TPS3702AX18DDCT [TI]

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125;
TPS3702AX18DDCT
型号: TPS3702AX18DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125

文件: 总27页 (文件大小:978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS3702  
ZHCSD99 JANUARY 2015  
TPS3702 高精度、过压和欠压监视器  
1 特性  
3 说明  
1
输入电压范围:2V 18V  
高阈值精度:  
TPS3702 是一款集成型过压和欠压窗口检测器,其采  
用小型 SOT-6 封装。 这款高精度电压监视器非常适合  
电源容限较窄且由低压电源轨供电运行的系统。 该器  
件提供有 0.55% 1.0% 两个低阈值滞后选项,可防  
止在受监视电源电压处于其标称工作范围内时出现错误  
的复位信号。 并且内置有毛刺抑制功能和噪声滤波  
器,进一步消除了错误信号所导致的错误复位。  
0.25%(典型值)  
0.9%–40°C 125°C)  
已针对 1V 5V 之间的标称电源轨优化的固定窗  
口阈值  
用于过压和欠压指示的开漏输出  
内部毛刺抑制功能  
TPS3702 无需使用任何外部电阻即可设置过压和欠压  
复位阈值,因此进一步提高了总体精度、减小了解决方  
案尺寸并降低了解决方案的成本。 每款器件的两种可  
用阈值电压可使用 SET 引脚进行选择。 独立的  
SENSE 输入引脚和 VDD 引脚可满足安全关键型和高  
可靠性系统对于冗余的需求。 该器件还为 OV UV  
引脚提供了独立复位输出;可采用开漏配置将 UV 和  
OV 引脚连接在一起。  
可使用 SET 引脚调整阈值  
低静态电流:7µA(典型值)  
内部阈值滞后:0.55% 1.0%  
小外形尺寸晶体管 (SOT)-6 封装  
2 应用范围  
现场可编程门阵列 (FPGA) 和特定用途集成电路  
(ASIC) 应用  
基于数字信号处理器 (DSP) 的系统  
工业控制系统  
该器件的静态电流典型值较低 (7µA),经测试能够在工  
业温度范围(–40°C 125°C)内工作。  
工厂自动化  
器件信息(1)  
个人电子产品  
器件型号  
TPS3702  
封装  
封装尺寸(标称值)  
楼宇自动化  
SOT (6)  
2.90mm x 1.60mm  
电机驱动器  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
Undervoltage Accuracy vs Temperature  
0.5  
Unitꢀ1  
Unitꢀ4  
Unitꢀ2  
Unitꢀ5  
Unitꢀ3  
Avg  
0.4  
0.3  
0.2  
0.1  
0
典型应用电路  
Nominal Monitored Rail  
Up to 5 V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
R2  
R1  
TPS3702  
SENSE  
Up to  
18 V  
VDD  
40 25ꢀ 10  
5
20 35 50 65 80 95 110 125 140  
UV  
RST  
NMI  
Temperature (°C)  
Overvoltage Accuracy vs Temperature  
VDD  
SET  
GND  
0.5  
0.4  
0.3  
0.2  
0.1  
0
µ
P
Unitꢀ1  
Unitꢀ4  
Unitꢀ2  
Unitꢀ5  
Unitꢀ3  
Avg  
Up to  
6.5 V  
OV  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
40ꢀ 25ꢀ 10  
5
20 35 50 65 80 95 110 125 140  
C001  
Temperature (°C)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBVS251  
 
 
 
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application ................................................. 17  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持................................................................ 20  
11.2 文档支持................................................................ 21  
11.3 ....................................................................... 21  
11.4 静电放电警告......................................................... 21  
11.5 术语表 ................................................................... 21  
12 机械封装和可订购信息 .......................................... 21  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 1 月  
*
最初发布版本  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
5 Pin Configuration and Functions  
DDC Package  
SOT-6  
(Top View)  
UV  
OV  
1
2
3
6
5
4
GND  
VDD  
SET  
SENSE  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
UV  
Active-low, open-drain undervoltage output. This pin goes low when the SENSE voltage falls  
below the internally set undervoltage threshold (VIT–). See the timing diagram in 1 for more  
details. Connect this pin to a pull-up resistor terminated to the desired pull-up voltage.  
O
I
2
GND  
Ground  
Input for the monitored supply voltage rail. When the SENSE voltage goes below the  
undervoltage threshold, the UV pin is driven low.  
3
SENSE  
When the SENSE voltage goes above the overvoltage threshold, the OV pin is driven low.  
Use this pin to configure the threshold voltages.  
Refer to 3 for the desired configuration.  
4
5
SET  
VDD  
I
I
Supply voltage input pin. To power the device, connect a voltage supply (within the range of 2 V  
and 18 V) to VDD.  
Good analog design practice is to place a 0.1-μF ceramic capacitor close to this pin.  
Active-low, open-drain overvoltage output. This pin goes low when the SENSE voltage rises  
above the internally set overvoltage threshold (VIT+). See the timing diagram in 1 for more  
details. Connect this pin to a pull-up resistor terminated to the desired pull-up voltage.  
6
OV  
O
Copyright © 2015, Texas Instruments Incorporated  
3
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
20  
UNIT  
V
VDD  
Voltage  
Current  
VUV, VOV  
VSENSE, VSET  
IUV, IOV  
20  
V
7
V
±40  
mA  
Continuous total power dissipation  
Operating junction temperature, TJ  
Storage temperature, Tstg  
See the Thermal Information  
(2)  
–40  
–65  
125  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
NOM  
MAX  
18  
UNIT  
V
VDD  
Supply pin voltage  
Input pin voltage  
SET pin voltage  
Output pin voltage  
Output pin current  
Pull-up resistor  
VSENSE  
VSET  
0
6.5  
V
0
6.5  
V
VUV, VOV  
IUV, IOV  
RPU  
0
18  
V
0.3  
2.2  
10  
mA  
kΩ  
10,000  
6.4 Thermal Information  
SOT  
THERMAL METRIC(1)  
UNIT  
6 PINS  
201.6  
47.8  
51.2  
0.7  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
50.8  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
6.5 Electrical Characteristics  
At 2 V VDD 18 V, 1 V VSENSE 5 V, and over the operating free-air temperature range of –40°C to 125°C, unless  
otherwise noted. Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
18  
UNIT  
VDD  
Supply voltage range  
V
VIT+(OV)  
VIT–(UV)  
VHYS  
Positive-going threshold accuracy  
Negative-going threshold accuracy  
Hysteresis voltage(1)  
V
SET VIL(SET), VSET VIH(SET)  
SET VIL(SET), VSET VIH(SET)  
–0.9%  
–0.9%  
0.3%  
±0.25%  
±0.25%  
0.55%  
0.9%  
0.9%  
0.8%  
0.8  
V
TPS3702xXx  
V(POR)  
Power-on reset voltage(2)  
VOL(max) = 0.25 V, IOUT = 15 µA  
VDD = 2 V  
V
6.0  
7.0  
1
10  
µA  
µA  
µA  
nA  
mV  
mV  
mV  
mV  
mV  
nA  
nA  
V
IDD  
Supply current  
VDD 5 V  
12  
ISENSE  
ISET  
Input current, SENSE pin  
VSENSE = 5 V  
1.5  
Internal pull-up current, SET pin  
VDD = 18 V, SET pin = GND  
VDD = 1.3 V, IOUT = 0.4 mA  
VDD = 2 V, IOUT = 3 mA  
VDD = 5 V, IOUT = 5 mA  
600  
250  
250  
250  
250  
VOL  
Low-level output voltage  
VIL(set)  
VIH(set)  
ID(leak)  
ILKG(od)  
UVLO  
Low-level SET pin input voltage  
High-level SET pin input voltage  
750  
1.3  
VPU = VDD  
300  
300  
1.7  
Open-drain output leakage current  
Undervoltage lockout(3)  
VDD = 2 V, VPU = 18 V  
VDD falling  
(1) Hysteresis is 0.55% of the nominal trip point.  
(2) The outputs are undetermined below V(POR)  
(3) When VDD falls below UVLO, UV is driven low and OV goes to high impedance.  
.
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
6.6 Timing Requirements  
At VDD = 2 V, 2.5% input overdrive(1) with RPU = 10 kΩ, VOH = 0.9 × VDD, and VOL = 400 mV, unless otherwise noted. RPU  
refers to the pull-up resistor at the UV and OV pins.  
MIN  
NOM  
19  
MAX  
UNIT  
µs  
tpd(HL)  
tpd(LH)  
tR  
High-to-low propagation delay(2)  
Low-to-high propagation delay(2)  
Output rise time(3)  
35  
µs  
2.2  
µs  
tF  
Output fall time(3)  
Startup delay(4)  
0.22  
300  
µs  
tSD  
µs  
(1) Overdrive = | (V(VDD) / VIT – 1) × 100% |.  
(2) High-to-low and low-to-high refers to the transition at the SENSE pin.  
(3) Output transitions from 10% to 90% for rise times and 90% to 10% for fall times.  
(4) During the power-on sequence, VDD must be at or above 2 V for at least tSD before the output is in the correct state.  
VDD(min)  
VDD  
V(POR)  
VIT+(OV)  
VHYS  
VIT±(OV)  
VIT+(UV)  
SENSE  
VHYS  
VIT±(UV)  
Undefined  
tSD  
Undefined  
tSD  
UV  
OV  
tSD  
tpd(HL)  
tpd(LH)  
Undefined  
tSD  
Undefined  
tSD  
tSD  
tpd(HL)  
tpd(LH)  
1. Timing Diagram  
6
版权 © 2015, Texas Instruments Incorporated  
 
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
6.7 Typical Characteristics  
At TJ = 25°C, VDD = 3 V, and RPU = 10 kΩ, unless otherwise noted.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
Unit 1  
Unit 4  
Unit 2  
Unit 5  
Unit 3  
Avg  
Unit 1  
Unit 4  
Unit 2  
Unit 5  
Unit 3  
Avg  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
±40 ±25 ±10  
5
20 35 50 65 80 95 110 125 140  
±40 ±25 ±10  
5
20 35 50 65 80 95 110 125 140  
C001  
Temperature (ƒC)  
Temperature (ƒC)  
C001  
Performance is across VDD with SET high or low  
Performance is across VDD with SET high or low  
3. Overvoltage Accuracy vs Temperature  
2. Undervoltage Accuracy vs Temperature  
20000  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
VIT- Accuracy (%)  
VIT+ Accuracy (%)  
Performance is across VDD with SET high or low  
Performance is across VDD with SET high or low  
4. Undervoltage Accuracy Distribution  
5. Overvoltage Accuracy Distribution  
1.65  
1.6  
12  
10  
8
-40ƒC  
105ƒC  
0ƒC  
125ƒC  
25ƒC  
UVLO Postive  
UVLO Negative  
1.55  
1.5  
6
4
1.45  
1.4  
2
0
±40 ±25 ±10  
5
20 35 50 65 80 95 110 125 140  
0
3
6
9
12  
15  
18  
C001  
C001  
Temperature (ƒC)  
Supply Voltage (V)  
7. Undervoltage Lockout Threshold vs Temperature  
6. Supply Current vs Supply Voltage  
版权 © 2015, Texas Instruments Incorporated  
7
 
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TJ = 25°C, VDD = 3 V, and RPU = 10 kΩ, unless otherwise noted.  
28  
70  
60  
50  
40  
30  
20  
10  
0
-40ƒC  
105ƒC  
0ƒC  
125ƒC  
25ƒC  
-40ƒC  
105ƒC  
0ƒC  
125ƒC  
25ƒC  
24  
20  
16  
12  
8
4
0
0
2
4
6
8
10  
C001  
0
0
0
2
4
6
8
10  
Overdrive (%)  
C001  
Overdrive (%)  
SENSE transitions from high to low  
8. Undervoltage Propagation Delay vs Overdrive  
SENSE transitions from low to high  
9. Overvoltage Propagation Delay vs Overdrive  
70  
60  
50  
40  
30  
20  
10  
0
28  
24  
20  
16  
12  
8
-40ƒC  
105ƒC  
0ƒC  
125ƒC  
25ƒC  
-40ƒC  
105ƒC  
0ƒC  
125ƒC  
25ƒC  
4
0
0
2
4
6
8
10  
2
4
6
8
10  
C001  
Overdrive (%)  
C001  
Overdrive (%)  
SENSE transitions from low to high  
10. Undervoltage Propagation Delay vs Overdrive  
SENSE transitions from high to low  
11. Overvoltage Propagation Delay vs Overdrive  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-40ƒC  
105ƒC  
0ƒC  
125ƒC  
25ƒC  
-40ƒC  
105ƒC  
0ƒC  
125ƒC  
25ƒC  
0
2
4
6
8
10  
2
4
6
8
10  
C001  
Load (mA)  
Load (mA)  
C001  
VDD = 1.8 V  
VDD = 18 V  
13. Low-Level Output Voltage vs Output Current  
12. Low-Level Output Voltage vs Output Current  
8
版权 © 2015, Texas Instruments Incorporated  
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
Typical Characteristics (接下页)  
At TJ = 25°C, VDD = 3 V, and RPU = 10 kΩ, unless otherwise noted.  
700  
VIH  
VIL  
600  
500  
400  
300  
±40 ±25 ±10  
5
20 35 50 65 80 95 110 125 140  
C001  
Temperature (ƒC)  
14. SET Threshold vs Temperature  
版权 © 2015, Texas Instruments Incorporated  
9
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS3702 family of devices combines two comparators and a precision reference for overvoltage and  
undervoltage detection. The TPS3702 features a wide supply voltage range (2 V to 18 V) and highly accurate  
window threshold voltages (0.9% over temperature). The TPS3702 is designed for systems that require an active  
low signal if the voltage from the monitored power supply exits the accuracy band. The outputs can be pulled up  
to 18 V and can sink up to 10 mA.  
Unlike many other window comparators, the TPS3702 includes the resistors used to set the overvoltage and  
undervoltage thresholds internal to the device. These internal resistors allow for lower component counts and  
greatly simplifies the design because no additional margins are needed to account for the accuracy of external  
resistors.  
The TPS3702 is designed to assert active low output signals when the monitored voltage is outside the window  
band. The relationship between the monitored voltage and the states of the outputs is shown in 1.  
1. Truth Table  
CONDITION  
OUTPUT  
UV low  
STATUS  
SENSE < VIT–(UV)  
UV is asserted  
SENSE > VIT–(UV) + VHYS  
SENSE > VIT+(OV)  
UV high  
OV low  
OV high  
UV is high impedance  
OV is asserted  
SENSE < VIT+(OV) – VHYS  
OV is high impedance  
7.2 Functional Block Diagram  
VDD  
SENSE  
UV  
OV  
Reference  
Threshold  
Logic  
SET  
GND  
10  
版权 © 2015, Texas Instruments Incorporated  
 
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
7.3 Feature Description  
7.3.1 Input (SENSE)  
The TPS3702 combines two comparators with a precision reference voltage and a trimmed resistor divider. Only  
a single external input is monitored by the two comparators because the resistor divider is internal to the device.  
This configuration optimizes device accuracy because all resistor tolerances are accounted for in the accuracy  
and performance specifications. Both comparators also include built-in hysteresis that provides some noise  
immunity and ensures stable operation.  
The SENSE input can vary from ground to 6.5 V (7.0 V, absolute maximum), regardless of the device supply  
voltage used. Although not required in most cases, for noisy applications good analog design practice is to place  
a 1-nF to 10-nF bypass capacitor at the SENSE input in order to reduce sensitivity to transient voltages on the  
monitored signal.  
For the undervoltage comparator, the undervoltage output is driven to logic low when the SENSE voltage drops  
below the undervoltage falling threshold, VIT–(UV). When the voltage exceeds the undervoltage rising threshold,  
VIT+(UV) (which is VIT-(UV) + VHYS), the undervoltage output goes to a high-impedance state; see 1.  
For the overvoltage comparator, the overvoltage output is driven to logic low when the voltage at SENSE  
exceeds the overvoltage rising threshold, VIT+(OV). When the voltage drops below the overvoltage falling  
threshold, VIT–(OV) (which is VIT+(OV) – VHYS), the overvoltage output goes to a high-impedance state; see 1.  
Together, these two comparators form a window-detection function as described in the Window Comparator  
Considerations section. Also see the 器件命名规则 section.  
7.3.2 Outputs (UV, OV)  
In a typical TPS3702 application, the outputs are connected to a reset or enable input of a processor [such as a  
digital signal processor (DSP), application-specific integrated circuit (ASIC), or other processor type] or the  
outputs are connected to the enable input of a voltage regulator [such as a dc-dc converter or low-dropout  
regulator (LDO)].  
The TPS3702 provides two open-drain outputs (UV and OV) and uses pull-up resistors to hold these lines high  
when the output goes to a high-impedance state. Connect the pull-up resistors to the proper voltage rails to  
enable the outputs to be connected to other devices at the correct interface voltage levels. The TPS3702 outputs  
can be pulled up to 18 V, independent of the device supply voltage. To ensure proper voltage levels, give some  
consideration when choosing the pull-up resistor values. The pull-up resistor value is determined by VOL, output  
capacitive loading, and output leakage current (ID(leak)). These values are specified in the Electrical  
Characteristics table. Use wired-OR logic to merge the undervoltage and overvoltage signals into one logic signal  
that goes low if either outputs are asserted because of a fault condition.  
1 describes how the outputs are either asserted low or high impedance. See 1 for a timing diagram that  
describes the relationship between the threshold voltages and the respective output.  
7.3.3 User-Configurable Accuracy Band (SET)  
The TPS3702 has an innovative feature allowing each device to be set for one of two accuracy bands, 3  
describes the available accuracy bands with nominal thresholds ranging from ±2% to ±10% of the monitored rail  
nominal voltage. Forcing the voltage on the SET pin above the high-level SET pin input voltage, VIH(SET), sets the  
thresholds for the tighter window whereas forcing the voltage on the SET pin below the low-level SET pin input  
voltage, VIL(SET), sets the thresholds for the wider window.  
Using the TPS3702Cxxx as an example, when VSET VIH(SET) the nominal thresholds are set to ±4% (see 15).  
Thus, when the positive-going and negative-going threshold accuracy is accounted for, the device outputs an  
active low signal for voltage excursions outside a ±4.9% band (worst case), which is calculated by taking the  
nominal threshold percentage for that given part number and adding that value to the threshold accuracy found  
in the Specifications section. Similarly, when VSET VIL(SET), the nominal thresholds are set to ±9% and the  
device outputs an active low signal for voltage excursions outside the ±9.9% band (worst case).  
The ability for the user to change the accuracy band allows a system to programmatically change the accuracy  
band during certain conditions. One example is during system start up when the monitored voltage can be  
slightly outside its typical accuracy specifications but a reset signal is not desired. In this case, VSET can be set  
below VIL(SET) to detect voltage excursions outside the 10% band and, after the system is fully started up, VSET  
can be pulled higher than VIH(SET), thus tightening the band to ±5%.  
版权 © 2015, Texas Instruments Incorporated  
11  
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
Feature Description (接下页)  
+9%  
VIT+(OV)  
Nom  
+4%  
-4%  
Vmon  
Nom  
VIT-(UV)  
Nom  
-9%  
VIH(SET)  
SET  
VIL(SET)  
15. TPS3702Cxxx User-Configurable Accuracy Bands  
Another benefit of allowing the user to change the accuracy band is the reduction in qualification costs. Users  
who have multiple rail monitoring needs (such as some rails that must be within ±5% of the nominal voltage and  
other rails that must be within ±10% of the same nominal voltage) benefit by only having to spend the time and  
money qualifying one device instead of two.  
7.4 Device Functional Modes  
7.4.1 Normal Operation (VDD > UVLO)  
When the voltage on VDD is greater than UVLO for approximately 300 µs (tSD), the undervoltage and  
overvoltage signals correspond to the voltage on the SENSE pin; see 1.  
7.4.2 Undervoltage Lockout (V(POR) < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage but greater than the power-on reset voltage  
(V(POR)), the undervoltage output is asserted and the overvoltage output is high impedance, regardless of the  
voltage on SENSE.  
7.4.3 Power-On Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND  
(V(POR)), both outputs are undefined and are not to be relied upon for proper device function.  
12  
版权 © 2015, Texas Instruments Incorporated  
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS3702 is a precision window comparator that can be used in several different configurations. The supply  
voltage (VDD), the monitored voltage, and the output pullup voltage can be independent voltages or connected in  
many configurations. 16 shows how the outputs operate with respect to the voltage on the SENSE pin.  
VIT+(OV)  
Overvoltage Limit  
VIT+(OV) (HYS)  
VSENSE  
VIT(UV) +(HYS)  
VIT(UV)  
Undervoltage Limit  
OV Pin  
UV Pin  
16. Window Comparator Operation  
The following sections show the connection configurations and the voltage limitations for each configuration.  
版权 © 2015, Texas Instruments Incorporated  
13  
 
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
Application Information (接下页)  
8.1.1 Window Comparator Considerations  
The inverting and noninverting configurations of the comparators form a window-comparator detection circuit by  
using the internal resistor divider. The internal resistor divider allows for set voltage thresholds that already  
account for the tolerances of the resistors in the resistor divider. The UV and OV pins signal undervoltage and  
overvoltage conditions, respectively, on the SENSE pin, as shown in 17.  
2 V to 18 V  
VDD  
Device  
GND  
Up to 6.5 V  
To a system reset  
or enable input  
SENSE  
UV  
VIT-(UV)  
VIT+(OV)  
VDD  
VIT-(UV) + VHYS  
VIT+(OV) - VHYS  
SET  
OV  
17. Window Comparator Schematic  
The TPS3702 flags the overvoltage or undervoltage conditions with the most accuracy in order to ensure proper  
system operation. The highest accuracy threshold voltages are VIT–(UV) and VIT+(OV), and correspond with the  
falling SENSE undervoltage flag and the rising SENSE overvoltage flag, respectively. These thresholds represent  
the accuracy when the monitored voltage changes from being within the desired window (when both the  
undervoltage and overvoltage outputs are high) to when the monitored voltage goes outside the desired window,  
indicating a fault condition. If the monitored voltage is outside of the valid window (VSENSE is less than the  
undervoltage limit, VIT–(UV), or greater than overvoltage limit, VIT+(OV)), then the SENSE threshold voltages to  
enter into the valid window are VIT+(UV) = VIT–(UV) + VHYS or VIT–(OV) = VIT+(OV) – VHYS  
.
14  
版权 © 2015, Texas Instruments Incorporated  
 
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
Application Information (接下页)  
8.1.2 Input and Output Configurations  
18 to 20 illustrate examples of the various input and output configurations.  
VPULLUP  
(up to 18 V)  
2 V to 18 V  
VDD  
Up to 6.5 V  
VPULLUP  
SENSE  
UV  
VIT-(UV)  
VIT-(UV) + VHYS  
Device  
VPULLUP  
SET  
OV  
VIT+(OV) - VHYS VIT+(OV)  
GND  
18. Interfacing to Voltages Other Than VDD  
2 V to 6.5 V  
VDD  
VDD  
SENSE  
UV  
VIT-(UV)  
VIT-(UV) + VHYS  
Device  
VDD  
SET  
OV  
VIT+(OV) - VHYS VIT+(OV)  
GND  
19. Monitoring the Same Voltage as VDD with Wired-OR Logic  
版权 © 2015, Texas Instruments Incorporated  
15  
 
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
Application Information (接下页)  
2 V to 18 V  
VDD  
Device  
GND  
Up to 6.5 V  
To a system reset  
or enable input  
SENSE  
UV  
VIT-(UV)  
VIT+(OV)  
VDD  
VIT-(UV) + VHYS  
VIT+(OV) - VHYS  
SET  
OV  
20. Monitoring a Voltage Other Than VDD with Wired-OR Logic  
Note that the SENSE input can also monitor voltages that are higher than VSENSE  
or that may not be  
(max)  
designed for rail voltages with the use of an external resistor divider network. If a resistor divider is used to  
reduce the voltage on the SENSE pin, ensure that the ISENSE current is accounted for so the accuracy is not  
unexpectedly affected. As a general approximation, the current flowing through the resistor divider to ground  
must be greater than 100 times the current going into the SENSE pin. See application report Optimizing Resistor  
Dividers at a Comparator Input (SLVA450) for a more in-depth discussion on setting an external resistor divider.  
8.1.3 Immunity to SENSE Pin Voltage Transients  
The TPS3702 is immune to short voltage transient spikes on the input pins. Sensitivity to transients depends on  
both transient duration and overdrive (amplitude) of the transient.  
Overdrive is defined by how much the VSENSE exceeds the specified threshold, and is important to know because  
the smaller the overdrive, the slower the response of the outputs (UV and OV). Threshold overdrive is calculated  
as a percent of the threshold in question, as shown in 公式 1:  
Overdrive = | (VSENSE / VIT – 1) × 100% |  
where:  
VIT is either VIT– or VIT+ for UV or OV.  
(1)  
8 to 11 illustrate the VSENSE minimum detectable pulse versus overdrive, and can be used to visualize the  
relationship that overdrive has on propagation delay.  
16  
版权 © 2015, Texas Instruments Incorporated  
 
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
8.2 Typical Application  
SOC  
3.3 V  
1.8 V  
1.2 V  
VDD  
VDD  
VDD  
SENSE  
SET  
UV  
OV  
SENSE  
SET  
UV  
OV  
SENSE  
SET  
UV  
OV  
RESET  
TPS3702Cx33  
TPS3702Cx18  
TPS3702Cx12  
21. ±5% Window Monitoring for SOC Power Rails  
8.2.1 Design Requirements  
2. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
3.3-V nominal, with alerts if outside of ±5% of 3.3 V  
(including device accuracy)  
Worst case VIT+(OV) = 3.463 V (4.94%),  
Worst case VIT–(UV) = 3.139 V (4.86%)  
1.8-V nominal, with alerts if outside of ±5% of 1.8 V  
(including device accuracy)  
Worst case VIT+(OV) = 1.889 V (4.94%),  
Worst case VIT–(UV) = 1.712 V (4.86%)  
Monitored rails  
1.2-V nominal, with alerts if outside of ±5% of 1.2 V  
(including device accuracy)  
Worst case VIT+(OV) = 1.259 V (4.94%),  
Worst case VIT–(UV) = 1.142 V (4.86%)  
Output logic voltage  
3.3-V CMOS  
3.3-V CMOS  
Maximum device current  
consumption  
50 µA  
40.5 µA (max), 24 µA (typ)  
8.2.2 Detailed Design Procedure  
Determine which version of the TPS3702 best suits the application nominal rail and window tolerances. See 3  
for selecting the appropriate device number for the application needs. If the nominal rail voltage to be monitored  
is not listed as an option, a resistor divider can be used to reduce the voltage to a nominal voltage that is  
available. The current ISENSE causes an error in the voltage detected at the SENSE pin because the SENSE  
current only flows through the resistor at the top of the resistor divider. The larger the current through the resistor  
divider to ground, the smaller this error will be. To optimize this resistor divider, refer to application report  
Optimizing Resistor Dividers at a Comparator Input (SLVA450) for more information.  
When the outputs switch to the high-Z state, the rise time of the UV or OV node depends on the pull-up  
resistance and the capacitance on that node. Choose pull-up resistors that satisfy both the downstream timing  
requirements and the sink current required to have a VOL low enough for the application; 10-kΩ to 1-MΩ resistors  
are a good choice for low-capacitive loads.  
版权 © 2015, Texas Instruments Incorporated  
17  
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
8.2.3 Application Curves  
OV  
2 V/div  
OV  
2 V/div  
UV  
2 V/div  
UV  
2 V/div  
VDD  
2 V/div  
SENSE  
2 V/div  
Time (1 ms/div)  
Time (1 ms/div)  
VSENSE goes from 0 V to 3.47 V (VIT+(OV)), VDD = 3.3 V,  
VPULLUP = 3.3 V  
VDD goes from 0 V to 3.3 V, VSENSE = 3.47 V (above VIT+(OV)  
)
22. TPS3702CX33 Window Comparator Function  
23. TPS3702CX33 Startup with VPULLUP = 3 V  
OV  
2 V/div  
UV  
2 V/div  
VDD  
2 V/div  
Time (1 ms/div)  
VDD goes from 0 V to 3.3 V, VSENSE = 3.3 V  
24. TPS3702CX33 Startup with VPULLUP = VDD  
18  
版权 © 2015, Texas Instruments Incorporated  
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
9 Power Supply Recommendations  
The TPS3702 is designed to operate from an input voltage supply range between 2 V and 18 V. An input supply  
capacitor is not required for this device; however, if the input supply is noisy good analog practice is to place a  
0.1-µF capacitor between the VDD pin and the GND pin. This device has a 20-V absolute maximum rating on the  
VDD pin. If the voltage supply providing power to VDD is susceptible to any large voltage transient that can  
exceed 20 V, additional precautions must be taken.  
10 Layout  
10.1 Layout Guidelines  
Place the VDD decoupling capacitor close to the device.  
Avoid using long traces for the VDD supply node. The VDD capacitor (CVDD), along with parasitic inductance  
from the supply to the capacitor, can form an LC tank and create ringing with peak voltages above the  
maximum VDD voltage.  
10.2 Layout Example  
Pullup  
Voltage  
RPU1  
RPU2  
Overvoltage  
Flag  
Undervoltage  
Flag  
6
5
1
CVDD  
Input  
Supply  
2
Set  
Voltage  
Monitored  
Voltage  
3
4
25. Recommended Layout  
版权 © 2015, Texas Instruments Incorporated  
19  
TPS3702  
ZHCSD99 JANUARY 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
评估模块 (EVM) 可与 TPS3702 配套使用,帮助评估初始电路性能。 TPS3702CX33EVM-683 评估模块(和相关  
的用户指南)可在德州仪器 (TI) 网站上的产品文件夹中获取,也可直接从 TI 网上商店购买。  
11.1.2 器件命名规则  
3 TPS3702CX33 为例,介绍如何根据器件部件号确定器件的功能。  
3. 器件命名约定  
说明  
命名规则  
TPS3702  
(高精度窗口比较器系列)  
A
B
SET 引脚高电平 = ±2%SET 引脚低电平 = ±6%  
SET 引脚高电平 = ±3%SET 引脚低电平 = ±7%  
C
(标称阈值,受监视电压标称值的百分比)  
C
SET 引脚高电平 = ±4%SET 引脚低电平 = ±9%  
D
SET 引脚高电平 = ±5%SET 引脚低电平 = ±10%  
X
0.55%  
1.0%  
1.0V  
1.2V  
1.8V  
3.3V  
5.0V  
X
(滞后选项)  
Y
10  
12  
18  
33  
50  
33  
(受监视电压标称值选项)  
4 列出了 TPS3702 系列的已发布版本,其中包括标称欠压和过压阈值。 有关3 中所列的其他选项的详细信息  
和可用性,请联系制造商;最低订购量适用。  
4. 已发布器件的阈值  
UV 阈值 (V)  
SET VIL(SET)  
UV 阈值 (V)  
SET VIH(SET)  
OV 阈值 (V)  
SET VIL(SET)  
OV 阈值 (V)  
SET VIH(SET)  
产品  
标称电源 (V)  
滞后 (%)  
TPS3702CX10  
TPS3702CX12  
TPS3702AX18  
TPS3702CX18  
TPS3702AX33  
TPS3702CX33  
TPS3702CX50  
1.0  
1.2  
1.8  
1.8  
3.3  
3.3  
5.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.91  
1.09  
1.69  
1.64  
3.10  
3.00  
4.55  
0.96  
1.15  
1.76  
1.73  
3.23  
3.17  
4.80  
1.09  
1.31  
1.91  
1.96  
3.50  
3.60  
5.45  
1.04  
1.25  
1.84  
1.87  
3.37  
3.43  
5.20  
20  
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS3702  
www.ti.com.cn  
ZHCSD99 JANUARY 2015  
11.2 文档支持  
11.2.1 相关文档ꢀ  
优化比较器输入上的电阻分压器SLVA450  
TPS3702CX33EVM-683 评估模块》SBVU026  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3702AX18DDCR  
TPS3702AX18DDCT  
TPS3702AX33DDCR  
TPS3702AX33DDCT  
TPS3702CX10DDCR  
TPS3702CX10DDCT  
TPS3702CX12DDCR  
TPS3702CX12DDCT  
TPS3702CX18DDCR  
TPS3702CX18DDCT  
TPS3702CX33DDCR  
TPS3702CX33DDCT  
TPS3702CX50DDCR  
TPS3702CX50DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ZAUO  
ZAUO  
ZAPO  
ZAPO  
ZARO  
ZARO  
ZAVO  
ZAVO  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ZAWO  
ZAWO  
ZAQO  
ZAQO  
ZASO  
ZASO  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS3702AX18QDDCRQ1

用于过压和欠压监测的汽车类高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702AX33DDCR

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702AX33DDCT

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702AX33QDDCRQ1

用于过压和欠压监测的汽车类高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX10DDCR

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX10DDCT

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX10QDDCRQ1

用于过压和欠压监测的汽车类高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX12DDCR

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX12DDCT

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX12QDDCRQ1

用于过压和欠压监测的汽车类高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX18DDCR

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI

TPS3702CX18DDCT

用于过压和欠压监测的高精度窗口电压检测器 | DDC | 6 | -40 to 125
TI