TPS3870J4330DSERQ1 [TI]

具有延时时间和手动复位功能的汽车类高精度过压复位 IC | DSE | 6 | -40 to 125;
TPS3870J4330DSERQ1
型号: TPS3870J4330DSERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有延时时间和手动复位功能的汽车类高精度过压复位 IC | DSE | 6 | -40 to 125

文件: 总29页 (文件大小:1073K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
具有延时时间和手动复位功能的 TPS3870-Q1 过压复位 IC  
1 特性  
3 说明  
1
符合汽车类 应用要求  
具有符合 AEC-Q100 标准的下列特性:  
TPS3870-Q1 器件是一款集成式过压 (OV) 监控器或复  
IC,采用业界较小的 6 引脚 DSE 封装。这款高精  
度的电压监控器非常适合采用低电压电源轨的系统,并  
具有非常小的电源容差裕度。低阈值迟滞可防止在受监  
控的电压处于正常工作范围内时发出虚假复位信号。并  
且内置有毛刺抑制功能和噪声滤波器,进一步消除了错  
误信号所导致的错误复位。  
器件温度等级 1–40°C +125°C 的环境工作  
温度范围  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C7B  
输入电压范围:1.7V 5.5V  
欠压锁定 (UVLO)1.7V  
低静态电流:7µA(最大值)  
高阈值精度:  
TPS3870-Q1 不需要使用任何外部电阻器来设置过压  
复位阈值,因此进一步优化了整体精度、成本、解决方  
案大小并提高了安全系统的可靠性。电容器时间 (CT)  
引脚用于在每个器件的两个可用复位延时时间之间进行  
选择,还可以连接一个电容器以调整复位延时时间。单  
独的 SENSE 输入引脚和 VDD 引脚可实现高可靠性系  
统所需的冗余。  
±0.25%(典型值)  
±0.7%-40°C +125°C)  
固定阈值电平  
50mV 阶跃(500mV 1.3V)  
1.5V1.8V2.5V2.8V2.9V3.3V5V  
此器件的低典型静态电流规格为 4.5µA(典型值)。  
TPS3870-Q1 适用于汽车 应用 ,符合 AEC-Q100 1  
级标准。  
用户可调的电压阈值电平  
内部毛刺抑制和迟滞  
阶跃为 1% 时,公差介于 3% 7% 之间  
器件信息(1)  
固定延时时间选项:50µs1ms5ms10ms、  
20ms100ms200ms  
器件型号  
封装  
WSON (6)  
封装尺寸(标称值)  
使用单个外部电容器的可编程延时时间选项  
开漏低电平有效 OV 监控器  
TPS3870-Q1  
1.50mm × 1.50mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
RESET 电压锁存输出模式  
2 应用  
高级驾驶员辅助系统 (ADAS)  
摄像头  
传感器融合  
HEV/EV  
基于 FPGAASIC DSP 的系统  
集成过压检测  
典型过压精度分布  
OV Threshold  
35  
Monitor Voltage  
VCORE  
30  
25  
20  
15  
10  
5
TPS3870Q1  
1
SENSE  
6
5
MR  
Processor  
Up to  
5.5V  
VDD  
CT  
GND  
2
3
10k  
RESET  
4
RESET  
Optional  
0
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
VIT+(OV) Accuracy (%)  
D004  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBI5  
 
 
 
 
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD ratings............................................................... 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
9
10 Power Supply Recommendations ..................... 22  
10.1 Power Supply Guidelines...................................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
12 器件和文档支持 ..................................................... 23  
12.1 器件命名规则......................................................... 23  
12.2 文档支持................................................................ 24  
12.3 接收文档更新通知 ................................................. 24  
12.4 支持资源................................................................ 24  
12.5 ....................................................................... 24  
12.6 静电放电警告......................................................... 24  
12.7 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 24  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (July 2019) to Revision A  
Page  
预告信息更改为生产数据发布”......................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
5 Device Comparison Table  
Table 1 shows the released versions of the TPS3870-Q1, including the nominal overvoltage thresholds. For all  
possible voltages, threshold tolerance, time delays, and threshold options, see 6. Contact TI sales  
representatives or on TI's E2E forum for details and availability of other options; minimum order quantities apply.  
Table 1. Device Comparison Table  
TIME DELAY (ms)  
THRESHOLD  
PART NUMBER  
VMON  
CT Pin =  
Capacitor  
CT Pin =  
Open  
TOLERANCE  
CT Pin = VDD  
TPS3870J4080DSERQ1  
TPS3870J4330DSERQ1  
0.80 V  
3.30 V  
Programmable  
Programmable  
10 ms  
10 ms  
200 ms  
200 ms  
4%  
4%  
Copyright © 2019, Texas Instruments Incorporated  
3
 
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
DSE Package  
6-Pin WSON  
Top View  
SENSE  
MR  
VDD  
CT  
GND  
RESET  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Input for the monitored supply voltage rail. When the SENSE voltage goes above the overvoltage  
threshold, the RESET pin is driven low. Connect to VDD pin if monitoring VDD supply voltage.  
1
SENSE  
VDD  
I
I
Supply voltage input pin. Good analog design practice is to place a 0.1-μF ceramic capacitor close to  
this pin.  
2
3
Capacitor time delay pin. The CT pin offers two fixed time delays by connecting CT pin to VDD or  
leaving it floating. Delay time can be programmed by connecting an external capacitor reference to  
ground.  
CT  
I
Active-low, open-drain output. This pin goes low when the SENSE voltage rises above the internally  
overvoltage threshold (VIT+). See the timing diagram in 19 for more details. Connect this pin to a pull-  
up resistor terminated to the desired pull-up voltage.  
4
5
6
RESET  
GND  
MR  
O
I
Ground  
Manual reset (MR), pull this pin to a logic low (VMR_L) to assert a reset signal . After the MR pin is  
deasserted the output goes high after the reset delay time(tD) expires. MR can be left floating when not  
in use.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX UNIT  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Current  
VDD  
6
6
V
V
VRESET  
VCT  
6
V
VSENSE  
6
V
VMR  
6
V
IRESET  
±40  
mA  
Continuous total power dissipation  
Operating junction temperature, TJ  
Operating free-air temperature, TA  
Storage temperature, Tstg  
See the Thermal Information  
-40  
-40  
-65  
150  
150  
150  
°C  
°C  
°C  
(2)  
Temperature  
(1) Stresses beyond values listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
7.2 ESD ratings  
VALUE  
±2000  
±500  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Electrostatic  
discharge  
V(ESD)  
All pins  
Corner pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
7.3 Recommended Operating Conditions  
MIN  
1.7  
0
NOM  
MAX  
5.5  
UNIT  
V
VDD  
Supply pin voltage  
Input pin voltage  
VSENSE  
VCT  
VRESET  
VMR  
IRESET  
TJ  
5.5  
V
(1) (2)  
CT pin voltage  
VDD  
5.5  
V
Output pin voltage  
0
0
V
(3)  
MR pin Voltage  
5.5  
V
Output pin current  
0.3  
-40  
10  
mA  
Junction temperature (free-air temperature)  
125  
(1) CT pin connected to VDD pin requires a pullup resistor; 10 kis recommended.  
(2) The maximum rating is VDD or 5.5 V, whichever is smaller.  
(3) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR.  
Copyright © 2019, Texas Instruments Incorporated  
5
 
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.4 Thermal Information  
TPS3870-Q1  
DSE (WSON)  
PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
184.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
30.6  
86.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
13.4  
ΨJB  
86.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
At 1.7 V VDD 5.5 V, CT = MR = Open, RESET Voltage (VRESET) = 10 kΩ to VDD, RESET load = 10 pF, and over the  
operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C, typical  
conditions at VDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
1.7  
TYP  
MAX  
5.5  
1.7  
1
UNIT  
V
VDD  
Supply Voltage  
UVLO  
VPOR  
VIT+(OV)  
VHYS  
IDD  
Under Voltage Lockout(1)  
Power on reset voltage(2)  
Positive- going threshold accuracy  
Hysteresis Voltage(3)  
VDD falling below 1.7 V  
VOL(max) = 0.25 V, IOUT = 15 µA  
1.2  
V
V
-0.7  
0.3  
±0.25  
0.55  
4.5  
0.7  
0.8  
7
%
%
Supply current  
V
DD 5.5 V  
µA  
µA  
mV  
mV  
mV  
nA  
V
ISENSE  
Input current, SENSE pin  
VSENSE = 5 V  
1
1.5  
250  
250  
250  
300  
0.3  
VDD = 1.7 V, IOUT = 0.4 mA  
VDD = 2 V, IOUT = 3 mA  
VDD = 5 V, IOUT = 5 mA  
VDD = VRESET = 5.5 V  
VOL  
Low level output voltage  
ILKG  
Open drain output leakage current  
MR logic low input  
VMR_L  
VMR_H  
VCT_H  
RMR  
MR logic high input  
1.4  
1.4  
V
High level CT pin voltage  
V
Manual reset Internal pullup resistance  
CT pin charge current  
CT pin comparator threshold voltage(4)  
100  
375  
KΩ  
nA  
V
ICT  
337  
413  
VCT  
1.133  
1.15  
1.167  
(1) RESET pin is driven low when VDD falls below UVLO.  
(2) VPOR is the minimum VDD voltage level for a controlled output state.  
(3) Hysteresis is with respect of the trip point (VIT+(OV)  
)
(4) VCT voltage refers to the comparator threshold voltage that measures the voltage level of the external capacitor at CT pin.  
7.6 Timing Requirements  
At 1.7 V VDD 5.5 V, CT = MR = Open, RESET Voltage (VRESET) = 10 kΩ to VDD, RESET load = 10 pF, and over the  
operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C, typical  
conditions at VDD = 3.3 V.  
MIN  
7
NOM  
10  
MAX  
13  
UNIT  
ms  
tD  
tD  
tD  
tD  
tD  
tD  
Reset time delay, TPS3870J  
Reset time delay, TPS3870J  
Reset time delay, TPS3870K  
Reset time delay, TPS3870K  
Reset time delay, TPS3870L  
Reset time delay, TPS3870L  
CT = Open  
CT = 10 kto VDD  
CT = Open  
140  
0.7  
14  
200  
1
260  
1.3  
26  
ms  
ms  
CT = 10 kto VDD  
CT = Open  
20  
ms  
3.5  
70  
5
6.5  
130  
ms  
CT = 10 kto VDD  
100  
ms  
6
Copyright © 2019, Texas Instruments Incorporated  
 
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
Timing Requirements (continued)  
At 1.7 V VDD 5.5 V, CT = MR = Open, RESET Voltage (VRESET) = 10 kΩ to VDD, RESET load = 10 pF, and over the  
operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C, typical  
conditions at VDD = 3.3 V.  
MIN  
NOM  
MAX  
UNIT  
CT = 10 kto VDD  
CT = Open  
tD  
Reset time delay, TPS3870M  
50  
µs  
tPD  
Propagation detect delay(1)(2)  
Output rise time(1)(3)  
Output fall time(1)(3)  
Startup delay(4)  
Glitch Immunity overvoltage VIT+(OV), 5% Overdrive(1)  
15  
2.2  
0.2  
300  
3.5  
30  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
ms  
tR  
tF  
tSD  
tGI (VIT+)  
tGI (MR)  
tPD (MR)  
tMR_W  
tD (MR)  
Glitch Immunity MR pin  
25  
Propagation delay from MR low to assert RESET  
MR pin pulse width duration to assert RESET  
MR reset time delay  
500  
tD  
1
(1) 5% Overdrive from threshold. Overdrive % = [VSENSE - VIT+(OV)] / VIT+(OV)  
(2) tPD measured from threshold trip point VIT+(OV) to RESET VOL voltage  
(3) Output transitions from VOL to 90% for rise times and 90% to VOL for fall times.  
(4) During the power-on sequence, VDD must be at or above VDD (MIN) for at least tSD + tD before the output is in the correct state.  
Overdrive[2.5%] above VIT+(OV)  
[0.7%]  
Accuracy across (-40ºC to 125ºC)  
[ 0.4% = 0.7%-0.3%) ]  
[0.25%]  
[ 0.15% = 0.7%-0.55%) ]  
0.5%  
[ -0.1% = 0.7%-0.8%) ]  
Accuracy at 25ºC  
VIT+(OV)  
[-0.25%]  
[-0.7%]  
[-0.3%]  
VIT+(OV) - VHYS  
[-0.55%]  
Hys band for VIT+(OV)  
[-0.8%]  
[ -1.0% = -0.7%-0.3%) ]  
[ -1.25% = -0.7%-0.55%) ]  
[ -1.5% = -0.7%-0.8%) ]  
0.5%  
Nominal monitored voltage  
All percentages are calculated with respect to typical VIT  
1. Voltage Threshold and Hysteresis Accuracy  
版权 © 2019, Texas Instruments Incorporated  
7
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
VDD(MIN)  
UVLO  
VDD  
VPOR  
VIT+(OV)  
Hysteresis  
VIT+(OV) - VHYS  
SENSE  
RESET  
tD  
tPD  
tD  
tSD  
(1) VDD = 2 V, RPU = 10 kΩ to VDD  
(2) Variant M (time delay bypass) has a ~40 µs pulse at RESET pin during power up window, this is present only when  
the power cycle off time is longer than 10 seconds, this behavior will not occur if SENSE pin is within window of  
operation during VDD power up.  
2. SENSE Timing Diagram  
8
版权 © 2019, Texas Instruments Incorporated  
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
7.7 Typical Characteristics  
At TJ = 25°C, VDD = 3.3 V, and RPU = 10 kΩ, unless otherwise noted.  
35  
30  
25  
20  
15  
10  
5
0.2  
0.8 V  
1.2 V  
1.8 V  
3.3 V  
5.0 V  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
0
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
VIT+(OV) Accuracy (%)  
D002  
D004  
Tested across multiple voltage options  
3. Overvoltage Accuracy vs Temperature  
4. Overvoltage Accuracy Distribution  
0.6  
0.58  
0.56  
0.54  
0.52  
0.5  
7
6
5
4
3
2
0.8 V  
1.2 V  
1.8 V  
3.3 V  
5.0 V  
VDD = 1.7 V  
VDD = 3.3 V  
VDD = 5.5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D006  
D007  
Tested across multiple voltage options  
Output (RESET Pin) = High  
6. Supply Current vs Temperature  
5. Overvoltage Hysteresis Voltage Accuracy vs  
Temperature  
16  
15  
14  
13  
12  
11  
10  
9
6
5
4
3
2
-40èC  
25èC  
125èC  
VDD = 1.7 V  
VDD = 3.3 V  
VDD = 5.5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
0
5
10 15 20 25 30 35 40 45 50 55  
Overdrive (%)  
Temperature (èC)  
D008  
D010  
Output (RESET Pin) = Low  
7. Supply Current vs Temperature  
VDD = 1.7 V  
8. SENSE Glitch Immunity (VIT+) vs Overdrive  
版权 © 2019, Texas Instruments Incorporated  
9
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TJ = 25°C, VDD = 3.3 V, and RPU = 10 kΩ, unless otherwise noted.  
9
0.3  
0.25  
0.2  
-40èC  
25èC  
125èC  
8
7
6
5
4
3
0.15  
0.1  
-40èC  
25èC  
125èC  
0.05  
0
0
5
10 15 20 25 30 35 40 45 50 55  
Overdrive (%)  
0
1
2
3
4
5
IRESET (mA)  
D012  
D013  
VDD = 5.5 V  
VDD = 1.7 V  
9. SENSE Glitch Immunity (VIT+) vs Overdrive  
10. Low-Level Output Voltage vs RESET current  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
VMR_H  
VMR_L  
0.15  
0.1  
-40èC  
25èC  
125èC  
0.05  
0
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
125  
IRESET (mA)  
Temperature (èC)  
D014  
D015  
VDD = 5.5 V  
VDD = 1.7 V  
11. Low-Level Output Voltage vs RESET current  
12. SET Threshold vs Temperature  
390  
385  
380  
375  
370  
365  
1.16  
1.14  
1.12  
1.1  
VMR_H  
VMR_L  
1.08  
1.06  
1.04  
1.7 V  
5.5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D016  
D017  
VDD = 5.5 V  
13. SET Threshold vs Temperature  
14. CT Current vs CT value  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
At TJ = 25°C, VDD = 3.3 V, and RPU = 10 kΩ, unless otherwise noted.  
500  
5
1
100  
10  
1
-40èC  
25èC  
125èC  
-40èC  
25èC  
125èC  
0.1  
0.1  
0.1  
1
10  
CT (nF)  
100  
1000  
0.1  
1
CT (nF)  
10  
D018  
D019  
15. RESET Timeout vs CT Capacitor  
16. Timeout vs CT Capacitor (0.1 to 10 nF)  
12  
10  
8
6
4
VDD = 1.7 V  
VDD = 3.3 V  
VDD = 5.5 V  
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D020  
17. Detect Propagation Delay vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
11  
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS3870-Q1 family of devices uses a voltage comparator and a precision voltage reference for overvoltage  
detection. The TPS3870-Q1 features a highly accurate threshold voltage (±0.7% over temperature) and a variety  
of voltage threshold variants.  
The TPS3870-Q1 includes the resistors used to set the overvoltage threshold internal to the device. These  
internal resistors allow for lower component counts and greatly simplifies the design because no additional  
margins are needed to account for the accuracy of external resistors.  
TPS3870-Q1 versions J, K and L have three time delay settings, two fixed by connecting CT pin to VDD through  
a resistor and leaving CT floating and a programmable time delay setting that only requires a single capacitor  
connected from CT pin to ground.  
Manual Reset (MR) allows for sequencing or hard reset by driving the MR pin below VMR_L  
.
The TPS3870-Q1 is designed to assert active low output signals when the monitored voltage is outside the safe  
window. The relationship between the monitored voltage and the states of the outputs is shown in 2.  
8.2 Functional Block Diagram  
VDD  
CT  
VCT  
50mV  
ICT  
Cap  
Control  
SENSE  
OV Comparator  
Time Delay  
Logic  
RESET  
Vref  
VDD  
RMR  
GND  
MR  
*For all possible voltages, threshold tolerance, time delays, and threshold options, see 6.  
8.3 Feature Description  
8.3.1 VDD  
The TPS3870-Q1 is designed to operate from an input voltage supply range between 1.7 V to 5.5 V. An input  
supply capacitor is not required for this device; however, if the input supply is noisy good analog practice is to  
place a 1-µF capacitor between the VDD pin and the GND pin.  
VDD needs to be at or above VDD(MIN) for at least the start-up delay (tSD+ tD) for the device to be fully functional.  
8.3.2 SENSE  
The TPS3870-Q1 uses a comparator with a precision reference voltage and a trimmed resistor divider. This  
configuration optimizes device accuracy because all resistor tolerances are accounted for in the accuracy and  
performance specifications. The comparator also includes built-in hysteresis that provides noise immunity and  
ensures stable operation.  
12  
版权 © 2019, Texas Instruments Incorporated  
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
Feature Description (接下页)  
Although not required in most cases, for noisy applications good analog design practice is to place a 1-nF to 10-  
nF bypass capacitor at the SENSE input in order to reduce sensitivity to transient voltages on the monitored  
signal.  
When monitoring VDD supply voltage, the SENSE pin can be connected directly to VDD. The output (RESET) is  
high impedance when voltage at the SENSE pin is lower than the upper boundary of the threshold.  
8.3.3 RESET  
In a typical TPS3870-Q1 application, the RESET output is connected to a reset or enable input of a processor  
[such as a digital signal processor (DSP), application-specific integrated circuit (ASIC), or other processor type]  
or the enable input of a voltage regulator [such as a DC-DC converter or low-dropout regulator (LDO)].  
The TPS3870-Q1 has an open drain active low output that requires a pull-up resistor to hold these lines high to  
the required voltage logic. Connect the pull-up resistor to the proper voltage rail to enable the output to be  
connected to other devices at the correct interface voltage levels. To ensure proper voltage levels, give some  
consideration when choosing the pull-up resistor values. The pull-up resistor value is determined by VOL, output  
capacitive loading, and output leakage current. These values are specified in Specifications. The open drain  
output can be connected as a wired-OR logic with other open drain signals such as another TPS3870-Q1  
RESET pin.  
2 describes the scenarios when the output (RESET) is either asserted low or high impedance.  
VIT+(OV)  
OV Limit  
VIT+(OV) - VHYS  
VSENSE  
RESET  
tPD  
tD  
18. RESET output  
8.3.4 Capacitor Time (CT)  
The CT pin provides the user the functionality of both high-precision, factory-programmed, reset delay timing  
options and user-programmable, reset delay timing. The CT pin can be pulled up to VDD through a resistor, have  
an external capacitor to ground, or can be left unconnected. The configuration of the CT pin is re-evaluated by  
the device every time the voltage on the SENSE line enters the valid window (VSENSE < VIT+(OV)). The pin  
evaluation is controlled by an internal state machine that determines which option is connected to the CT pin.  
The sequence of events takes 450 μs to determine if the CT pin is left unconnected, pulled up through a resistor,  
or connected to a capacitor. If the CT pin is being pulled up to VDD, then a pull-up resistor is required, 10 kΩ is  
recommended.  
8.3.5 Manual Reset (MR)  
The manual reset (MR) input allows a processor or other logic circuits to initiate a reset. A logic low on MR  
causes RESET to assert. After MR returns to a logic high and the SENSE pin voltage is within a valid condition  
(VSENSE < VIT+(OV)) , RESET is deasserted after the reset delay time (tD). If MR is not controlled externally, then  
MR can either be connected to VDD or left floating because the MR pin is internally pulled up to VDD. Figure 19  
shows the relation between MR and RESET.  
版权 © 2019, Texas Instruments Incorporated  
13  
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
VIT+(OV)  
Hysteresis  
VIT+(OV) - VHYS  
SENSE  
Pulse < VMR_L  
Pulse < tGI (MR)  
MR  
VMR_H  
VMR_L  
tMR_W  
RESET  
tD(MR)  
tPD (MR)  
(1) RESET pulls up to VDD with 10 kΩ.  
(2) To initiate and continue time reset counter both conditions must be met MR pin above VMR_H or floating and VSENSE  
below VIT+(OV) - VHYS  
(3) MR is ignored during output RESET low event  
19. Manual Reset Timing Diagram  
8.4 Device Functional Modes  
2. Functional Mode Truth Table  
DESCRIPTION  
CONDITION  
SENSE < VIT+(OV)  
MR PIN  
VDD PIN  
VDD > VDD(MIN)  
OUTPUT (RESET PIN)  
Normal Operation  
Open or above VMR_H  
High  
Over Voltage  
detection  
SENSE > VIT+(OV)  
Open or above VMR_H  
VDD > VDD(MIN)  
Low  
Manual reset  
SENSE < VIT+(OV)  
SENSE < VIT+(OV)  
Below VMR_L  
VDD > VDD(MIN)  
Low  
Low  
UVLO engaged  
Open or above VMR_H  
VPOR < VDD < UVLO  
8.4.1 Normal Operation (VDD > VDD(MIN)  
)
When the voltage on VDD is greater than VDD(MIN) for approximately (tSD+ tD), the RESET output state will  
correspond to the SENSE pin voltage with respect to the threshold limits, when SENSE voltage is outside of  
threshold limits the RESET voltage will be low (VOL).  
8.4.2 Undervoltage Lockout (VPOR < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage but greater than the power-on reset voltage  
(VPOR), the RESET pin will be held low , regardless of the voltage on SENSE pin.  
8.4.3 Power-On Reset (VDD < VPOR  
)
When the voltage on VDD is lower than the required voltage (VPOR) to internally pull the asserted output to GND,  
RESET signal is undefined and is not to be relied upon for proper device function.  
14  
版权 © 2019, Texas Instruments Incorporated  
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Voltage Threshold Accuracy  
Voltage monitoring requirements vary depending on the voltage supply tolerance of the device being powered.  
Due to the high precision of the TPS3870-Q1 (±0.7% Max), the device allows for a wider supply voltage margins  
and threshold headroom for tight tolerance applications.  
For example, take a DC/DC regulator providing power to a core voltage rail of an MCU. The MCU has a  
tolerance of ±5% of the nominal output voltage of the DC/DC. The user sets an ideal voltage threshold of 4%  
which allows for ±1% of threshold accuracy. Since the TPS3870-Q1 threshold accuracy is higher than ±1%, the  
user has more supply voltage margin which can allow for a relaxed power supply design. This gives flexibility to  
the DC/DC to use a smaller output capacitor or inductor because of a larger voltage window for voltage ripple  
and transients. There is also headroom between the minimum system voltage and voltage tolerance of the MCU  
to ensure that the voltage supply will never be in the region of potential failure of malfunction without the  
TPS3870-Q1 asserting a reset signal.  
20 illustrates the supply overvoltage margin and accuracy of the TPS3870-Q1 for the example explained  
above. Using a low accuracy supervisor will eat into the available budget for the power supply ripple and  
transient response. This gives less flexibility to the user and a more stringent DC/DC converter design.  
DC/DC nominal output  
0%  
Supply  
Regulator output voltage accuracy  
Voltage  
Margin  
Margin for ripple and transients  
Voltage  
Threshold  
Accuracy  
0.7% Allowed threshold tolerance  
+
4%  
5%  
- 0.7% Minimum system voltage  
Potential Failure or Malfunction  
20. TPS3870-Q1 Voltage Threshold Accuracy  
版权 © 2019, Texas Instruments Incorporated  
15  
 
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Application Information (接下页)  
9.1.2 CT Reset Time Delay  
The TPS3870-Q1 features three options for setting the reset delay (tD): connecting a capacitor to the CT pin,  
connecting a pull-up resistor to VDD, and leaving the CT pin unconnected. 21 shows a schematic drawing of  
all three options. To determine which option is connected to the CT pin, an internal state machine controls the  
internal pulldown device and measures the pin voltage. This sequence of events takes 450 μs to determine  
which timing option is used. Every time the voltage on the SENSE line enters the valid window (VSENSE < VIT+(OV)  
-VHYS, the state machine determines the CT option.  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
CT  
ICT  
ICT  
ICT  
CT  
CT  
Cap  
Control  
Cap  
Control  
Cap  
Control  
User Programmable  
Capacitor to GND  
CT Unconnected  
10 kΩ Resistor to VDD  
21. CT Charging Circuit  
9.1.2.1 Factory-Programmed Reset Delay Timing  
To use the factory-programmed timing options, the CT pin must either be left unconnected or pulled up to VDD  
through a 10 kpull-up resistor. Using these options enables a high-precision reset delay timing, as shown in 表  
3.  
3. Reset Delay Time for Factory-Programmed Reset Delay Timing  
RESET DELAY TIME (tD)  
VARIANT  
VALUE  
CT = Capacitor to GND  
Programmable tD  
Programmable tD  
Programmable tD  
N/A  
CT = Floating  
CT = 10 kΩ to VDD  
TPS3870J  
TPS3870K  
TPS3870L  
TPS3870M  
10  
1
200  
20  
ms  
ms  
ms  
µs  
5
100  
50  
50  
9.1.2.2 Programmable Reset Delay-Timing  
The TPS3870 reset time delay is based on internal current source (ICT) to charge external capacitor (CCT) and  
read capacitor voltage with the internal comparator. The minimum value capacitor is 250 pF. There is no  
limitation on maximum capacitor the only constrain is imposed by the initial voltage of the capacitor, if CT cap is  
zero or near to zero then ideally there is no other constraint on the max capacitor. The typical ideal capacitor  
value needed for a given delay time can be calculated using 公式 1, where CCT is in nanofarads (nF) and tD is in  
ms:  
tD = 3.066 × CCT + 0.5 ms  
(1)  
To calculate the minimum and maximum-reset delay time use 公式 2 and 公式 3, respectively.  
tD(min) = 2.7427 × CCT + 0.3 ms  
(2)  
(3)  
tD(max) = 3.4636 × CCT + 0.7 ms  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
The slope of the equation is determined by the time the CT charging current (ICT) takes to charge the external  
capacitor up to the CT comparator threshold voltage (VCT). When RESET is asserted, the capacitor is discharged  
through the internal CT pulldown resistor. When the RESET conditions are cleared, the internal precision current  
source is enabled and begins to charge the external capacitor; when VCT = 1.15 V, RESET is unasserted. Note  
that in order to minimize the difference between the calculated RESET delay time and the actual RESET delay  
time, use a use a high-quality ceramic dielectric COG, X5R, or X7R capacitor and minimize parasitic board  
capacitance around this pin. 4 lists the reset delay time ideal capacitor values for CCT  
.
4. Reset Delay Time for Ideal Capacitor Values  
CCT  
250 pF  
1 nF  
RESET DELAY TIME (tD), TYPICAL  
1.27 ms  
3.57 ms  
3.26 nF  
32.6 nF  
65.2 nF  
1uF  
10.5 ms  
100.45 ms  
200.40 ms  
3066.50 ms  
9.1.3 RESET Latch Mode  
The TPS3870-Q1 features a voltage latch mode on the RESET pin when connecting the CT pin to common  
ground . A pull-down resistor is recommended to limit current consumption of the system. In latch mode, if the  
RESET pin is low or triggers low, the pin will stay low regardless if VSENSE is within the acceptable voltage  
boundaries (VSENSE < VIT+(OV)). To unlatch the device provide a voltage to the CT pin that is greater than the CT  
pin comparator threshold voltage, VCT. The RESET pin will trigger high instantaneously without any reset delay.  
A voltage greater than 1.2 V to recommended to ensure a proper unlatch. Use a series resistance to limit current  
when an unlatch voltage is applied. For more information, Design 1: RESET Latch Mode gives an example of a  
typical latch application.  
At power up, the TPS3870-Q1 will be latched when CT is connected to GND. To ensure  
correct power up when using RESET latch mode, send a pulse to the CT pin greater than  
1.2 V after tSD and SENSE is within the correct window of operation.  
VDD  
VDD  
ICT  
10 k  
CT  
V > VCT  
Voltage at CT  
to Unlatch  
Cap  
Control  
10 kResistor to  
GND to Latch  
22. RESET Latch Circuit  
版权 © 2019, Texas Instruments Incorporated  
17  
 
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
9.1.4 Adjustable Voltage Thresholds  
The TPS3870-Q1 0.7% maximum accuracy allows for adjustable voltage thresholds using external resistors  
without adding major inaccuracies to the device. In case that the desired monitored voltage is not available,  
external resistor dividers can be used to set the desired voltage thresholds. 23 illustrates an example of how  
to adjust the voltage threshold with external resistor dividers. The resistors can be calculated depending on the  
desired voltage threshold and device part number. TI recommends using the 0.8V voltage threshold device such  
as the TPS3870J4080 because of the bypass mode of internal resistor ladder.  
For example, consider a 2.0 V rail being monitored (VMON) using the TPS3870J4080 variant. Using 公式 4, R1 =  
15 kΩ given that R2 = 10 kΩ, VMON = 2 V , and VSENSE = 0.8 V. This device is typically meant to monitor a 0.8 V  
rail with a +4% voltage threshold. This means that the device overvoltage threshold (VIT+(OV)) is 0.832 V. Using 公  
4, the monitored overvoltage threshold (VMON+) = 2.08 V when VSENSE = VIT+(OV). If a wider tolerance threshold  
is desired, use a device variant shown on 6 to determine what device part number matches your application.  
VSENSE = VMON × (R2 ÷ (R1 + R2))  
(4)  
There are inaccuracies that must be taken into consideration while adjusting voltage thresholds. Aside from the  
tolerance of the resistor divider, there is an internal resistance of the SENSE pin that may affect the accuracy of  
the resistor divider. Although expected to be very high impedance, users are recommended to calculate the  
values for design specifications. The internal sense resistance (RSENSE) can be calculated by the sense voltage  
(VSENSE) divided by the sense current (ISENSE) as shown in 公式 6. VSENSE can be calculated using 公式 4  
depending on the resistor divider and monitored voltage. ISENSE can be calculated using 公式 5.  
ISENSE = (VMON – VSENSE) ÷ R1 – (VSENSE ÷ R2)  
RSENSE = VSENSE ÷ ISENSE  
(5)  
(6)  
VMON  
VDD  
R1  
10 lQ  
TPS3870-Q1  
Vsense  
SENSE  
RESET  
VDD  
VDD  
CT  
MR  
R2  
GND  
23. Adjustable Voltage Threshold with External Resistor Dividers  
Although 公式 4 solves for VSENSE, inaccuracies for leakage need to be taken into consideration when  
understanding the overall threshold accuracy of the device. To calculate the threshold with this inaccuracy taken  
into account, use 公式 7  
VIT_Actual = VSENSE + R1 × ((VSENSE ÷ R2) + ISENSE  
)
(7)  
To calculate the worst case values through the resistor divider, ISENSE should be taken from the Electrical  
Characteristics table. While these equations provide a summary of what you need to correctly account for factors  
that go into determining your resistor divider with inaccuracy, you should use the Application Report Optimizing  
Resistor Dividers at a Comparator Input to further understand this and to design your implementation. This report  
explains how to optimize the resistor divider at the SENSE input for an adjustable voltage threshold version of  
the device. You should follow this Application Report using 0.8 V as the VREF value for the TPS3870-Q1.  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
9.1.5 Immunity to SENSE Pin Voltage Transients  
The TPS3870-Q1 is immune to short voltage transient spikes on the input pins. Sensitivity to transients depends  
on both transient duration and overdrive (amplitude) of the transient.  
Overdrive is defined by how much the VSENSE exceeds the specified threshold, and is important to know because  
the smaller the overdrive, the slower the response of the outputs (RESET). Threshold overdrive is calculated as  
a percent of the threshold in question, as shown in 公式 8:  
Overdrive % = | (VSENSE - (VIT+(OV))) / VIT (Nominal) × 100% |  
where:  
VSENSE is the voltage at the SENSE pin  
VIT (Nominal) is the nominal threshold voltage  
VIT+(OV) represents the actual overvoltage tripping voltage  
(8)  
9.1.5.1 Hysteresis  
The overvoltage comparator includes built-in hysteresis that provides noise immunity and ensures stable  
operation. For example if the voltage on the SENSE pin goes above VIT+(OV) and RESET is asserted (driven low),  
then when the voltage on the SENSE pin is below the positive threshold voltage, RESET deasserts after the  
user-defined RESET delay time. Figure 24 shows the relation between VIT+(OV) and hysteresis voltage (VHYS).  
VRESET  
VSENSE  
VIT+(OV) - VHYS  
VIT+(OV)  
24. SENSE Pin Hysteresis  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
9.2 Typical Application  
9.2.1 Design 1: RESET Latch Mode  
Another typical application for the TPS3870-Q1 is shown in 25. The TPS3870-Q1 is used in a RESET latch  
output mode. In latch mode, once RESET driven logic low, it will stay low regardless of the sense voltage. If the  
RESET pin is low on start up, it will also stay low regardless of sense voltage.  
VCORE  
VCORE  
VDD  
Microcontroller  
10 lQ  
TPS3870-Q1  
VGPIO  
SENSE  
VDD  
CT  
RESET  
MR  
VDD  
Microcontroller  
10 lQ  
VGPIO  
GND  
10 lQ  
25. Window Voltage Monitoring with RESET Latch  
9.2.1.1 Design Requirements  
5. Design Parameters  
PARAMETER  
Monitored Rail  
DESIGN REQUIREMENT  
DESIGN RESULT  
1.2-VCORE nominal, with alerts if outside of 5% of  
1.2 V (including device accuracy), Latch when  
RESET is low, until voltage is applied on CT pin.  
Worst case VIT+(OV) = 1.256 V (4.7%),  
Output logic voltage  
5-V CMOS  
5-V CMOS  
Maximum device current  
consumption  
15 µA  
4.5 µA (Typ), 7 µA (Max)  
9.2.1.2 Detailed Design Procedure  
The RESET pin can be latched when the CT pin is connected to a common ground with a pull-down resistor. A  
10 kΩ resistors is recommended to limit current consumption. To unlatch the device provide a voltage to the CT  
pin that is greater than the CT pin comparator threshold voltage, VCT. A voltage greater than 1.15 V to  
recommended to ensure a proper unlatch. Use a series resistance to limit current when an unlatch voltage is  
applied. To go back into latch operation, disconnect the voltage on the CT pin. The RESET pin will trigger high  
instantaneously without any reset delay.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
9.2.1.3 Application Curves  
VSENSE ramp from 0 V to 1.4V, VDD = 3.3 V, VCT = 0 V  
VRESET = VDD = 3.3 V  
VCT biased at least to 1.15 V , VSENSE = 1.2 V  
VRESET = VDD = 3.3 V  
26. TPS3870-Q1 SENSE Ramp Latch Function  
27. TPS3870-Q1 CT Bias Unlatch Function  
VDD ramp up from 0 V to 3.3 V , VSENSE = 1.2 V, CT = 0 V  
VRESET = VDD = 3.3 V  
28. TPS3870-Q1 VDD Ramp Latch Function  
版权 © 2019, Texas Instruments Incorporated  
21  
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supply Guidelines  
This device is designed to operate from an input supply with a voltage range between 1.7 V to 5.5 V. It has a 6-V  
absolute maximum rating on the VDD pin. It is good analog practice to place a 0.1-µF to 1-µF capacitor between  
the VDD pin and the GND pin depending on the input voltage supply noise. If the voltage supply providing power  
to VDD is susceptible to any large voltage transient that exceed maximum specifications, additional precautions  
must be taken. See SNVA849 for more information.  
11 Layout  
11.1 Layout Guidelines  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
from occurring.  
Avoid using long traces for the VDD supply node. The VDD capacitor, along with parasitic inductance from  
the supply to the capacitor, can form an LC circuit and create ringing with peak voltages above the maximum  
VDD voltage.  
Avoid using long traces of voltage to the sense pin. Long traces increase parasitic inductance and cause  
inaccurate monitoring and diagnostics.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
11.2 Layout Example  
Pull-Up Voltage  
V_Sense  
VDD  
MR  
GND  
Sense  
VDD  
CT  
10 kΩ  
RESET  
1 F  
GND  
29. Recommended Layout  
22  
版权 © 2019, Texas Instruments Incorporated  
TPS3870-Q1  
www.ti.com.cn  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
12 器件和文档支持  
12.1 器件命名规则  
6 显示了如何根据器件型号来解译器件的功能。  
6. 器件命名约定  
说明  
命名规则  
TPS3870  
TPS3870  
CT 引脚断开 = 10msCT 引脚连接到 VDD = 200ms  
可使用外部电容器对 CT 进行编程  
J
K
L
CT 引脚断开 = 1msCT 引脚连接到 VDD = 20ms  
可使用外部电容器对 CT 进行编程  
延时时间选项:每个器件都有两个  
固定延时时间,而且可以通过外部  
电容器器件型号来调节延迟选项  
OV  
CT 引脚断开 = 5msCT 引脚连接到 VDD = 100ms  
可使用外部电容器对 CT 进行编程  
CT 引脚断开 = 50µsCT 引脚连接到 VDD = 50µs  
无法对 CT 进行编程  
M
3
来自标称值的过压阈值 = OV3%  
4
来自标称值的过压阈值 = OV4%  
容差选项:触发电压或以上述阈值电压百分比  
形式表示的阈值电压  
5
来自标称值的过压阈值 = OV5%  
6
来自标称值的过压阈值 = OV6%  
7
来自标称值的过压阈值 = OV7%  
标称监控器阈值电压选项  
050  
055  
060  
065  
070  
075  
080  
085  
090  
095  
100  
105  
110  
115  
120  
125  
130  
150  
180  
250  
280  
290  
330  
500  
DSE  
R
0.50V  
0.55V  
0.60V  
0.65V  
0.70V  
0.75V  
0.80V  
0.85V  
0.90V  
0.95V  
1.00V  
1.05V  
1.10V  
1.15V  
1.20V  
1.25V  
1.30V  
1.50V  
1.80V  
2.50V  
2.80V  
2.90V  
3.30V  
5.00V  
WSON - 6 引脚 (1.5mm × 1.5mm)  
大卷带  
封装  
卷带  
汽车版本  
Q1  
Q100 AEC  
版权 © 2019, Texas Instruments Incorporated  
23  
 
TPS3870-Q1  
ZHCSK23A JULY 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
12.2 文档支持  
12.2.1 评估模块  
评估模块 (EVM) 可与 TPS3870-Q1 配套使用,帮助评估初始电路性能。适用于 TPS3703-Q1 EVM 可用于对  
TPS3870-Q1 仅进行过压评估。TPS3703-Q1 评估模块(以及相关的用户指南)可在德州仪器 (TI) 网站上的产品  
文件夹中获取,也可直接从 TI 网上商店购买。  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3870J4080DSERQ1  
TPS3870J4330DSERQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSE  
DSE  
6
6
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
H5  
H4  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS3890

具有可编程延迟的低静态电流、1% 精度监控器
TI

TPS3890-Q1

具有可编程延迟的汽车类低静态电流 1% 精度监控器
TI

TPS389001DSER

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389001DSET

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389001QDSERQ1

具有可编程延迟的汽车类低静态电流 1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389012DSER

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389012DSET

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389012QDSERQ1

具有可编程延迟的汽车类低静态电流 1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389015DSER

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389015DSET

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389015QDSERQ1

具有可编程延迟的汽车类低静态电流 1% 精度监控器 | DSE | 6 | -40 to 125
TI

TPS389018DSER

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125
TI