
IMON  
ILIM  
dVdT  
Load Monitor  
MODE  
RTN  
R3  
GND  
RIMON  
CdVdT  
RILIM  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDG2  
 
 
 
 
 
 
 
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 27  
10 Application and Implementation........................ 28  
10.1 Application Information.......................................... 28  
10.2 Typical Application ............................................... 28  
10.3 System Examples ................................................ 34  
10.4 Do's and Don'ts..................................................... 37  
11 Power Supply Recommendations ..................... 38  
11.1 Transient Protection.............................................. 38  
12 Layout................................................................... 39  
12.1 Layout Guidelines ................................................. 39  
12.2 Layout Example .................................................... 40  
13 器件和文档支持 ..................................................... 42  
13.1 器件支持................................................................ 42  
13.2 文档支持................................................................ 42  
13.3 接收文档更新通知 ................................................. 42  
13.4 社区资源................................................................ 42  
13.5 ....................................................................... 42  
13.6 静电放电警告......................................................... 42  
13.7 Glossary................................................................ 42  
14 机械、封装和可订购信息....................................... 42  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements................................................ 9  
7.7 Typical Characteristics............................................ 10  
Parameter Measurement Information ................ 16  
Detailed Description ............................................ 17  
9.1 Overview ................................................................. 17  
9.2 Functional Block Diagram ....................................... 18  
9.3 Feature Description................................................. 18  
8
9
4 修订历史记录  
Changes from Revision F (August 2019) to Revision G  
Page  
特性 部分添加了提供功能安全的链接.................................................................................................................................. 1  
Changes from Revision E (November 2017) to Revision F  
Page  
将工作电压从 55V 更改为 60V,将绝对最大值从 60V 更改为 62V(在特性 部分).............................................................. 1  
说明 部分和简化原理图 中的输入范围从 55V 更改为 60V .................................................................................................. 1  
Changed Input voltage MAX from 60 V to 62 V in the Absolute Maximum Ratings table .................................................... 6  
Changed Input voltage MAX from 55 V to 60 V in the Recommended Operating Conditions table ..................................... 6  
Changed Operating input voltage MAX from 55 V to 60 V in the Electrical Charateristics table........................................... 7  
Added OVPMAX to the Overvoltage Protection section in the Electrical Characteristics table ............................................... 7  
Changed voltage range from 55 V to 60 V in the Detailed Description, Application and Implementation and Power  
Supply Recommendations sections ..................................................................................................................................... 17  
Changes from Revision D (April 2017) to Revision E  
Page  
更新了故障响应 部分 .............................................................................................................................................................. 1  
Changes from Revision C (March 2017) to Revision D  
Page  
Updated Pin Functions table ................................................................................................................................................. 4  
Changes from Revision B (Feb 2017) to Revision C  
Page  
更新了特性 部分中的 UL 认证 ................................................................................................................................................ 1  
2
版权 © 2016–2019, Texas Instruments Incorporated  
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Changes from Revision A (Aug 2016) to Revision B  
Page  
添加了 RHF 封装 .................................................................................................................................................................... 1  
Changed "Reverse input supply current" from "52" to "66" in the Electrical Characteristics table......................................... 7  
Changed "UVLO threshold voltage, falling" from "1.095" to "1.08" in the Electrical Characteristics table............................. 7  
Changed "Over-voltage threshold voltage, rising" from "1.175" to "1.17" in the Electrical Characteristics table................... 7  
Changed "Over-voltage threshold voltage, falling" from "1.095" to "1.085" in the Electrical Characteristics table................ 7  
Changed "Ilkg(OUT)" from "35" to "50" in the Electrical Characteristics table............................................................................ 8  
Changed FLT input leakage current from "–100" to "–200" (MIN) and "100" to "200" (MAX) in the Electrical  
Characteristics table ............................................................................................................................................................... 8  
Changes from Original (July 2016) to Revision A  
Page  
将器件状态从产品预发布 更改为生产数.............................................................................................................................. 1  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
5 Device Comparison Table  
Part Number  
TPS26600  
TPS26601  
TPS26602  
Overvoltage Protection  
Over Load Fault Response with MODE = Open  
Overvoltage cut-off, adjustable  
Overvoltage cut-off, adjustable  
Overvoltage clamp, fixed (38 V)  
Circuit breaker with auto-retry  
Circuit breaker with latch  
Circuit breaker with auto-retry  
6 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP  
Top View  
RHF Package  
24-Pin VQFN  
Top View  
OUT  
OUT  
FLT  
16  
IN  
IN  
1
2
3
4
15  
14  
13  
1
2
3
4
5
6
7
19  
18  
17  
N.C  
N.C  
N.C  
N.C  
N.C  
ILIM  
UVLO  
NC  
IMON  
NC  
PowerPAD™  
Integrated Circuit  
Package  
GND  
12  
11  
dVdT  
ILIM  
OVP  
5
6
PowerPadTM  
16  
15  
N.C  
MODE  
RTN  
7
8
10  
9
IMON  
GND  
SHDN  
RTN  
N.C  
N.C  
14  
13  
SHDN  
MODE  
Pin Functions  
PIN  
TPS26600/1/2  
TYPE  
DESCRIPTION  
NAME  
HTSSOP  
VQFN  
A capacitor from this pin to RTN sets output voltage slew rate See the Hot Plug-  
In and In-Rush Current Control section  
dVdT  
12  
20  
I/O  
FLT  
14  
9
22  
17  
O
Fault event indicator. It is an open drain output. If unused, leave floating  
Connect GND to system ground  
GND  
A resistor from this pin to RTN sets the overload and short-circuit current limit.  
See the Overload and Short Circuit Protection section  
ILIM  
11  
19  
I/O  
Analog current monitor output. This pin sources a scaled down ratio of current  
through the internal FET. A resistor from this pin to RTN converts current to  
proportional voltage. If unused, leave it floating  
IMON  
10  
18  
O
1
2
8
9
IN  
Power  
I
Power input and supply voltage of the device  
Mode selection pin for over load fault response. See the Device Functional  
Modes section  
MODE  
6
4
13  
1-7  
11  
16  
21  
N.C  
No connect  
13  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Pin Functions (continued)  
PIN  
TPS26600/1/2  
TYPE  
DESCRIPTION  
NAME  
HTSSOP  
VQFN  
23  
15  
16  
OUT  
Power  
I
Power output of the device  
24  
Input for setting the programmable overvoltage protection threshold (For  
TPS26600/1 only). An overvoltage event turns off the internal FET and asserts  
FLT to indicate the overvoltage fault. Connect OVP pin to RTN pin externally to  
select the internal default threshold. For overvoltage clamp response  
(TPS26602 Only) connect OVP to RTN externally  
OVP  
5
12  
PowerPad must be connected to RTN plane on PCB using multiple vias for  
enhanced thermal performance. Do not use PowerPad as the only electrical  
connection to RTN  
PowerPadTM  
RTN  
8
15  
14  
I
Reference for device internal control circuits  
Shutdown pin. Pulling SHDN low makes the device to enter into low power  
shutdown mode. Cycling SHDN pin voltage resets the device that has latched  
off due to a fault condition  
SHDN  
7
Input for setting the programmable undervoltage lockout threshold. An  
undervoltage event turns off the internal FET and asserts FLT to indicate the  
power-failure. Connect UVLO pin to RTN pin to select the internal default  
threshold  
UVLO  
3
10  
I
Copyright © 2016–2019, Texas Instruments Incorporated  
5
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (all voltages referred to GND (unless otherwise noted))(1)  
MIN  
MAX  
62  
UNIT  
V
IN , IN-OUT  
–60  
–70  
–0.3  
–0.3  
–60  
IN , IN-OUT (10 ms transient), TA = 25°C  
[IN, OUT, FLT, UVLO, SHDN] to RTN  
[OVP, dVdT, ILIM, IMON, MODE] to RTN  
RTN  
70  
V
Input voltage  
62  
V
5
V
0.3  
10  
V
IFLT, IdVdT, ISHDN  
Sink current  
mA  
IdVdT, IILIM, IIMON  
Source current  
Internally limited  
Operating junction temperature  
Transient junction temperature  
Storage temperature  
–40  
–65  
–65  
150  
T(TSD)  
150  
°C  
°C  
°C  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (all voltages referred to GND (unless otherwise noted))  
MIN  
–55  
0
NOM  
MAX  
60  
UNIT  
IN  
UVLO, OUT, FLT  
Input voltage  
60  
V
OVP, dVdT, ILIM, IMON, SHDN  
0
4
ILIM  
5.36  
1
120  
Resistance  
kΩ  
IMON  
IN, OUT  
dVdT  
–dV(IN)/dt  
TJ  
0.1  
10  
µF  
nF  
External capacitance  
V(IN) falling slew rate  
20  
V/µs  
°C  
Operating junction temperature  
–40  
25  
125  
7.4 Thermal Information  
TPS2660  
THERMAL METRIC(1)  
PWP (HTSSOP)  
RHF (VQFN)  
UNIT  
16 PINS  
38.6  
22.7  
18.2  
0.5  
24 PINS  
30.2  
20.8  
7.6  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
18  
7.6  
RθJC(bot)  
1.5  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
7.5 Electrical Characteristics  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN) = 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE  
V(IN)  
Operating input voltage  
4.2  
3.9  
250  
190  
11  
60  
4.1  
300  
390  
33  
V
V
V(PORR)  
Internal POR threshold, rising  
Internal POR hysteresis  
4
275  
300  
20  
V(PORHys)  
IQ(ON)  
mV  
µA  
µA  
µA  
V
Enabled: V(SHDN) = 2 V  
Supply current  
IQ(OFF)  
V(SHDN) = 0 V  
I(VINR)  
Reverse input supply current  
Overvoltage clamp  
V(IN) = –60 V, V(OUT) = 0 V  
V(IN) > 42 V, TPS26602 only  
66  
V(OVC)  
36  
37.5  
40  
UNDERVOLTAGE LOCKOUT (UVLO) INPUT  
V(IN) rising, V(UVLO) = 0 V  
V(IN) falling, V(UVLO) = 0 V  
14.25  
13.25  
180  
14.9 15.75  
13.8 14.75  
Factory set V(IN) undervoltage  
trip level  
V(IN_UVLO)  
V
V(SEL_UVLO)  
V(UVLOR)  
V(UVLOF)  
I(UVLO)  
Internal UVLO select threshold  
UVLO threshold voltage, rising  
UVLO threshold voltage, falling  
UVLO input leakage current  
200  
240  
mV  
V
1.175  
1.08  
1.19 1.225  
1.1 1.125  
V
0 V V(UVLO) 60 V  
–100  
0
100  
nA  
LOW IQ SHUTDOWN (SHDN) INPUT  
V(SHDN)  
V(SHUTF)  
I(SHDN)  
Output voltage  
I(SHDN) = 0.1 µA  
2
0.55  
–10  
2.7  
3.4  
V
V
SHDN threshold voltage for  
low IQ shutdown, falling  
0.76  
0.94  
Leakage current  
V(SHDN) = 0.4 V  
µA  
OVERVOLTAGE PROTECTION (OVP) INPUT  
V(IN) rising, V(OVP) = 0 V  
V(IN) falling, V(OVP) = 0 V  
31  
28.5  
180  
32.6  
30.3  
200  
34  
31.5  
240  
Factory set V(IN) overvoltage  
trip level  
V(IN_OVP)  
V
V(SEL_OVP)  
V(OVPR)  
Internal OVP select threshold  
mV  
V
Overvoltage threshold voltage,  
rising  
1.17  
1.19 1.225  
1.1 1.125  
V(OVPF)  
I(OVP)  
Overvoltage threshold, falling  
OVP input leakage current  
1.085  
–100  
V
nA  
V
0 V V(OVP) 4 V  
0
100  
55  
OVPMAX  
Maximum external OVP setting TPS26600, TPS26601 only  
OUTPUT RAMP CONTROL (dVdT)  
I(dVdT)  
dVdT charging current  
V(dVdT) = 0 V  
4
4.7  
14  
5.5  
µA  
Ω
V(SHDN) = 0 V, with I(dVdT) = 10 mA  
sinking  
R(dVdT)  
dVdT discharging resistance  
dVdT to OUT gain  
GAIN(dVdT)  
V(OUT)/V(dVdT)  
23.75  
24.6  
25.5  
V/V  
CURRENT LIMIT PROGRAMMING (ILIM)  
V(ILIM) ILIM bias voltage  
1
V
R(ILIM) = 120 kΩ, V(IN) – V(OUT) = 1 V  
R(ILIM) = 12 kΩ, V(IN) – V(OUT) = 1 V  
R(ILIM) = 8 kΩ, V(IN) – V(OUT) = 1 V  
R(ILIM) = 5.36 kΩ, V(IN) – V(OUT) = 1 V  
0.085  
0.95  
0.1 0.115  
1.05  
1.5 1.575  
1
I(OL)  
1.425  
2.11  
2.23  
2.35  
Overload current limit  
A
R(ILIM) = OPEN, open resistor current  
limit (single point failure test:  
UL60950)  
I(OL_R-OPEN)  
0.055  
0.095  
R(ILIM) = SHORT, shorted resistor  
current limit (single point failure test:  
UL60950)  
I(OL_R-SHORT)  
R(ILIM) = 120 kΩ, MODE = open  
R(ILIM) = 5.36 kΩ, MODE = open  
0.045 0.073  
2.21  
0.11  
2.4  
Circuit breaker detection  
threshold  
I(CB)  
A
2
Copyright © 2016–2019, Texas Instruments Incorporated  
7
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN) = 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
0.08  
TYP  
MAX  
UNIT  
R(ILIM) = 120 kΩ, V(IN) – V(OUT) = 5 V  
R(ILIM) = 8 kΩ, V(IN) – V(OUT) = 5 V  
R(ILIM) = 5.36 kΩ, V(IN) – V(OUT) = 5 V  
0.1  
0.12  
I(SCL)  
Short-circuit current limit  
1.425  
2.11  
1.5 1.575  
A
2.23  
1.87 ×  
I(OL)  
0.015  
2.35  
I(FASTRIP)  
Fast-trip comparator threshold  
+
A
CURRENT MONITOR OUTPUT (IMON)  
GAIN(IMON)  
Gain factor I(IMON):I(OUT)  
0.1 A I(OUT) 2 A  
72 78.28  
85  
µA/A  
PASS FET OUTPUT (OUT)  
0.1 A I(OUT) 2 A, TJ = 25°C  
0.1 A I(OUT) 2 A, TJ = 85°C  
140  
150  
150  
160  
210  
RON  
IN to OUT total ON resistance  
mΩ  
0.1 A I(OUT) 2 A, –40°C TJ ≤  
+125°C  
80  
250  
12  
V(IN) = 60 V, V(SHDN)= 0 V, V(OUT) = 0  
V, sourcing  
OUT leakage current in Off  
state  
V(IN) = 0 V, V(SHDN)= 0 V, V(OUT) = 24  
V, sinking  
Ilkg(OUT)  
11  
µA  
V(IN) = –60 V, V(SHDN)= 0 V, V(OUT)  
0 V, sinking  
=
50  
V(IN) – V(OUT) threshold for  
reverse protection comparator,  
falling  
V(REVTH)  
–15  
85  
–10  
96  
–5  
mV  
mV  
V(IN) – V(OUT) threshold for  
reverse protection comparator,  
rising  
V(FWDTH)  
110  
FAULT FLAG (FLT): ACTIVE LOW  
R(FLT)  
FLT pull-down resistance  
V(OVP) = 2 V, I(FLT) = 5 mA sinking  
40  
85  
160  
200  
Ω
I(FLT)  
FLT input leakage current  
0 V V(FLT) 60 V  
–200  
nA  
THERMAL SHUT DOWN (TSD)  
T(TSD)  
TSD threshold, rising  
TSD hysteresis  
157  
10  
ºC  
ºC  
T(TSDhyst)  
MODE  
Current limiting with  
latch  
MODE = 402 kto RTN  
MODE = Open  
Circuit breaker mode  
with auto-retry  
MODE_SEL  
Thermal fault mode selection  
Circuit breaker mode  
with latch  
MODE = Open (TPS26601 only)  
MODE = Short to RTN  
Current limiting with  
auto-retry  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
7.6 Timing Requirements  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN) = 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(All voltages referenced to GND, (unless otherwise noted))  
MIN  
NOM  
MAX  
UNIT  
IN AND UVLO INPUT  
UVLO(100 mV above V(UVLOR)) to V(OUT) = 100 mV,  
C(dvdt) = open  
250  
µs  
UVLO_tON(dly) UVLO turnon delay  
250 +  
14.5 ×  
C(dvdt)  
UVLO(100 mV above V(UVLOR)) to V(OUT) = 100 mV,  
µs  
µs  
C(dvdt) 10 nF, [C(dvdt) in nF]  
UVLO_toff(dly)  
UVLO turnoff delay  
UVLO(100 mV below V(UVLOF)) to FLT↓  
10  
SHUTDOWN CONTROL INPUT (SHDN)  
250 +  
14.5 ×  
C(dvdt)  
SHDNto V(OUT) = 100 mV, C(dvdt) 10 nF, [C(dvdt) in nF]  
µs  
SHUTDOWN exit delay  
tSD(dly)  
SHDNto V(OUT) = 100 mV, C(dvdt) = open  
SHDN(below V(SHUTF)) to FLT↓  
250  
µs  
µs  
SHUTDOWN entry  
delay  
10  
OVER VOLTAGE PROTECTION INPUT (OVP)  
OVP(20 mV below V(OVPF)) to V(OUT) = 100 mV,  
TPS26600 & TPS26601 only  
OVP exit delay  
200  
6
µs  
µs  
tOVP(dly)  
OVP(20 mV above V(OVPR)) to FLT, TPS26600 and  
TPS26601 only  
OVP disable delay  
CURRENT LIMIT  
Fast-trip comparator  
delay  
tFASTTRIP(dly)  
I(OUT) > I(FASTRIP)  
250  
ns  
µs  
REVERSE PROTECTION COMPARATOR  
(V(IN) – V(OUT))(100 mV overdrive below V(REVTH)) to  
internal FET turn OFF  
1.5  
45  
70  
tREV(dly)  
Reverse protection  
comparator delay  
(V(IN) – V(OUT))(10 mV overdrive below V(REVTH)) to  
FLT↓  
(V(IN) – V(OUT))(10 mV overdrive above V(FWDTH)) to  
FLT↑  
tFWD(dly)  
THERMAL SHUTDOWN  
tretry  
Retry delay in TSD  
512  
ms  
ms  
OUTPUT RAMP CONTROL (dVdT)  
SHDNto V(OUT) = 23.9 V, with C(dVdT) = 47 nF  
SHDNto V(OUT) = 23.9 V, with C(dVdT) = open  
10  
tdVdT  
Output ramp time  
1.6  
FAULT FLAG (FLT)  
FLT assertion delay in  
circuit breaker mode  
tCB(dly)  
MODE = OPEN, delay from I(OUT) > I(OL) to FLT↓  
4
ms  
ms  
Retry delay in circuit  
breaker mode  
tCBretry(dly  
tPGOODF  
)
MODE = OPEN  
540  
Falling edge  
875  
Rising edge, C(dVdT) = open  
1400  
PGOOD delay (de-  
glitch) time  
µs  
875 +  
20 ×  
tPGOODR  
Rising egde, C(dVdT) 10 nF, [C(dvdt) in nF]  
C(dVdT)  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
7.7 Typical Characteristics  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless stated otherwise)  
300  
250  
200  
150  
100  
50  
1.24  
1.22  
1.2  
ILOAD = 2 A  
ILOAD = 1 A  
ILOAD = 0.1 A  
V(UVLOR) (V)  
V(UVLOF) (V)  
1.18  
1.16  
1.14  
1.12  
1.1  
0
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D001  
D002  
Figure 2. UVLO Threshold Voltage vs Temperature  
Figure 1. On-Resistance vs Temperature Across Load  
Current  
1.26  
-8  
V(OVPR) (V)  
V(OVPF) (V)  
1.23  
V(REVTH) (mV)  
-8.5  
-9  
-9.5  
-10  
1.2  
1.17  
1.14  
1.11  
1.08  
-10.5  
-11  
-11.5  
-12  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D003  
D006  
Figure 3. OVP Threshold Voltage vs Temperature  
Figure 4. Reverse Voltage Threshold vs Temperature  
100  
34  
V(FWDTH) (V)  
V(IN_OVP) (V)  
V(IN_OVP) (V)  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
33.5  
33  
32.5  
32  
31.5  
31  
30.5  
30  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC  
100  
150  
D007  
D008  
Figure 5. V(FWDTH) vs Temperature  
Figure 6. Internal OVP Threshold vs Temperature  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Typical Characteristics (continued)  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless stated otherwise)  
15.2  
40  
39  
38  
37  
36  
V(UVLOR) (V)  
V(UVLOF) (V)  
V(OVC) (V)  
15  
14.8  
14.6  
14.4  
14.2  
14  
13.8  
13.6  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D009  
D010  
Figure 7. Internal UVLO Threshold vs Temperature  
Figure 8. Overvoltage Clamp Threshold vs Temperature  
40  
4
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
35  
30  
25  
20  
15  
10  
5
3.95  
3.9  
3.85  
3.8  
V(PORR) (V)  
V(PORF) (V)  
3.75  
3.7  
3.65  
3.6  
0
0
10  
20  
30  
Supply Voltage (V)  
40  
50  
60  
-50  
0
50  
Temperature (èC)  
100  
150  
D013  
D012  
Figure 10. Input Supply Current vs Supply Voltage in  
Shutdown  
Figure 9. Internal POR Threshold Voltage vs Temperature  
450  
400  
350  
300  
250  
200  
0
-5  
-10  
-15  
-20  
-25  
150  
-30  
TA = 125èC  
TA = 125èC  
100  
-35  
TA = 85èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
TA = -40èC  
50  
-40  
0
-45  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
-60  
-50  
-40  
-30  
Reverse Supply Voltage (V)  
-20  
-10  
0
D014  
D015  
V(OUT) = 0 V  
Figure 11. Input Supply Current vs Supply Voltage During  
Normal Operation  
Figure 12. Input Supply Current vs Reverse Supply  
Voltage, – V(IN)  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless stated otherwise)  
10  
9
8
7
6
5
4
3
2
1
0
0
OVP Disable Delay (ms)  
-5  
-10  
-15  
-20  
-25  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
-50  
0
50  
Temperature (èC)  
100  
150  
-60  
-50  
-40  
-30  
-20  
Reverse Supply Voltage (V)  
-10  
0
D017  
D016  
V(OUT) = 0 V  
Figure 14. OVP Disable Delay vs Temperature  
Figure 13. Output Current vs Reverse Supply Voltage, – V(IN)  
20  
0.82  
0.8  
tSD(dly)  
V(SHUTF) (V)  
18  
16  
14  
12  
10  
8
0.78  
0.76  
0.74  
0.72  
0.7  
6
0.68  
0.66  
0.64  
4
2
0
-50  
0
50  
Temperature (èC)  
100  
150  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D018  
D019  
Figure 15. Shutdown Entry Delay vs Temperature  
Figure 16. Shutdown Threshold Voltage Shutdown vs  
Temperature  
200  
79.8  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
GAIN(IMON) (mA/A)  
79.6  
100  
70  
79.4  
79.2  
79  
50  
30  
20  
78.8  
78.6  
78.4  
78.2  
78  
10  
7
5
3
2
77.8  
1
0.01 0.02  
77.6  
0.05 0.1 0.2 0.3 0.5  
Output Current (A)  
1
2
3 4 567 10  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D025  
D020  
Figure 17. Current Monitor Output vs Output Current  
Figure 18. GAIN(IMON) vs Temperature  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Typical Characteristics (continued)  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless stated otherwise)  
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
1%  
0
R(ILIM)= 24 kW  
R(ILIM)= 12 kW  
R(ILIM)= 8 kW  
R(ILIM) = 120 kW  
R(ILIM) = 80 kW  
R(ILIM)= 5.36 kW  
-1%  
-2%  
-3%  
-4%  
-5%  
-6%  
-0.2%  
-0.4%  
-0.6%  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D021  
D024  
Figure 19. Current Limit (% Normalized) vs Temperature  
Figure 20. Current Limit (% Normalized) vs Temperature  
3.2  
0.11  
R(ILIM) = 120 kW  
R(ILIM) = 80 kW  
R(ILIM) = 24 kW  
R(ILIM) = 12 kW  
R(ILIM) = 8 kW  
R(ILIM) = 5.36 kW  
R(ILIM) = Open  
R(ILIM) = Short  
2.8  
2.4  
2
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
1.6  
1.2  
0.8  
0.4  
0
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D004  
D005  
Figure 21. Over Load Current Limit vs Temperature  
Figure 22. Current Limit for R(ILIM) = Open and Short vs  
Temperature  
60  
16  
14  
12  
10  
8
50  
40  
30  
20  
10  
0
6
4
0
0.5  
1 1.5  
Circuit Breaker Threshold (A)  
2
2.5  
0
0.5  
1 1.5  
Current Limit (A)  
2
2.5  
D026  
D027  
Figure 23. Circuit Breaker Threshold Accuracy vs Circuit  
Breaker Threshold I(CB)  
Figure 24. Current Limit Accuracy vs Current Limit, I(OL)  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless stated otherwise)  
10.4  
10.2  
10  
100000  
10000  
1000  
100  
UVLO_toff(dly)  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
TA = 125èC  
9.8  
9.6  
9.4  
9.2  
9
10  
1
0.2  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
1
10  
Power_Dissipation (W)  
100  
Temperature (èC)  
D022  
D023  
Taken on 2-Layer board, 2 oz.(0.08-mm thick) with HTSSOP  
device with RTN plane area: 1 cm2 (Top) and 4.6 cm2 (Bottom)  
Figure 25. UVLO Turnoff Delay vs Temperature  
Figure 26. Thermal Shutdown Time vs Power Dissipation  
V_IN  
V_OUT  
FLTb  
I_IN  
RILIM = 5.36  
OVP  
RFLTb = 100 kΩ  
RLOAD = 24 Ω  
kΩ  
Connected  
to RTN  
RILIM = 5.36 kΩ  
RFLTb = 100 kΩ  
RLOAD = 24 Ω  
Figure 28. OV Clamp Response (TPS26602 Only)  
Figure 27. OVP Overvoltage Cut-Off Response  
RILIM = 5.36 kΩ  
RFLTb = 100 kΩ  
RILIM = 5.36 kΩ  
Figure 29. Hot-Short: Fast Trip Response and Current  
Regulation  
Figure 30. Hot-Short: Fast Trip Response (Zoomed)  
14  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Typical Characteristics (continued)  
–40°C TA = TJ +125°C, V(IN) = 24 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless stated otherwise)  
RILIM = 5.36 kΩ  
RFLTb = 100 kΩ  
RLOAD = 24 Ω  
RILIM = 5.36 kΩ  
RFLTb = 100 kΩ  
RLOAD = 24 Ω  
Figure 31. Turnon Control With SHDN  
Figure 32. Turnoff Control With SHDN  
Copyright © 2016–2019, Texas Instruments Incorporated  
15  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
V(OUT)  
VUVLO  
V(UVLOF)-0.1 V  
0.1 V  
VUVLO  
FLT  
V(UVLOR)+0.1V  
10%  
time  
0
time  
0
UVLO_tON(dly)  
UVLO_toff(dly)  
-20 mV  
110 mV  
V(IN) -V(OUT)  
V(IN) -V(OUT)  
90%  
FLT  
FLT  
10%  
0
time  
tREV(dly)  
0
time  
tFWD(dly)  
I(FASTRIP)  
V(OVPR)+0.1V  
V(OVP)  
I(SCL)  
I(OUT)  
FLT  
10%  
0
time  
0
time  
tOVP(dly)  
tFASTRIP(dly)  
Figure 33. Timing Waveforms  
16  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
9 Detailed Description  
9.1 Overview  
The TPS2660x is a family of high voltage industrial eFuses with integrated back-to-back MOSFETs and  
enhanced built-in protection circuitry. It provides robust protection for all systems and applications powered from  
4.2 V to 60 V. The device can withstand ±60 V positive and negative supply voltages without damage. For hot-  
pluggable boards, the device provides hot-swap power management with in-rush current control and  
programmable output voltage slew rate features. Load, source and device protections are provided with many  
programmable features including overcurrent, overvoltage, undervoltage. The precision overcurrent limit (±5% at  
1 A) helps to minimize over design of the input power supply, while the fast response short circuit protection 250  
ns (typical) immediately isolates the faulty load from the input supply when a short circuit is detected.  
The internal robust protection control blocks of the TPS2660x along with its ±60 V rating helps to simplify the  
system designs for the surge compliance ensuring complete protection of the load and the device.  
The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault  
signal for the downstream system. The TPS2660x monitor functions threshold accuracy of ±3% ensures tight  
supervision of the supply bus, eliminating the need for a separate supply voltage supervisor chip.  
The device monitors V(IN) and V(OUT) to provide true reverse current blocking when a reverse condition or input  
power failure condition is detected. The TPS2660x is also designed to control redundant power supply systems.  
A pair of TPS2660x devices can be configured for Active ORing between the main power supply and the  
auxiliary power supply, (see the System Examples section).  
Additional features of the TPS2660x include:  
Current monitor output for health monitoring of the system  
Electronic circuit breaker operation with overload timeout using MODE pin  
A choice of latch off or automatic restart mode response during current limit fault using MODE pin  
Over temperature protection to safely shutdown in the event of an overcurrent event  
De-glitched fault reporting for brown-out and overvoltage faults  
Look ahead overload current fault indication (see the Look Ahead Overload Current Fault Indicator section)  
Copyright © 2016–2019, Texas Instruments Incorporated  
17  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
9.2 Functional Block Diagram  
OUT  
IN  
150mΩ  
-10mV  
+
PORb  
Charge  
Pump  
+100mV  
4V  
3.72V  
Current  
Sense  
X78.2µ  
CP  
+
UVLOb  
1.19V  
REVERSE  
1.1V  
VSEL_UVLO  
SWEN  
+
Gate Control Logic  
IMON  
UVLO  
Current Limit Amp  
Fast-Trip Comp  
(Threshold=1.8xIOL  
TSD  
Thermal  
Shutdown  
+
OVP  
1.19V  
)
1.1V  
1V  
OLR  
SHDNb  
Over Voltage clamp detect  
(TPS26602 Only)  
VSEL_OVP  
+
ILIM  
OVP  
Short detect  
Ramp Control  
24.6x  
SWEN  
FLT  
Avdd  
I(LOAD) ≥ I(CB)  
* Only for Latch Mode  
OLR  
4msec  
timer  
SET  
Timeout  
85Ω  
5uA  
S
Q
dVdT  
UVLOb  
CLR  
R
Q
1.4 msec  
875 µs  
14Ω  
PORb  
TSD  
PORb  
Fault Latch  
Avdd  
RTN  
SHDNb  
Gate Enhanced (tPGOOD  
)
OLR  
400kΩ  
Avdd  
Overload fault response  
select detection  
Reverse Input Polarity  
Protection circuit  
0.76V  
GND  
SHDNb  
+
RTN  
TPS2660x  
MODE  
SHDN  
9.3 Feature Description  
9.3.1 Undervoltage Lockout (UVLO)  
Undervoltage comparator input. When the voltage at UVLO pin falls below V(UVLOF) during input power fail or  
input undervoltage fault, the internal FET quickly turns off and FLT is asserted. The UVLO comparator has a  
hysteresis of 90 mV. To set the input UVLO threshold, connect a resistor divider network from IN supply to UVLO  
terminal to RTN as shown in Figure 34.  
18  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Feature Description (continued)  
V(IN)  
IN  
TPS26600/1  
R1  
UVLO  
+
+
UVLOb  
OVP  
1.19 V  
1.1 V  
R2  
OVP  
RTN  
1.19 V  
1.1 V  
R3  
GND  
Figure 34. UVLO and OVP Thresholds Set by R1, R2 and R3  
The TPS2660x also features a factory set 15-V input supply undervoltage lockout V(IN_UVLO) threshold with 1 V  
hysteresis. This feature can be enabled by connecting the UVLO terminal directly to the RTN terminal. If the  
Under-Voltage Lock-Out function is not needed, the UVLO terminal must be connected to the IN terminal. UVLO  
terminal must not be left floating.  
The device also implements an internal power ON reset (POR) function on the IN terminal. The device disables  
the internal circuitry when the IN terminal voltage falls below internal POR threshold V(PORF). The internal POR  
threshold has a hysteresis of 275 mV.  
9.3.2 Overvoltage Protection (OVP)  
The TPS2660x incorporate circuitry to protect the system during overvoltage conditions. The TPS26600 and  
TPS26601 feature overvoltage cut off functionality. A voltage more than V(OVPR) on OVP pin turns off the internal  
FET and protects the downstream load. To program the OVP threshold externally, connect a resistor divider from  
IN supply to OVP terminal to RTN as shown in Figure 34. The TPS26600 and TPS26601 also feature a factory  
set 33-V Input overvoltage cut off V(IN_OVP) threshold with a 2-V hysteresis. This feature can be enabled by  
connecting the OVP terminal directly to the RTN terminal. Figure 27 illustrates the overvoltage cut-off  
functionality.  
The TPS26602 features an internally fixed 38 V overvoltage clamp (VOVC) functionality. The OVP terminal of the  
TPS26602 must be connected to the RTN terminal directly. The TPS26602 clamps the output voltage to VOVC  
,
when the input voltage exceeds 38 V. During the output voltage clamp operation, the power dissipation in the  
internal MOSFET is PD = (VIN – VOVC) × IOUT. Excess power dissipation for prolonged period can make the  
device to enter into thermal shutdown. Figure 28 illustrates the overvoltage clamp functionality.  
9.3.3 Reverse Input Supply Protection  
To protect the electronic systems from reverse input supply due to miswiring, often a power component like a  
schottky diode is added in series with the supply line as shown in Figure 35. These additional discretes result in  
a lossy and bulky protection solution. The TPS2660x devices feature fully integrated reverse input supply  
protection and does not need an additional diode. These devices can withstand –60 V reverse voltage without  
damage. Figure 36 illustrates the reverse input polarity protection functionality.  
Copyright © 2016–2019, Texas Instruments Incorporated  
19  
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
INPUT  
OUTPUT  
INPUT  
OUTPUT  
TPS2660x  
eFuse  
Hot-Swap Controller  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 35. Reverse Input Supply Protection Circuits - Discrete vs TPS2660x  
Figure 36. Reverse Input Supply Protection at –60 V  
9.3.4 Hot Plug-In and In-Rush Current Control  
The devices are designed to control the in-rush current upon insertion of a card into a live backplane or other  
"hot" power source. This limits the voltage sag on the backplane’s supply voltage and prevents unintended resets  
of the system power. The controlled start-up also helps to eliminate conductive and radiative interferences. An  
external capacitor connected from the dVdT pin to RTN defines the slew rate of the output voltage at power-on  
as shown in Figure 37 and Figure 38.  
TPS2660x  
4 V  
5 µA  
dVdT  
14 Ω  
SWENb  
C(dVdT)  
RTN  
GND  
Figure 37. Output Ramp Up Time tdVdT is Set by C(dVdT)  
20  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Feature Description (continued)  
The dVdT pin can be left floating to obtain a predetermined slew rate (tdVdT) on the output. When the terminal is  
left floating, the devices set an internal output voltage ramp rate of 23.9 V/1.6 ms. A capacitor can be connected  
from dVdT pin to RTN to program the output voltage slew rate slower than 23.9 V/1.6 ms. Use Equation 1 and  
Equation 2 to calculate the external C(dVdT) capacitance.  
Equation 1 governs slew rate at start-up.  
æ
ç
ö
÷
C dVdT  
dV  
OUT  
æ
ö
÷
÷
ø
(
)
(
)
I(dVdT)  
=
´ ç  
ç
ç
è
÷
ø
Gain dVdT  
dt  
(
)
è
where  
I(dVdT) = 4.7 µA (typical)  
dV  
(
dt  
OUT  
)
Gain(dVdT) = dVdT to VOUT gain = 24.6  
(1)  
(2)  
The total ramp time (tdVdT) of V(OUT) for 0 to V(IN) can be calculated using Equation 2.  
tdVdT = 8 × 103 × V(IN) × C(dVdT)  
VIN  
CdVdT = 22 nF  
Figure 38. Hot Plug-In and In-Rush Current Control at 24-V Input  
9.3.5 Overload and Short Circuit Protection  
COUT = 47 µF  
RILIM = 5.36 kΩ  
The device monitors the load current by sensing the voltage across the internal sense resistor. The FET current  
is monitored during start-up and normal operation.  
9.3.5.1 Overload Protection  
The device offers following choices for the overload protection fault response:  
Active current limiting (Auto-retry/Latch-off modes)  
Electronic Circuit Breaker with overload timeout (Auto-retry/Latch-off modes)  
See the configurations in Table 1 to select a specific overload fault response.  
Table 1. Overload Fault Response Configuration Table  
MODE Pin Configuration  
Overload Protection Type  
Device  
TPS26600, TPS26602  
TPS26601  
Electronic circuit breaker with auto-retry  
Electronic circuit breaker with latch-off  
Open  
Copyright © 2016–2019, Texas Instruments Incorporated  
21  
 
 
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
Table 1. Overload Fault Response Configuration Table (continued)  
MODE Pin Configuration  
Overload Protection Type  
Device  
TPS26600, TPS26601,  
TPS26602  
Shorted to RTN  
Active current limiting with auto-retry  
A 402-kΩ resistor across MODE  
TPS26600, TPS26601,  
TPS26602  
Active current limiting with latch-off  
pin to RTN pin  
9.3.5.1.1 Active Current Limiting  
When the active current limiting mode is selected, during overload events, the device continuously regulates the  
load current to the overcurrent limit I(OL) programmed by the R(ILIM) resistor as shown in Equation 3.  
12  
IOL  
=
R(ILIM  
)
where  
I(OL) is the overload current limit in Ampere  
R(ILIM) is the current limit resistor in kΩ  
(3)  
During an overload condition, the internal current-limit amplifier regulates the output current to I(LIM). The FLT  
signal assert after a delay of 875 µs.The output voltage droops during the current regulation, resulting in  
increased power dissipation in the device. If the device junction temperature reaches the thermal shutdown  
threshold (T(TSD)), the internal FET is turn off. The device configured in latch-off mode stays latched off until it is  
reset by either of the following conditions:  
Cycling V(IN) below V(PORF)  
Toggling SHDN  
Whereas the device configured in auto-retry mode, commences an auto-retry cycle 512 ms after TJ < [T(TSD)  
10°C]. The FLT signal remains asserted until the fault condition is removed and the device resumes normal  
operation. Figure 39 and Figure 40 illustrates behavior of the system during current limiting with auto-retry  
functionality.  
IMON  
V_OUT  
FLTb  
I_IN  
Load transition from 22 to  
12 Ω  
MODE pin connected to RTN  
RILIM = 5.36 kΩ  
RILIM = 8 kΩ  
Figure 40. Response During Coming Out of Overload Fault  
Figure 39. Auto-Retry MODE Fault Behavior  
9.3.5.1.2 Electronic Circuit Breaker with Overload Timeout, MODE = OPEN  
In this mode, during overload events, the device allows the overload current to flow through the device until  
I(LOAD) < I(FASTRIP). The circuit breaker threshold I(CB) can be programmed using the R(ILIM) resistor as shown in  
Equation 4.  
22  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
12  
I(CB) =  
+ 0.03A  
R(ILIM  
)
where  
I(CB) is circuit breaker current threshold in Ampere  
R(ILIM) is the current limit resistor in kΩ  
(4)  
An internal timer starts when I(CB) < ILOAD < IFASTRIP, and when the timer exceeds tCB(dly), the device turns OFF the  
internal FET and FLT is asserted. Once the internal FET is turned off, the device configured in latch-off mode  
stays latched off, until it is reset by either of the following conditions:  
Cycling V(IN) falling below V(PORF)  
Toggling SHDN  
whereas the device configured in auto-retry mode, commences an auto-retry cycle after 540 ms. The FLT signal  
remains asserted until the fault condition is removed and the device resumes normal operation. Figure 41 and  
Figure 42 illustrate behavior of the system during electronic circuit breaker with auto-retry functionality.  
IMON  
V_OUT  
FLTb  
I_IN  
MODE left floating  
Load Transition from 22 to 12 Ω  
Load Transition from 22 to 12 , RILIM = 8 kΩ  
RILIM = 8 kΩ  
Figure 41. Circuit Breaker Functionality  
Figure 42. Zoomed at the Instance of Load Step  
9.3.5.2 Short Circuit Protection  
During a transient output short circuit event, the current through the device increases very rapidly. As the current-  
limit amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
comparator, with a threshold I(FASTRIP). The fast-trip comparator turns off the internal FET within 250 ns (typical),  
when the current through the FET exceeds I(FASTRIP) (I(OUT) > I(FASTRIP)), and terminates the rapid short-circuit  
peak current. The fast-trip threshold is internally set to 87% higher than the programmed overload current limit  
(I(FASTRIP) = 1.87 × I(OL) + 0.015). The fast-trip circuit holds the internal FET off for only a few microseconds, after  
which the device turns back on slowly, allowing the current-limit loop to regulate the output current to I(OL). Then,  
device behaves similar to overload condition. Figure 43 and Figure 44 illustrate the behavior of the system when  
the current exceeds the fast-trip threshold.  
Copyright © 2016–2019, Texas Instruments Incorporated  
23  
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
VIN = 24 V, RILIM = 5.36 kΩ  
Figure 43. Output Hot Short Functionality at 24-V Input  
9.3.5.2.1 Start-Up With Short-Circuit On Output  
Figure 44. Zoomed at the Instance of Output Short  
When the device is started with short-circuit on the output, it limits the load current to the current limit I(OL) and  
behaves similar to the overload condition. Figure 45 illustrates the behavior of the device in this condition. This  
feature helps in quick isolation of the fault and hence ensures stability of the DC bus.  
V_IN  
V_OUT  
FLTb  
I_IN  
MODE pin connected to RTN  
VIN = 24 V RILIM = 5.36 kΩ  
Figure 45. Start-Up With Short on Output  
9.3.5.3 FAULT Response  
The FLT open-drain output asserts (active low) under following conditions:  
Fault events such as undervoltage, overvoltage, over load, reverse current and thermal shutdown conditions  
When the device enters low current shutdown mode when SHDN is pulled low  
During start-up when the internal FET GATE is not fully enhanced  
The device is designed to eliminate false reporting by using an internal "de-glitch" circuit for fault conditions  
without the need for an external circuitry.  
The FLT signal can also be used as Power Good indicator to the downstream loads like DC-DC converters. An  
internal Power Good (PGOOD) signal is OR'd with the fault logic. During start-up, when the device is operating in  
dVdT mode, PGOOD and FLT remains low and is de-asserted after the dVdT mode is completed and the  
internal FET is fully enhanced. The PGOOD signal has deglitch time incorporated to ensure that internal FET is  
fully enhanced before heavy load is applied by the downstream converters. Rising deglitch delay is determined  
by tPGOOD(degl) = Maximum {(875 + 20 × C(dVdT)), tPGOODR}, where C(dVdT) is in nF and tPGOOD(degl) is in µs. FLT can  
be left open or connected to RTN when not used. V(IN) falling below V(PORF) = 3.72 V resets FLT.  
24  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
In case of reverse input polarity fault, care should be taken while interfacing FLT pin to the downstream I/O.  
Refer to the application report, Fault Handling Using TPS2660 eFuse for further information.  
9.3.5.3.1 Look Ahead Overload Current Fault Indicator  
With the device configured in current limit operation and when the overload condition exists for more than  
tPGOODF, 875 µs (typical), the FLT asserts to warn of impending turnoff of the internal FETs due to the  
subsequent thermal shutdown event. Figure 46 and Figure 47 depict this behavior. The FLT signal remains  
asserted until the fault condition is removed and the device resumes normal operation.  
RILIM = 12 kΩ  
MODE pin connected  
to RTN  
Load transient event  
from 37 to 15 Ω  
RILIM = 12 kΩ  
MODE pin connected  
to RTN  
Load transient event  
from 37 to 15 Ω  
Figure 46. Look Ahead Overload Current Fault Indication  
Figure 47. Output Turnoff Due to Thermal Shutdown With  
FLT Asserted in Advance  
9.3.5.4 Current Monitoring  
The current source at IMON terminal is internally configured to be proportional to the current flowing from IN to  
OUT. This current can be converted into a voltage using a resistor R(IMON) from IMON terminal to RTN terminal.  
The IMON voltage can be used as a means of monitoring current flow through the system. The maximum voltage  
range (V(IMONmax)) for monitoring the current is limited to minimum of ([V(IN) – 1.5 V, 4 V]) to ensure linear output.  
This puts a limitation on maximum value of R(IMON) resistor and is determined by Equation 5.  
Min [(V(IN) - 1.5), 4 V]  
R
(
IMONmax  
)
=
1.8 ì I  
(
LIM  
)
ì GAIN  
(
IMON  
)
(5)  
The output voltage at IMON terminal is calculated using Equation 6 and Equation 7.  
For IOUT > 50 mA,  
V
(
IMON  
)
= I  
[
(
OUT  
)
ìGAIN  
(
IMON  
)
ìR  
(
IMON  
)
]
Where,  
GAIN(IMON) is the gain factor I(IMON):I(OUT) = 78.4 μA/A (Typical)  
I(OUT) is the load current  
I(MON_OS) = 2 µA (Typical)  
(6)  
(7)  
For IOUT < 50 mA (typical), use Equation 7.  
V
(
IMON  
)
= (I(IMON _ OS))ìR(IMON)  
This pin must not have a bypass capacitor to avoid delay in the current monitoring information.  
Copyright © 2016–2019, Texas Instruments Incorporated  
25  
 
 
 
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
In case of reverse input polarity fault, an external 100-kΩ resistor is recommended between IMON pin and ADC  
input to limit the current through the ESD protection structures of the ADC.  
9.3.5.5 IN, OUT, RTN, and GND Pins  
The device has two pins for input (IN) and output (OUT). All IN pins must be connected together and to the  
power source. A ceramic bypass capacitor close to the device from IN to GND is recommended to alleviate bus  
transients. The recommended input operating voltage range is 4.2 to 60 V. Similarly all OUT pins must be  
connected together and to the load. V(OUT), in the ON condition, is calculated using Equation 8.  
V
(
OUT  
)
= V  
(
IN  
)
- RON ì I  
(
(
OUT  
)
)
Where,  
RON is the total ON resistance of the internal FETs.  
(8)  
GND pin must be connected to the system ground. RTN is the device ground reference for all the internal control  
blocks. Connect the TPS2660x support components: R(ILIM), C(dVdT), R(IMON), R(MODE) and resistors for UVLO and  
OVP with respect to the RTN pin. Internally, the device has reverse input polarity protection block between RTN  
and the GND terminal. Connecting RTN pin to GND pin disables the reverse input polarity protection feature and  
the TPS2660x gets permanently damaged when operated under this fault event.  
9.3.5.6 Thermal Shutdown  
The device has a built-in overtemperature shutdown circuitry designed to protect the internal FETs, if the junction  
temperature exceeds T(TSD). After the thermal shutdown event, depending upon the mode of fault response, the  
device either latches off or commences an auto-retry cycle 512 ms after TJ < [T(TSD) – 10°C]. During the thermal  
shutdown, the fault pin FLT pulls low to indicate a fault condition.  
9.3.5.7 Low Current Shutdown Control (SHDN)  
The internal FETs and hence the load current can be switched off by pulling the SHDN pin below 0.76 V  
threshold with a micro-controller GPIO pin or can be controlled remotely with an opto-isolator device as shown in  
Figure 48 and Figure 49. The device quiescent current reduces to 20 μA (typical) in shutdown state. To assert  
SHDN low, the pull down must sink at least 10 µA at 400 mV. To enable the device, SHDN must be pulled up to  
atleast 1 V. Once the device is enabled, the internal FETs turnon with dVdT mode.  
AVdd  
Rpu  
TPS2660x  
SHDN  
GND  
from µC GPIO  
+
SHDNb  
0.76V  
OFF  
ON  
Figure 48. Shutdown Control  
26  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
ON OFF  
AVdd  
Rpu  
TPS2660x  
SHDN  
GND  
+
SHDNb  
a
k
C
E
0.76V  
Opto Isolator  
Figure 49. Opto-Isolator Shutdown Control  
9.4 Device Functional Modes  
The TPS26600, TPS26601 and TPS26602 respond differently to overload and short circuit conditions. The  
operational differences are explained in Table 2.  
Table 2. Device Operational Differences Under Different MODE Configurations  
MODE Pin Configuration  
MODE Connected to RTN  
(Current Limit With Auto-Retry) between MODE and RTN Pins  
(Current Limit With Latchoff)  
A 402-kResistor Connected  
MODE Pin = Open (Circuit  
Breaker with Auto-Retry -  
TPS26600 and TPS26602),  
(Circuit Breaker With Latch -  
TPS26601 Only)  
Start-up  
Inrush current controlled by dVdT  
Inrush limited to I(OL) level as set Inrush limited to I(OL) level as set Inrush limited to I(OL) level as set  
by R(ILIM)  
by R(ILIM)  
by R(ILIM)  
Fault timer runs when current is  
limited to I(OL)  
Fault timer expires after tCB(dly)  
causing the FETs to turnoff  
If TJ > T(TSD), device turns off  
If TJ > T(TSD), device turns off  
Device turns off if TJ > T(TSD)  
before timer expires  
Overcurrent response  
Current is limited to I(OL) level as Current is limited to I(OL) level as Current is allowed through the  
set by R(ILIM)  
set by R(ILIM)  
device if I(LOAD) < I(FASTTRIP)  
Power dissipation increases as  
V(IN) – V(OUT) increases  
Power dissipation increases as  
V(IN) – V(OUT) increases  
Fault timer runs when the current  
increases above I(OL)  
Fault timer expires after tCB(dly)  
causing the FETs to turnoff  
Device turns off when TJ > T(TSD) Device turns off when TJ > T(TSD) Device turns off if TJ > T(TSD)  
before timer expires  
Device attempts restart 540 ms  
after TJ < [T(TSD) – 10°C]  
Device remains off  
TPS26600 and TPS26602  
attempt restart 540 ms after TJ <  
[T(TSD) – 10°C]. TPS26601  
remains off  
Short-circuit response  
Fast turnoff when I(LOAD) > I(FASTRIP)  
Quick restart and current limited to I(OL), follows standard start-up  
Copyright © 2016–2019, Texas Instruments Incorporated  
27  
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPS2660x is an industrial eFuse, typically used for Hot-Swap and Power rail protection applications. It  
operates from 4.2 V to 60 V with programmable current limit, overvoltage, undervoltage and reverse polarity  
protections. The device aids in controlling in-rush current and provides robust protection against reverse current  
and filed miss-wiring conditions for systems such as PLCs, Industrial PCs, Control and Automation and Sensors.  
The device also provides robust protection for multiple faults on the system rail.  
The Detailed Design Procedure section can be used to select component values for the device.  
Alternatively, the WEBENCH® software may be used to generate a complete design. The WEBENCH® software  
uses an iterative design procedure and accesses a comprehensive database of components when generating a  
design. Additionally, a spreadsheet design tool TPS2660x Design Calculator is available in the web product  
folder.  
10.2 Typical Application  
IN: 18 V-30 V  
OUT  
OUT  
FLT  
IN  
CIN  
1 µF  
COUT  
2.2 mF  
150 mΩ  
R1  
715 k  
RFLTb  
100 k  
UVLO  
OVP  
Health Monitor  
TPS26600  
R2  
20 k  
ON/OFF Control  
Load Monitor  
SHDN  
IMON  
ILIM  
dVdT  
MODE  
RTN  
R3  
30.1 k  
CdVdT  
2.2 µF  
RIMON  
33.2 k  
GND  
RILIM  
11.8 k  
Figure 50. 24-V, 1-A eFuse Input Protection Circuit for Industrial PLC CPU  
10.2.1 Design Requirements  
Table 3 shows the Design Requirements for TPS2660x.  
Table 3. Design Requirements  
DESIGN PARAMETER  
Typical input voltage  
EXAMPLE VALUE  
V(IN)  
24 V  
18 V  
V(UV)  
V(OV)  
RL(SU)  
I(LIM)  
C(OUT)  
TA  
Undervoltage lockout set point  
Overvoltage cutoff set point  
Load during start-up  
30 V  
48 Ω  
Current limit  
1 A  
Load capacitance  
2200 µF  
85°C  
Maximum ambient temperature  
28  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
10.2.2 Detailed Design Procedure  
10.2.2.1 Step by Step Design Procedure  
To begin the design process, the designer needs to know the following parameters:  
Input operating voltage range  
Maximum output capacitance  
Maximum current limit  
Load during start-up  
Maximum ambient temperature  
This design procedure below seeks to control junction temperature of the device in both steady state and  
start-up conditions by proper selection of the output ramp-up time and associated support components. The  
designer can adjust this procedure to fit the application and design criteria.  
10.2.2.2 Programming the Current-Limit Threshold—R(ILIM) Selection  
The R(ILIM) resistor at the ILIM pin sets the over load current limit, this can be set using Equation 9.  
12  
R(ILIM) =  
= 12kW  
ILIM  
where  
ILIM = 1A  
(9)  
Choose the closest standard 1% resistor value : R(ILIM) = 11.8 kΩ  
10.2.2.3 Undervoltage Lockout and Overvoltage Set Point  
The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using an external voltage divider  
network of R1, R2 and R3 connected between IN, UVLO, OVP and RTN pins of the device. The values required  
for setting the undervoltage and overvoltage are calculated by solving Equation 10 and Equation 11.  
R3  
V(OVPR) =  
ì V(OV)  
R1+ R2 + R3  
(10)  
R2 + R3  
R1+ R2 + R3  
V(UVLOR) =  
ì V(UV)  
(11)  
For minimizing the input current drawn from the power supply {I(R123) = V(IN)/(R1+R2+R3)}, it is recommended to  
use higher value resistance for R1, R2 and R3.  
However, the leakage current due to external active components connected at resistor string can add error to  
these calculations. So, the resistor string current, I(R123) must be chosen to be 20x greater than the leakage  
current of UVLO and OVP pins.  
From the device electrical specifications, V(OVPR) = 1.19 V and V(UVLOR) = 1.19 V. From the design requirements,  
V(OV) is 30 V and V(UV) is 18 V. To solve the equation, first choose the value of R3 = 30.1 kand use  
Equation 10 to solve for (R1 + R2) = 728.7 k. Use Equation 11 and value of (R1 + R2) to solve for R2 = 20.05 kΩ  
and finally R1= 708.6 k.  
Choose the closest standard 1% resistor values: R1 = 715 k, R2 = 20 k, and R3 = 30.1 k.  
The UVLO and the OVP pins can also be connected to the RTN pin to enable the internal default V(OV) = 33 V  
and V(UV) = 15 V.  
The power failure is detected on falling edge of the supply. This threshold voltage is 7.5% lower than the rising  
threshold, V(UV). The voltage at which the device detects power fail can be calculated using Equation 12.  
V(PFAIL) = 0.925ì V(UV)  
(12)  
Copyright © 2016–2019, Texas Instruments Incorporated  
29  
 
 
 
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
10.2.2.4 Programming Current Monitoring Resistor—RIMON  
The voltage at IMON pin V(IMON) represents the voltage proportional to the load current. This can be connected to  
an ADC of the downstream system for health monitoring of the system. The R(IMON) must be configured based on  
the maximum input voltage range of the ADC used. R(IMON) is set using Equation 13.  
V(IMONmax)  
I(LIM) ì75 ì10-6  
R(IMON) =  
(13)  
For I(LIM) = 1 A, and considering the operating voltage range of ADC from 0 V to 2.5 V, V(IMONmax) is 2.5 V and  
R(IMON) is determined by Equation 14.  
2.5  
1ì75ì10-6  
R(IMON) =  
= 33.3kW  
(14)  
Selecting the R(IMON) value less than determined ensures that ADC limits are not exceeded for maximum value of  
the load current. Choose the closest standard 1% resistor value : R(IMON) = 33.2 kΩ.  
If current monitoring up to I(FASTRIP) is desired, R(IMON) can be reduced by a factor of 1.8 as shown Equation 5.  
10.2.2.5 Setting Output Voltage Ramp Time—(tdVdT  
)
For a successful design, the junction temperature of the device must be kept below the absolute-maximum rating  
during dynamic (start-up) and steady state conditions. The dynamic power dissipation is often an order  
magnitude greater than the steady state power dissipation. It is important to determine the right start-up time and  
the in-rush current limit for the system to avoid thermal shutdown during start-up with and without load.  
The ramp-up capacitor C(dVdT) is calculated considering the two possible cases:  
10.2.2.5.1 Case 1: Start-Up Without Load—Only Output Capacitance C(OUT) Draws Current During Start-Up  
During start-up, as the output capacitor charges, the voltage difference across the internal FET decreases, and  
the power dissipation decreases. Typical ramp-up of the output voltage, inrush current and instantaneous power  
dissipated in the device during start-up are shown in Figure 51. The average power dissipated in the device  
during start-up is equal to the area of triangular plot (red curve in Figure 52) averaged over tdVdT  
.
2.5  
30  
24  
18  
12  
6
Input Current (A)  
Power DIssipation (W)  
Output Voltage (V)  
2
1.5  
1
0.5  
0
0
0
20  
40  
60  
80  
100  
Start-Up Time (%)  
D050  
VIN = 24 V  
CdVdT = 2.2 µF  
COUT = 2.2 mF  
VIN = 24 V  
CdVdT = 2.2 µF  
COUT = 2.2 mF  
Figure 51. Start-Up Without Load  
Figure 52. PD(INRUSH) Due to Inrush Current  
The inrush current is determined as shown in Equation 15.  
dV  
dT  
V(IN)  
tdVdT  
I = C ì  
í I(INRUSH) = C(OUT) ì  
(15)  
Average power dissipated during start-up is given by Equation 16.  
30  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
 
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
PD(INRUSH) = 0.5ì V(IN) ìI(INRUSH)  
(16)  
Equation 16 assumes that the load does not draw any current until the output voltage reaches its final value.  
10.2.2.5.2 Case 2: Start-Up With Load—Output Capacitance C(OUT) and Load Draws Current During Start-Up  
When the load draws current during the turnon sequence, additional power is dissipated in the device.  
Considering a resistive load RL(SU) during start-up, typical ramp-up of output voltage, load current and the  
instantaneous power dissipation in the device are shown in Figure 53. Instantaneous power dissipation with  
respect to time is plotted in Figure 54. The additional power dissipation during start-up is calculated using  
Equation 17.  
6
5.5  
5
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
Input Current (A)  
Power Dissipation (W)  
Output Voltage (V)  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
6
0.5  
0
3
0
0
20  
40  
60  
80  
100  
Start-Up Time (%)  
D051  
VIN = 24 V  
RL(SU) = 48 Ω  
VIN = 24 V  
RL(SU) = 48 Ω  
CdVdT = 2.2 µF  
COUT = 2.2 mF  
CdVdT = 2.2 µF  
COUT = 2.2 mF  
Figure 53. Start-Up With Load  
Figure 54. PD(INRUSH) Due to Inrush and Load Current  
1
V(IN)2  
PD(LOAD) =  
ì
6
RL(SU)  
(17)  
(18)  
(19)  
Total power dissipated in the device during start-up is given by Equation 18.  
PD(STARTUP) = PD(INRUSH) + PD(LOAD)  
Total current during start-up is given by Equation 19.  
I(STARTUP) = I(INRUSH) + IL(t)  
For the design example under discussion,  
Select the inrush current I(INRUSH) = 0.1 A and calculate tdVdT using Equation 20.  
24  
t(dVdT) = 2.2mì  
= 0.528s  
0.1  
(20)  
For a given start-up time, CdVdT capacitance value is calculated using Equation 21.  
t(dVdT)  
8 ì103 ì V(IN)  
C(dVdT) =  
= 2.7mF  
where  
t(dVdT) = 0.528 s  
V(IN) = 24 V  
(21)  
31  
Choose the closest standard value: 2.2-µF/16-V capacitor.  
The inrush power dissipation is calculated, using Equation 22.  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
PD(INRUSH) = 0.5 ì V(IN) ìI(INRUSH) = 1.2W  
where  
V(IN) = 24 V  
I(INRUSH) = 0.1 A  
(22)  
Considering the start-up with 48-load, the additional power dissipation, is calculated using Equation 23.  
1
V(IN)2  
PD(LOAD) = ( )ì  
= 2 W  
6
RL(SU)  
where  
V(IN) = 24 V  
RL(SU) = 48 Ω  
(23)  
(24)  
The total device power dissipation during start-up is given by Equation 24.  
PD(STARTUP) = PD(INRUSH) + PD(LOAD) = 3.2W  
where  
PD(INRUSH) = 1.2 W  
PD(LOAD) = 2 W  
The power dissipation with or without load, for a selected start-up time must not exceed the thermal shutdown  
limits as shown in Figure 55.  
From the thermal shutdown limit graph, at TA = 85°C, thermal shutdown time for 3.2 W is close to 28000 ms. It is  
safe to have a minimum 30% margin to allow for variation of the system parameters such as load, component  
tolerance, input voltage and layout. Selected 2.2-µF CdVdT capacitor and 528-ms start-up time (tdVdT) are within  
limit for successful start-up with 48-load.  
Higher value C(dVdT) capacitor can be selected to further reduce the power dissipation during start-up.  
10000  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
TA = 125èC  
1000  
100  
10  
1
0.1  
1
10  
Power Dissipation (W)  
100  
D052  
Figure 55. Thermal Shutdown Time vs Power Dissipation  
10.2.2.5.3 Support Component Selections—RFLTb and C(IN)  
The RFLTb serves as pull-up for the open-drain fault output. The current sink by this pin must not exceed 10 mA  
(see the Absolute Maximum Ratings table). Typical resistance value in the range of 10 kΩ to 100 kΩ is  
recommended for RFLTb. The CIN is a local bypass capacitor to suppress noise at the input. Typical capacitance  
value in the range of 0.1 µF to 1 µF is recommended for C(IN)  
.
32  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
10.2.3 Application Curves  
V_IN  
V_OUT  
FLTb  
I_IN  
Figure 57. Start-Up With VIN—No Load  
Figure 56. Start-Up With VIN—48-Load  
V_IN  
SHDNb  
V_OUT  
I_IN  
Figure 58. Power Fail With 24-Load—Supports 1-A Load  
Figure 59. Start-Up With Shutdown Pin—48-Load  
for 10-ms Power Fail  
Figure 60. Power Down With Shutdown Pin—48-Load  
Figure 61. Over Load Response—Load Stepped from  
100-to 18-Load  
Copyright © 2016–2019, Texas Instruments Incorporated  
33  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
VIN  
VOUT  
I_IN  
Figure 62. Turnon With Short Circuit on Output  
Figure 63. Reverse Polarity Protection  
10.3 System Examples  
10.3.1 Acive ORing Operation  
IN1: 4.2 V - 60 V  
IN  
OUT  
CIN  
R1  
150 m  
UVLO  
FLT  
TPS26600  
OVP  
MODE  
dVdT  
SHDN  
IMON  
R2  
R3  
OUT  
COUT  
Concept  
ILIM  
Common Bus  
GND  
RTN  
RILIM  
CdVdT  
SYSTEM  
LOAD  
Hot-Swap  
IN2: 4.2 V - 60 V  
IN  
OUT  
FLT  
CIN  
R4  
150 mꢀ  
IN2 IN1  
UVLO  
TPS26600  
OVP  
MODE  
dVdT  
SHDN  
IMON  
R5  
R6  
ILIM  
GND  
RTN  
RILIM  
CdVdT  
Figure 64. Active ORing Application Schematic  
Figure 64 shows a typical redundant power supply configuration of the system. Schottky ORing diodes have  
been popular for connecting parallel power supplies, such as parallel operation of wall adapter with a battery or a  
hold-up storage capacitor. The disadvantage of using ORing diodes is high voltage drop and associated power  
loss. The TPS2660x with integrated, N-channel back to back FETs provide a simple and efficient solution.  
A fast reverse comparator controls the internal FET and it is turned ON or OFF with hysteresis as shown in  
Figure 65. The internal FET is turned off within 1.5 μs (typical) as soon as V(IN) – V(OUT) falls below –110 mV. It  
turns on within 40 µs (typical) once the differential forward voltage V(IN) – V(OUT) exceeds 100 mV. Figure 66 and  
Figure 67 show typical switch-over waveforms of Active ORing implementation using the TPS26600.  
34  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
System Examples (continued)  
Reverse Blocking  
Forward Conduction  
-10  
100  
VIN - V  
mV  
(
)
(
)
)
OUT  
(
Figure 65. Active ORing Thresholds  
VIN1 = 22 V  
Cout = 47 μF  
Rload = 24 Ω  
VIN1 = 22 V  
Cout = 47 μF  
Rload = 24 Ω  
VIN2: Plugged In  
at 24 V  
C(dVdT) = 22 nF  
VIN2: Plugged Out  
C(dVdT) = 22 nF  
Figure 67. Active ORing Between Two Supplies VOUT  
Change Over to VIN1  
Figure 66. Active ORing Between Two Supplies VOUT  
Change Over to VIN2  
NOTE  
All control pins of the un-powered TPS2660x device in the Active ORing configuration will  
measure approximately 0.7 V drop with respect to GND. The system micro-controller  
should ignore IMON and FLT pin voltage measurements of this device when these signals  
are being monitored.  
Copyright © 2016–2019, Texas Instruments Incorporated  
35  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
System Examples (continued)  
10.3.2 Field Supply Protection in PLC, DCS I/O Modules  
TPS2660  
24-V nominal (from field  
SELV power supply)  
To field loads (sensors &  
Actuators  
IN  
OUT  
Power FET isolation during over  
voltage , Input Reverse Polarity and  
short circuit faults  
Inrush Current  
Control  
IMON  
FLT  
Load Current monitor & Fault  
Diagnostics  
SHDN  
IMON  
FLT  
ON/OFF  
Control  
Fault  
IMON  
DC/DC  
MCU  
Field side  
PLC side  
Digital Isolator  
Figure 68. Power Delivery Circuit Block Diagram in I/O Modules  
The PLC or Distributed Control System (DCS) I/O modules are often connected to an external field power supply  
to support higher power requirements of the field loads like sensors and actuators. Power-supply faults or  
miswiring can damage the loads or cause the loads not to operate correctly. The TPS2660x can be used as a  
front end protection circuit to protect and provide stable supply to the field loads. Under voltage, Over voltage  
and reverse polarity protection features of the TPS2660x prevent the loads to experience voltages outside the  
operating range, which can permanently damage the loads.  
Field power supply is often connected to multiple I/O modules and is capable of delivering more current than a  
single I/O module can handle. Overcurrent protection scheme of the TPS2660x limits the current from the power  
supply to the module so that the maximum current does not rise above what the board is designed for. Fast short  
circuit protection scheme isolates the faulty load from the field supply quickly and prevents the field supply to dip  
and cause interrupts in the other I/O modules connected to the same field supply. High accurate (±5% at 1 A)  
current limit facilitates more I/O modules to be connected to field supply. Load current monitor (IMON) and fault  
indication (FLT) features facilitate continuous load monitoring.  
The TPS2660x also acts as a smart diode with protection against reverse current during output side miswiring.  
Reverse current can potentially damage the field power supply and cause the I/O modules to run hot or may  
cause permanent damage.  
If the field power supply is connected in reverse polarity (which is not unlikely as field power supplies are usually  
connected with screw terminals), field loads can permanently get damaged due to the reverse voltage. The  
reverse polarity protection feature of the TPS2660x prevents the reverse voltage to appear at the load side.  
36  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
System Examples (continued)  
10.3.3 Simple 24-V Power Supply Path Protection  
With the TPS2660x, a simple 24-V power supply path protection can be realized using a minimum of three  
external components as shown in the schematic diagram in Figure 69. The external components required are: a  
R(ILIM) resistor to program the current limit, C(IN) and C(OUT) capacitors.  
System Load  
IN  
OUT  
COUT  
CIN  
150 m  
Input from a 24V  
power supply  
UVLO  
OVP  
FLT  
TPS26600  
SHDN  
IMON  
ILIM  
MODE  
RTN  
dVdT  
GND  
RILIM  
Figure 69. TPS26600 Configured for a Simple 24-V Supply Path Protection  
Protection features with this configuration include:  
Load and device protection from reverse input polarity fault down to –60V  
15 V (typical) rising under voltage lock-out threshold  
33 V (typical) rising overvoltage cut-off threshold  
Protection from 60 V from the external SELV supply  
Inrush current control with 24V/1.6 ms output voltage slew rate  
Reverse Current Blocking  
Accurate current limiting with Auto-Retry  
10.4 Do's and Don'ts  
Do not connect RTN to GND. Connecting RTN to GND disables the Reverse Polarity protection feature  
Do connect the TPS2660x support components R(ILIM), C(dVdT), R(IMON), R(MODE) and UVLO, OVP resistors with  
respect to RTN pin  
Do connect device PowerPAD to the RTN plane for an enhanced thermal performance  
Copyright © 2016–2019, Texas Instruments Incorporated  
37  
 
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
The TPS2660x eFuse is designed for the supply voltage range of 4.2 V VIN 60 V. If the input supply is  
located more than a few inches from the device, an input ceramic bypass capacitor higher than 0.1 μF is  
recommended. Power supply must be rated higher than the current limit set to avoid voltage droops during  
overcurrent and short circuit conditions.  
11.1 Transient Protection  
In case of short circuit and over load current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the  
input or output of the device. Such transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Schottky diode across the output to absorb negative spikes  
A low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the  
transients.  
The approximate value of input capacitance can be estimated with Equation 25.  
L IN  
( )  
Vspike Absolute = V IN + I Load  
´
(
)
( )  
(
)
C IN  
( )  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
(25)  
Some applications may require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients can occur during positive and negative  
surge tests on the supply lines. In such applications it is recommended to place atleast 1 µF of input capacitor to  
limit the falling slew rate of the input voltage within a maximum of 20 V/µs.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is  
shown in Figure 70.  
INPUT  
IN  
OUT  
OUTPUT  
CIN  
COUT  
R4  
R1  
R2  
150 m  
UVLO  
FLT  
*
*
TPS26600  
OVP  
SHDN  
IMON  
MODE  
dVdT  
ILIM  
GND  
RTN  
R3  
RILIM  
RIMON  
CdVdT  
* Optional components needed for suppression of transients  
Figure 70. Circuit Implementation With Optional Protection Components  
38  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
12 Layout  
12.1 Layout Guidelines  
For all the applications, a 0.1 µF or higher value ceramic decoupling capacitor is recommended between IN  
terminal and GND.  
The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC. See Figure 71 and Figure 72 for PCB layout examples with HTSSOP and VQFN  
packages respectively.  
High current carrying power path connections must be as short as possible and must be sized to carry atleast  
twice the full-load current.  
RTN, which is the reference ground for the device must be a copper plane or island.  
Locate all the TPS2660x support components R(ILIM), C(dVdT), R(IMON), and MODE, UVLO, OVP resistors close  
to their connection pin. Connect the other end of the component to the RTN with shortest trace length.  
The trace routing for the RILIM and R(IMON) components to the device must be as short as possible to reduce  
parasitic effects on the current limit and current monitoring accuracy. These traces must not have any  
coupling to switching signals on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, a  
protection Schottky diode is recommended to address negative transients due to switching of inductive loads,  
and it must be physically close to the OUT and GND pins.  
Thermal Considerations: When properly mounted, the PowerPAD package provides significantly greater  
cooling ability. To operate at rated power, the PowerPAD must be soldered directly to the board RTN plane  
directly under the device. Other planes, such as the bottom side of the circuit board can be used to increase  
heat sinking in higher current applications. Designs that do not need reverse input polarity protection can  
have RTN, GND and PowerPAD connected together. PowerPAD in these designs can be connected to the  
PCB ground plane.  
Copyright © 2016–2019, Texas Instruments Incorporated  
39  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
12.2 Layout Example  
Top Layer  
Bottom layer GND plane  
Top Layer RTN Plane  
Bottom Layer RTN Plane  
Via to Bottom Layer  
Track in bottom layer  
BOTTOM Layer GND Plane  
Top Layer  
Power GND Plane  
High  
Frequency  
Bypass cap  
OUT  
IN  
IN  
OUT  
FLT  
VOUT PLANE  
VIN PLANE  
UVLO  
N.C  
N.C  
PWP  
OVP  
dVdT  
MODE  
SHDN  
RTN  
ILIM  
IMON  
TOP Layer  
RTN Plane  
BOTTOM Layer RTN Plane  
Figure 71. Typical PCB Layout Example With HTSSOP Package With a 2 Layer PCB  
40  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS2660  
www.ti.com.cn  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
Layout Example (continued)  
Top Layer  
Bottom layer GND plane  
Via to Bottom Layer  
Track in bottom layer  
Top Layer RTN Plane  
Bottom Layer RTN Plane  
BOTTOM Layer GND Plane  
Top Layer  
Power GND Plane  
High  
Frequency  
Bypass cap  
IN  
OUT  
IN  
OUT  
VIN PLANE  
VOUT PLANE  
UVLO  
N.C  
FLT  
PWP  
N.C  
dVdT  
OVP  
TOP Layer  
RTN Plane  
BOTTOM Layer RTN Plane  
Figure 72. Typical PCB Layout Example With VQFN Package With a 2 Layer PCB  
版权 © 2016–2019, Texas Instruments Incorporated  
41  
TPS2660  
ZHCSFF5G JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
有关 TPS26600 PSpice 瞬态模式,请参阅 SLVMBR3B。  
有关 TPS26602 PSpice 瞬态模式,请参阅 SLVMBR4C。  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
TPS26600-02EVMTPS2660x 评估模块用户指南》  
《使用负载开关和电子保险丝的电源多路复用》  
TPS2660 简化 PLC 系统中的浪涌和电源故障保护电路》  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
42  
版权 © 2016–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS26600PWPR  
TPS26600PWPT  
TPS26600RHFR  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
VQFN  
PWP  
PWP  
RHF  
16  
16  
24  
2000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
26600  
26600  
NIPDAU  
NIPDAU  
TPS  
26600  
TPS26600RHFT  
TPS26601RHFR  
TPS26601RHFT  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
RHF  
RHF  
RHF  
24  
24  
24  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
TPS  
26600  
TPS  
26601  
TPS  
26601  
TPS26602PWPR  
TPS26602PWPT  
TPS26602RHFR  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
VQFN  
PWP  
PWP  
RHF  
16  
16  
24  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
26602  
26602  
TPS  
26602  
TPS26602RHFT  
ACTIVE  
VQFN  
RHF  
24  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
TPS  
26602  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS26600PWPR  
TPS26600RHFR  
TPS26600RHFT  
TPS26601RHFR  
TPS26601RHFT  
TPS26602PWPR  
TPS26602RHFR  
TPS26602RHFT  
HTSSOP PWP  
16  
24  
24  
24  
24  
16  
24  
24  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
4.3  
4.3  
4.3  
4.3  
6.9  
4.3  
4.3  
5.6  
5.3  
5.3  
5.3  
5.3  
5.6  
5.3  
5.3  
1.6  
1.3  
1.3  
1.3  
1.3  
1.6  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN  
VQFN  
VQFN  
VQFN  
RHF  
RHF  
RHF  
RHF  
3000  
250  
HTSSOP PWP  
2000  
3000  
250  
VQFN  
VQFN  
RHF  
RHF  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS26600PWPR  
TPS26600RHFR  
TPS26600RHFT  
TPS26601RHFR  
TPS26601RHFT  
TPS26602PWPR  
TPS26602RHFR  
TPS26602RHFT  
HTSSOP  
VQFN  
PWP  
RHF  
RHF  
RHF  
RHF  
PWP  
RHF  
RHF  
16  
24  
24  
24  
24  
16  
24  
24  
2000  
3000  
250  
350.0  
367.0  
210.0  
367.0  
210.0  
350.0  
367.0  
210.0  
350.0  
367.0  
185.0  
367.0  
185.0  
350.0  
367.0  
185.0  
43.0  
35.0  
35.0  
35.0  
35.0  
43.0  
35.0  
35.0  
VQFN  
VQFN  
3000  
250  
VQFN  
HTSSOP  
VQFN  
2000  
3000  
250  
VQFN  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016H  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
6
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
PIN 1 INDEX  
SEATING  
PLANE  
A
0.1 C  
AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
NOTE 3  
4.55  
8
9
0.30  
16X  
4.5  
4.3  
0.19  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
0.25  
GAGE PLANE  
1.2 MAX  
2X 1.15 MAX  
NOTE 5  
0.15  
0.05  
0.75  
0.50  
8
9
0 -8  
A
15  
DETAIL A  
TYPICAL  
2X 0.3 MAX  
NOTE 5  
2.46  
2.16  
17  
THERMAL  
PAD  
1
16  
2.66  
2.36  
4223630/A 04/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016H  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.66)  
METAL COVERED  
BY SOLDER MASK  
16X (1.5)  
SYMM  
1
16  
(0.6) TYP  
16X (0.45)  
(R0.05) TYP  
SYMM  
(5)  
NOTE 9  
17  
(1.2)  
TYP  
(2.46)  
14X (0.65)  
9
8
0.2) TYP  
(
(1.2) TYP  
VIA  
SEE DETAILS  
(5.8)  
SOLDER MASK  
DEFINED PAD  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
15.000  
SOLDER MASK DETAILS  
4223630/A 04/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016H  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.66)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
16X (1.5)  
1
16  
16X (0.45)  
(R0.05) TYP  
(2.46)  
SYMM  
17  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SEE TABLE FOR  
SYMM  
(5.8)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.97 X 2.75  
2.66 X 2.46 (SHOWN)  
2.43 X 2.25  
0.125  
0.15  
0.175  
2.25 X 2.08  
4223630/A 04/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
RHF0024A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
5.1  
4.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.65 0.1  
2X 2  
(0.1) TYP  
12  
EXPOSED  
8
THERMAL PAD  
20X 0.5  
7
13  
3.65 0.1  
2X  
3
25  
SYMM  
SEE TERMINAL  
DETAIL  
19  
1
0.30  
0.18  
24X  
0.1  
C B A  
PIN 1 ID  
(OPTIONAL)  
24  
20  
SYMM  
0.05  
0.5  
0.3  
24X  
4219064 /A 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.65)  
SYMM  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(3.65)  
(1.575)  
20X (0.5)  
25  
SYMM  
(4.8)  
(0.62)  
TYP  
(R0.05)  
TYP  
13  
7
(
0.2) TYP  
VIA  
8
12  
(1.025)  
TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219064 /A 04/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (1.17)  
(0.685) TYP  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(1.24)  
TYP  
20X (0.5)  
SYMM  
(4.8)  
25  
6X (1.04)  
13  
(R0.05) TYP  
7
METAL  
TYP  
12  
8
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219064 /A 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS26602RHFR

具有集成输入反极性保护功能的 4.2V 至 60V、150mΩ、0.1A 至 2.23A 电子保险丝

| RHF | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26602RHFT

具有集成输入反极性保护功能的 4.2V 至 60V、150mΩ、0.1A 至 2.23A 电子保险丝

| RHF | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2661

TPS2661x: 50 V, Universal 4-20 mA, ±20-mA Current Loop Protector with Input/Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26610

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26610DDFR

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26611

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26611DDFR

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26612

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26612DDFR

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26613

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26613DDFR

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26614

TPS2661x: 50-V, Universal 4–20 mA, ±20-mA Current Loop Protector With Input and Output Miswiring Protection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI