TPS5103IDB [TI]

MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER; 多模式同步DC / DC控制器
TPS5103IDB
型号: TPS5103IDB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER
多模式同步DC / DC控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总37页 (文件大小:1050K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
Step-Down DC-DC Converter  
DB PACKAGE  
(TOP VIEW)  
Three Operation-Mode  
– Heavy Load:  
– Fixed Frequency PWM  
– Hysteretic (User Selctable)  
– Light Load:  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SOFTSTART  
LH  
INV  
FB  
OUT_u  
LL  
– Skip Mode  
C
R
OUT_d  
OUTGND  
TRIP  
T
4.5 V to 25 V Input Voltage Range  
Adjustable Output Voltage Down to 1.2 V  
95% Efficiency  
T
GND  
REF  
VCC_SENSE  
VCC  
COMP  
Stand-By Control  
PWMSKIP  
STBY  
VREF5  
VREG5V_IN  
Over Current Protection  
UVLO for Internal 5 V Regulation  
Low Standby Current . . . 0.5 mA Typical  
T = –40°C to 85°C  
A
description  
The TPS5103 is a synchronous buck dc/dc controller, designed for notebook PC system power. The controller  
has three user-selectable operation modes available; hysteretic mode, fixed frequency PWM control, or SKIP  
control.  
In high current applications, where fast transient response is advantageous for reducing bulk capacitance, the  
hysteretic mode is selected by connecting the Rt pin to Vref5. Selecting the PWM/SKIP modes for less  
demanding transient applications is ideal for conserving notebook battery life under light load conditions. The  
device includes high-side and low-side MOSFET drivers capable of driving low Rds (on) N–channel MOSFETs.  
The user-selectable overcurrent protection (OCP) threshold is set by an external TRIP pin resister in order to  
protect the system. The TPS5103 is configured so that a current sense resistor is not required, improving the  
operating efficiency.  
C4  
5 V  
R1  
U1  
TPS5103  
D1  
R3  
Q1  
Q2  
OUTPUT  
C1  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
C3  
L1  
SOFTSTART  
LH  
OUTU  
INV  
+
R2  
C5  
FB  
LL  
CT  
OUTD  
RT  
OUTGND  
TRIP  
R4  
GND  
REF  
C2  
VCCSENSE  
VCC  
COMP  
PWM/SKIP  
STBY  
VREF5  
10  
VREG5V_IN  
Figure 1. Typical Design  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TI is a trademark of Texas Instruments Incorporated.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
functional block diagram  
SOFT START  
Soft Start  
_
+
FB  
PWM Comp.  
_
LH  
_
+
INV  
OUT_u  
LL  
+
Error Amp  
1.185 V  
OUT_d  
OUTGND  
One Shot ON  
PWMSKIP  
_
+
TRIP  
C
R
T
T
Disable  
OSC  
_
+
VCC_SENSE  
_
+
UVLO  
1.185 V  
VREF5  
Comp  
GND  
V
CC  
VREF  
_
+
STBY  
1.185 V  
VREG5V_IN  
REF  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SSOP(DB)  
TPS5103IDB  
TPS5103IDBR  
EVM  
TPS5103EVM–136  
–40 °C to 85 °C  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
Terminal Functions  
TERMINAL  
NAME  
COMP  
I/O  
DESCRIPTION  
NO.  
8
I
Comparator input for voltage monitor  
External capacitor from C to GND for adjusting the triangle oscillator and decreasing the current limiting  
T
C
4
I/O  
O
T
voltage  
FB  
3
6
Feedback output of error amp  
GND  
INV  
LH  
Control GND  
2
I
Inverting input of both error amp and hysteretic comparator  
20  
I/O Bootstrap. Connect 1 µF low-ESR capacitor from LH to LL.  
Bootstrap low. High side gate driving return and output current protection. Connect to the junction of the high  
side and low side FETs for floating drive configuration.  
LL  
18  
I/O  
OUT_d  
17  
16  
19  
I/O Gate-drive output for low-side power switching FETs  
Ground for FET drivers  
OUTGND  
OUT_u  
O
Gate-drive output for high-side power switching FETs  
PWM/SKIP mode select  
L:PWM mode  
PWMSKIP  
9
I
H:SKIP mode  
REF  
7
O
1.185-V reference voltage output  
R
T
5
I/O External resistor connection for adjusting the triangle oscillator.  
SOFTSTART  
STBY  
1
I
I
External capacitor from SOFTSTART to GND for soft start control  
Standby control  
10  
15  
13  
14  
12  
11  
TRIP  
I
External resistor connection for output current control  
Supply voltage input  
V
CC  
I
VCC_SENSE  
VREF5  
I
Supply voltage sense for current protection  
5-V-internal regulator output  
O
I
VREG5V_IN  
External 5-V input (input voltage range = 4.5 V to 25 V)  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
detailed description  
REF  
The reference voltage is used for the output voltage setting and the voltage protection(COMP). The tolerance  
is 1.5% typically.  
VREF5  
An internal linear voltage regulator is used for the high-side driver bootstrap voltage. Since the input voltage  
range is from 4.5 V to 25 V, this voltage offers a fixed voltage for the bootstrap voltage so that the design for  
the bootstrap is much easier. The tolerance is 6%.  
hysteretic comparator  
The hysteretic comparator is used to regulate the output voltage of the synchronous-buck converter. The  
hysteresis is set internally and is typically 9.7 mV. The total delay time from the comparator input to the driver  
output is typically 400 ns for going both high and low.  
error amplifier  
The error amplifier is used to sense the output voltage of the synchronous buck converter. The negative input  
of the error amplifier is connected to the Vref voltage(1.185 V) with a resistive divider network. The output of  
the error amplifier is brought out to the FB terminal to be used for loop gain compensation.  
low-side driver  
The low-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The maximum drive voltage is 5 V  
from VREF5. The current rating of driver is typically 1.2 A at sink current, –1.5 A at source current.  
high-side driver  
The high-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The current rating of the driver is  
1.2 A at sink current, –1.7 A at source current. When configured as a floating driver, the bias voltage to the driver  
is developed from the VREF5, limiting the maximum drive voltage between OUT_u and LL to 5 V. The maximum  
voltage that can be applied between LH and OUTGND is 30 V.  
driver deadtime control  
The deadtime control prevents shoot-through current from flowing through the main power FETs. During  
switching transitions the deadtime control actively controls the turnon time of the MOSFET drivers. The typical  
deadtime from the low-side-driver-off to the high-side-driver-on is 90 ns, and 110 ns from high-side-driver-off  
to low-side-driver-on.  
COMP  
COMP is designed for use with a regulation output monitor. COMP also functions as an internal comparator  
used for any voltage protection such as the input under voltage protection. If the input voltage is lower than the  
setpoint, the comparator turns off and prevents external parts from damage. The investing terminal of the  
comparator is internally connected to REF(1.185 V).  
current protection  
Current protection is achieved by sensing the high-side power MOSFET drain-to-source voltage drop during  
on-time through VCC_SENSE and LL terminals. An external resistor between Vin and TRIP terminal with the  
internal current source connected to the current comparator negative input adjusts the current limit. The typical  
internal current source value is 15 µA in PWM mode, 5 µA in SKIP mode. When the voltage on the positive  
terminal is lower than the negative terminal, the current comparator turns on the trigger, and then activates the  
oscillator. This oscillator repeatedly reset the trigger until the over current condition is removed. The capacitor  
on the C terminal can be open or added to adjust the reset frequency.  
T
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
detailed description (continued)  
softstart  
SOFTSTART sets the sequencing of the output for any possibility. The capacitor value for a start-up time can  
be calculated by the following equation: C = 2xT (uF) where C is the external capacitor value, T is the required  
start-up time in (ms).  
standby  
This controller can be switched into standby mode by grounding the STBY terminal. When it is in standby mode,  
the quiescent current is less than 1.0 uA.  
UVLO  
The under-voltage-lock-out (ULVO) threshold is approximately 3.8 V. The typical hysteresis is 55 mV.  
5-V Switch  
5-V Switch if the internal 5-V switch senses a 5-V input from REG5V terminal, the internal 5-V linear regulator  
will be disconnected from the MOSFET drivers. The external 5 V will be used for both the low-side driver and  
the high-side bootstrap, thus increasing the efficiency.  
PWM/SKIP switch  
The PWM/SKIP switch selects the output operating mode. This controller has three operational modes, PWM,  
SKIP, and Hysteretic. The PWM and SKIP mode control should be used for slower transient applications.  
oscillator  
The oscillator gives a triangle wave by connecting an external resistor to the R terminal and an external  
T
capacitor to the C terminal. The voltage amplitude is 0.43 V ~ 1.17 V. This wave is connected to the non-  
T
inverting input of the PWM comparator.  
Comparison Table Between PWM Mode and Hysteretic Mode  
MODE  
PWM  
HYSTERETIC  
Not Fixed  
Very fast  
Frequency  
Fixed  
Transient Response  
Normal  
Need  
Feed back compensation  
Needless  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 27 V  
CC  
Input voltage, V , INV, C , R , PWM/SKIP, SOFTSTART, COMP . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
I
T
T
Input voltage, VREG5V_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
Input voltage, STBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 15 V  
Input voltage, TRIP, VCC_SENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 27 V  
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A  
O
Low level output voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 27 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 32 V  
OL  
OH  
High level output voltage, V  
Reference voltage, V  
Operating free-air temperature range, T  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 3 V  
ref  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values are with respect to the network ground terminal.  
2. See Dissipation Rating Table for free-air temperature range above 25°C.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
DB  
801 mW  
6.408mW/°C  
416 mW  
recommended operating conditions  
MIN NOM  
MAX  
25  
UNIT  
V
Supply voltage  
Input voltage  
4.5  
V
CC  
I
INV, CT, RT, COMP, PWM_SKIP, SOFTSTART  
6
VREG5V_IN  
STBY  
5.5  
12  
V
V
TRIP, V _SENCE  
CC  
25  
R
C
f
Timing register  
Timing capacitor  
Frequency  
82  
100  
200  
kΩ  
pF  
T
T
Oscillator frequency  
kHz  
°C  
T
A
Operating temperature range  
40  
85  
Not a JEDEC symbol.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted)  
= 7 V  
CC  
reference voltage  
PARAMETER  
TEST CONDITIONS  
= 50 µA  
MIN  
TYP  
MAX  
UNIT  
T
= 25°C,  
I
vref  
1.167 1.185 1.203  
A
V
ref  
Reference voltage  
V
I
= 50 µA  
1.155  
1.215  
12  
vref  
Regin  
Regl  
Line regulation  
V
= 4.5 V to 25 V,  
I = 50 µA  
0.2  
0.5  
mV  
mV  
CC  
Load regulation  
I = 1 µA to 1 mA  
10  
Not a JEDEC symbol.  
oscillator  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
kΩ  
f
Frequency  
PWM mode  
500  
R
T
Timing resistor  
47  
fdv  
fdt  
V
= 4.5 V to 25 V  
0.1%  
2%  
CC  
= 40°C to 85°C  
Frequency change  
T
A
DC includes internal comparator error  
1
1.1  
1.2  
0.6  
V
High-level output voltage  
Low-level output voltage  
V
V
HL  
f = 200 kHz, includes internal comparator error  
DC includes internal comparator error  
1.17  
0.5  
0.4  
V
LL  
f = 200 kHz, includes internal comparator error  
0.43  
Not a JEDEC symbol.  
The output voltages of oscillator (f = 200 kHz) are ensured by design.  
error amp  
PARAMETER  
Input offset voltage  
Open-loop voltage gain  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX  
UNIT  
mV  
dB  
V
T
A
= 25°C  
2
10  
Av  
GB  
Unity-gain bandwidth  
0.8  
45  
MHz  
µA  
I
Output sink current  
VO = 0.4 V  
VO = 1 V  
30  
O
S
I
Output source current  
300  
µA  
Not a JEDEC symbol.  
§
hysteresis comparator  
PARAMETER  
Hysteresis window  
TEST CONDITIONS  
MIN  
TYP  
9.7  
2
MAX  
UNIT  
mV  
mV  
pA  
V
Hysteretic mode  
6
13  
hsy  
Vp-V  
Offset voltage  
S
I
Bias current  
10  
t
t
Propagation delay from INV to OUT_U  
TTL input signal  
230  
400  
ns  
PHL  
10 mV overdrive on hysteresis band signal  
ns  
PLH  
§
The numbers in the table include the driver delay. All numbers are ensured by design.  
control  
PARAMETER  
High-level input voltage  
TEST CONDITIONS  
STBY  
MIN  
2.5  
2
TYP  
MAX  
UNIT  
V
V
V
IHA  
PWM_SKIP  
STBY  
0.5  
0.5  
Low-level input voltage  
V
ILA  
PWM_SKIP  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted) (continued)  
= 7 V  
CC  
5-V regulator  
PARAMETER  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I = 10 mA  
= 5.5 V to 25 V,  
4.7  
5.3  
20  
40  
O
Regin  
Regl  
Line regulation  
V
I = 10 mA  
= 5.5 V  
mV  
mV  
mA  
CC  
I = 1 mA to 10 mA,  
Load regulation  
Short-circuit output current  
Not a JEDEC symbol.  
V
CC  
I
V
ref  
= 0 V  
70  
OS  
5-V switch  
PARAMETER  
TEST CONDITIONS  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
4.2  
4.1  
50  
TYP  
MAX  
4.9  
UNIT  
V
V
V
V
IT(high)  
IT(low)  
hsy  
Threshold voltage  
4.8  
Hysteresis)  
150  
250  
mV  
Not a JEDEC symbol.  
UVLO  
PARAMETER  
MIN  
3.6  
3.5  
10  
TYP  
MAX  
4.2  
UNIT  
V
V
V
V
IT(high)  
IT(low)  
hys  
Threshold voltage  
4.1  
Hysteresis  
150  
mV  
Not a JEDEC symbol.  
output  
PARAMETER  
MIN  
0.5  
–1  
0.5  
–1  
10  
3
TYP  
1.2  
–1.7  
1.2  
–1.5  
15  
MAX  
UNIT  
I
O
I
S
I
O
I
S
OUT_u sink curent  
V
O
V
O
V
O
V
O
= 3 V  
= 2 V  
= 3 V  
= 2 V  
A
A
A
A
OUT_u source current  
OUT_d sink current  
OUT_d source current  
PWM mode,  
SKIP mode,  
VTRIP = 7 V  
VTRIP = 7 V  
20  
7
I
TRIP terminal current  
µA  
5
High side driver is GND referenced.  
Input: INV = 0 – 3V  
t
r
Rise time  
t /t = 10 ns,  
r f  
Frequency = 200 kHz  
ns  
C
C
= 2200 pF  
= 3300 pF  
28  
39  
L
L
High side driver is GND referenced.  
Input: INV = 0 – 3 V  
t
f
Fall time  
t /t = 10 ns,  
r f  
Frequency = 200 kHz  
ns  
C
C
= 2200 pF  
= 3300 pF  
30  
38  
L
L
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted) (continued)  
= 7 V  
CC  
softstart  
PARAMETER  
Softstart current  
TEST CONDITIONS  
MIN  
TYP  
2.5  
3.9  
2.6  
MAX  
UNIT  
I
1.9  
3
µA  
(CTRL)  
V
V
IT(high)  
IT(low)  
V
Threshold voltage (SKIP mode)  
Not a JEDEC symbol.  
output voltage monitor  
PARAMETER  
Threshold voltage  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
1.08  
1.18  
1.28  
V
IT  
driver deadtime section  
PARAMETER  
Low-side to high-side  
High-side to low-side  
MIN  
MIN  
TYP  
90  
MAX  
UNIT  
ns  
T
T
DRVLH  
110  
ns  
DRVHL  
whole device  
PARAMETER  
Supply current  
Shutdown current  
TEST CONDITIONS  
TYP  
0.5  
MAX  
1.2  
UNIT  
mA  
I
I
CC  
STBY = 0 V  
0.01  
10  
µA  
LH  
OUT_u  
SOFTSTART  
INV  
FB  
LL  
OUT_d  
C
R
T
T
OUTGND  
TRIP  
GND  
VCC_SENSE  
REF  
0.1 µF  
VCC  
VREF5  
5V_IN  
COMP  
PWM SKIP  
STBY  
0.1 µF  
7 V  
5 V  
Figure 2. Test Circuit  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
QUIESCENT CURRENT  
vs  
JUNCTION TEMPERATURE  
QUIESCENT CURRENT  
vs  
JUNCTION TEMPERATURE  
700  
50  
650  
600  
550  
500  
450  
400  
45  
40  
35  
30  
25  
20  
15  
10  
V
= 25 V  
CC  
V
= 25 V  
CC  
V
= 7 V  
V
CC  
= 7 V  
CC  
V
= 4.5 V  
CC  
V
= 4.5 V  
CC  
350  
300  
5
0
–40  
–20  
25  
85  
125  
–40  
–20  
25  
85  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 3  
Figure 4  
DRIVE OUTPUT VOLTAGE  
vs  
DRIVE OUTPUT VOLTAGE  
vs  
DRIVE CURRENT  
DRIVE CURRENT  
5.5  
3
V
CC  
J
= 7 V,  
= 25°C  
V
CC  
J
= 7 V,  
= 25°C  
T
T
2.5  
2
5
4.5  
4
1.5  
1
3.5  
3
0.5  
0
0.1  
0.7  
1
0.1  
0.7  
1
I
– Drive Source Current – A  
(OUT_source)  
I
– Drive Source Current – A  
(OUT_sink)  
Figure 5  
Figure 6  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
DRIVE OUTPUT VOLTAGE  
vs  
DRIVE OUTPUT VOLTAGE  
vs  
DRIVE CURRENT  
DRIVE CURRENT  
4.5  
4
6
5
T
J
= 25°C  
T
J
= 25°C  
3.5  
3
4
3
2
2.5  
2
1.5  
1
1
0
0.5  
0
0.1  
0.7  
1
0.1  
(OUT_source)  
0.7  
1
I
– Drive Source Current – A  
I
– Drive Source Current – A  
(OUT_sink)  
Figure 7  
Figure 8  
OSCILLATOR OUTPUT VOLTAGE  
vs  
OSCILLATOR OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
500  
1.125  
1.115  
1.105  
1.095  
495  
490  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
485  
480  
1.085  
1.075  
–40  
–20  
25  
85  
125  
–40  
–20  
25  
85  
125  
T – Junction Temperature – °C  
J
T
J
– Junction Temperature – °C  
Figure 9  
Figure 10  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
ERROR AMPLIFIER INPUT OFFSET VOLTAGE  
ERROR AMPLIFIER OUTPUT VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.5  
2
2.5  
2
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
–40  
–20  
25  
85  
125  
–40  
–20  
25  
85  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 11  
Figure 12  
HYSTERESIS COMPARATOR HYSTERESIS VOLTAGE  
ERROR AMPLIFIER OUTPUT VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
10.5  
6.2  
6
V
CC  
= 7 V  
10.25  
10  
5.8  
5.6  
5.4  
5.2  
5
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
9.75  
9.5  
4.8  
9.25  
9
4.6  
4.4  
–40  
–20  
25  
85  
125  
–40  
–20  
25  
85  
125  
T – Junction Temperature – °C  
J
T
J
– Junction Temperature – °C  
Figure 13  
Figure 14  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
STANDBY SWITCH THRESHOLD VOLTAGE  
VREF5 OUTPUT VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
SUPPLY VOLTAGE  
2.5  
2
5.2  
5.1  
5
V
CC  
V
CC  
= 4.5 V,  
= 7 V  
T
J
= –40°C  
V
CC  
= 25 V  
T
J
= 125°C  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
T
J
= 25°C  
1.5  
V
CC  
= 25 V  
1
0.5  
0
V
CC  
= 4.5 V  
V
CC  
= 7 V  
135  
4.3  
4.2  
–45  
–25  
25  
95  
0
10  
20  
T
J
– Junction Temperature – °C  
V
CC  
– Supply Voltage – V  
Figure 15  
Figure 16  
VREF5 OUTPUT VOLTAGE  
vs  
VREF5 SHORT CURRENT  
vs  
JUNCTION TEMPERATURE  
OUTPUT CURRENT  
6
5
4
3
2
–100  
T
= 125°C  
J
V
= 25 V  
CC  
–80  
–60  
–40  
T
J
= 25°C  
V
CC  
= 7 V  
V
= 4.5 V  
CC  
T
= –40°C  
J
–20  
0
1
0
0
–10  
–20 –30  
–40 –50 –60  
–70  
–40  
–20  
25  
85  
125  
I
O
– Output Current – mA  
T
J
– Junction Temperature – °C  
Figure 17  
Figure 18  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
UVLO HYSTERESIS VOLTAGE  
vs  
JUNCTION TEMPERATURE  
UVLO THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
80  
70  
60  
50  
40  
30  
20  
4
3.95  
3.90  
3.85  
3.80  
3.75  
3.70  
V
TLH  
V
THL  
10  
0
–40  
–20  
25  
85  
125  
–40  
–20  
25  
85  
125  
T – Junction Temperature – °C  
J
T
J
– Junction Temperature – °C  
Figure 19  
Figure 20  
5 VSW HYSTERESIS VOLTAGE  
vs  
JUNCTION TEMPERATURE  
5 VSW THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
200  
4.80  
4.75  
4.70  
4.65  
4.60  
180  
160  
140  
120  
100  
80  
V
TLH  
V
THL  
4.55  
4.50  
4.45  
60  
40  
4.40  
4.35  
20  
0
–45  
–25  
25  
95  
135  
–45  
–25  
25  
95  
135  
T – Junction Temperature – °C  
J
T
J
– Junction Temperature – °C  
Figure 21  
Figure 22  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
SOFTSTART THRESHOLD VOLTAGE  
SOFTSTART CURRENT  
vs  
JUNCTION TEMPERATURE  
vs  
JUNCTION TEMPERATURE  
4.5  
4
–2.45  
–2.40  
–2.35  
–2.30  
3.5  
3
V
CC  
= 4.5 V  
V
CC  
V
CC  
= 7 V,  
= 25 V  
2.5  
2
V
CC  
= 4.5 V  
V
CC  
= 7 V  
1.5  
1
V
CC  
= 25 V  
–2.25  
–2.20  
0.5  
0
–40  
–20  
25  
85  
125  
–40  
–20  
25  
85  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 23  
Figure 24  
OUTPUT VOLTAGE MONITOR COMPARATOR  
THRESHOLD VOLTAGE  
vs  
SOFTSTART THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
3.5  
3
1.195  
1.193  
1.190  
1.188  
1.185  
1.183  
1.180  
V
CC  
V
CC  
= 7 V,  
= 25 V  
2.5  
2
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
V
CC  
= 4.5 V  
1.5  
1
–40  
–20  
25  
85  
125  
–40  
–20  
25  
85  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 25  
Figure 26  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
OSCILLATOR FREQUENCY  
OSCILLATOR OUTPUT VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
FREQUENCY  
600  
500  
400  
1.6  
F = 500 kHz  
1.4  
1.2  
1
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
V
OSCH  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 25 V  
300  
200  
0.8  
0.6  
0.4  
V
OSCL  
F = 200 kHz  
100  
0
0.2  
0
–40  
–20  
25  
85  
125  
10  
100  
1000  
T
J
– Junction Temperature – °C  
F
OSC  
– Frequency – kHz  
Figure 27  
Figure 28  
ERROR AMPLIFIER GAIN AND PHASE SHIFT  
60  
50  
40  
30  
20  
10  
0
180  
140  
100  
60  
R
= 100 ,  
s
f
R = 10 kΩ  
Phase  
Gain  
20  
–20  
–60  
–10  
–20  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
f – Frequency – Hz  
Figure 29  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
MAXIMUM DUTY CYCLE  
SOFTSTART CAPACITANCE  
vs  
vs  
JUNCTION TEMPERATURE  
SOFTSTART TIME  
100  
99.5  
99  
4
10  
10  
10  
f = 200 kHz  
98.5  
98  
3
2
97.5  
97  
96.5  
96  
95.5  
95  
100  
0.01  
–40  
–20  
25  
85  
125  
0.1  
1
10  
100  
T
J
– Junction Temperature – °C  
T
SS  
– Soft Start Time – ms  
Figure 30  
Figure 31  
DRIVER DEAD TIME  
vs  
JUNCTION TEMPERATURE  
CURRENT PROTECTION SOURCE CURRENT  
vs  
INPUT VOLTAGE PWM MODE  
140  
120  
100  
14.5  
14.25  
14  
V
CC  
= 4.5 V  
T
DRVHL  
T
A
= 125°C  
13.75  
13.5  
13.25  
13  
T
80  
60  
40  
DRVLH  
T
= 25°C  
A
V
= 7 V,  
= 25 V  
CC  
V
= 4.5 V  
CC  
V
CC  
V
= 7 V,  
= 25 V  
CC  
V
CC  
T
A
= –40°C  
20  
0
12.75  
12.5  
–45  
–25  
25  
95  
135  
4.5  
7
25  
T
J
– Junction Temperature – °C  
V
TRIP  
– Input Voltage – V  
Figure 32  
Figure 33  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
CURRENT PROTECTION SOURCE CURRENT  
vs  
INPUT VOLTAGE SKIP MODE  
4.6  
T
A
= 125°C  
4.5  
4.4  
T
A
= 25°C  
4.3  
4.2  
T
A
= –40°C  
4.1  
4
4.5  
7
25  
V
TRIP  
– Input Voltage – V  
Figure 34  
OSCILLATOR FREQUENCY  
vs  
RESISTOR  
700  
600  
500  
400  
300  
200  
C
= 10 pF  
T
C
= 15 pF  
T
C
= 22 pF  
= 33 pF  
T
C
T
C
= 470 pF  
T
C
= 680 pF  
T
100  
0
10  
100  
– Resistor – kΩ  
1000  
R
T
Figure 35  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
overshoot of output rectangle wave  
The drivers in the TPS5103 controller are fast and can produce high transients on V or the junction of Q1 and  
CC  
Q2(shown below). Care must be taken to insure that these transients do not exceed the absolute maximum  
rating for the device or associated external component. A low-ESR capacitor connected directly from Q1 drain  
to Q2 source can greatly reduce transient pulses on V . Also, Q1 turn-on-speed can be reduced by adding  
CC  
a resistor (5 15 ) in series with OUT_u. Poor layout of the switching node (V1 in figure) can result in the  
requirement for additional snubber circuitry require from V1 to ground.  
C1  
V
CC  
Q1  
OUT_u  
V1  
Q2  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
application for general power  
The design shown in this data sheet is a reference design for a general power supply application. An evaluation  
module (EVM), TPS5103EVM-136 (SLVP136), is available for customer testing and evaluation. The intent is  
to allow a customer to fully evaluate the given design using the plug-in EVM supply shown here. For subsequent  
customer board revisions, the EVM design can be copied onto the users PCB to shorten design cycle time,  
component count, and board cost.  
To help the customers to design the power supply using TPS5103, some key design procedures are shown  
below.  
R2  
C4  
J1  
C15  
C5  
Vi  
TP18  
R3  
J2  
J3  
J4  
J5  
Vi  
Q1  
C14  
C1  
+
Input GND  
Input GND  
Input GND  
TP26  
R4  
C7  
R11  
R5  
C6  
L1  
D2  
TP17  
TP16  
C2  
J6  
J7  
TP1  
TP2  
TP3  
TP4  
TP5  
TP6  
TP7  
TP8  
TP9  
TP10  
SENSE  
Vo  
Q2  
C10  
J8  
TP15  
TP14  
+
Vo  
D1  
C8  
J9  
R6B  
C3  
Vo  
J10  
J11  
J12  
VoGND  
VoGND  
VoGND  
R12  
TP13  
R6A  
R7  
C12  
J13  
J14  
C9  
TP12  
TP11  
C11  
C13  
R13  
R9  
JP1  
JP2  
R10  
Figure 36. EVM Schematic  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
output voltage setpoint calculation  
The output voltage is set by the reference voltage and the voltage divider. In TPS5102, the reference voltage  
is 1.185 V, and the divider is composed of two resistors in the EVM design that are R4 and R5, or R14 and R15.  
The equation for the setpoint is:  
R1 Vr  
R2  
Vo Vr  
Where R1 is the top resistor (k) like R4 or R15; R2 is the bottom resistor (k) such as R5 or R14; Vo is the  
required output voltage (V); Vr is the reference voltage (1.185 V in TPS5103).  
Example: R1 = 1 k; Vr = 1.185 V; Vo = 1.8 V, then R2 = 1.9 k.  
For your convenience, some of the most popular output voltage setpoints are calculated in the table below:  
Vo  
1.3 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V  
R1 (top) (k)  
R2 (bottom) (k)  
1
1
1
1
1
1
10  
3.7  
1.9  
0.9  
0.56  
0.31  
If higher precision resistor is used, the output voltage setpoint can be more accurate.  
In some applications, the output voltage is required to be lower than the reference voltage. With few extra  
components, the lower voltage can be easily achieved. The drawing below shows the method.  
V
CC  
V
O
R
R
(top)  
z1  
INV  
R
z2  
TPS5103  
R
Zener  
(bottom)  
In the schematic, the Rz1, Rz1, and the zener are the extra components. Rz1 is used to give zener enough  
current to build up the zener voltage. The zener voltage is added to INV through Rz2. Therefore, the voltage  
on INV is still equal to the IC internal voltage (1.185 V) even if the output voltage is regulated at lower setpoint.  
The equation for setting up the output voltage is shown below:  
(
)
Vz–Vr  
Rz2  
Vr–Vo  
Rtop  
Vr  
Rbtm  
Where Rz2 is the adjusting resistor for low output voltage; Vz is the zener voltage; Vr is the internal reference  
voltage; Rtop is the top resistor of voltage sensing network; Rbtm is the bottom resistor of the sensing network;  
Vo is the required output voltage setpoint.  
Example: Assuming the required output voltage setpoint is Vo = 0.8 V, Vz = 5 V; Rtop = 1 k; Rbottom = 1 k,  
then the Rz2 = 2.43 k.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
switching frequency  
With hysteretic control, the switching frequency is a function of the input voltage, the output voltage, the  
hysteresis window, the delay of the hysteresis comparator and the driver, the output inductance, the resistance  
in the output inductor, the output capacitance, the ESR and ESL in the output capacitor, the output current, and  
the turnon resistance of high side and low side MOSFET. It is a very complex equation if everything is included.  
To make it more useful to the designers, a simplified equation only considers the most influential factors. The  
tolerance of this equation is about 30%:  
7
V
(Vin  
V
)
(ESR (10 10  
Td) C  
out  
)
out  
out  
out  
ESL V )  
ƒs  
7
V
(V  
ESR (10 10  
Td) 0.0097  
L
in  
in  
in  
Where fs is the switching frequency (Hz); Vout is the output voltage (V); Vin is the input voltage (V); Cout is the  
output capacitance; ESR is the equivalent series resistance in the output capacitor (); ESL is the equivalent  
series inductance in the output capacitor (H); Lout is the output inductance (H); Td is output feedback RC filter  
time constant (S).  
In the EVM module design, for the 1.8 V output, for example: Vin = 5 V, Vout = 1.8 V, Cout = 680 µF; ESR =  
40 m; ESL = 3 nH; Lout = 6 µH; Td = 0.5 µs.  
Then, the frequency fs = 122 kHz.  
output inductor ripple current  
The output inductor current ripple can affect not only the efficiency and the inductor saturation, but also the  
output voltage capacitor selection. The equation is exhibited as below:  
(
)
Rdson RL  
Vin Vout Iout  
Lout  
Iripple  
D
Ts  
Where Iripple is the peak-to-peak ripple current (A) through inductor; Vin is the input voltage (V); Vout is  
the output voltage (V); Iout is the output current; Rdson is the on-time resistance of MOSFET (); D is the duty  
cycle; and Ts is the switching cycle (S). From the equation, it can be seen that the current ripple can be adjusted  
by changing the output inductor value.  
Example: Vin = 5 V; Vout = 1.8 V; Iout = 5 A; Rdson = 10 m; RL = 5 m; D = 0.36; Ts = 10 µS; Lout = 6 µH  
Then, the ripple Iripple = 2 A.  
output capacitor RMS current  
Assuming the inductor ripple current totally goes through the output capacitor to the ground, the RMS current  
in the output capacitor can be calculated as:  
I
I (rms)  
o
12  
Where I(orms) is the maximum RMS current in the output capacitor (A); I is the peak-to-peak inductor ripple  
current (A).  
Example: I = 2 A, so Io(rms) = 0.58 A  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
input capacitor RMS current  
Assuming the input ripple current totally goes into the input capacitor to the power ground, the RMS current in  
the input capacitor can be calculated as:  
1
12  
2
2
I (rms)  
I
D
(1 D)  
D
Iripple  
o
i
Where Ii(rms) is the input RMS current in the input capacitor (A); Io is the output current (A); D is the duty cycle.  
From the equation, it can be seen that the highest input RMS current usually occurs at the lowest input voltage,  
so it is the worst case design for input capacitor ripple current.  
Example: Io = 5 A; D = 0.36  
Then, Ii(rms)= 3.36 A  
softstart  
The softstart timing can be adjusted by selecting the soft-start capacitor value. The equation is  
C
2
T
soft  
Where C  
soft  
is the softstart capacitance (µF); T  
is the start-up time on softstart terminal (S).  
soft  
soft  
Example: Tsoft = 5 mS, so Csoft = 0.01 µF.  
current protection  
The current protection in TPS5103 is set using an internal current source and an external resistor to set up the  
current limit. The sensed high side MOSFET drain-to-source voltage drop is compared to the set point, if the  
voltage drop exceeds the limit, the internal oscillator is activated, and it continuously resets the current limit until  
the over-current condition is removed. The equation below should be used for calculating the external resistor  
value for current protection:  
Rds(on) (Itrip Iind(p-p) 2)  
PWM or HYS mode  
SKIP mode  
Rcl  
Rcl  
0.000015  
Rds(on) (Itrip Iind(p-p) 2)  
0.000005  
Where Rcl is the external current limit resistor (R10,R11); Rds(on) is the high side MOSFET on-time resistance.  
Itrip is the required current limit; Iind(p-p) is the peak-to-peak output inductor current.  
Example: PWM mode or HYS mode  
Rds(on) = 10 m, Itrip =5 A, Iind = 2 A, so Rcl = 4 kΩ  
Example: SKIP mode  
Rds(on) = 10 m, Itrip = 2 A, Iind = 1 A, so Rcl = 5 kΩ  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
loop gain compensation  
Voltage mode control is used in this controller for the output voltage regulation. To achieve fast, stabilized  
control, two parts are discussed in this section: the power stage small signal modeling and the compensation  
circuit design.  
For the buck converter, the small signal modeling circuit is shown below:  
Z
L
V
ap  
d
L
D
R
a
c
L
+
d
V
O
i
a
i
c
D
1
+
C
R
V
I
I
c
Z
RC  
R
C
p
From this equivalent circuit, several control transfer functions can be derived: input-to-output, output  
impedance, and control-to-output. Typically the control-to-output transfer function is used for the feedback  
control design.  
Assuming Rc and RL are much smaller than R, the simplified small signal control-to-output transfer function is:  
(
)
1
sCRc  
Vod  
d
L
R
2
s LC  
1
s C  
Rc  
R
L
Where C is the output capacitance; Rc is the equivalent serial resistance (ESR) in the output capacitor; L is the  
output inductor; RL is the equivalent serial resistance (ESR) in the output inductor; R is the load resistance.  
To achieve the fast transient response and the better output voltage regulation, a compensation circuit is added  
to improve the feedback control. The whole system is shown below:  
Power  
Stage  
PWM  
V
ref  
Compensation  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
The typical compensation circuit used as an option in the EVM design is a part of the output feedback circuit.  
The circuitry is displayed below.  
C3  
R1  
C1  
R2  
R4  
C2  
_
To PWM  
+
V
ref  
R3  
This circuit is composed of one integrator, two poles, and two zeros:  
Assuming R1 << R2 and C2 << C3, the equation is:  
(
)
(
)
sC2R2  
)( )  
1
sC3R4  
(
1
Comp  
Therefore,  
sC3R2 1 sC2R4 1 sC1R1  
1
1
Pole1  
Pole2  
Zero1  
2 C1R1  
2 C2R4  
1
1
Zero2  
2 C3R4  
2 C2R2  
1
Integrator  
2 ƒC3R2  
A simplified version used in the EVM design is exhibited below.  
Vo  
C3  
R2  
R4  
C2  
_
+
V
ref  
R3  
Assuming C2 << C3, the equation is:  
(
)
sC3R4  
1
Comp  
(
)
sC3R2 1 sC2R4  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
there is one pole, one zero and one integrator:  
1
1
1
Zero  
Pole  
Integrator  
2 C3R4  
2 C2R4  
2 ƒC3R2  
The loop-gain concept is used to design a stable and fast feedback control. The loop-gain equation is derived  
by that the control-to-output transfer function times the compensation:  
Loop gain  
Vod X Comp  
Byusingabodeplot, theamplitudeandthephaseofthisequationcanbedrawnwithsoftwaresuchasMathCad.  
In turn, the stability can be easily designed by adjusting the compensation perimeters. The sample bode plot  
is shown below to explain the phase margin, gain margin and the crossover frequency.  
The gain is drawn as 20 log (loop-gain), and the phase is in degrees. To explain them clearer, 180 degrees is  
added to the phase, so that the gain and phase share the same zero.  
Where the gain curve touches the zero is the crossover frequency. The higher this frequency is, the faster the  
transient response is, since the transient recovery time is 1/(crossover frequency). The phase to the zero is the  
phase margin at the crossover frequency. The phase margin should be at least 60 degrees to cover all the  
condition changes such as temperature. The gain margin is the gap between gain curve and the zero when the  
phase curve touches the zero. This margin should be at least 20 dB to guarantee the stability over all conditions.  
180  
166  
152  
Phase  
138  
124  
110  
96  
82  
68  
54  
40  
Phase  
Margin  
20 Log (Loop-Gain)  
180 + Phase  
26  
12  
–2  
–16  
–30  
–44  
–58  
–72  
Gain  
Gain  
Margin  
Crossover  
–86  
–100  
3
10  
4
10  
5
10  
6
10  
10  
100  
f – Frequency – Hz  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
synchronization  
Some applications require switching clock synchronization. Two methods are used for synchronization:  
Triangle wave synchronization  
740 mV  
C
R
t
t
TPS5103  
740 mV  
Square wave synchronization  
It can be seen that R and C are removed from the circuit. Therefore, two components are saved. This method  
T
T
is good for the synchronization between two controllers. If the controller needs to be synchronized with digital  
circuit such as DSP, usually the square-type clock signal is used. The configuration exhibited below is for this  
type of application:  
C
R
t
t
TPS5103  
Anexternalresistorisaddedintothecircuit, butR isstillremoved. C iskepttobeapartofRCcircuitgenerating  
T
T
triangle waveform for the controller. Assuming the peak value of the square is known, the resistor and the  
capacitor can be adjusted to achieve the correct peak–to–peak value and the offset value.  
layout guidelines  
Goodpowersupplyresultswillonlyoccurwhencareisgiventoproperdesignandlayout. Layout willaffectnoise  
pickup and generation and can cause a good design to perform with less than expected results. With a range  
of currents from milliamps to tens or even hundreds of amps, good power supply layout is much more difficult  
than most general PCB designs. The general design should proceed from the switching node to the output, then  
back to the driver section and, finally, place the low-level components. Below are several specific points to  
consider before layout of a TPS5103 design begins.  
All sensitive analog components should be referenced to ANAGND. These include components connected  
to Vref5, Vref, INV, LH, and COMP .  
Analogground and drive ground should be isolated as much as possible. Ideally, analog ground will connect  
to the ground side of the bulk storage capacitors on V , and drive ground will connect to the main ground  
O
plane close to the source of the low-side FET.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
Connections from the drivers to the gate of the power FETs should be as short and wide as possible to  
reduce stray inductance. This becomes more critical if external gate resistors are not being used.  
The bypass capacitor for V  
should be placed close to the TPS5103.  
CC  
When configuring the high-side driver as a floating driver, the connection from LL to the power FETs should  
be as short and as wide as possible.  
When configuring the high-side driver as a floating driver, the bootstrap capacitor (connected from LH to  
LL) should be placed close to the TPS5103.  
When configuring the high-side driver as a ground-referenced driver, LL should be connected to DRVGND.  
The bulk storage capacitors across V should be placed close to the power FETS. High-frequency bypass  
IN  
capacitors should be placed in parallel with the bulk capacitors and connected close to the drain of the  
high-side FET and to the source of the low-side FET.  
High-frequency bypass capacitors should be placed across the bulk storage capacitors on V .  
O
LH and LL should be connected very close to the drain and source, respectively, of the high-side FET. LH  
and LL should be routed very close to each other to minimize differential-mode noise coupling to these  
traces. Ceramic decoupling capacitors should be placed close to where V  
connects to V , to reduce  
CC  
in  
high-frequency noise coupling on V  
.
CC  
The output voltage sensing trace should be isolated by either ground trace or V  
trace.  
CC  
test results  
The tests are conducted at T = 25°C, the point voltage is 5 V.  
A
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
OUTPUT CURRENT  
95  
95  
90  
85  
1.8 V Output Efficiency  
1.8 V Output Efficiency  
90  
PWM Mode  
85  
PWM Mode  
80  
80  
75  
75  
SKIP Mode  
SKIP Mode  
70  
70  
65  
60  
65  
60  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
I – Output Current – A  
O
I
O
– Output Current – A  
Figure 37  
Figure 38  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
OUTPUT CURRENT  
1.790  
1.785  
1.790  
1.790  
1.780  
1.780  
1.770  
1.770  
1.760  
1.8 V Line Regulation  
1.8 V Output Load Regulation  
1.780  
1.775  
1.770  
0
5
10  
15  
20  
25  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
V – Input Voltage – V  
I
I
O
– Output Current – A  
Figure 39  
Figure 40  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
EFFICIENCY  
vs  
OUTPUT/VOLTAGE  
OUTPUT CURRENT  
OUTPUT  
VOLTAGE  
95  
1.8 V Output Diode Type Efficiency  
90  
85  
80  
75  
70  
65  
60  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
I
O
– Output Current – A  
Figure 41  
Figure 42  
TRANSIENT RESPONSE (OVERSHOOT)  
TRANSIENT RESPONSE (UNDERSHOOT)  
Figure 43  
Figure 44  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
Table 1. Bill of Materials (see Note 3)  
REF  
C1opt  
PN  
DESCRIPTION  
Capacitor, POSCAP, 220 µF, 10 V  
MFG  
Sanyo  
SIZE  
7.3x4.3mm  
10x10mm  
1210  
10TPB220M  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
RV-35V221MH10-R  
Capacitor, electrolytic, 220 µF, 35 V  
Capacitor, ceramic, 10 µF, 35 V  
Capacitor, POSCAP, 470 µF, 4 V  
Open, capacitor, Ceramic, 2.2 µF, 16 V  
Capacitor, ceramic, 1 µF, 16 V  
Capacitor, ceramic, 0.01 µF, 16 V  
Capacitor, ceramic, 220 pF, 16 V  
Capacitor, ceramic, 100 pF, 16 V  
Capacitor, ceramic, 1 µF, 16 V  
Capacitor, ceramic, 2.2 µF, 35 V  
Open  
ELNA  
GMK325F106ZH  
Taiyo Yuden  
Sanyo  
4TPB470M  
7.3x4.3mm  
805  
std  
std  
805  
std  
805  
std  
805  
std  
805  
std  
805  
C10  
GMK316F225ZG  
std  
Taiyo Yuden  
1206  
C11  
C12  
C13  
C14  
805  
GMK316F225ZG  
GMK325F106ZH  
Capacitor, Ceramic, 2.2 µF, 35 V  
Capacitor, Ceramic, 10 µF, 35 V  
Open  
Taiyo Yuden  
Taiyo Yuden  
1206  
1210  
C14 opt  
Open  
10x10mm  
805  
C15  
D1  
std  
Open, capacitor, ceramic, 1000 pF, 16 V  
Diode, Schottky, 40 V, 3 A  
Diode, Schottky, 30 V, 1 A  
Diode, Schottky, 40 V, 200 mA, 400 mW  
Inductor, 6.8 uH, 4.4 A  
MBRS340T3  
MBRS130LT3  
SD103-AWDICT-ND  
DO3316P-682  
Motorola  
Motorola  
Digikey  
SMC  
D1opt  
D2  
SMB  
3.5x1.5mm  
0.5x0.37 in  
L1  
Coilcraft  
J1–J14  
JP1  
CA26DA-D36W-0FC Edge connector, surface-mount, 0.040board, 0.090standoff  
NAS Interplex 0.040”  
S1132-2-ND  
929950-00-ND  
S1132-2-ND  
Header, straight, 2–pin, 0.1 ctrs, 0.3” pins  
Sullins  
DigiKey #  
S1132-2-ND  
JP1 Shunt  
JP2  
Shunt, jumper, 0.1”  
3M  
DigiKey  
#929950-00-ND  
Header, straight, 2–pin, 0.1 ctrs, 0.3” pins  
Sullins  
DigiKey  
#S1132-2-ND  
R1  
std  
Resistor, 5.1 k, 5 %  
Open, resistor, 1 k, 5%  
Resistor, 910 , 1%  
Resistor, 1.74 k, 1%  
Resistor, 5.1 k, 5%  
Resistor, 82 k, 5%  
Open, 0 , 5%  
805  
R2  
R3  
R4  
R5  
std  
805  
std  
805  
std  
805  
std  
805  
R6A  
R6B  
R7  
std  
805  
std  
805  
std  
Resistor, 1 k, 5%  
805  
R9  
std  
Resistor, 1 k, 5%  
805  
R10  
R11  
R12  
std  
Resistor, 1 k, 5%  
805  
std  
Resistor, 10 , 5%  
805  
std  
Resistor, 51 k, 5%  
Open  
805  
R13  
Q1  
Q2  
U1  
std  
805  
Si4410DY  
Si4410DY  
TPS5103  
Transistor, MOSFET, n-ch, 30-V, 10-A, 13–mΩ  
Transistor, MOSFET, n-ch, 30-V, 10-A, 13-mΩ  
IC, controller  
Siliconix  
Siliconix  
TI  
SO–8  
SO–8  
SSOP–20  
Components for optional mode test only.  
NOTE 3: This operation mode is PWM mode only.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
Top Layer  
.
Bottom Layer (Top View)  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
Top Assembly  
Power Supply  
Load  
0 – 4 A  
+
5–V, 5–A Supply  
+
Test Setup  
NOTE: All wire pairs should be twisted.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
Table 2. Test Specifications  
PARAMETER  
Input voltage range  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
5
25  
1.9  
4
V
V
A
A
Output voltage range  
Output current range  
Output current limit  
Output ripple  
Vi = 5 25 V Io = 0 4 A  
1.7  
0
1.8  
Vi = 5 10 V  
Vi = 5 V  
4.3  
Vi =5 V,  
Io = 4 A  
50 mVp–p  
Operating frequency  
Efficiency  
Io = 4 A  
150  
250  
KHz  
%
Vi = 5 V,  
Vo = 1.8 V,  
Io = 4 A  
90  
Table 3. EVM Operating Specifications  
SKIP MODE  
Remove JP1 shunt  
HYS MODE  
Remove R5, C6 and C7  
Remove R6A  
Add R6B  
Add C15  
If it needs the loop-compensation, add R2 and C4  
ThisEVMisdesignedtocoverasmanyapplicationsaspossible. Forsomemorespecificapplications, thecircuit  
can be simpler. The table below gives some recommendations.  
Table 4. EVM Application Recommendations  
5-V INPUT VOLTAGE  
<3-A OUTPUT CURRENT  
DIODE VERSION  
Change C1 to low profile capacitor  
Sanyo 10TPB220M (220 µF, 10 V)  
Or 6TPB330M (330 µF, 6.3 V)  
Change Q1 and Q2 to dual pack MOSFET,  
IRF7311 to reduce the cost.  
Remove Q2 to reduce the cost.  
Remove R10  
Table 5. Vendor and Source Information  
MATERIAL  
SOURCE  
In EVM design  
Second source  
PART NUMBER  
DISTRIBUTORS  
Si4410  
MOSFETS (Q1–Q2)  
Local distributor  
IRF7811 (International Rectifier)  
RV–35V221MH10–R (ELNA)  
35CV330AX/GX (Sanyo)  
UUR1V221MNR1GS (Nichicon)  
MBRS340T3 (Motorola)  
In EVM design  
Second source  
Bell Microproducts 972–783–4191  
870–633–5030  
INPUT CAPACITORS (C1)  
Future Electronics (Local Office)  
Local distributors  
MAIN DIODES (D1)  
INDUCTORS (L1)  
In EVM design  
Second source  
In EVM design  
U3FWJ44N (Toshiba)  
Local distributors  
DO3316P–682 (Coilcraft)  
972–458–2645  
CTDO3316P–682  
(Inductor Warehouse)  
Second source  
800–533–8295  
GMK325F106ZH  
GMK316F225ZG  
(Taiyo Yuden)  
CERAMIC CAPACITORS  
(C2, C14) (C12, C10)  
SMEC  
512–331–1877  
IN EVM design  
Taiyo Yuden representative  
e–mail: mike@millsales.com  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
APPLICATION INFORMATION  
High current applications are described in Table 6. The values are recommendations based on actual test  
circuits. Many variations are possible based on the requirements of the user. Performance of the circuit is  
dependent upon the layout rather than on the specific components, if the device parameters are not exceeded.  
The power stage, having the highest current levels and greatest dv/dt rates, should be given the most attention,  
as both the supply and load can be severely affected by the power levels and edge rates.  
Table 6. High Current Applications  
REFERENCE  
DESIGNATIONS  
FUNCTION  
8-A OUTPUT  
12-A OUTPUT  
16-A OUTPUT  
4x ELNA  
2x ELNA  
3x ELNA  
C1  
Input bulk capacitor  
RV-35V221MH10-R  
RV-35V221MH10-R  
RV-35V221MH10-R  
220 µF, 35 V  
220 µF, 35 V  
220 µF, 35 V  
2x Taiyo Yuden  
GMK325F106ZH  
10 µF, 35 V  
3x Taiyo Yuden  
GMK325F106ZH  
10 µF, 35 V  
4x Taiyo Yuden  
GMK325F106ZH  
10 µF, 35 V  
C2  
L1  
C3  
Input bypass capacitor  
Output filter indicator  
Output filter capacitor  
Coiltronics UP4B-1R5  
1.5 µΗ, 13.4 A  
MicorMetals T68-8/90  
Core w/7T, #16  
1.0 µΗ, 25 A  
Coiltronics UP3B-2R2  
2.2 µΗ, 9.2 A  
3x Sanyo 4TPB470M  
470 µF, 4 V  
2x Sanyo 4TPB470M  
470 µF, 4 V  
4x Sanyo 4TPB470M  
470 µF, 4 V  
2x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
3x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
4x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
Q1  
Q2  
Power switch  
Power switch  
2x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
3x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
4x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
R11  
R12  
Gate drive resistor  
Current limit resistor  
7 Ω  
5 Ω  
4 Ω  
10 kΩ  
200 kHz  
15 kΩ  
150 kHz  
20 kΩ  
100 kHz  
Switching frequency  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5103  
MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER  
SLVS240 – SEPTEMBER 1999  
MECHANICAL DATA  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
28 PINS SHOWN  
0,38  
0,65  
28  
M
0,15  
0,22  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°8°  
1,03  
0,63  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
8
14  
16  
20  
24  
28  
30  
38  
DIM  
3,30  
2,70  
6,50  
5,90  
6,50  
5,90  
7,50  
6,90  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
9,90  
12,30  
4040065 /C 10/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TPS5103IDBR

MULTIPLE MODE SYNCHRONOUS DC/DC CONTROLLER
TI

TPS5110

3-A SINK/ SOURCE DDR TERMINATION REGULATOR
TI

TPS51100

3-A SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51100DGQ

3-A SINK/ SOURCE DDR TERMINATION REGULATOR
TI

TPS51100DGQG4

3-A SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51100DGQR

3-A SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51100DGQRG4

3-A SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51100_07

3-A SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51103

INTEGRATED LDO WITH SWITCHOVER CIRCUIT FOR NOTEBOOK COMPUTERS
TI

TPS51103DRCR

暂无描述
TI

TPS51103DRCRG4

Integrated LDO with Switchover Circuit for Notebook Computers 10-SON -40 to 85
TI

TPS51103DRCT

Integrated LDO with Switchover Circuit for Notebook Computers 10-VSON -40 to 85
TI