TPS40345 [TI]

适用于成本优化型应用的 3V 至 20V、25A 同步降压控制器;
TPS40345
型号: TPS40345
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于成本优化型应用的 3V 至 20V、25A 同步降压控制器

控制器
文件: 总29页 (文件大小:2068K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS40345  
ZHCSH69 DECEMBER 2017  
TPS40345 3V 20V 输入同步降压控制器  
1 特性  
3 说明  
1
输入电压范围:3V 20V  
TPS40345 是一款同步降压控制器,可在 3V 20V  
的输入电压下工作,可用于成本优化型 应用。此控制  
器实现了一种电压模式控制架构,具有输入电压前馈补  
偿功能,可对输入电压变化做出即时响应。开关频率设  
置为 600kHz。  
600kHz 开关频率  
高侧和低侧 FET RDS(on) 电流检测  
可编程热补偿 OCP 电平  
可编程软启动  
600mV1.3% 基准电压  
电压前馈补偿  
开关频率中添加了扩频频谱 (FSS) 功能,显著降低了  
峰值 EMI 噪声,使其更容易符合 EMI 标准。  
支持预偏置输出  
TPS40345 可提供各种用户可编程功能,其中包括软  
启动、过流保护 (OCP) 电平以及环路补偿。  
扩频频谱  
145°C 的热关断保护限制  
10 引脚 3mm × 3mm VSON 封装,散热垫具有接  
地连接  
OCP 电平可以通过从 LDRV 引脚连接到电路接地的单  
个外部电阻器进行编程。在初始上电过程  
中,TPS40345 可进入校准环节,测量 LDRV 引脚电  
压,并设置内部 OCP 电压级。在工作期间,器件可在  
通电时通过将已编程 OCP 电压电平与低侧 FET 上的  
压降进行比较来确定是否发生过流情况。之  
后,TPS40345 会进入关断和重启周期,直到故障消  
除为止。  
2 应用  
负载点 (POL) 模块  
打印机  
数字电视  
电信  
器件信息(1)  
器件型号  
TPS40345  
封装  
VSON (10)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化应用示意图  
VOUT  
VIN  
TPS40345  
5
4
3
2
1
FB  
BOOT  
HDRV  
SW  
6
7
8
9
COMP  
VOUT  
PGOOD  
EN/SS LDRV/OC  
VDD  
GND  
SD  
VIN  
BP 10  
PAD  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSD62  
 
 
 
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Applications ................................................ 13  
Power Supply Recommendations...................... 17  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 12  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持................................................................ 20  
11.2 文档支持................................................................ 20  
11.3 接收文档更新通知 ................................................. 20  
11.4 社区资源................................................................ 20  
11.5 ....................................................................... 20  
11.6 静电放电警告......................................................... 20  
11.7 Glossary................................................................ 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 12 月  
*
初始发行版  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
5 Pin Configuration and Functions  
DRC Package  
10-Pin VSON  
Top View  
FB COMP PGOOD EN/SS VDD  
5
4
3
2
1
Thermal Pad  
6
7
8
9
10  
LDRV/  
OC  
BOOT HDRV SW  
BP  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Gate drive voltage for the high-side N-channel MOSFET. A 0.1-µF capacitor (typical) must be connected  
between this pin and SW. For low input voltage operation, an external Schottky diode from BP to BOOT is  
recommended to maximize the gate drive voltage for the high-side.  
BOOT  
6
I
Output bypass for the internal regulator. Connect a low ESR bypass ceramic capacitor of 1 µF or greater from  
this pin to GND.  
BP  
10  
4
O
O
COMP  
Output of the error amplifier and connection node for loop feedback components.  
Logic level input which starts or stops the controller via an external user command. Letting this pin float turns  
the controller on. Pulling this pin low disables the controller. This is also the soft-start programming pin. A  
capacitor connected from this pin to GND programs the soft-start time. The capacitor is charged with an  
internal current source of 10 µA. The resulting voltage ramp of this pin is also used as a second non-inverting  
input to the error amplifier after a 0.8 V (typical) level shift downwards. Output regulation is controlled by the  
internal level shifted voltage ramp until that voltage reaches the internal reference voltage of 600 mV – the  
voltage ramp of this pin reaches 1.4 V (typical). Optionally, a 267-kΩ resistor from this pin to BP enables the  
FSS feature.  
EN/SS  
2
I
Inverting input to the error amplifier. In normal operation, the voltage on this pin is equal to the internal  
reference voltage.  
FB  
5
I
PGOOD  
HDRV  
3
7
O
O
Open-drain power good output.  
Bootstrapped gate drive output for the high-side N-channel MOSFET.  
Gate drive output for the low-side synchronous rectifier N-channel MOSFET. A resistor from this pin to GND  
is also used to determine the voltage level for OCP. An internal current source of 10 µA flows through the  
resistor during initial calibration and that sets up the voltage trip point used for OCP.  
LDRV/OC  
9
O
Power input to the controller. Bypass VDD to GND with a low ESR ceramic capacitor of at least 1 µF close to  
the device.  
VDD  
SW  
1
8
I
Sense line for the adaptive anti-cross conduction circuitry. Serves as common connection for the flying high-  
side FET driver.  
O
Ground connection to the controller. This is also the thermal pad used to conduct heat from the device. This  
connection serves a twofold purpose. The first is to provide an electrical ground connection for the device.  
The second is to provide a low thermal impedance path from the device die to the PCB. This pad should be  
tied externally to a ground plane.  
Thermal  
Pad  
GND  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–3  
MAX  
22  
27  
–5  
UNIT  
V
VDD  
SW  
V
SW (< 100 ns pulse width, 10 µJ)  
BOOT  
V
–0.3  
–5  
30  
30  
7
V
HDRV  
V
BOOT-SW, HDRV-SW (differential from BOOT or HDRV to SW)  
COMP, PGOOD, FB, BP, LDRV, EN/SS  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–0.3  
–0.3  
–40  
–55  
V
7
V
145  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other condition beyond those included under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods of time may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
20  
UNIT  
V
Input voltage, VDD  
Operating junction temperature, TJ  
–20  
125  
°C  
6.4 Thermal Information  
TPS40345  
DRC (VSON)  
10 PINS  
44.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
56.1  
19.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
19.4  
RθJC(bot)  
5.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
6.5 Electrical Characteristics  
TJ = –20°C to 125°C, VVDD = 12 V, all parameters at zero power dissipation (unless otherwise noted)  
PARAMETER  
VOLTAGE REFERENCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TJ = 25°C, 3 V < VVDD < 20 V  
597  
592  
600  
600  
603  
608  
VFB  
FB input voltage  
mV  
–20°C < TJ < 125°C, 3 V < VVDD < 20 V  
INPUT SUPPLY  
VVDD  
Input supply voltage range  
Shutdown supply current  
Quiescent, nonswitching  
3
20  
100  
3.5  
V
IDDSD  
VEN/SS < 0.2 V  
70  
µA  
mA  
IDDQ  
Let EN/SS float, VFB = 1 V  
2.5  
ENABLE/SOFT-START  
High-level input voltage,  
EN/SS  
VIH  
VIL  
0.55  
0.27  
0.7  
0.3  
1
V
V
Low-level input voltage,  
EN/SS  
0.33  
ISS  
Soft-start source current  
Soft-start voltage level  
8
10  
12  
µA  
V
VSS  
0.4  
0.8  
1.3  
BP REGULATOR  
VBP  
Output voltage  
IBP = 10 mA  
6.2  
6.5  
70  
6.8  
V
Regulator dropout voltage,  
VVDD – VBP  
VDO  
IBP = 25 mA, VVDD = 3 V  
110  
mV  
OSCILLATOR  
fSW  
PWM frequency  
Ramp amplitude  
540  
600  
660  
kHz  
V
(1)  
VRAMP  
VVDD/6.6  
VVDD/6 VVDD/5.4  
Frequency spread-spectrum  
frequency deviation  
fSWFSS  
12%  
fSW  
fMOD  
Modulation frequency  
25  
kHz  
PWM  
(1)  
DMAX  
Maximum duty cycle  
VFB = 0 V, 3 V < VVDD < 20 V  
90%  
Minimum controllable pulse  
width  
(1)  
tON(min)  
70  
ns  
ns  
HDRV off to LDRV on  
LDRV off to HDRV on  
5
5
25  
25  
35  
30  
tDEAD  
Output driver dead time  
ERROR AMPLIFIER  
(1)  
GBWP  
Gain bandwidth product  
Open loop gain  
10  
60  
24  
MHz  
dB  
(1)  
AOL  
Input bias current (current  
out of FB pin)  
IIB  
VFB = 0.6 V  
75  
nA  
IEAOP  
Output source current  
Output sink current  
VFB = 0 V  
VFB = 1 V  
2
2
mA  
IEAOM  
PGOOD  
Feedback upper voltage limit  
for PGOOD  
VOV  
VUV  
655  
500  
675  
525  
700  
550  
Feedback lower voltage limit  
for PGOOD  
mV  
PGOOD hysteresis voltage  
at FB  
VPGD-HYST  
RPGD  
25  
30  
10  
40  
70  
20  
PGOOD pulldown resistance VFB = 0 V, IFB = 5 mA  
Ω
550 mV < VFB < 655 mV,  
PGOOD leakage current  
IPGDLK  
µA  
VPGOOD = 5 V  
(1) Ensured by design. Not production tested.  
Copyright © 2017, Texas Instruments Incorporated  
5
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = –20°C to 125°C, VVDD = 12 V, all parameters at zero power dissipation (unless otherwise noted)  
PARAMETER  
OUTPUT DRIVERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-side driver pullup  
resistance  
RHDHI  
RHDLO  
RLDHI  
VBOOT – VSW = 5 V, IHDRV = –100 mA  
VBOOT – VSW = 5 V, IHDRV = 100 mA  
ILDRV = -100 mA  
0.8  
0.5  
1.5  
1
2.5  
2.2  
2.5  
1.2  
Ω
Ω
Ω
Ω
High-side driver pulldown  
resistance  
Low-side driver pullup  
resistance  
0.8  
1.5  
0.6  
Low-side driver pulldown  
resistance  
RLDLO  
ILDRV = 100 mA  
CLOAD = 5 nF  
0.35  
(1)  
tHRISE  
High-side driver rise time  
High-side driver fall time  
Low-side driver rise time  
Low-side driver fall time  
15  
12  
15  
10  
ns  
ns  
ns  
ns  
(1)  
tHFALL  
(1)  
tLRISE  
(1)  
tLFALL  
OVERCURRENT PROTECTION  
Minimum pulse time during  
short circuit  
(1)  
tPSSC(min)  
250  
150  
ns  
ns  
Switch leading-edge  
blanking pulse time  
(1)  
tBLNKH  
OC threshold for high-side  
FET  
VOCH  
TJ = 25°C  
TJ = 25°C  
360  
9.5  
450  
10  
580  
10.5  
400  
mV  
µA  
IOCSET  
OCSET current source  
Maximum clamp voltage at  
LDRV  
VLD-CLAMP  
VOCLOS  
260  
340  
mV  
OC comparator offset  
voltage for low-side FET  
TJ = 25°C  
TJ = 25°C  
–8  
12  
8
mV  
mV  
Programmable OC range for  
low-side FET  
(1)  
VOCLPRO  
300  
OC threshold temperature  
coefficient (both high-side  
and low-side)  
(1)  
VTHTC  
3000  
4
ppm  
OC retry cycles on EN/SS  
pin  
tOFF  
Cycle  
BOOT DIODE  
VDFWD  
Bootstrap diode forward  
voltage  
IBOOT = 5 mA  
0.8  
V
THERMAL SHUTDOWN  
Junction shutdown  
temperature  
Hysteresis  
(1)  
TJSD  
145  
20  
°C  
°C  
(1)  
TJSDH  
6
Copyright © 2017, Texas Instruments Incorporated  
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
6.6 Typical Characteristics  
625  
620  
615  
610  
605  
600  
595  
590  
585  
580  
2.24  
2.22  
2.2  
VDD = 3 V  
VDD = 12 V  
VDD = 20 V  
2.18  
2.16  
2.14  
2.12  
-20  
5
30  
55  
80  
105  
125  
-20  
5
30  
55  
80  
105  
125  
Temperature (èC)  
Temperature (èC)  
D001  
iddq  
Figure 1. Switching Frequency vs Junction Temperature  
Figure 2. Quiescent Current vs Junction Temperature  
72  
14  
13  
12  
11  
10  
9
70  
68  
66  
64  
62  
60  
58  
8
7
6
-20  
5
30  
55  
80  
105  
125  
-20  
5
30  
55  
80  
105  
125  
Temperature (èC)  
Temperature (èC)  
D003  
iocs  
Figure 3. Shutdown Current vs Junction Temperature  
Figure 4. OCSET Current Source vs Junction Temperature  
600.8  
740  
600.6  
600.4  
600.2  
600  
720  
700  
680  
660  
640  
620  
599.8  
599.6  
599.4  
-20  
5
30  
55  
80  
105  
125  
-20  
5
30  
55  
80  
105  
125  
Temperature (èC)  
Temperature (èC)  
vfb_  
D006  
Figure 5. Feedback Reference Voltage vs Junction  
Temperature  
Figure 6. Enable High-Level Threshold Voltage vs Junction  
Temperature  
Copyright © 2017, Texas Instruments Incorporated  
7
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
303  
600  
550  
500  
450  
400  
350  
302.5  
302  
301.5  
301  
300.5  
300  
-20  
5
30  
55  
80  
105  
125  
-20  
5
30  
55  
80  
105  
125  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
Figure 7. Enable Low-Level Threshold Voltage vs Junction  
Temperature  
Figure 8. High-Side Overcurrent Threshold vs Junction  
Temperature  
1000  
800  
Overvoltage  
Undervoltage  
975  
950  
925  
900  
875  
850  
825  
800  
775  
750  
750  
700  
650  
600  
550  
500  
450  
400  
-20  
5
30  
55  
80  
105  
125  
-20  
5
30  
55  
80  
105  
125  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
Figure 9. Power Good Threshold Voltage vs Junction  
Temperature  
Figure 10. Soft-Start Voltage vs Junction Temperature  
8
Copyright © 2017, Texas Instruments Incorporated  
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
7 Detailed Description  
7.1 Overview  
The TPS40345 is a cost-optimized synchronous buck controller providing high-end features to construct high-  
performance DC–DC converters. Prebias capability eliminates concerns about damaging sensitive loads during  
start-up. Programmable overcurrent protection levels and hiccup overcurrent fault recovery maximize design  
flexibility and minimize power dissipation in the event of a prolonged output short. The frequency spread  
spectrum (FSS) feature reduces peak EMI noise by spreading the initial energy of each harmonic along a  
frequency band, thus giving a wider spectrum with lower amplitudes.  
7.2 Functional Block Diagram  
+
10 mA  
0.6 VREF + 12.5%  
FB  
Soft Start  
SS  
SS  
BP  
EN/SS  
2
+
SD  
0.6 VREF –12.5%  
Fault  
Controller  
Clock  
6
7
BOOT  
HDRV  
OC  
+
6-V  
Regulator  
VDD  
BP  
1
10  
4
References  
BP  
0.6 VREF  
SD  
8
SW  
Calibration  
Circuit  
Spread  
Spectrum  
Oscillator  
COMP  
FB  
Clock  
BP  
Anti-Cross  
Conduction  
and  
PWM  
Logic  
9
LDRV/OC  
Pre-Bias  
Circuit  
5
3
PWM  
+
+
10 mA  
0.6 VREF  
SS  
Thermal  
Shutdown  
OC  
Threshold  
Setting  
750 kW  
PGOOD  
Fault Controller  
OC  
PAD  
GND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Voltage Reference  
The 600-mV bandgap cell is internally connected to the noninverting input of the error amplifier. The reference  
voltage is trimmed with the error amplifier in a unity gain configuration to remove amplifier offset from the final  
regulation voltage. The 1.3% tolerance on the reference voltage allows the user to design a very accurate power  
supply.  
Copyright © 2017, Texas Instruments Incorporated  
9
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Enable Functionality, Start-Up Sequence and Timing  
After input power is applied, an internal current source of 40 µA starts to charge up the soft-start capacitor  
connected from EN/SS to GND. When the voltage across that capacitor increases to 0.7 V, it enables the internal  
BP regulator followed by a calibration. The total calibration time is about 1.9 ms. See Figure 11. During the  
calibration, the device performs in the following way. It disables the LDRV drive and injects an internal 10-µA  
current source to the resistor connected from LDRV to GND. The voltage developed across that resistor is then  
sampled and latched internally as the OCP trip level until one cycles the input or toggles the EN/SS.  
2.0  
V
EN/SS  
Calibration  
Time  
1.9 ms  
1.6  
1.2  
0.8  
0.4  
0
1.3 V  
0.7 V  
V
SS_INT  
t – Time – ms  
UDG-09159  
Figure 11. Start-Up Sequence and Timing  
The voltage at EN/SS is internally clamped to 1.3 V before and/or during calibration to minimize the discharging  
time once calibration. The discharging current is from an internal current source of 140 µA and it pulls the voltage  
down to 0.4 V. The discharging current then initiates the soft-start by charging up the capacitor using an internal  
current source of 10 µA. The resulting voltage ramp on this pin is used as a second noninverting input to the  
error amplifier after an 800 mV (typical) downward level-shift; therefore, actual soft-start does not occur until the  
voltage at this pin reaches 800 mV.  
If EN/SS is left floating, the controller starts automatically. EN/SS must be pulled down to less than 270 mV to  
ensure that the chip is in shutdown mode.  
7.3.3 Soft-Start Time  
The soft-start time of the TPS40345 is user programmable by selecting a single capacitor. The EN/SS pin  
sources 10 µA to charge this capacitor. The actual output ramp-up time is the amount of time that it takes for the  
10 µA to charge the capacitor through a 600-mV range. There is some initial lag due to calibration and an offset  
(800 mV) from the actual EN/SS pin voltage to the voltage applied to the error amplifier.  
The soft-start is done in a closed-loop fashion, meaning that the error amplifier controls the output voltage at all  
times during the soft-start period and the feedback loop is never open as occurs in duty cycle limit soft-start  
schemes. The error amplifier has two non-inverting inputs, one connected to the 600-mV reference voltage, and  
the other connected to the offset EN/SS pin voltage. The lower of these two voltages is what the error amplifier  
controls the FB pin. As the voltage on the EN/SS pin ramps up past approximately 1.4 V (800-mV offset voltage  
plus the 600 mV reference voltage), the 600-mV reference voltage becomes the dominant input and the  
converter has reached its final regulation voltage.  
The capacitor required for a given soft-start ramp time for the output voltage is given by Equation 1.  
æ
ç
è
ö
÷
ø
ISS  
CSS  
=
´ t  
SS  
VFB  
10  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
Feature Description (continued)  
where  
CSS is the required capacitance on the EN/SS pin. (F)  
ISS is the soft-start source current (10 µA).  
VFB is the feedback reference voltage (0.6 V).  
tSS is the desired soft-start ramp time (s).  
(1)  
7.3.4 Oscillator and Frequency Spread Spectrum (FSS)  
The oscillator frequency is internally fixed. The TPS40345 operating frequency is 600 kHz.  
Connecting a resistor with a value of 267 kΩ ±10% from BP to EN/SS enables the FSS feature. When the FSS is  
enabled, it spreads the internal oscillator frequency over a minimum 12% window using a 25-kHz modulation  
frequency with triangular profile. By modulating the switching frequency, side-bands are created. The emission  
power of the fundamental switching frequency and its harmonics is distributed into smaller pieces scattered  
around many sideband frequencies. The effect significantly reduces the peak EMI noise and makes it much  
easier for the resultant emission spectrum to pass EMI regulations.  
7.3.5 Overcurrent Protection  
Programmable OCP level at LDRV is from 6 mV to 150 mV at room temperature with 3000 ppm temperature  
coefficient to help compensate for changes in the low-side FET channel resistance as temperature increases.  
With a scale factor of 2, the actual trip point across the low-side FET is in the range of 12 mV to 300 mV. The  
accuracy of the internal current source is ±5%. Overall offset voltage, including the offset voltage of the internal  
comparator and the amplifier for scale factor of 2, is limited to ±8 mV.  
Maximum clamp voltage at LDRV is 340 mV to avoid turning on the low-side FET during calibration and in a  
prebiased condition. The maximum clamp voltage is fixed and it does not change with temperature. If the voltage  
drop across ROCSET reaches the 340-mV maximum clamp voltage during calibration (no ROCSET resistor  
included), it disables OC protection. Once disabled, there is no low-side or high-side current sensing.  
OCP level at HDRV is fixed at 450 mV with 3000-ppm temperature coefficient to help compensate for changes in  
the high-side FET channel resistance as temperature increases. OCP at HDRV provides pulse-by-pulse current  
limiting.  
OCP sensing at LDRV is a true inductor valley current detection, using sample and hold. Equation 2 can be used  
to calculate ROCSET  
:
æ
ç
ç
ç
ç
ç
è
ö
÷
÷
÷
÷
÷
ø
æ
ç
è
ö
÷
ø
I
æ
ç
è
ö
P-P  
I
-
´R  
- V  
OCLOS  
DS on  
÷
OUT max  
(
)
( )  
2
ø
R
=
OCSET  
2 ´ I  
OCSET  
where  
IOCSET is the internal current source.  
VOCLOS is the overall offset voltage.  
IP-P is the peak-to-peak inductor current.  
RDS(on) is the drain to source ON-resistance of the low-side FET.  
IOUT(max) is the trip point for OCP.  
ROCSET is the resistor used for setting the OCP level.  
(2)  
To avoid overcurrent tripping in normal operating load range, calculate ROCSET using Equation 2 with:  
The maximum RDS(ON) at room temperature  
The lower limit of VOCLOS (–8 mV) and the lower limit of IOCSET (9.5 µA) from the Electrical Characteristics  
table.  
The peak-to-peak inductor current IP-P at minimum input voltage  
Copyright © 2017, Texas Instruments Incorporated  
11  
 
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
Overcurrent is sensed across both the low-side FET and the high-side FET. If the voltage drop across either FET  
exceeds the OC threshold, a count increments one count. If no OC is detected on either FET, the fault counter  
decrements by one count. If three OC pulses are summed, a fault condition is declared which cycles the soft-  
start function in a hiccup mode. Hiccup mode consists of four dummy soft-start timeouts followed by a real one if  
overcurrent condition is encountered during normal operation, or five dummy soft-start timeouts followed by a  
real one if overcurrent condition occurs from the beginning during start. This cycle continues indefinitely until the  
fault condition is removed.  
7.3.6 Drivers  
The drivers for the external high-side and low-side MOSFETs can drive a gate-to-source voltage of VBP. The  
LDRV driver for the low-side MOSFET switches between BP and GND, while the HDRV driver for the high-side  
MOSFET is referenced to SW and switches between BOOT and SW. The drivers have nonoverlapping timing  
that is governed by an adaptive delay circuit to minimize body diode conduction in the synchronous rectifier.  
7.3.7 Prebias Start-Up  
The TPS40345 contains a circuit to prevent current from being pulled from the output during start-up in the  
condition the output is prebiased. There are no PWM pulses until the internal soft-start voltage rises above the  
error amplifier input (FB pin), if the output is prebiased. Once the soft-start voltage exceeds the error amplifier  
input, the controller slowly initiates synchronous rectification by starting the synchronous rectifier with a narrow  
on time. The controller then increments that on time on a cycle-by-cycle basis until it coincides with the time  
dictated by (1-D), where D is the duty cycle of the converter. This approach prevents the sinking of current from  
a prebiased output, and ensures the output voltage start-up and ramp to regulation is smooth and controlled.  
7.3.8 Power Good  
The TPS40345 provides an indication that output is good for the converter. This is an open-drain signal and pulls  
low when any condition exists that would indicate that the output of the supply might be out of regulation. These  
conditions include the following:  
VFB is more than ±12.5% from nominal.  
Soft-start is active.  
A short-circuit condition has been detected.  
NOTE  
When there is no power to the device, PGOOD is not able to pull close to GND if an  
auxiliary supply is used for the power good indication. In this case, a built-in resistor  
connected from drain to gate on the PGOOD pulldown device makes the PGOOD pin look  
approximately like a diode to GND.  
7.3.9 Thermal Shutdown  
If the junction temperature of the device reaches the thermal shutdown limit of 145°C, the PWM and the oscillator  
are turned off and HDRV and LDRV are driven low. When the junction cools to the required level (125°C typical),  
the PWM initiates soft-start as during a normal power-up cycle.  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
7.4.1.1 UVLO  
In UVLO, VDD is less than UVLO_ON, the BP6 regulator is off, and the HDRV and LDRV are held low by  
internal passive discharge resistors.  
7.4.1.2 Disable  
Disable is forced by holding SS/EN below 0.4 V. In disable, the BP6 regulator is off, and both HDRV and LDRV  
are held low by passive discharge resistors.  
12  
Copyright © 2017, Texas Instruments Incorporated  
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
Device Functional Modes (continued)  
7.4.1.3 Calibration  
Each enable of the TPS40345 device requires a calibration which lasts approximately 2 ms. During calibration  
the TPS40345 device LDRV and HDRV are held off by its pulldown drivers while the device configures as  
detailed in Enable Functionality, Start-Up Sequence and Timing.  
7.4.1.4 Converting  
When calibration completes, the TPS40345 ramps its reference voltage as described in Soft-Start Time, and the  
states of the LDRV and HDRV drivers are dictated by the COMP pin to regulate the FB pin equal to the internal  
reference.  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS40345 a cost-optimized synchronous buck controllers providing high-end features to construct high-  
performance DC-DC converters. Prebias capability eliminates concerns about damaging sensitive loads during  
start-up. Programmable overcurrent protection levels and hiccup overcurrent fault recovery maximize design  
flexibility and minimize power dissipation in the event of a prolonged output short. frequency spread spectrum  
(FSS) feature reduces peak EMI noise by spreading the initial energy of each harmonic along a frequency band,  
thus giving a wider spectrum with lower amplitudes.  
8.2 Typical Applications  
For this 20-A, 12-V to 1.2-V design, the 600-kHz TPS40345 was selected for a balance between small size and  
high efficiency.  
+
+
1
Copyright © 2017, Texas Instruments Incorporated  
Figure 12. TPS40345 Design Example Schematic  
Copyright © 2017, Texas Instruments Incorporated  
13  
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1 Design Requirements  
For this example, follow the design parameters listed in Table 1.  
Table 1. Design Example Electrical Characteristics  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
8
14  
V
V
V
VINripple  
VOUT  
Input ripple  
IOUT = 20 A  
0.5  
Output voltage  
Line regulation  
Load regulation  
Output ripple  
0 A IOUT 20 A  
8 V VIN 14 V  
0 A IOUT 20 A  
IOUT = 20 A  
1.164  
1.2 1.236  
0.5%  
0.5%  
36  
VRIPPLE  
VOVER  
VUNDER  
IOUT  
mV  
mV  
mV  
A
Output overshoot  
Output undershoot  
Output current  
Soft-start time  
Short-circuit current trip point  
Switching frequency  
Size  
5 A IOUT 15 A  
5 A IOUT 15 A  
8 V VIN 14 V  
VIN = 12 V  
100  
100  
0
20  
tSS  
1.5  
ms  
A
ISCP  
26  
fSW  
600  
1.5  
kHz  
in2  
8.2.2 Detailed Design Procedure  
8.2.2.1 Selecting the Switching Frequency  
To achieve the small size for this design the TPS40345, with fSW = 600 kHz, is selected for minimal external  
component size.  
8.2.2.2 Inductor Selection (L1)  
Synchronous buck power inductors are typically sized for approximately 30% peak-to-peak ripple current  
(IRIPPLE).  
Given this target ripple current, the required inductor size can be calculated in Equation 3.  
V
- VOUT  
VOUT  
1
14V -1.2V 1.2V  
1
IN(max)  
L »  
´
´
=
´
´
= 305nH  
0.3´IOUT  
V
FSW  
0.3´ 20A 14V 600kHz  
IN(max)  
(3)  
(4)  
Selecting a standard 300-nH inductor value, solve for IRIPPLE = 6 A  
The RMS current through the inductor is approximated by Equation 4.  
2
2
2
2
2
=
202  
126  
20.07 A  
+
1
1
1
=
+
I
Lrms = ILavg  
+
12IRIPPLE  
=
IOUT  
12IRIPPLE  
8.2.2.3 Output Capacitor Selection (C12)  
The selection of the output capacitor is typically driven by the output transient response. Equation 5 and  
Equation 6 overestimate the voltage deviation to account for delays in the loop bandwidth and can be used to  
determine the required output capacitance.  
2
I
I
I
´L  
I
´L  
TRAN  
TRAN  
TRAN  
TRAN  
V
<
´ DT =  
´
=
OVER  
C
C
V
V
´C  
OUT  
OUT  
OUT  
OUT OUT  
(5)  
(6)  
ITRAN  
ITRAN  
ITRAN ´L  
ITRAN2 ´L  
VUNDER  
<
´ DT =  
´
=
COUT  
COUT  
VIN - VOUT  
VIN - VOUT ´ C  
)
(
OUT  
If VIN(min) > 2 × VOUT, use overshoot (Equation 5) to calculate minimum output capacitance. If VIN(min) < 2 × VOUT  
,
use undershoot (Equation 6) to calculate minimum output capacitance.  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
 
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
ITRAN(MAX)2 ´L  
102 ´300nH  
1.2´100mV  
COUT(MIN)  
=
=
= 250mF  
V
(
´ V  
OVER  
)
OUT  
(7)  
With a minimum capacitance, the maximum allowable ESR is determined by the maximum ripple voltage and is  
approximated by Equation 8.  
æ
ç
è
ö
÷
IRIPPLE  
æ
ç
è
6A  
8´ 250mF´ 600kHz  
6A  
ö
÷
ø
VRIPPLE(total)  
-
36mV -  
VRIPPLE(Total) - VRIPPLE(CAP)  
8´ COUT ´FSW ø  
ESRmax  
=
=
=
= 5.2mW  
IRIPPLE  
IRIPPLE  
(8)  
Two 47-µF and one 220-µF capacitors are selected to provide more than 250 µF of minimum capacitance and  
5.2 mΩ of ESR.  
8.2.2.4 Peak Current Rating of Inductor  
With output capacitance, it is possible to calculate the charge current during start-up and determine the minimum  
saturation current rating for the inductor. The start-up charging current is approximated by Equation 9.  
VOUT  
C
×
1.2 V(2 47 mF 220 mF)  
×
+
OUT  
ICHARGE  
0.251A  
=
=
=
TSS  
1.5 ms  
(9)  
1
1
+
=
+
IL _PEAK IOUT(max) 2 IRIPPLE  
+
×
6 A 0.2512 A 23.25 A  
=
+
I
CHARGE = 20 A  
2
(10)  
Table 2. Inductor Requirements  
PARAMETER  
VALUE  
300  
UNIT  
nH  
A
L
Inductance  
IL(rms)  
IL(peak)  
RMS current (thermal rating)  
Peak current (saturation rating)  
20.07  
23.25  
A
8.2.2.5 Input Capacitor Selection (C8)  
The input voltage ripple is divided between capacitance and ESR. For this design VRIPPLE(cap) = 150 mV and  
VRIPPLE(esr) = 150 mV. The minimum capacitance and maximum ESR are estimated by Equation 11.  
I
LOAD ´ VOUT  
20´1.2V  
CIN(min)  
=
=
= 33.3uF  
V
RIPPLE(CAP) ´ VIN ´FSW 150mV ´8V ´ 600kHz  
(11)  
(12)  
VRIPPLE(ESR)  
150 mV  
23A  
ESRMAX  
=
=
= 6.5 mW  
1
ILOAD  
+
2IRIPPLE  
The RMS current in the input capacitors is estimated by Equation 13.  
=
´
´
=
´ ´ - =  
0.15 (1 0.15) 7.14 Arms  
1 D  
IRMS _ CIN ILOAD  
D
20 A  
(
)
(13)  
Three 1210, 10-µF, 25-V, X5R ceramic capacitors are selected. Higher voltage capacitors are selected to  
minimize capacitance loss at the DC bias voltage to ensure the capacitors allow sufficient capacitance at the  
working voltage.  
8.2.2.6 MOSFET Switch Selection (Q1 and Q2)  
Reviewing available TI NexFET MOSFETs using the TI NexFET MOSFET selection tool, the CSD16410Q5A and  
CSD16321Q5 5-mm × 6-mm MOSFETs are selected.  
These two FETs have maximum total gate charges of 5 nC and 10 nC, respectively.  
8.2.2.7 Bootstrap Capacitor (C6)  
To ensure proper charging of the high-side FET gate, limit the ripple voltage on the boost capacitor to less than  
50 mV.  
CBoost = 20 ´QG1 = 20´ 5 nC = 100 nF  
(14)  
Copyright © 2017, Texas Instruments Incorporated  
15  
 
 
 
 
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
8.2.2.8 VDD Bypass Capacitor (C7)  
Per this TPS40345 data sheet, select a 1-uF X5R or better ceramic bypass capacitor for VDD.  
8.2.2.9 BP Bypass Capacitor (C5)  
Per the TPS40345 data sheet, a minimum 1-uF ceramic capacitance is required to stabilize the BP regulator. To  
limit regulator noise to less than 10 mV, the value of the bypass capacitor is calculated in Equation 15.  
CBP = 100´MAX(QG1,QG2  
)
(15)  
Because Q2 is larger than Q1, and the total gate charge of Q2 is 10 nC, a BP capacitor of 1 µF is calculated. A  
standard value of 1 µF is selected to limit noise on the BP regulator.  
8.2.2.10 Short-Circuit Protection (R11)  
The TPS40345 uses the negative drop across the low-side FET at the end of the OFF-time to measure the  
inductor current. Allowing for 30% over maximum load and 20% rise in RDS(on)Q1 for self-heating, the voltage drop  
across the low-side FET at current limit is given by Equation 16.  
1
2
VOC (1.3 I  
= ´  
1 Iripple ) 1.2 R  
(1.3 20 A  
´
6 A) 1.2 4.6 m  
´ ´ W =  
127 mV  
-
´
´
=
-
LOAD  
DSONG2  
2
(16)  
The TPS40345 internal temperature coefficient helps compensate for the MOSFET’s RDS(on) temperature  
coefficient, so the current limit programming resistor is selected by Equation 17.  
VOC - VOCLOS(min)  
127 mV  
-
(
8 mV)  
A
RCS  
=
=
= 7.1kW  
2
´
IOCSET(min)  
2
´
9.5  
m
(17)  
8.2.2.11 Feedback Divider (R4, R5)  
The TPS40345 controller uses a full operational amplifier with an internally fixed 0.6-V reference. R4 is selected  
between 10 kΩ and 50 kΩ for a balance of feedback current and noise immunity. With R4 set to 10 kΩ, The  
output voltage is programmed with a resistor divider given by Equation 18.  
VFB R4  
´
0.600 V ´10.0 kW  
R7 =  
=
= 10 kW  
VOUT - VFB  
1.2 V - 0.600 V  
(18)  
8.2.2.12 Compensation: (C2, C3, C4, R3, R6)  
Using the TPS40k Loop Stability Tool for 100-kHz bandwidth and 60° phase margin with a R4 value of 10.0 kΩ,  
the following values are returned.  
C4 = 680 pF  
C5 = 100 pF  
C6 = 680 pF  
R1 = 10 kΩ  
R2 = 1.5 kΩ  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
8.2.3 Application Curves  
95  
100  
80  
225  
180  
135  
90  
V
= 8 V  
IN  
90  
85  
80  
75  
70  
65  
Phase  
60  
V
= 14 V  
IN  
40  
V
= 12 V  
IN  
20  
45  
0
0
60  
55  
50  
–20  
–40  
–60  
–45  
–90  
–135  
Gain  
0
5
10  
15  
20  
1 k  
10 k  
100 k  
1 M  
I
– Load Current – A  
LOAD  
f – Frequency – Hz  
Figure 14. Gain and Phase vs Frequency  
Figure 13. Efficiency vs Load Current  
Figure 15. Output Ripple 10 mV/div, 2-µs/div, 20-MHz Bandwidth  
9 Power Supply Recommendations  
The TPS40345 device is designed to operate from an input voltage supply between 3 V and 20 V. This input  
supply must remain within the input voltage supply range. This supply must be well regulated.  
Copyright © 2017, Texas Instruments Incorporated  
17  
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For MOSFET or power block layout, follow the layout recommendations provided for the MOSFET or power  
block selected.  
Connect VDD to VIN as close as possible to the drain connection of the high-side FET to avoid introducing  
additional drop, which could trigger short-circuit protection.  
Place VDD and BP to GND capacitors within 2 mm of the device and connected to the thermal pad (GND).  
Connect the FB to GND resistor to the thermal tab (GND) with a minimum 10-mil wide trace.  
Place VOUT to FB resistor within 2 mm of the FB pin.  
Connect the EN/SS-to-GND capacitor to the thermal tab (GND) with a minimum 10-mil-wide trace. It may  
share this trace with FB to GND.  
If a BJT or MOSFET is used to disable EN/SS, place it within 5 mm of the device.  
If a COMP to GND resistor is used, place it within 5 mm of the device.  
All COMP and FB traces should be kept minimum line width and as short as possible to minimize noise  
coupling.  
EN/SS should not be routed more than 20 mm from the device.  
If multiple layers are used, extend GND under all components connected to FB, COMP and EN/SS to reduce  
noise sensitivity.  
HDRV and LDRV must provide short, low inductance paths of 5 mm or less to the gates of the MOSFETs or  
power block.  
Place no more than 1 Ω of resistance between HDRV or LDRV and their MOSFET or power block gate pins.  
LDRV / OC to GND current limit programming resistor may be placed on the far side of the MOSFET if  
necessary to ensure a short connection from LDRV to the gate of the low-side MOSFET.  
Place the BOOT to SW resistor and capacitor within 4 mm of the device using a minimum of 10-mil-wide  
trace. The full width of the component pads are preferred for trace widths if design rules allow.  
If via must be used between the HDRV, SW and LDRV pins and their respective MOSFET or power block  
connections, use a minimum of two vias to reduce parasitic inductance  
Refer to the land pattern data for the preferred layout of thermal vias within the thermal pad.  
TI recommends extending the top-layer copper area of the thermal pad (GND) beyond the package a  
minimum 3 mm between pins 1 and 10 and 5 and 6 to improve thermal resistance to ambient of the device.  
18  
Copyright © 2017, Texas Instruments Incorporated  
TPS40345  
www.ti.com.cn  
ZHCSH69 DECEMBER 2017  
10.2 Layout Example  
Figure 16. Top Copper With Components  
Figure 17. Top Internal Copper Layout  
..  
..  
..  
..  
Figure 18. Bottom Internal Copper Layout  
Figure 19. Bottom Copper Layer  
版权 © 2017, Texas Instruments Incorporated  
19  
TPS40345  
ZHCSH69 DECEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档  
这些参考资料、设计工具以及附加参考资料的链接(包括设计软件)均可在 http://power.ti.com 网站上找到  
1. 更多 PowerPAD™ 信息可在 应用 简介 (SLMA002) (SLMA004) 中找到。  
2. 了解开关模式电源中的降压功率级  
3. 《低电压直流/直流转换器内部探究》 – SEM1500 主题 5 – 2002 年研讨会系列  
4. 《设计稳定控制环路》– SEM 1400 – 2001 年研讨会系列  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
20  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS40345DRCR  
TPS40345DRCT  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-20 to 85  
-20 to 85  
0345  
0345  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS40345DRCR  
TPS40345DRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.5  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS40345DRCR  
TPS40345DRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
338.0  
205.0  
355.0  
200.0  
50.0  
33.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS40345DRCR

适用于成本优化型应用的 3V 至 20V、25A 同步降压控制器 | DRC | 10 | -20 to 85
TI

TPS40345DRCT

适用于成本优化型应用的 3V 至 20V、25A 同步降压控制器 | DRC | 10 | -20 to 85
TI

TPS40400

3.0-V TO 20-V PMBus SYNCHRONOUS BUCK CONTROLLER
TI

TPS40400RHLR

3.0-V TO 20-V PMBus SYNCHRONOUS BUCK CONTROLLER
TI

TPS40400RHLT

3.0-V TO 20-V PMBus SYNCHRONOUS BUCK CONTROLLER
TI

TPS40400_1110

3.0-V TO 20-V PMBus SYNCHRONOUS BUCK CONTROLLER
TI

TPS40422

Dual-Output or Two-Phase Synchronous Buck Controller with PMBus
TI

TPS40422RHA

Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface
TI

TPS40422RHAR

Dual-Output or Two-Phase Synchronous Buck Controller with PMBus
TI

TPS40422RHAT

Dual-Output or Two-Phase Synchronous Buck Controller with PMBus
TI

TPS40422RSBR

具有 PMBus 的双输出或多相同步降压控制器 | RSB | 40 | -40 to 125
TI

TPS40422RSBT

具有 PMBus 的双输出或多相同步降压控制器 | RSB | 40 | -40 to 125
TI