TPS27S100ARRKR [TI]

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125;
TPS27S100ARRKR
型号: TPS27S100ARRKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125

开关
文件: 总41页 (文件大小:2035K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
TPS27S100x 40V 4A 80mΩ 单通道高侧开关  
1 特性  
2 应用  
1
具有全面诊断功能的 80mΩ 单通道高侧开关  
可编程逻辑控制器  
楼宇自动化  
TPS27S100A:开漏状态输出  
电信/网络  
TPS27S100B:电流监视器模拟输出  
宽工作电压范围:3.5V 40V  
超低待机电流,低于 0.5µA  
3 说明  
TPS27S100x 是一款受到全面保护的单通道高侧开  
关,具有集成式 NMOS 和电荷泵。全面的诊断功能和  
高精度电流监控器 功能 ,可对负载进行智能控制。可  
调节电流限制功能能够极大地提高整个系统的可靠性。  
器件诊断报告具有两个版本,以支持数字故障状态和模  
拟电流监控器输出。精确的电流监控器和可调节电流限  
制 特性 使该器件从市场中脱颖而出。  
工作结温范围,-40°C 150°C  
输入控制,兼容 3.3V 5V 逻辑  
高精度电流监控器,在 1A 时精度为 ±30mA  
可通过外部电阻器将电流限制调节为 0.5A 6A  
(在 0.5A 时精度为 ±20%)  
用于对 MCU、模拟或数字接口进行多路复用的诊  
断使能功能  
针对 IN OUT 引脚的出色 ESD 保护  
器件信息(1)  
±16kV IEC 61000-4-2 ESD 接触放电  
±4kV IEC 61000-4-4 电气快速瞬变  
±1.0kV/42Ω IEC 61000-4-5 浪涌  
器件型号  
封装  
HTSSOP (14)  
QFN (16)  
封装尺寸(标称值)  
4.40mm × 5.00mm  
4.00mm × 3.5mm  
TPS27S100x  
保护  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
过载和接地短路保护  
电感负载负电压钳位  
典型应用原理图  
欠压锁定 (UVLO) 保护  
具备自恢复功能的热关断和热振荡  
接地失效保护  
V+  
FIELD_POWER  
IN  
OUT  
TPS27S100  
EN  
A0  
诊断  
DIAG_EN  
开启和关闭状态输出开路负载/对电源短路检测  
FLT  
(A version)  
Fault  
过载和接地短路检测  
热关断和热振荡检测  
Current  
IMON  
(B version)  
Sense  
Digital  
Isolator  
Back-plane  
ASIC  
µC  
热增强型 14 引脚 PWP 16 引脚 QFN 封装  
TPS27S100  
A1  
TPS27S100  
A7  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE42  
 
 
 
 
 
 
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 25  
8.1 Application Information............................................ 25  
8.2 Typical Application ................................................. 25  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 6  
8
9
10 Layout................................................................... 27  
10.1 Layout Guidelines ................................................. 27  
10.2 Layout Example .................................................... 27  
11 器件和文档支持 ..................................................... 29  
11.1 接收文档更新通知 ................................................. 29  
11.2 社区资源................................................................ 29  
11.3 ....................................................................... 29  
11.4 静电放电警告......................................................... 29  
11.5 Glossary................................................................ 29  
12 机械、封装和可订购信息....................................... 29  
6.6 Timing Requirements – Current Monitor  
Characteristics ........................................................... 8  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7
4 修订历史记录  
Changes from Revision A (February 2018) to Revision B  
Page  
特性部分中添加了 QFN 封装............................................................................................................................................... 1  
设备信息 表中添加了 QFN (16) 封装,以及 4.00mm × 3.5mm 的封装尺寸 ....................................................................... 1  
更新了 典型应用原理图........................................................................................................................................................... 1  
Added RRK Package to the Pin Out Drawing and Pin Functions table ................................................................................. 3  
Updated the Specifications Absolute Maximum Ratings table .............................................................................................. 4  
Changed the Operation junction temperature range MAX from 150°C to 125°C in the Specifications Recommended  
Operating Conditions table .................................................................................................................................................... 4  
Added RRK package to the Specifications Thermal Information table .................................................................................. 4  
Updated the Operating Current section in the Specifications Electrical Characteristics table ............................................... 4  
Changes from Original (October 2017) to Revision A  
Page  
Added footnote 2 and 3 to the Electrical Characteristics table............................................................................................... 4  
Added reverse current protection information to the Reverse Current Protection section................................................... 22  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
5 Pin Configuration and Functions  
TPS27S100A PWP Package  
14-Pin HTSSOP With Exposed Thermal Pad  
Top View  
TPS27S100A RRK Package  
16-Pin QFN With Exposed Thermal Pad  
Top View  
NC  
FLT  
NC  
14  
13  
FLT  
1
2
3
4
5
6
7
ILIM  
GND  
EN  
GND  
EN  
ILIM  
DIAG_EN  
DIAG_EN  
12  
11  
10  
NC  
NC  
IN  
OUT  
OUT  
OUT  
NC  
NC  
IN  
Tab  
IN  
IN  
OUT  
OUT  
OUT  
IN  
9
8
OUT  
IN  
IN  
NC – No internal connection  
NC – No internal connection  
TPS27S100B RRK Package  
16-Pin QFN With Exposed Thermal Pad  
Top View  
TPS27S100B PWP Package  
14-Pin HTSSOP With Exposed Thermal Pad  
Top View  
NC  
IMON  
GND  
EN  
ILIM  
14  
NC  
IMON  
ILIM  
1
2
3
4
5
6
7
DIAG_EN  
NC  
NC  
IN  
13  
GND  
EN  
OUT  
OUT  
OUT  
IN  
DIAG_EN  
12  
11  
IN  
Tab  
NC  
NC  
IN  
OUT  
IN  
10  
OUT  
OUT  
OUT  
NC – No internal connection  
IN  
9
8
IN  
NC – No internal connection  
Pin Functions  
PIN  
TPS27S100 TPS27S100 TPS27S100  
I/O  
DESCRIPTION  
NAME  
TPS27S100B  
RRK  
A PWP  
B PWP  
A RRK  
Enable and disable pin for diagnostic functions.  
Connect to device GND if not used.  
DIAG_EN  
EN  
12  
12  
14  
3
14  
I
I
3
14  
3
3
Enable control for channel activation.  
Open-drain diagnostic status output. Leave floating  
if not used.  
FLT  
16  
2
O
O
O
I
GND  
ILIM  
2
2
2
Ground pin.  
adjustable current-limit pin. Connect to device GND  
if external current limit is not used.  
13  
13  
15  
15  
16  
IMON  
IN  
14  
Current-monitor output. Leave floating if not used.  
9, 10, 11,  
12  
8, 9, 10  
8, 9, 10  
9, 10, 11, 12  
Power supply.  
NC  
1, 4, 11  
5, 6, 7  
1, 4, 11  
5, 6, 7  
1, 4, 13  
1, 4, 13  
O
No-connect pin; leave floating.  
Output, connected to load.  
OUT  
5, 6, 7, 8  
5, 6, 7, 8  
Thermal pad. Connect to device GND or leave  
floating.  
Thermal pad  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)  
(1)(2)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage  
Supply voltage (for transients less than 400 ms)  
Current on GND pin, t < 2 minutes  
Voltage on EN and DIAG_EN pins  
Current on EN and DIAG_EN pins  
Voltage on FLT pin  
48  
V
–250  
–0.3  
–10  
100  
7
mA  
V
mA  
V
–0.3  
–30  
7
10  
Current on FLT pin  
mA  
V
Voltage on ILIM pin  
–0.3  
–2.7  
7
Voltage on IMON pin  
6.5  
70  
V
Inductive load switch-off energy dissipation, single pulse(3)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
mJ  
°C  
°C  
–40  
–65  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Test condition: VIN = 13.5 V, L = 8 mH, R = 0 Ω, TJ = 150°C. FR4 2s2p board, 2- × 70-μm Cu, 2- × 35-μm Cu. 600-mm2 board copper  
area.  
6.2 ESD Ratings  
VALUE  
±5000  
±4000  
±750  
UNIT  
(1)  
(1)  
Human body model (HBM)  
Human body model (HBM)  
IN, OUT, GND  
Other pins  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM)  
(2)  
V(ESD)  
V(ESD)  
V(ESD)  
Contact/Air discharge, per IEC 61000-4-2  
IN, OUT  
IN, OUT  
IN, OUT  
±16000  
±4000  
±1000  
V
V
V
Electrostatic  
discharge  
(2)  
Electrical fast transient, per IEC 61000-4-4  
Surge protection with 42 , per IEC 61000-4-5; 1.2/50 μs  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) Tested with application circuit shown in 35 with CVIN1= 47 μF, CVIN2= 100 nF, CVOUT= 22 nF and SM15T30A TVS input clamp. Supply  
voltage of 24 V DC is always ON, EN Inputs are High, so output is High (ON) and floating (no load).  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5
MAX  
40  
5
UNIT  
V
VIN  
Operating voltage  
VENx  
VFLT  
IL,nom  
TJ  
Voltage on EN and DIAG_EN pins  
Voltage on FLT pin  
0
V
0
5
V
Nominal dc load current  
0
4
A
Operating junction temperature range  
–40  
125  
°C  
6.4 Thermal Information  
TPS27S100x  
THERMAL METRIC(1)  
PWP (HTSSOP)  
RRK (QFN)  
UNIT  
14 PINS  
41  
16 PINS  
42.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.7  
31.3  
25.1  
16.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
Thermal Information (continued)  
TPS27S100x  
THERMAL METRIC(1)  
PWP (HTSSOP)  
RRK (QFN)  
16 PINS  
0.4  
UNIT  
14 PINS  
0.9  
ψJT  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
24.8  
2.7  
16.5  
RθJC(bot)  
4.6  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
5 V < VIN < 40 V; –40°C < TJ < 150°C unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
OPERATING VOLTAGE  
VIN(nom)  
VIN(uvr)  
VIN(uvf)  
V(uv,hys)  
Nominal operating voltage  
Undervoltage restart  
4
3.5  
3
40  
4
V
V
V
V
VIN rises up  
3.7  
3.2  
0.5  
Undervoltage shutdown  
VIN falls down  
3.5  
OPERATING CURRENT  
VEN = 5 V, VDIAG_EN = 0 V, 5 V < VIN < 30 V, no  
load; –40°C TJ < 125°C  
I(op)  
Nominal operating current  
2.5  
2.5  
3.2  
mA  
VEN = 5 V, VDIAG_EN = 0 V, 5 V < VIN < 40 V, no  
load; –40°C TJ < 150°C  
I(op)  
Nominal operating current  
5
10  
2
mA  
mA  
µA  
I(op)  
Nominal operating current  
VEN = 5 V, VDIAG_EN = 0 V, 24-Ω load  
VIN = 24 V, VEN = VDIAG_EN = VIMON = VILIM = VOUT  
0 V, TJ = 25°C  
=
I(off)  
Standby mode current  
I(off,diag)  
t(off,deg)  
Standby current with diagnostic enabled  
Standby mode deglitch time(1)  
Off-state output leakage current  
VIN = 24 V, VEN = 0 V, VDIAG_EN = 5 V  
1.2  
mA  
ms  
µA  
EN from high to low, if deglitch time > t(off,deg), the  
device enters into standby mode.  
2
Ilkg(out)  
VIN = 24 V, VEN = VOUT = 0, TJ = 25°C  
0.5  
POWER STAGE  
VIN > 5 V, TJ = 25°C  
VIN > 5 V, TJ = 150°C  
VIN = 3.5 V, TJ = 25°C  
80  
100  
166  
120  
mΩ  
mΩ  
mΩ  
rDS(on)  
On-state resistance  
Internal current limit  
Internal current limit value, ILIM pin connected to  
GND  
IILIM(int)  
7
13  
A
A
Internal current limit value under thermal shutdown  
5
External current limit value under thermal shutdown  
as a percentage of the external current limit setting  
value  
IILIM(TSD)  
Current limit during thermal shutdown  
Drain-to-source internal clamp voltage  
50  
%
V
VDS(clamp)  
50  
70  
OUTPUT DIODE CHARACTERISTICS  
VF  
Drain-to-source diode voltage  
VEN = 0, IOUT = 0.2 A  
0.7  
2
V
A
Continuous reverse current from source to t < 60 s, VEN = 0, TJ = 25°C. Short-to-supply  
drain  
I(R1)  
condition.  
t < 60 s, VEN = 0, TJ = 25°C. With GND network, 1-  
kΩ resistor in parallel with A diode. Reverse-polarity  
condition.  
Continuous reverse current from source to  
drain  
I(R2)  
3
A
LOGIC INPUT (EN AND DIAG_EN)  
VIH  
Logic high-level voltage  
Logic low-level voltage  
EN pulldown resistor  
2
V
V
VIL  
0.8  
R(EN,pd)  
R(DIAG,pd)  
500  
150  
kΩ  
kΩ  
DIAG_EN pulldown resistor  
(1) Value is specified by design, not subject to production test.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
Electrical Characteristics (continued)  
5 V < VIN < 40 V; –40°C < TJ < 150°C unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIAGNOSTICS  
VEN = 0 V, When VIN – VOUT < V(ol,off), duration  
longer than td(ol,off). Open load detected.  
V(ol,off)  
Open-load detection threshold in off-state  
1.4  
1.8  
2.6  
V
Off-state output sink current with open  
load  
I(ol,off)  
VEN = 0 V, VIN = VOUT = 24 V, TJ = 125°C.  
–150  
µA  
µs  
Open-load detection-threshold deglitch  
time in off state  
VEN = 0 V, When VIN – VOUT < Vol,off, duration longer  
than tol,off. Open load detected.  
td(ol,off)  
600  
6
VEN = 5 V, when IOUT < I(ol,on), duration longer than  
td(ol,on). Open load detected.  
I(ol,on)  
Open-load detection threshold in on state  
2
10  
mA  
Version A only  
Open-load detection-threshold deglitch  
time in on-state  
VEN = 5 V, when IOUT < I(ol,on), duration longer than  
td(ol,on). Open load detected.  
td(ol,on)  
700  
µs  
V(FLT)  
T(SD)  
Fault low output voltage  
IFLT = 2 mA  
0.4  
V
Thermal shutdown threshold  
Thermal shutdown status reset  
Thermal swing shutdown threshold  
175  
155  
60  
°C  
°C  
°C  
T(SD,rst)  
T(SW)  
Hysteresis for resetting the thermal  
shutdown and swing  
T(hys)  
10  
°C  
CURRENT MONITOR AND CURRENT LIMIT  
K(IMON)  
K(ILIM)  
Current sense current ratio  
Current limit current ratio  
500  
2000  
I
I
I
I
I
I
I
I
I
load 5 mA  
–80  
–12  
–8  
80  
12  
8
load 25 mA  
dK(IMON)/K(IMON) Current-monitor accuracy  
load 50 mA  
%
load 0.1 A  
–5  
5
load 1 A  
–3  
3
limit 0.5 A, 25°C < TJ < 150°C  
limit 0.5 A, -40°C < TJ < 25°C  
limit 1.6 A, 25°C < TJ < 150°C  
limit 1.6 A, -40°C < TJ < 25°C  
–20  
–28  
–15  
–18  
20  
28  
15  
18  
%
%
(3)  
(3)  
dK(ILIM)/K(ILIM)  
External current-limit accuracy(2)  
,
,
dK(ILIM)/K(ILIM)  
External current-limit accuracy(2)  
%
Current-monitor voltage linear voltage  
range(1)  
VIMON(lin)  
IOUT(lin)  
VIN 5 V  
0
4
V
A
Current-monitor voltage linear current  
range(1)  
VIN 5 V, VIMON(lin) 4 V  
VIN 7 V, fault mode  
0
4
4.9  
4.9  
4.3  
4.75  
VIMON(H)  
IMON pin voltage in Fault mode  
V
Min(VIN  
VIN 5 V, fault mode  
0.8, 4.3)  
IIMON(H)  
IMON pin current in Fault mode  
Current limit internal threshold voltage(1)  
VIMON = 4.3 V, VIN > 7 V, fault mode  
10  
mA  
V
VIMON(th)  
1.233  
(2) External current limit set is recommended to be higher than 500 mA.  
(3) External current limit accuracy is only applicable to overload conditions greater than 1.5 x the current limit setting.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
MAX UNIT  
6.6 Timing Requirements – Current Monitor Characteristics(1)  
MIN  
NOM  
IMON settling time from  
DIAG_EN disabled  
tIMON(off1)  
tIMON(on1)  
VEN = 5 V, Iload 5 mA. VDIAG_EN from 5 to 0 V. IMON to 10% of sense value.  
VEN = 5 V, Iload 5 mA. VDIAG_EN from 0 to 5 V. IMON to 90% of sense value.  
10  
10  
µs  
µs  
IMON settling time from  
DIAG_EN enabled  
VDIAG_EN = 5 V, Iload 5 mA. EN from 5 to 0 V. IMON to 10% of sense value.  
VDIAG_EN = 5 V, Iload 5 mA. EN from 5 to 0 V. Current limit triggered.  
10  
µs  
µs  
IMON settling time from  
EN falling edge  
tIMON(off2)  
180  
IMON settling time from VIN = 24 V, VDIAG_EN = 5 V, Iload 100 mA. VEN from 0 to 5 V. IMON to 90%  
EN rising edge of sense value.  
tIMON(on2)  
150  
µs  
(1) Value specified by design, not subject to production test.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
6.7 Switching Characteristics  
VIN = 24 V, Rload = 24 Ω, over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
Turn-on delay time  
Turn-off delay time  
Slew rate on  
TEST CONDITIONS  
EN rising edge to VOUT = 10%, DIAG_EN high  
EN falling edge to VOUT = 90%, DIAG_EN high  
VOUT = 10% to 90%, DIAG_EN high  
MIN  
20  
TYP  
MAX  
50  
UNIT  
µs  
td(on)  
td(off)  
40  
80  
µs  
dV/dt(on)  
dV/dt(off)  
0.1  
0.1  
0.5  
0.5  
V/µs  
V/µs  
Slew rate off  
VOUT = 90% to 10%, DIAG_EN high  
(1) Value specified by design, not subject to production test.  
Figure 1. Pin Current and Voltage Conventions  
VEN  
90%  
90%  
dV/dt(off)  
10%  
dV/dt(on)  
VOUT  
10%  
td(on)  
td(off)  
Figure 2. Output Delay Characteristics  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
VEN  
IOUT  
VDIAG_EN  
VIMON  
tIMON(on2) tIMON(off1)  
tIMON(on1)  
tIMON(off2)  
Figure 3. Current sense Delay Characteristics  
Open  
Load  
Open Load  
EN  
VIMON(H)  
IMON  
FLT  
td(ol,off)  
td(ol,on)  
td(ol,off)  
Figure 4. Open Load Blanking Time Characteristics  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
6.8 Typical Characteristics  
All the below data are based on the mean value of the three lots samples, VIN = 24 V if not specified.  
10  
8
4
3.8  
3.6  
3.4  
3.2  
3
Inom (no load)  
Inom (24-O load)  
Vs,uvr  
Vs,uvf  
6
4
2
0
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Temperature (èC)  
D002  
D001  
6. Inom With No Load and 24-Ω Load  
5. IN Pin Undervoltage Rising and Falling Thresholds  
VIN,UVR and VIN,UVF  
1.2  
1.8  
1.6  
1.4  
1.2  
1
Vlogic,h  
Vlogic,l  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Temperature (èC)  
D004  
D005  
7. Ioff,diag as a Function of Temperature  
8. Vlogic,h and Vlogic,l  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
All the below data are based on the mean value of the three lots samples, VIN = 24 V if not specified.  
0.9  
0.8  
0.7  
0.6  
0.5  
65  
60  
55  
50  
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Temperature (èC)  
D006  
D007  
9. Drain-to-source Diode Voltage VF  
10. VDS, Clamp  
130  
115  
100  
85  
11  
Rdson_3P5V  
Rdson_5V  
Rdson_13P5  
Rdson_40V  
10.5  
10  
9.5  
70  
55  
9
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (èC)  
Temperature (èC)  
D008  
D009  
11. FET RDSON  
12. Current Limit Ilim,nom  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
0.44  
0.42  
0.4  
0.38  
0.36  
0.34  
0.32  
0.3  
TD_On  
TD_Off  
dV/dtON  
dV/dtOFF  
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (èC)  
Temperature (èC)  
D010  
D011  
13. TDon and TDoff  
14. dV/dtON and dV/dtOFF  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
All the below data are based on the mean value of the three lots samples, VIN = 24 V if not specified.  
1.95  
9
8
7
6
5
1.9  
1.85  
1.8  
1.75  
1.7  
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Temperature (èC)  
D013  
D014  
15. Vol,off  
16. Iol,on  
10%  
8%  
20%  
15%  
10%  
5%  
6%  
4%  
2%  
0
0
-2%  
-4%  
-6%  
-8%  
-10%  
-5%  
-10%  
-15%  
-20%  
-40  
-10  
20  
50  
80  
110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
D017  
D015  
18. K(IMON) at IOUT = 25 mA, VIN = 24 V  
17. K(IMON) at IOUT = 5 mA, VIN = 24 V  
1.75%  
1.5%  
1.25%  
1%  
10%  
8%  
6%  
4%  
0.75%  
0.5%  
0.25%  
0
2%  
0
-2%  
-4%  
-6%  
-8%  
-10%  
-0.25%  
-0.5%  
-0.75%  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
Temperature (èC)  
D019  
D016  
19. K(IMON) at IOUT = 50 mA, VIN = 24 V  
20. K(IMON) at IOUT = 100 mA, VIN = 24 V  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
All the below data are based on the mean value of the three lots samples, VIN = 24 V if not specified.  
3%  
2.5%  
2%  
10%  
8%  
6%  
1.5%  
1%  
4%  
2%  
0.5%  
0
0
-2%  
-4%  
-6%  
-8%  
-10%  
-0.5%  
-1%  
-1.5%  
-2%  
-2.5%  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
-40  
-10  
20  
50  
80  
110 125  
Temperature (èC)  
D018  
D020  
21. K(IMON) at IOUT = 1 A, VIN = 24 V  
22. K(ILIM) at IILIM = 0.5 A, VIN = 24 V  
10%  
8%  
6%  
4%  
2%  
0
-2%  
-4%  
-6%  
-8%  
-10%  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
D021  
23. K(ILIM) at IILIM = 1.6 A, VIN = 24 V  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
7 Detailed Description  
7.1 Overview  
The TPS27S100x is a single-channel, fully-protected, high-side switch with an integrated NMOS and charge  
pump. Full diagnostics and high-accuracy current-monitor features enable intelligent control of the load. An  
adjustable current-limit function greatly improves the reliability of the whole system. The device diagnostic  
reporting has two versions to support both digital fault status and analog current monitor output.  
For TPS27S100A, the digital fault status report is implemented with an open-drain structure. For TPS27S100B,  
high-accuracy current-monitor allows a better real-time monitoring effect and more-accurate diagnostics without  
further calibration. A current mirror is used to source a fraction ( 1 / K(IMON)) of the load current. K(IMON) is a nearly  
constant value across the temperature and supply voltage.  
The external high-accuracy current limit allows setting the current limit value by application. Under start-up or  
short-circuit conditions, it improves the reliability of the system significantly by clamping the inrush current  
effectively. It can also save system costs by reducing PCB trace, connector size, and the preceding power-stage  
capacity. An internal current limit is also implemented in this device. The lower value of the external or internal  
current-limit value is applied.  
An active drain to source voltage clamp is built in to address switching off the energy of inductive loads, such as  
relays, solenoids, motors, and so forth. During switching-off cycle, both the energy of the power supply and the  
inductive load are dissipated on the device itself. See Inductive-Load Switching-Off Clamp for more details.  
The TPS27S100x device can be used as a high-side switch to drive a wide variety of resistive, inductive, and  
capacitive loads.  
7.2 Functional Block Diagram  
IN  
Internal LDO  
Charge Pump  
VDS Clamp  
Internal Reference  
EN  
Gate Driver  
DIAG_EN  
Open Load  
Detection  
FLT  
ILIM  
Diagnostics  
& Protection  
Current Limit  
Current Sense  
OUT  
Thermal Monitor  
IMON  
GND  
7.3 Feature Description  
7.3.1 Accurate Current Monitor  
For TPS27S100B, the high-accuracy current-monitor function is internally implemented, which allows a better  
real-time monitoring effect. A current mirror is used to source 1 / KIMON of the load current, flowing out to the  
external resistor between the IMON and GND.  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
KIMON is the ratio of the output current and the sense current. It is a constant value across the temperature and  
supply voltage range. Each part is factory calibrated during production test, so user-calibration is not required in  
most cases.  
IN  
IOUT/  
K(IMON)  
IOUT  
VIMON(H)  
OUT  
FAULT  
IMON  
RIMON  
24. Current-monitor Block Diagram  
When a fault occurs, the IMON pin also works as a fault report with a pullup voltage, VIMON(H)  
.
VIMON  
VIMON(H)  
VIMON(lin)  
Fault report  
Normal Operating  
IOUT  
On-state: current limit, thermal fault  
Off-state: open load/ short to supply  
On-state: open load/ short to supply  
25. IMON Output-Voltage Curve  
Use Equation 1 to calculate RIMON. Also, please ensure VIMON is within the current-sense linear region VIMON(lin)  
across the full range of the load current.  
V
IMON ìK(IMON)  
V
IMON  
RIMON  
=
=
IIMON  
IOUT  
(1)  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
Feature Description (接下页)  
7.3.2 Adjustable Current Limit  
A high-accuracy current limit allows high reliability of the design. It protects the load and the power supply from  
over-stressing during short-circuit-to-GND or power-up conditions. The current limit can also save system cost by  
reducing the size of PCB traces and connectors, and the capacity of the preceding power stage.  
When the current-limit threshold is hit, a closed loop activates immediately. The output current is clamped at the  
set value, and a fault is reported out. The device heats up due to the high power dissipation on the power FET. If  
thermal shutdown occurs, the current limit is set to IILIM(TSD) to reduce the power dissipation on the power FET.  
The device has two current-limit thresholds.  
Internal current limit – The internal current limit is fixed at IILM(int). Tie the ILIM pin directly to the device GND for  
large-transient-current applications.  
External adjustable current limit – An external resistor is used to set the current-limit threshold. Use Equation 2  
below to calculate the RILIM. VILIM(th) is the internal band-gap voltage. K(ILIM) is the ratio of the output current and  
the current-limit set value. It is constant across the temperature and supply voltage. The external adjustable  
current limit allows the flexibility to set the current limit value by applications.  
VIILM(th) K(ILIM)  
RILIM  
=
IOUT  
(2)  
Note that if a GND network is used (which leads to the level shift between the device GND and board GND), the  
ILIM pin must be connected with device GND.  
IN  
IOUT/  
K(ILIM)  
Internal Current Limit  
-
+
+
-
IOUT  
+
VILIM(th)  
OUT  
External Current Limit  
-
+
VILIM(th)  
ILIM  
26. Current-Limit Block Diagram  
For better protection from a hard short-to-GND condition (when the EN pin is enabled, a short to GND occurs  
suddenly), the device implements a fast-trip protection to turn off the channel before the current-limit closed loop  
is set up. The fast-trip response time is less than 1 μs, typically. With this fast response, the device can achieve  
better inrush current-suppression performance.  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Inductive-Load Switching-Off Clamp  
When switching an inductive load off, the inductive reactance tends to pull the output voltage negative. Excessive  
negative voltage could cause the power FET to break down. To protect the power FET, an internal clamp  
between drain and source is implemented, namely VDS(clamp)  
.
IN  
VDS(clam  
p)  
-
L
OUT  
R
GND  
+
27. Drain-to-Source Clamping Structure  
EN  
VIN  
VOUT  
VDS(clamp)  
IOUT  
t(decay)  
28. Inductive-Load Switching-Off Diagram  
7.3.4 Full Protections and Diagnostics  
1 is when DIAG_EN enabled. When DIAG_EN is low, all the diagnostics is disabled accordingly. The output is  
in high-impedance mode. Refer to 2 for details.  
1. Fault Table  
FLT  
(TPS27S100A)  
IMON  
(TPS27S100B)  
CONDITIONS  
IN  
OUT  
CRITERION  
FAULT RECOVERY  
L
H
H
L
H
L
H
H
L
0
Normal  
In linear region  
VIMON(H)  
Short to GND  
Current limit triggered.  
AUTO  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
Feature Description (接下页)  
1. Fault Table (接下页)  
FLT  
(TPS27S100A)  
IMON  
(TPS27S100B)  
CONDITIONS  
IN  
OUT  
CRITERION  
FAULT RECOVERY  
TPS27S100A: IOUT< I(ol,on)  
TPS27S100B: Judged by users  
Open load(1)  
Short to supply  
H
L
H
H
L
L
Almost 0  
AUTO  
AUTO  
VIN – VOUT < V(ol,off)  
VIMON(H)  
Recovery when TJ <  
T(SD,rst)or when EN  
toggles.  
Thermal shutdown  
Thermal swing  
H
H
TSD triggered  
L
L
VIMON(H)  
VIMON(H)  
TSW triggered  
AUTO  
(1) Need external pull-up resistor during off-state  
2. DIAG_EN Logic Table  
DIAG_EN  
EN  
ON  
PROTECTIONS AND DIAGNOSTICS  
See 1  
See 1  
HIGH  
OFF  
Diagnostics disabled, protection normal  
IMON or FLT is high Impedance  
ON  
LOW  
Diagnostics disabled, no protections  
IMON or FLT is high impedance  
OFF  
7.3.4.1 Short-to-GND and Overload Detection  
When the switch is on, a short to GND or overload condition causes overcurrent. If the overcurrent triggers either  
the internal or external current-limit threshold, the fault condition is reported out. The microcontroller can handle  
the overcurrent by turning off the switch. The device heats up if no actions are taken. If a thermal shutdown  
occurs, the current limit is IILIM(TSD)to keep the power stressing on the power FET to a minimum. The device  
automatically recovers when the fault condition is removed.  
7.3.4.2 Open-Load Detection  
When the channel is on, for TPS27S100A, if the current flowing through the output is less than I(ol,on), the device  
recognizes an open-load fault. For TPS27S100B, if an open-load event occurs, it can be detected as an ultra-low  
VIMON and handled by the microcontroller.  
When the channel is off, if a load is connected, the output is pulled down to GND. But if an open load occurs, the  
output voltage is close to the supply voltage (VIN – VOUT < V(ol,off)), and the fault is reported out.  
There is always a leakage current I(ol,off) present on the output due to internal logic control path or external  
humidity, corrosion, and so forth. Thus, TI recommends an external pullup resistor to offset the leakage current  
when an open load is detected. The recommended pullup resistance is 15 kΩ.  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Open Load Detection in Off-State  
V(ol,off)  
Vds  
R(pullup)  
Load  
29. Open-Load Detection Circuit in Off-State  
7.3.4.3 Short-to-Supply Detection  
Short-to-Supply has the same detection mechanism and behavior as open-load detection, in both the on-state  
and off-state. See 1 for more details.  
7.3.4.4 Thermal Fault Detection  
To protect the device in severe power stressing cases, the device implements two types of thermal fault  
detection, absolute temperature protection (thermal shutdown) and dynamic temperature protection (thermal  
swing). Respective temperature sensors are integrated close to each power FET, so the thermal fault is reported  
by each channel. This arrangement can help the device keep the cross-channel effect to a minimum when some  
channels are in a thermal fault condition.  
Thermal shutdown is active when the absolute temperature TJ > T(SD). When thermal shutdown occurs, the  
respective output turns off.  
Thermal swing activates when the power FET temperature is increasing sharply, that is, when ΔT = T(FET)  
T(Logic) > T(sw), then the output turns off. The output automatically recovers and the fault signal clears when ΔT =  
T(FET) – T(Logic) < T(sw) – T(hys). Thermal swing function improves the device reliability when subjected to repetitive  
fast thermal variation.  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
Thermal behaviors after Short to GND  
EN  
TJ  
T(SD)  
T(hys)  
T(SD,rst)  
T(hys)  
T(SW)  
IILIM  
IILIM(TSD)  
IOUT  
VILM  
VILM(H)  
FLT  
30. Thermal Behavior Diagram  
7.3.4.5 UVLO Protection  
The device monitors the supply voltage VIN, to prevent unpredicted behaviors when VIN is too low. When VIN falls  
down to VIN(uvf), the device shuts down. When VIN rises up to VIN(uvr), the device turns on.  
7.3.4.6 Loss of GND Protection  
When loss of GND occurs, output is shut down regardless of whether the EN pin is high or low. The device can  
protect against two ground-loss conditions, loss of device GND and loss of module GND.  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.4.7 Reverse Current Protection  
Reverse current occurs in two conditions: short to supply and reverse polarity.  
When a short to the supply occurs, there is only reverse current through the body diode. IR(1) specifies the limit  
of the reverse current.  
In a reverse-polarity condition, there are reverse currents through the body diode and the device GND pin. IR(2)  
specifies the limit of the reverse current.  
To protect the device, TI recommends two types of external circuitry.  
Adding a blocking diode. Both the IC and load are protected when in reverse polarity.  
Load  
31. Reverse-Current External Protection, Method 1  
Adding a GND network. The reverse current through the device GND is blocked. The reverse current through  
the FET is limited by the load itself. TI recommends a resistor in parallel with the diode as a GND network. The  
recommended selection are 1-kΩ resistor in parallel with an >100-mA diode. The reverse current protection diode  
in the GND network forward voltage should be less than 0.6 V in any circumstances. In addition a minimum  
resistance of 4.7 K is recommended on the I/O pins.  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
Load  
32. Reverse-Current External Protection, Method 2  
7.3.4.8 Protection for MCU I/Os  
TI recommends serial resistors to protect the microcontroller, for example, 4.7-kΩ when using a 3.3-V  
microcontroller and 10-kΩ for a 5-V microcontroller.  
IOs  
MCU  
High Side Switch  
Load  
33. MCU I/O External Protection  
7.4 Device Functional Modes  
7.4.1 Working Mode  
The device has three working modes: the normal mode, the standby mode, and the standby mode with  
diagnostics.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
Standby Mode  
(EN low, DIAG_EN low)  
DIAG_EN low  
AND  
EN high to low  
AND  
t > t(off,deg)  
DIAG_EN high to low  
EN low to high  
DIAG_EN low to high  
Standby Mode  
With DIAG  
(EN low, DIAG_EN high)  
EN low to high  
Normal Mode  
(EN high)  
EN high to low  
AND  
DIAG_EN high  
AND  
t > t(off,deg)  
34. Working Modes  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The device is capable of driving a wide variety of resistive, inductive, and capacitive loads. Full diagnostics and  
high accuracy current-monitor features enable intelligent control of the load. An external adjustable current limit  
improves the reliability of the whole system by clamping the inrush or overload current.  
8.2 Typical Application  
35 shows an example of how to design the external circuitry parameters.  
3.5 V to 40 V  
Supply Voltage  
CVIN1  
CVIN2  
D_TVS  
IN  
RSER  
EN  
RSER  
General Resistive,  
Capacitive, Inductive  
Loads  
DIAG_EN  
OUT  
CVOUT  
3.3 / 5 V  
Rpullup  
MCU  
RSER  
FLT (TPS27S100A)  
IMON (TPS27S100B)  
RIMON  
GND  
ILIM  
GND  
RILIM  
GND  
35. Typical Application Circuitry  
3. Recommended External Components  
COMPONENT  
RSER  
TYPICAL VALUE  
15 kΩ  
PURPOSE  
Protect microcontroller and device I/O pins  
RIMON  
1 kΩ  
Translate the sense current into sense voltage  
Low-pass filter for the ADC input  
Set current limit threshold  
CSNS  
100 pF - 10 nF  
0.82 kΩ  
RILIM  
4.7 nF to Device GND  
Filtering of high frequency noise  
CVIN1/2  
Stabilize the input supply and voltage spike suppression for surge transient  
immunity.  
220 nF to Module GND  
COUT  
DTVS  
22 nF  
Immunity to ESD  
36V TVS diode  
Transient voltage clamp for surge transient immunity  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.2.1 Design Requirements  
VIN range from 9 V to 30 V  
Nominal current of 2 A  
Current Monitor for fault monitoring  
Expected current limit value of 5 A  
Full diagnostics with 5-V MCU  
8.2.2 Detailed Design Procedure  
To keep the 2-A nominal current in the 0 to 4-V current-sense range, calculate the RIMON resistor using Equation  
3. To achieve better current-sense accuracy, a 1% tolerance or better resistor is preferred.  
VIMON ì K(IMON)  
IOUT  
4 ì 500  
R IMON  
=
=
= 1000  
2
(3)  
(4)  
To set the adjustable current limit value at 5-A, calculate RILIM using Equation 4.  
VLIM(th) K(ILIM)  
1.233 2000  
R ILIM  
=
=
= 493.2  
IOUT  
5
TI recommends RSER = 10 kΩ for 5-V MCU, and Rpullup = 10 kΩ as the pull-up resistor.  
8.2.3 Application Curves  
36 shows a an example of initial inrush or short-circuit current limit. Test conditions: EN is from low to high,  
load is resistive short-to-GND or with a 470-µF capacitive load, external current limit is 2 A. CH1 is the output  
current. CH3 is the EN step.  
37 shows an example of current limit during hard short-circuit. Test conditions: EN is high, load is (5 µH + 100  
mΩ), external current limit is 1 A. A short to GND suddenly happens.  
37. Hard Short-to-GND Waveform  
36. Initial Short-to-GND Waveform  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
9 Power Supply Recommendations  
The device is qualified for both 12-V and 24-V applications. The typical power input is a 12-V or 24-V industrial  
power supply.  
10 Layout  
10.1 Layout Guidelines  
To prevent thermal shutdown, TJ must be less than 150°C. If the output current is very high, the power  
dissipation may be large. The HTSSOP package has good thermal impedance. However, the PCB layout is very  
important. Good PCB design can optimize heat transfer, which is absolutely essential for the long-term reliability  
of the device.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-  
flow path from the package to the ambient is through the copper on the PCB. Maximum copper is extremely  
important when there are not any heat sinks attached to the PCB on the other side of the board opposite the  
package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias should either be plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
10.2 Layout Example  
10.2.1 Without a GND Network  
Without a GND network, tie the thermal pad directly to the board GND copper for better thermal performance.  
14  
13  
FLT/IMON  
NC  
1
2
3
4
5
6
7
ILIM  
GND  
DIAG_EN  
12  
11  
EN  
NC  
Thermal  
Pad  
NC  
IN  
10  
OUT  
OUT  
OUT  
IN  
9
8
IN  
38. Layout Without a GND Network  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
TPS27S100  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Layout Example (接下页)  
10.2.2 With a GND Network  
With a GND network, tie the thermal pad with a single trace through the GND network to the board GND copper.  
GND Network  
14  
13  
NC  
GND  
1
2
3
4
5
6
7
FLT/IMON  
ILIM  
12  
11  
EN  
NC  
DIAG_EN  
Thermal  
Pad  
NC  
IN  
10  
OUT  
OUT  
OUT  
IN  
9
8
IN  
39. Layout With a GND Network  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS27S100  
www.ti.com.cn  
ZHCSHQ0B OCTOBER 2017REVISED SEPTEMBER 2019  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS27S100APWPR  
TPS27S100APWPT  
TPS27S100ARRKR  
TPS27S100ARRKT  
TPS27S100BPWPR  
TPS27S100BPWPT  
TPS27S100BRRKR  
TPS27S100BRRKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
WQFN  
PWP  
PWP  
RRK  
RRK  
PWP  
PWP  
RRK  
RRK  
14  
14  
16  
16  
14  
14  
16  
16  
2000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
27S1A  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
27S1A  
27S100A  
27S100A  
27S1B  
WQFN  
HTSSOP  
HTSSOP  
WQFN  
27S1B  
27S100B  
27S100B  
WQFN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS27S100APWPR  
TPS27S100ARRKR  
TPS27S100ARRKT  
TPS27S100BRRKR  
TPS27S100BRRKT  
HTSSOP PWP  
14  
16  
16  
16  
16  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
3.8  
3.8  
3.8  
3.8  
5.6  
4.3  
4.3  
4.3  
4.3  
1.6  
1.5  
1.5  
1.5  
1.5  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
WQFN  
WQFN  
WQFN  
WQFN  
RRK  
RRK  
RRK  
RRK  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS27S100APWPR  
TPS27S100ARRKR  
TPS27S100ARRKT  
TPS27S100BRRKR  
TPS27S100BRRKT  
HTSSOP  
WQFN  
WQFN  
WQFN  
WQFN  
PWP  
RRK  
RRK  
RRK  
RRK  
14  
16  
16  
16  
16  
2000  
3000  
250  
350.0  
367.0  
210.0  
367.0  
210.0  
350.0  
367.0  
185.0  
367.0  
185.0  
43.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RRK0016A  
3.65  
3.35  
A
B
4.15  
3.85  
PIN 1 INDEX AREA  
C
0.8  
0.7  
SEATING PLANE  
0.05  
0.00  
0.08 C  
2.05±0.1  
2X 1.5  
(0.1) TYP  
8
9
(0.2)MIN  
10X 0.5  
2X 2.5  
7
10  
PKG  
2.55±0.1  
17  
0.29  
0.19  
2
15  
16X  
0.1  
0.05  
C A B  
C
1
PIN 1 ID  
(OPTIONAL)  
16  
PKG  
0.5  
0.3  
16X  
4424663 / B 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RRK0016A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.05)  
2X(1.5)  
1
16  
16X (0.6)  
PKG  
15  
2
16X (0.24)  
10X (0.5)  
(1.025)  
PKG  
(2.55)  
(3.8)  
17  
(Ø0.2) VIA  
(TYP)  
7
10  
(R0.05) TYP  
9
8
(0.775)  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4424663 / B 03/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RRK0016A  
PLASTIC QUAD FLATPACK- NO LEAD  
2X(1.5)  
0.56  
(R0.05) TYP  
1
16  
16X (0.6)  
2
15  
16X (0.24)  
10X (0.5)  
(0.67)  
PKG  
(3.8)  
17  
4X(1.13)  
7
10  
PKG  
EXPOSED METAL  
8
9
4X(0.92)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 80%  
SCALE: 20X  
4424663 / B 03/2020  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
PACKAGE OUTLINE  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X (0.6)  
NOTE 5  
2X (0.4)  
NOTE 5  
THERMAL  
PAD  
7
8
0.25  
1.2 MAX  
GAGE PLANE  
2.59  
1.89  
15  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
1
14  
DETAIL A  
TYPICAL  
2.6  
1.9  
4229706/A 06/2023  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.6)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
14X (1.5)  
(1.2) TYP  
14  
14X (0.45)  
1
(5)  
NOTE 9  
(R0.05) TYP  
SYMM  
(0.6)  
15  
(2.59)  
12X (0.65)  
7
8
(
0.2) TYP  
VIA  
SEE DETAILS  
(1.1) TYP  
SOLDER MASK  
DEFINED PAD  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4229706/A 06/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
14X (1.5)  
14X (0.45)  
14  
1
(R0.05) TYP  
(2.59)  
SYMM  
15  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
7
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 12X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 2.90  
2.60 X 2.59 (SHOWN)  
2.37 X 2.36  
0.125  
0.15  
0.175  
2.20 X 2.19  
4229706/A 06/2023  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS27S100ARRKT

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27S100BPWPR

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | PWP | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27S100BPWPT

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | PWP | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27S100BRRKR

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27S100BRRKT

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27SA08

具有电流监测功能的汽车类 36V、8mΩ 单通道智能高侧开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27SA08-Q1

具有电流监测功能的汽车级 36V、8mΩ、10A 单通道智能高侧开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27SA08CPWPR

具有电流监测功能的汽车类 36V、8mΩ 单通道智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27SA08CQPWPRQ1

具有电流监测功能的汽车级 36V、8mΩ、10A 单通道智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811

DUAL HIGH-SPEED MOSFET DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811-Q1

DUAL HIGH-SPEED MOSFET DRIVER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811D

DUAL HIGH-SPEED MOSFET DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI