TPS51216-EP [TI]

增强型产品完整 DDR2、DDR3 和 DDR3L 存储器电源解决方案同步降压控制器;
TPS51216-EP
型号: TPS51216-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品完整 DDR2、DDR3 和 DDR3L 存储器电源解决方案同步降压控制器

双倍数据速率 控制器 存储
文件: 总37页 (文件大小:1979K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
TPS51216-EP 具有同步降压控制器、2A LDO 和缓冲基准的完DDR2DDR3  
DDR3L 存储器电源解决方案  
1 特性  
3 说明  
• 同步降压控制(VDDQ)  
TPS51216-EP 以最少总成本和最小空间为 DDR2、  
DDR3 DDR3L 存储器系统提供完整的电源。它将同  
步降压稳压器控制器 (VDDQ) 2A 灌电流/拉电流跟  
LDO (VTT) 和缓冲低噪声基准 (VTTREF) 相集成。  
TPS51216-EP 采用 D-CAP模式与 300kHz/400kHz  
频率相结合以实现易用性和快速瞬态响应。VTTREF  
VDDQ/2 的精度优于 0.8%。能够提供 2A 灌电流/  
拉电流峰值电流功能的 VTT 只需 10μF 的陶瓷电容  
器。此外还提供专用LDO 电源输入。  
– 转换电压范围3 28 V  
– 输出电压范围0.7 1.8 V  
0.8% VREF 精度  
D-CAP模式可实现快速瞬态响应  
– 可300kHz/400kHz 开关频率  
– 自动跳过功能优化了轻负载和重负载时的效率  
– 支S4/S5 状态下的软关闭  
OCL/OVP/UVP/UVLO 保护  
– 电源正常输出  
TPS51216-EP 提供丰富、实用的功能以及出色的电源  
性能。它支持灵活功率级控制VTT 置于高阻抗状  
处于 S3并在 S4/S5 状态下对 VDDQVTT 和  
VTTREF 进行放电软关闭。  
2A LDO (VTT)、缓冲基(VTTREF)  
2A峰值灌电流和拉电流  
– 只10μF 陶瓷输出电容  
– 经缓冲的低噪10mA VTTREF 输出  
0.8% VTTREF20mV VTT 精度  
S3 下支持高阻抗S4/S5 下支持软关闭  
• 热关断  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
TPS51216-EP  
WQFN (20)  
3.00mm × 3.00mm  
20 3mm × 3mm WQFN 封装  
支持国防、航天和医疗应用  
– 受控基线  
(1) 如需了解所有可用封装请参阅产品说明书末尾的可订购产品  
附录。  
VIN  
– 一个组装/测试基地  
– 一个制造基地  
– 支持军用-55°C 125°C温度范围1  
– 延长了产品生命周期  
– 延长了产品变更通知  
5VIN  
TPS51216  
PGND  
VBST 15  
12 V5IN  
VDDQ  
DRVH 14  
S3  
S5  
17 S3  
16 S5  
SW 13  
PGND  
– 产品可追溯性  
DRVL 11  
PGND 10  
6
8
7
VREF  
2 应用  
PGOOD 20  
Powergood  
REFIN  
GND  
VDDQSNS  
VLDOIN  
VTT  
9
2
3
1
DDR2/DDR3/DDR3L 存储器电源  
SSTL_18SSTL_15SSTL_135 HSTL 终端  
VTT  
19 MODE  
18 TRIP  
VTTSNS  
VTTGND  
VTTREF  
4
5
VTTREF  
PGND  
AGND  
UDG-10138  
AGND  
应用示意图  
1
提供额外的温度范- 请联系工厂  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCA7  
 
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................19  
9 Application and Implementation..................................20  
9.1 Application Information............................................. 20  
9.2 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................26  
11 Layout...........................................................................27  
11.1 Layout Guidelines................................................... 27  
11.2 Layout Example...................................................... 28  
12 Device and Documentation Support..........................29  
12.1 接收文档更新通知................................................... 29  
12.2 支持资源..................................................................29  
12.3 Trademarks.............................................................29  
12.4 Electrostatic Discharge Caution..............................29  
12.5 术语表..................................................................... 29  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................16  
Information.................................................................... 29  
4 Revision History  
Changes from Revision * (November 2015) to Revision A (July 2022)  
Page  
• 更新了整个文档中的表格、图和交叉引用的编号格式.........................................................................................1  
Updated resistor numbers in Equation 7 to match description......................................................................... 24  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
5 说明)  
它还提供具有低MOSFET RDS(on) 检测功能的可编OCLOVP/UVP/UVLO 以及热关断保护。  
TPS51216-EP 20 3mm × 3mm WQFN 封装额定结温-55°C 125°C。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
20  
19  
18  
17  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
VTTSNS  
VLDOIN  
VTT  
VBST  
DRVH  
SW  
Thermal Pad  
VTTGND  
VTTREF  
V5IN  
DRVL  
6
7
8
9
10  
6-1. RUK Package 20-Pin WQFN Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DRVH  
DRVL  
GND  
NO.  
14  
11  
7
O
O
High-side MOSFET gate driver output.  
Low-side MOSFET gate driver output.  
Signal ground.  
MODE  
PGND  
PGOOD  
19  
10  
20  
I
Connect resistor to GND to configure switching frequency and discharge mode. (See 8-2.)  
Gate driver power ground. RDS(on) current sensing input (+).  
O
Powergood signal open drain output. PGOOD goes high when VDDQ output voltage is within the target range.  
Reference input for VDDQ. Connect to the midpoint of a resistor divider from VREF to GND. Add a capacitor for  
stable operation.  
REFIN  
8
I
SW  
S3  
13  
17  
16  
I/O  
High-side MOSFET gate driver return. RDS(on) current sensing input ().  
S3 signal input. (See 8-1.)  
I
I
S5  
S5 signal input. (See 8-1.)  
Connect resistor to GND to set OCL at VTRIP / 8. Output 10-μA current at room temperature, TC = 4700  
ppm/°C.  
TRIP  
18  
I
VBST  
15  
9
I
I
High-side MOSFET gate driver bootstrap voltage input. Connect a capacitor from the VBST pin to the SW pin.  
VDDQ output voltage feedback. Reference input for VTTREF. Also serves as power supply for VTTREF.  
Power supply input for VTT LDO. Connect VDDQ in typical application.  
1.8-V reference output.  
VDDQSNS  
VLDOIN  
VREF  
2
I
6
O
O
VTT  
3
VTT 2-A LDO output. Need to connect 10 μF or larger capacitance for stability.  
Power ground for VTT LDO.  
VTTGND  
VTTREF  
VTTSNS  
V5IN  
4
O
I
5
Buffered VTT reference output. Need to connect 0.22 μF or larger capacitance for stability.  
VTT output voltage feedback.  
1
12  
I
5-V power supply input for internal circuits and MOSFET gate drivers.  
Thermal  
pad  
Connect to GND  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
5  
MAX  
36  
6
UNIT  
VBST  
VBST(3)  
SW  
30  
3.6  
3.6  
0.3  
6
Input voltage(2)  
VLDOIN, VDDQSNS, REFIN  
VTTSNS  
V
0.3  
0.3  
0.3  
0.3  
5  
PGND, VTTGND  
V5IN, S3, S5, TRIP, MODE  
DRVH  
36  
6
DRVH(3)  
0.3  
2.5  
0.3  
0.3  
0.3  
2.5  
0.3  
55  
55  
DRVH(3) (duty cycle < 1%)  
VTTREF, VREF  
VTT  
6
3.6  
3.6  
6
Output voltage(2)  
V
DRVL  
DRVL (duty cycle < 1%)  
PGOOD  
6
6
Junction temperature, TJ  
Storage temperature, Tstg  
135  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
(3) Voltage values are with respect to the SW terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS51216-EP  
 
 
 
 
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
MAX UNIT  
7.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
Supply voltage  
V5IN  
5.5  
33.5  
5.5  
28  
V
VBST  
0.1  
0.1  
-3  
VBST(2)  
SW  
SW(1)  
28  
4.5  
0.1  
0.1  
0.1  
0.1  
3  
Input voltage range  
V
VLDOIN, VDDQSNS, REFIN  
VTTSNS  
3.5  
3.5  
0.1  
5.5  
33.5  
5.5  
33.5  
3.5  
3.5  
5.5  
5.5  
125  
PGND, VTTGND  
S3, S5, TRIP, MODE  
DRVH  
DRVH(2)  
0.1  
4.5  
0.1  
0.1  
0.1  
0.1  
55  
DRVH(1)  
VTTREF, VREF  
VTT  
Output voltage range  
V
DRVL  
PGOOD  
TJ  
Operating junction temperature  
°C  
(1) This voltage should be applied for less than 30% of the repetitive period.  
(2) Voltage values are with respect to the SW terminal.  
7.4 Thermal Information  
TPS51216-EP  
RUK (WQFN)  
20 PINS  
94.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
58.1  
64.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
31.8  
ψJT  
58.0  
ψJB  
RθJC(bot)  
5.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics  
TJ = 55°C to 125°C, VV5IN = 5 V, VLDOIN is connected to VDDQ output, VMODE = 0 V, VS3 = VS5 = 5 V (unless otherwise  
noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
IV5IN(S0)  
V5IN supply current, in S0  
V5IN supply current, in S3  
V5IN shutdown current  
TJ = 25°C, No load, VS3 = VS5 = 5 V  
TJ = 25°C, No load, VS3 = 0 V, VS5 = 5 V  
TJ = 25°C, No load, VS3 = VS5 = 0 V  
TJ = 25°C, No load, VS3 = VS5 = 5 V  
TJ = 25°C, No load, VS3 = 0 V, VS5 = 5 V  
TJ = 25°C, No load, VS3 = VS5 = 0 V  
590  
500  
μA  
μA  
IV5IN(S3)  
IV5INSDN  
1
5
5
5
μA  
μA  
μA  
μA  
IVLDOIN(S0)  
IVLDOIN(S3)  
IVLDOINSDN  
VREF OUTPUT  
VLDOIN supply current, in S0  
VLDOIN supply current, in S3  
VLDOIN shutdown current  
1.8000  
IVREF = 30 μA, TJ = 25°C  
VVREF  
Output voltage  
Current limit  
V
1.7820  
0.4  
1.8180  
0 μA IVREF <300 μA, TJ = 55°C to 125°C  
VVREF = 1.7 V  
IVREFOCL  
0.8  
mA  
VTTREF OUTPUT  
VVTTREF  
Output voltage  
VVDDQSNS/2  
V
49.2%  
49%  
10  
50.8%  
51%  
|IVTTREF| <100 μA, 1.2 V VVDDQSNS 1.8 V  
|IVTTREF| <10 mA, 1.2 V VVDDQSNS 1.8 V  
VVDDQSNS = 1.8 V, VVTTREF= 0 V  
VVTTREF  
Output voltage tolerance to VVDDQ  
IVTTREFOCLSRC  
IVTTREFOCLSNK  
IVTTREFDIS  
Source current limit  
Sink current limit  
18  
17  
mA  
mA  
mA  
VVDDQSNS = 1.8 V, VVTTREF = 1.8 V  
10  
VTTREF discharge current  
TJ = 25°C, VS3 = VS5 = 0 V, VVTTREF = 0.5 V  
0.8  
1.3  
VTT OUTPUT  
VVTT  
Output voltage  
VVTTREF  
V
|IVTT| 10 mA, 1.2 V VVDDQSNS 1.8 V, IVTTREF  
0 A  
=
20  
20  
30  
40  
|IVTT| 1 A, 1.2 VVDDQSNS 1.8 V, IVTTREF = 0 A  
30  
40  
VVTTTOL  
Output voltage tolerance to VTTREF  
mV  
|IVTT| 2 A, 1.4 V VVDDQSNS 1.8 V, IVTTREF = 0 A  
|IVTT| 1.5 A, 1.2 V VVDDQSNS 1.4 V, IVTTREF = 0  
A
40  
40  
VVDDQSNS = 1.8 V, VVTT = VVTTSNS = 0.7 V,  
IVTTREF = 0 A  
IVTTOCLSRC  
IVTTOCLSNK  
Source current limit  
Sink current limit  
2
2
3
3
A
VVDDQSNS = 1.8V, VVTT = VVTTSNS = 1.1 V, IVTTREF = 0  
A
IVTTLK  
Leakage current  
TJ = 25°C , VS3 = 0 V, VS5 = 5 V, VVTT = VVTTREF  
VS3 = 5 V, VS5 = 5 V, VVTTSNS = VVTTREF  
VS3 = 0 V, VS5 = 5 V, VVTTSNS = VVTTREF  
5
0.5  
1
IVTTSNSBIAS  
IVTTSNSLK  
VTTSNS input bias current  
VTTSNS leakage current  
0.0  
0
0.5  
1  
μA  
TJ = 25°C, VS3 = VS5 = 0 V, VVDDQSNS = 1.8 V,  
VVTT = 0.5 V, IVTTREF = 0 A  
IVTTDIS  
VTT Discharge current  
7.8  
mA  
VDDQ OUTPUT  
VVDDQSNS  
VDDQ sense voltage  
VREFIN  
VDDQSNS regulation voltage  
tolerance to REFIN  
VVDDQSNSTOL  
TJ = 25°C  
3
mV  
3  
IVDDQSNS  
IREFIN  
VDDQSNS input current  
REFIN input current  
VVDDQSNS = 1.8 V  
VREFIN = 1.8 V  
39  
μA  
μA  
0.0  
0.1  
0.1  
VS3 = VS5 = 0 V, VVDDQSNS = 0.5 V, MODE pin pulled  
down to GND through 47 kΩ(Non-tracking)  
IVDDQDIS  
VDDQ discharge current  
VLDOIN discharge current  
12  
mA  
A
VS3 = VS5 = 0 V, VVDDQSNS = 0.5 V, MODE pin pulled  
down to GND through 100 kΩ(Non-tracking)  
IVLDOINDIS  
1.2  
SWITCH MODE POWER SUPPLY (SMPS) FREQUENCY  
300  
400  
VIN = 5 V, VVDDQSNS = 1.8 V, RMODE = 100 kΩ  
VIN = 5 V, VVDDQSNS = 1.8 V, RMODE = 200 kΩ  
VDDQ switching frequency  
kHz  
ƒSW  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 55°C to 125°C, VV5IN = 5 V, VLDOIN is connected to VDDQ output, VMODE = 0 V, VS3 = VS5 = 5 V (unless otherwise  
noted)  
PARAMETER  
Minimum on time  
Minimum off time  
TEST CONDITION  
DRVH rising to falling1  
MIN  
TYP  
60  
MAX UNIT  
tON(min)  
ns  
tOFF(min)  
DRVH falling to rising  
200  
320  
450  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 55°C to 125°C, VV5IN = 5 V, VLDOIN is connected to VDDQ output, VMODE = 0 V, VS3 = VS5 = 5 V (unless otherwise  
noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VDDQ MOSFET DRIVER  
1.6  
0.6  
0.9  
0.5  
10  
3.0  
1.5  
Source, IDRVH = 50 mA  
RDRVH  
RDRVL  
tDEAD  
DRVH resistance  
DRVL resistance  
Dead time  
Sink, IDRVH = 50 mA  
Source, IDRVL = 50 mA  
Sink, IDRVL = 50 mA  
DRVH-off to DRVL-on  
DRVL-off to DRVH-on  
Ω
2.0  
1.2  
ns  
20  
INTERNAL BOOT STRAP SW  
VFBST  
Forward voltage  
VV5IN-VBST, TJ = 25°C, IF = 10 mA  
0.1  
0.2  
1.5  
V
IVBSTLK  
VBST leakage current  
TJ = 25°C, VVBST = 33 V, VSW = 28 V  
0.01  
μA  
LOGIC THRESHOLD  
IMODE  
MODE source current  
14  
580  
15  
600  
16  
620  
μA  
MODE 0  
MODE 1  
MODE 2  
MODE 3  
829  
854  
879  
VTHMODE  
MODE threshold voltage  
mV  
1202  
1760  
1232  
1800  
1262  
1840  
0.5  
VIL  
S3/S5 low-level voltage  
S3/S5 high-level voltage  
S3/S5 hysteresis voltage  
S3/S5 input leak current  
VIH  
1.8  
V
VIHYST  
VILK  
0.25  
0
1
1  
μA  
SOFT START  
Internal soft-start time, CVREF = 0.1 μF,  
S5 rising to VVDDQSNS > 0.99 × VREFIN  
tSS  
VDDQ soft-start time  
1.1  
ms  
PGOOD COMPARATOR  
PGOOD in from higher  
106%  
90%  
114%  
82%  
3
108%  
92%  
116%  
84%  
5.9  
110%  
94%  
PGOOD in from lower  
VTHPG  
VDDQ PGOOD threshold  
PGOOD out to higher  
118%  
86%  
PGOOD out to lower  
IPG  
PGOOD sink current  
PGOOD delay time  
PGOOD start-up delay  
VPGOOD = 0.5 V  
mA  
ms  
ns  
Delay for PGOOD in  
0.8  
1
1.2  
11  
tPGDLY  
Delay for PGOOD out, with 100 mV over drive  
CVREF = 0.1 μF, S5 rising to PGOOD rising  
330  
2.5  
tPGSSDLY  
ms  
PROTECTIONS  
ITRIP  
TRIP source current  
TJ = 25°C, VTRIP = 0.4 V  
9
10  
μA  
TRIP source current temperature  
coefficient1  
ppm/°  
C
TCITRIP  
VTRIP  
4700  
VTRIP voltage range  
0.2  
360  
3
390  
V
VTRIP = 3.0 V  
VTRIP = 1.6 V  
VTRIP = 0.2 V  
VTRIP = 3.0 V  
VTRIP = 1.6 V  
VTRIP = 0.2 V  
375  
200  
VOCL  
Current limit threshold  
190  
210  
mV  
20  
25  
30  
390  
210  
30  
375  
200  
25  
0
360  
190  
20  
VOCLN  
Negative current limit threshold  
mV  
VZC  
Zero cross detection offset  
mV  
V
Wake-up  
4.2  
3.7  
4.4  
4.5  
4.1  
VUVLO  
V5IN UVLO threshold voltage  
Shutdown  
3.9  
VOVP  
VDDQ OVP threshold voltage  
VDDQ OVP propagation delay  
OVP detect voltage  
With 100 mV over drive  
118%  
120%  
430  
122%  
tOVPDLY  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS51216-EP  
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 55°C to 125°C, VV5IN = 5 V, VLDOIN is connected to VDDQ output, VMODE = 0 V, VS3 = VS5 = 5 V (unless otherwise  
noted)  
PARAMETER  
TEST CONDITION  
UVP detect voltage  
MIN  
TYP  
68%  
1
MAX UNIT  
VUVP  
VDDQ UVP threshold voltage  
VDDQ UVP delay  
66%  
70%  
ms  
tUVPDLY  
tUVPENDLY  
VOOB  
VDDQ UVP enable delay  
OOB threshold voltage  
1.2  
ms  
108%  
THERMAL SHUTDOWN  
Shutdown temperature1  
Hysteresis1  
140  
10  
TSDN Thermal shutdown threshold  
°C  
1. Ensured by design. Not production tested.  
1M  
Electromigration fail mode  
100k  
10k  
1k  
100  
80  
90  
100  
110  
120  
130  
140  
150  
160  
D008  
Continuous Junction Temperature (°C)  
A. See data sheet for absolute maximum and minimum recommended operating conditions.  
B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).  
C. Enhanced plastic product disclaimer applies.  
7-1. TPS51216-EP Derating Chart  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
1000  
10  
8
800  
600  
400  
200  
0
6
4
2
0
-55  
-55  
-25  
5
35  
65  
Junction Temperature (°C)  
95  
125  
-25  
5
35  
65  
Junction Temperature (°C)  
95  
125  
D001  
D002  
7-2. V5IN Supply Current vs Junction Temperature  
7-3. V5IN Shutdown Current vs Junction Temperature  
10  
16  
14  
12  
10  
8
8
6
4
2
0
6
4
-55  
-25  
5
Junction Temperature (°C)  
35  
65  
95  
125  
-55  
-25  
5
Junction Temperature (°C)  
35  
65  
95  
125  
D003  
D004  
7-4. VLDOIN Supply Current vs Junction Temperature  
7-5. Current Sense Current vs Junction Temperature  
150%  
140%  
15  
UVP  
OVP  
130%  
120%  
110%  
100%  
90%  
12  
9
6
80%  
70%  
3
60%  
50%  
0
-55  
-55  
-25  
5
35  
65  
Junction Temperature (°C)  
95  
125  
-25  
5
35  
65  
Junction Temperature (°C)  
95  
125  
D005  
D006  
7-6. OVP/UVP Threshold vs Junction Temperature  
7-7. VDDQSNS Discharge Current vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
10  
800  
700  
600  
500  
400  
300  
200  
RMODE = 100 k  
IVDDQ = 10 A  
VVDDQ = 1.20 V  
VVDDQ = 1.35 V  
VVDDQ = 1.50 V  
8
6
4
2
0
6
8
10  
12  
14  
16  
18  
20  
22  
-55  
-25  
5
35  
65  
Junction Temperature (°C)  
95  
125  
Input Voltage (V)  
D007  
7-9. Switching Frequency vs Input Voltage  
7-8. VTT Discharge Current vs Junction Temperature  
800  
800  
RMODE = 200 k  
IVDDQ = 10 A  
VVDDQ = 1.20 V  
VVDDQ = 1.35 V  
VVDDQ = 1.50 V  
RMODE = 100 k  
VIN = 12 V  
VVDDQ = 1.20 V  
VVDDQ = 1.35 V  
VVDDQ = 1.50 V  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
6
8
10  
12  
14  
16  
18  
20  
22  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Input Voltage (V)  
VDDQ Output Current (A)  
7-10. Switching Frequency vs Input Voltage  
7-11. Switching Frequency vs Load Current  
800  
1.55  
RMODE = 200 k  
VIN = 12 V  
VVDDQ = 1.20 V  
VVDDQ = 1.35 V  
VVDDQ = 1.50 V  
RMODE = 200 k  
VIN = 12 V  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
700  
600  
500  
400  
300  
200  
100  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VDDQ Output Current (A)  
VDDQ Output Current (A)  
7-12. Switching Frequency vs Load Current  
7-13. Load Regulation  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
1.55  
0.770  
0.765  
0.760  
0.755  
0.750  
0.745  
0.740  
0.735  
0.730  
RMODE = 200 k  
IVDDQ = 0 A  
IVDDQ = 20 A  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
VVDDQ = 1.5 V  
−5  
6
8
10  
12  
14  
16  
18  
20  
22  
−10  
0
5
10  
Input Voltage (V)  
VTTREF Current (mA)  
7-14. Line Regulation  
7-15. VTTREF Load Regulation  
0.695  
0.690  
0.685  
0.680  
0.675  
0.670  
0.665  
0.660  
0.655  
0.650  
0.620  
0.615  
0.610  
0.605  
0.600  
0.595  
0.590  
0.585  
0.580  
VVDDQ = 1.35 V  
−5  
VVDDQ = 1.2 V  
−10  
0
5
10  
−10  
−5  
0
5
10  
VTTREF Current (mA)  
VTTREF Current (mA)  
7-16. VTTREF Load Regulation  
7-17. VTTREF Load Regulation  
0.790  
0.715  
0.705  
0.695  
0.685  
0.675  
0.665  
0.655  
0.645  
0.635  
0.780  
0.770  
0.760  
0.750  
0.740  
0.730  
0.720  
0.710  
VVDDQ = 1.5 V  
VVDDQ = 1.35 V  
−2.0 −1.5 −1.0 −0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
−2.0 −1.5 −1.0 −0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VTT Current (V)  
VTT Current (V)  
7-18. VTT Load Regulation  
7-19. VTT Load Regulation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS51216-EP  
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
0.640  
0.630  
0.620  
0.610  
0.600  
0.590  
0.580  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 20 V  
VIN = 12 V  
VIN = 8 V  
VVDDQ = 1.5 V  
RMODE = 200 k  
0.570  
VVDDQ = 1.2 V  
0.560  
−2.0 −1.5 −1.0 −0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
0.001  
0.01  
0.1  
1
10  
100  
VTT Current (V)  
VDDQ Output Current (A)  
7-20. VTT Load Regulation  
7-22. 1.5-V Load Transient Response  
7-24. 1.5-V Startup Waveforms  
7-21. Efficiency  
7-23. VTT Load Transient Response  
7-25. 1.5-V Startup Waveforms (0.5-V Pre-Biased)  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
7-27. 1.5-V Soft-Stop Waveforms (Non-Tracking Discharge)  
7-26. 1.5-V Soft-Stop Waveforms (Tracking Discharge)  
80  
60  
180  
135  
90  
80  
60  
180  
135  
90  
40  
40  
20  
45  
20  
45  
0
0
0
0
−20  
−40  
−60  
−80  
−45  
−90  
−135  
−180  
−20  
−40  
−60  
−80  
−45  
−90  
−135  
−180  
Gain  
Phase  
Gain  
Phase  
IVTT = −1 A  
IVTT = 1 A  
10000  
100000  
1000000  
10000000  
10000  
100000  
1000000  
10000000  
Frequency (Hz)  
Frequency (Hz)  
7-28. VTT Bode Plot (Sink)  
7-29. VTT Bode Plot (Source)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
TPS51216-EP provides complete Power Supply Solution for DDR2, DDR3 and DDR3L memory system.  
8.2 Functional Block Diagram  
UV  
OV  
20 PGOOD  
V
+8/16 %  
+
+
+
+
V
–32%  
+20%  
REFIN  
REFIN  
REFIN  
Delay  
V
V
–8/16 %  
REFIN  
15 mA  
Control Logic  
REFIN  
VREF  
8
6
UVP  
OVP  
On-Time  
Discharge Type  
Selection  
19 MODE  
Reference  
Soft-Start  
PWM  
+
+
VBST  
15  
VDDQSNS  
9
14 DRVH  
13 SW  
10 mA  
8 R  
TRIP 18  
S5 16  
OC  
+
+
XCON  
t
ON  
R
One-  
Shot  
7 R  
S3 17  
NOC  
+
GND  
7
12 V5IN  
R
11 DRVL  
+
ZC  
VTT Discharge  
VDDQ  
Discharge  
V5OK VTTREF Discharge  
10 PGND  
VTTREF  
5
2
3
4
VLDOIN  
+
+
4.4 V/3.9 V  
+
+
+
VTT  
VTTSNS  
1
VTTGND  
TPS51216  
UDG-10135  
8.3 Feature Description  
8.3.1 VDDQ Switch Mode Power Supply Control  
TPS51216-EP supports D-CAP mode which does not require complex external compensation networks and is  
suitable for designs with small external components counts. The D-CAP mode provides fast transient response  
with appropriate amount of equivalent series resistance (ESR) on the output capacitors. An adaptive on-time  
control scheme is used to achieve pseudo-constant frequency. The TPS51216-EP adjusts the on-time (tON) to be  
inversely proportional to the input voltage (VIN) and proportional to the output voltage (VDDQ). This makes a  
switching frequency fairy constant over the variation of input voltage at the steady state condition.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
8.3.2 VREF and REFIN, VDDQ Output Voltage  
The part provides a 1.8-V, ±0.8% accurate, voltage reference from VREF. This output has a 300-μA (max)  
current capability to drive the REFIN input voltage through a voltage divider circuit. A capacitor with a value of  
0.1-μF or larger should be attached close to the VREF terminal.  
The VDDQ switch-mode power supply (SMPS) output voltage is defined by REFIN voltage, within the range  
between 0.7 V and 1.8 V, programmed by the resister-divider connected between VREF and GND. (See 节  
9.2.2.2.) A few nano farads of capacitance from REFIN to GND is recommended for stable operation.  
8.3.3 Soft-Start and Powergood  
TPS51216-EP provides integrated VDDQ soft-start functions to suppress in-rush current at start-up. The soft-  
start is achieved by controlling internal reference voltage ramping up. 8-1 shows the start-up waveforms. The  
switching regulator waits for 400μs after S5 assertion. The MODE pin voltage is read in this period. A typical  
VDDQ ramp up duration is 700μs.  
TPS51216-EP has a powergood open-drain output that indicates the VDDQ voltage is within the target range.  
The target voltage window and transition delay times of the PGOOD comparator are ±8% (typ) and 1-ms delay  
for assertion (low to high), and ±16% (typ) and 330-ns delay for de-assertion (high to low) during running. The  
PGOOD comparator is enabled 1.1 ms after VREF is raised high and the start-up delay is 2.5 ms. Note that the  
time constant which is composed of the REFIN capacitor and a resistor divider needs to be short enough to  
reach the target value before PGOOD comparator enabled.  
S5  
VREF  
VDDQ  
PGOOD  
400 ms  
700 ms  
1.4 ms  
UDG-10137  
8-1. Typical Start-up Waveforms  
8.3.4 Power State Control  
The TPS51216-EP has two input pins, S3 and S5, to provide simple control scheme of power state. All of VDDQ,  
VTTREF and VTT are turned on at S0 state (S3 = S5 = high). In S3 state (S3 = low, S5 = high), VDDQ and  
VTTREF voltages are kept on while VTT is turned off and left at high impedance state (high-Z). The VTT output  
floats and does not sink or source current in this state. In S4/S5 states (S3=S5=low), all of the three outputs are  
turned off and discharged to GND according to the discharge mode selected by MODE pin. Each state code  
represents as follow; S0 = full ON, S3 = suspend to RAM (STR), S4 = suspend to disk (STD), S5 = soft OFF.  
(See 8-1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
8-1. S3/S5 Power State Control  
STATE  
S0  
S3  
HI  
S5  
HI  
VREF  
VDDQ  
VTTREF  
ON  
VTT  
ON  
ON  
ON  
S3  
LO  
LO  
HI  
ON  
ON  
ON  
OFF (high-Z)  
OFF (discharge)  
S4/S5  
LO  
OFF  
OFF (discharge)  
OFF (discharge)  
8.3.5 Discharge Control  
In S4/S5 state, VDDQ, VTT, and VTTREF outputs are discharged based on the respective discharge mode  
selected above. The tracking discharge mode discharges VDDQ output through the internal VTT regulator  
transistors enabling quick discharge operation. The VTT output maintains tracking of the VTTREF voltage in this  
mode. (Refer to 7-26.) After 4 ms of tracking discharge operation, the mode changes to non-tracking  
discharge. The VDDQ output must be connected to the VLDOIN pin in this mode. The non-tracking mode  
discharges the VDDQ and VTT pins using internal MOSFETs that are connected to corresponding output  
terminals. The non-tracking discharge is slow compared with the tracking discharge due to the lower current  
capability of these MOSFETs. (Refer to 7-27.)  
8.3.6 VTT Overcurrent Protection  
The LDO has an internally fixed constant overcurrent limiting of 3-A (typ) for both sink and source operation.  
8.3.7 V5IN Undervoltage Lockout (UVLO) Protection  
TPS51216-EP has a 5-V supply UVLO protection threshold. When the V5IN voltage is lower than UVLO  
threshold voltage, typically 3.93 V, VDDQ, VTT, and VTTREF are shut off. This is a non-latch protection.  
8.3.8 Thermal Shutdown  
TPS51216-EP includes an internal temperature monitor. If the temperature exceeds the threshold value, 140°C  
(typical), VDDQ, VTT and VTTREF are shut off. The thermal shutdown state of VDDQ is open, VTT and  
VTTREF are high impedance (high-Z) respectively, and the discharge functions are disabled. This is a non-latch  
protection and the operation is restarted with soft-start sequence when the device temperature is reduced by  
10°C (typical).  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 MODE Pin Configuration  
The TPS51216-EP reads the MODE pin voltage when the S5 signal is raised high and stores the status in a  
register. A 15-μA current is sourced from the MODE pin during this time to read the voltage across the resistor  
connected between the pin and GND. 8-2 shows resistor values, corresponding switching frequency, and  
discharge mode configurations.  
8-2. MODE Selection  
RESISTANCE BETWEEN  
MODE AND GND (kΩ)  
SWITCHING  
FREQUENCY (kHz)  
MODE NO.  
DISCHARGE MODE  
3
2
1
0
200  
100  
68  
400  
300  
300  
400  
Tracking  
Non-tracking  
47  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS51216-EP  
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
TPS51216-EP is highly integrated synchronous step-down buck solution. The device is used to convert a higher  
DC-DC voltage to lower DC output voltage to provide VDDQ and VTT for various DDR memory power solutions.  
9.1.1 D-CAP Mode  
9-1 shows a simplified model of D-CAP mode architecture.  
V
IN  
VDDQSNS  
High-Side  
MOSFET  
DRVH  
9
14  
PWM  
+
Lx  
REFIN  
VREF  
VDDQ  
Control  
Logic  
and  
8
6
ESR  
R
LOAD  
Driver  
R1  
Low-Side  
MOSFET  
DRVL  
+
C
11  
OUT  
1.8 V  
R2  
UDG-10136  
9-1. Simplified D-CAP Model  
The VDDQSNS voltage is compared with REFIN voltage. The PWM comparator creates a set signal to turn on  
the high-side MOSFET. The gain and speed of the comparator is high enough to maintain the voltage at the  
beginning of each on-cycle (or the end of each off-cycle) to be substantially constant. The DC output voltage  
monitored at VDDQ may have line regulation due to ripple amplitude that slightly increases as the input voltage  
increase. The D-CAP mode offers flexibility on output inductance and capacitance selections and provides ease-  
of-use with a low external component count. However, it requires a sufficient amount of output ripple voltage for  
stable operation and good jitter performance.  
The requirement for loop stability is simple and is described in 方程式 1. The 0-dB frequency, ƒ0 defined in 方程  
1, is recommended to be lower than 1/3 of the switching frequency to secure proper phase margin.  
f
1
SW  
f =  
£
0
2p´ESR ´C  
3
OUT  
(1)  
where  
ESR is the effective series resistance of the output capacitor  
COUT is the capacitance of the output capacitor  
• ƒsw is switching frequency  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
Jitter is another attribute caused by signal-to-noise ratio of the feedback signal. One of the major factors that  
determine jitter performance in D-CAP mode is the down-slope angle of the VDDQSNS ripple voltage. 9-2  
shows, in the same noise condition, a jitter is improved by making the slope angle larger.  
V
VDDQSNS  
Slope (1)  
Jitter  
(2)  
Slope (2)  
Jitter  
20 mV  
(1)  
V
REFIN  
V
+Noise  
REFIN  
t
t
OFF  
UDG-10139  
ON  
9-2. Ripple Voltage Slope and Jitter Performance  
For a good jitter performance, use the recommended down slope of approximately 20 mV per switching period  
as shown in 9-2 and 方程2.  
V
´ESR  
OUT  
³ 20mV  
f
´L  
SW  
X
(2)  
where  
VOUT is the VDDQ output voltage  
LX is the inductance  
9.1.2 Light-Load Operation  
In auto-skip mode, the TPS51216-EP SMPS control logic automatically reduces its switching frequency to  
improve light-load efficiency. To achieve this intelligence, a zero cross detection comparator is used to prevent  
negative inductor current by turning off the low-side MOSFET. 方程式 3 shows the boundary load condition of  
this skip mode and continuous conduction operation.  
V
- V  
(
OUT ) V  
1
IN  
OUT  
I
=
´
´
LOAD(LL)  
2´L  
V
f
SW  
X
IN  
(3)  
9.1.3 VTT and VTTREF  
TPS51216-EP integrates two high performance, low-dropout linear regulators, VTT and VTTREF, to provide  
complete DDR2/DDR3/DDR3L power solutions. The VTTREF has a 10-mA sink/source current capability, and  
tracks ½ of VDDQSNS with ±1% accuracy using an on-chip ½ divider. A 0.22-μF (or larger) ceramic capacitor  
must be connected close to the VTTREF terminal for stable operation. The VTT responds quickly to track  
VTTREF within ±40 mV at all conditions, and the current capability is 2 A for both sink and source. A 10-μF (or  
larger) ceramic capacitor must be connected close to the VTT terminal for stable operation. To achieve tight  
regulation with minimum effect of wiring resistance, a remote sensing terminal, VTTSNS, should be connected to  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS51216-EP  
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
the positive node of the VTT output capacitors as a separate trace from the high-current line to the VTT pin.  
(Refer to 11.1 for details.)  
When VTT is not required in the design, the following treatments are strongly recommended.  
Connect VLDOIN to VDDQ.  
Tie VTTSNS to VTT, and remove capacitors from VTT to float.  
Connect VTTGND to GND.  
Select MODE 0 or MODE 1 shown in 8-2 (select non-tracking discharge mode).  
Maintain a 0.22-µF capacitor connected at VTTREF.  
Pull down S3 to GND with 1-kΩresistance.  
VIN  
5VIN  
TPS51216  
PGND  
VBST 15  
V5IN  
12  
VDDQ  
DRVH 14  
SW 13  
17 S3  
16 S5  
S5  
1 kW  
DRVL 11  
PGND 10  
6
8
7
VREF  
PGND PGND  
PGOOD 20  
Powergood  
REFIN  
GND  
VDDQSNS  
9
2
3
1
4
5
VLDOIN  
VTT  
19 MODE  
18 TRIP  
VTTSNS  
VTTGND  
VTTREF  
0.22 mF  
AGND  
AGND PGND  
PGND  
UDG-13089  
9-3. Application Circuit When VTT is not Required  
9.1.4 VDDQ Overvoltage and Undervoltage Protection  
TPS51216-EP sets the overvoltage protection (OVP) when the VDDQSNS voltage reaches a level 20% (typ)  
higher than the REFIN voltage. When an OV event is detected, the controller latches DRVH low and DRVL high.  
VTTREF and VTT are turned off and discharged using the non-tracking discharge MOSFETs regardless of the  
tracking mode.  
The undervoltage protection (UVP) latch is set when the VDDQSNS voltage remains lower than 68% (typ) of the  
REFIN voltage for 1 ms or longer. In this fault condition, the controller latches DRVH low and DRVL low and  
discharges the VDDQ, VTT, and VTTREF outputs. UVP detection function is enabled after 1.2 ms of SMPS  
operation to ensure startup.  
To release the OVP and UVP latches, toggle S5 or adjust the V5IN voltage down and up beyond the  
undervoltage lockout threshold.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
9.1.5 VDDQ Overcurrent Protection  
The VDDQ SMPS has cycle-by-cycle overcurrent limiting protection. The inductor current is monitored during the  
off-state using the low-side MOSFET RDS(on) and the controller maintains the off-state while the voltage across  
the low-side MOSFET is larger than the overcurrent trip level. The current monitor circuit inputs are PGND and  
SW pins so that those should be properly connected to the source and drain terminals of low-side MOSFET. The  
overcurrent trip level, VTRIP, is determined by 方程4.  
V
= R  
´I  
TRIP TRIP  
TRIP  
(4)  
where  
RTRIP is the value of the resistor connected between the TRIP pin and GND  
ITRIP is the current sourced from the TRIP pin. ITRIP is 10 μA typically at room temperature, and has 4700  
ppm/°C temperature coefficient to compensate the temperature dependency of the low-side MOSFET  
RDS(on)  
.
Because the comparison is done during the off-state, VTRIP sets the valley level of the inductor current. The load  
current OCL level, IOCL, can be calculated by considering the inductor ripple current as shown in 方程5.  
æ
ç
ö
÷
æ
ç
ö
÷
I
IND ripple  
(
V
IN - VOUT  
VOUT  
VTRIP  
VTRIP  
)
1
2
IOCL  
=
+
=
+
´
´
ç
÷
ç
÷
8´RDS on  
2
8´RDS on  
LX  
fSW ´ V  
IN  
( )  
( )  
è
ø
è
ø
(5)  
where  
IIND(ripple) is inductor ripple current  
In an overcurrent condition, the current to the load exceeds the current to the output capacitor, thus the output  
voltage tends to fall down. Eventually, it crosses the undervoltage protection threshold and shuts down.  
9.2 Typical Application  
V5IN  
4.5 V to 5.5 V  
R2 200 kW  
R1  
100 kW  
R3 36 kW  
S5  
S3  
AGND  
C12  
10 mF  
V
IN  
8 V to 20  
21  
20  
19  
18  
17  
16  
C7  
0.1 mF  
C8  
10 mF  
C9  
10 mF  
C10  
10 mF  
C5  
0.1 mF  
R6  
0 W  
PGND  
VBST 15  
DRVH 14  
SW 13  
VTT  
0.75 V/2 A  
1
2
3
VTTSNS  
VLDOIN  
VTT  
R7 0 W  
PGND  
L1  
0.56 mH  
Q1  
FDMS8680  
C1  
10 mF  
U1  
TPS51216RUK  
VDDQ  
1.5 V/20  
VTTGND  
4
5
VTTGND  
VTTREF  
V5IN 12  
DRVL 11  
Q2  
FDMS8670AS  
Q3  
FDMS8670AS  
PGND  
C6  
1 mF  
C11  
330 mF  
6
7
8
9
10  
VTTREF  
0.75 V  
VDDQ_G  
R4  
10 kW  
R5  
49 kW  
PGND AGND  
C2 C3  
0.22 mF 0.1 mF  
C4  
10 nF  
UDG-10165  
9-4. DDR3, 400-kHz Application Circuit, Tracking Discharge  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS51216-EP  
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
See 9-1 for the design parameters.  
9-1. Design Parameters  
VIN  
VDDQ  
IVDDQ  
VTT  
IVTT  
FSW  
8 to 20 V  
1.5 V  
20 A  
0.75 V  
2 A  
400 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 List of Materials  
9-2. DDR3, 400-kHz Application Circuit, List of Materials  
REFERENCE DESIGNATOR  
QTY  
SPECIFICATION  
MANUFACTURER  
Taiyo Yuden  
Panasonic  
Panasonic  
Fairchild  
PART NUMBER  
TMK325BJ106MM  
EEFSX0D331XE  
ETQP4LR56WFC  
FDMS8680  
C8, C9, C10  
C11  
3
1
1
1
2
10 µF, 25 V  
330 µF, 2V, 6 mΩ  
L1  
0.56 µH, 21 A, 1.56 mΩ  
30 V, 35 A, 8.5 mΩ  
30 V, 42 A, 3.5 mΩ  
Q1  
Q2, Q3  
FDMS8670AS  
Fairchild  
For this example, the bulk output capacitor ESR requirement for D-CAP mode is described in 程式 6,  
whichever is greater.  
20mV ´ f  
´L  
3
SW  
ESR ³  
or ESR ³  
V
2p´ f  
´ C  
OUT  
SW OUT  
(6)  
9.2.2.2 External Components Selection  
The external components selection is simple in D-CAP mode.  
1. Determine the value of R4 and R5.  
The output voltage is determined by the value of the voltage-divider resistor, R4 and R5, as shown in 9-4.  
R4 is connected between VREF and REFIN pins, and R5 is connected between the REFIN pin and GND.  
Setting R4 as 10-kΩis a good starting point. Determine R5 using 方程7.  
(7)  
2. Choose the inductor.  
The inductance value should be determined to yield a ripple current of approximately ¼ to ½ of maximum  
output current. Larger ripple current increases output ripple voltage and improves the signal-to-noise ratio  
and helps stable operation.  
V
(
IN  
max  
(
- V  
´ V  
)
V
(
IN  
max  
(
- V  
´ V  
OUT OUT  
OUT  
OUT  
)
)
)
1
3
L
=
´
=
´
X
I
´ f  
V
I
´ f  
V
IN  
SW  
IN  
max  
(
O
SW  
IND ripple  
(
max  
max  
)
)
(
)
(
)
(8)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
The inductor needs a low direct current resistance (DCR) to achieve good efficiency, as well as enough room  
above peak inductor current before saturation. The peak inductor current can be estimated in 方程9.  
V
(
IN  
max  
(
- V  
´ V  
OUT OUT  
)
)
V
1
TRIP  
I
=
+
´
IND peak  
(
)
8´R  
L ´ f  
V
IN  
X
SW  
DS on  
max  
( )  
(
)
(9)  
3. Choose the OCL setting resistance, RTRIP  
.
Combining 方程4 and 方程5, RTRIP can be obtained using 方程10.  
æ
ö
÷
÷
ø
æ
ç
ç
è
ö
÷
÷
ø
V
IN - VOUT  
(
)
VOUT  
ç
8´ I  
-
´
´RDS(on)  
ç OCL  
2´L  
f
(
´ V  
IN  
(
)
)
X
SW  
è
RTRIP  
=
ITRIP  
(10)  
4. Choose the output capacitors.  
TI recommends organic semiconductor capacitors or specialty polymer capacitors. Determine ESR to meet  
small signal stability and recommended ripple voltage. A quick reference is shown in 方程11 and 方程式  
12.  
f
1
SW  
£
2p´ESR´ C  
3
OUT  
(11)  
(12)  
V
´ESR  
OUT  
³ 20mV  
f
´L  
SW  
X
9.2.3 Application Curve  
9-5. Output Ripple  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS51216-EP  
 
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
TPS51216-EP is designed to operate from input voltage supply range of 8 to 20 V. This supply must be well  
regulated. The power supply must be well bypassed for proper electrical performance. See 11.2 for  
recommended bypass capacitor placement.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Certain issues must be considered before designing a layout using the TPS51216-EP.  
VIN capacitors, VOUT capacitors, and MOSFETs are the power components and should be placed on one  
side of the PCB (solder side). Other small signal components should be placed on another side (component  
side). At least one inner plane should be inserted, connected to ground, in order to shield and isolate the  
small signal traces from noisy power lines.  
All sensitive analog traces and components such as VDDQSNS, VTTSNS, MODE, REFIN, VREF, and TRIP  
should be placed away from high-voltage switching nodes such as SW, DRVL, DRVH, or VBST to avoid  
coupling. Use internal layers as ground planes and shield feedback trace from power traces and components.  
The DC/DC converter has several high-current loops. The area of these loops should be minimized in order  
to suppress generating switching noise.  
The most important loop to minimize the area of is the path from the VIN capacitors through the high and  
low-side MOSFETs, and back to the capacitors through ground. Connect the negative node of the VIN  
capacitors and the source of the low-side MOSFET at ground as close as possible. (Refer to loop number  
1 of 11-1)  
The second important loop is the path from the low-side MOSFET through inductor and VOUT capacitors,  
and back to source of the low-side MOSFET through ground. Connect source of the low-side MOSFET  
and negative node of VOUT capacitors at ground as close as possible. (Refer to loop number 2 of 11-1)  
The third important loop is of gate driving system for the low-side MOSFET. To turn on the low-side  
MOSFET, high current flows from V5IN capacitor through gate driver and the low-side MOSFET, and back  
to negative node of the capacitor through ground. To turn off the low-side MOSFET, high current flows  
from gate of the low-side MOSFET through the gate driver and PGND, and back to source of the low-side  
MOSFET through ground. Connect negative node of V5IN capacitor, source of the low-side MOSFET and  
PGND at ground as close as possible. (Refer to loop number 3 of 11-1)  
Because the TPS51216-EP controls output voltage referring to voltage across VOUT capacitor, VDDQSNS  
should be connected to the positive node of VOUT capacitor. In a same manner GND should be connected to  
the negative node of VOUT capacitor.  
Connect the overcurrent setting resistors from TRIP pin to ground and make the connections as close as  
possible to the device. The trace from TRIP pin to resistor and from resistor to ground should avoid coupling  
to a high-voltage switching node.  
Connect the frequency and mode setting resistor from MODE pin to ground, and make the connections as  
close as possible to the device. The trace from the MODE pin to the resistor and from the resistor to ground  
should avoid coupling to a high-voltage switching node  
Connections from gate drivers to the respective gate of the high-side or the low-side MOSFET should be as  
short as possible to reduce stray inductance. Use 0.65 mm (25 mils) or wider trace and vias of at least 0.5  
mm (20 mils) diameter along this trace.  
The PCB trace defined as SW node, which connects to the source of the switching MOSFET, the drain of the  
rectifying MOSFET and the high-voltage side of the inductor, should be as short and wide as possible.  
VLDOIN should be connected to VDDQ output with short and wide traces. An input bypass capacitor should  
be placed as close as possible to the pin with short and wideconnections.  
The output capacitor for VTT should be placed close to the pin with a short and wide connection in order toꢀ  
avoid additional ESR and/or ESL of the trace.  
VTTSNS should be connected to the positive node of the VTT output capacitors as a separate trace from the  
high-current power line and is strongly recommended to avoid additional ESR and/or ESL. If it is needed toꢀ  
sense the voltage at the point of the load, it is recommended to attach the output capacitors at that point.  
Also, it is recommended to minimize any additional ESR and/or ESL of ground trace between GND pin and  
the output capacitors.  
Consider adding a low pass filter (LPF) at VTTSNS in case the ESR of the VTT output capacitors is larger  
than 2 mΩ.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS51216-EP  
 
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
VDDQSNS can be connected separately from VLDOIN. Remember that this sensing potential is the  
reference voltage of VTTREF. Avoid any noise generative lines.  
The negative node of the VTT output capacitors and the VTTREF capacitor should be tied together by  
avoidingcommon impedance to high-current path of the VTT source/sink current.  
GND pin node represents the reference potential for VTTREF and VTT outputs. Connect GNDto negative  
nodes of VTT capacitors, VTTREF capacitor and VDDQ capacitors with care to avoid additional ESR and/or  
ESL. GND and PGND should be connected together at a single point.  
In order to effectively remove heat from the package, prepare the thermal land and solder to the package  
thermal pad. Wide trace of the component-side copper, connected to this thermal land, helps heat spreading.  
Numerous vias with a 0.3-mm diameter connected from the thermal land to the internal/solder-side ground  
planes should be used to help dissipation.  
CAUTION  
Do not connect PGND pin directly to this thermal land underneath the package.  
11.2 Layout Example  
2
TPS51216  
VLDOIN  
VIN  
VTT  
VTT  
3
4
10 mF  
VTTGND  
VTTGND  
V5IN  
#1  
12  
V
OUT  
VTTREF  
MODE  
TRIP  
1 mF  
#2  
5
DRVL  
PGND  
0.22 mF  
11  
10  
19  
18  
#3  
VREF  
REFIN GND  
8 7  
6
0.1 mF  
10 nF  
UDG-10166  
11-1. DC/DC Converter Ground System  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS51216-EP  
 
 
TPS51216-EP  
ZHCSQC2A NOVEMBER 2015 REVISED JULY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
D-CAPis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS51216-EP  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS51216MRUKREP  
V62/16601-01XE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
51216M  
51216M  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2022  
OTHER QUALIFIED VERSIONS OF TPS51216-EP :  
Catalog : TPS51216  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS51216MRUKREP  
WQFN  
RUK  
20  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RUK 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
TPS51216MRUKREP  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RUK0020B  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
3.1  
2.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
DIMENSION A  
OPTION 01  
OPTION 02  
(0.1)  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(DIM A) TYP  
OPT 02 SHOWN  
1.7 0.05  
6
10  
EXPOSED  
THERMAL PAD  
16X 0.4  
5
11  
21  
SYMM  
4X  
1.6  
1
15  
SEE TERMINAL  
DETAIL  
0.25  
20X  
0.15  
0.1  
C A  
B
20  
16  
PIN 1 ID  
SYMM  
0.05  
(OPTIONAL)  
0.5  
0.3  
20X  
4222676/A 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.7)  
SYMM  
20  
16  
20X (0.6)  
1
15  
20X (0.2)  
(0.6)  
TYP  
21  
SYMM  
(2.8)  
16X (0.4)  
5
11  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
6
10  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222676/A 02/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.47) TYP  
16  
(R0.05) TYP  
20  
20X (0.6)  
1
15  
21  
20X (0.2)  
(0.47)  
TYP  
SYMM  
(2.8)  
16X (0.4)  
11  
5
METAL  
TYP  
6
10  
4X ( 0.75)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 21:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222676/A 02/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS51216MRUKREP

增强型产品完整 DDR2、DDR3 和 DDR3L 存储器电源解决方案同步降压控制器 | RUK | 20 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51216RUKR

Complete DDR2, DDR3 and DDR3L Memory Power Solution Synchronous Buck Controller, 2-A LDO, Buffered Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51216RUKT

Complete DDR2, DDR3 and DDR3L Memory Power Solution Synchronous Buck Controller, 2-A LDO, Buffered Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51216_15

Complete DDR2 DDR3 and DDR3L Memory Power Solution Synchronous Buck Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51217

HIGH PERFORMANCE, SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51217DSCR

HIGH PERFORMANCE, SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51217DSCT

HIGH PERFORMANCE, SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51218

HIGH PERFORMANCE, SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51218DSCR

HIGH PERFORMANCE, SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51218DSCT

HIGH PERFORMANCE, SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51218_16

HIGH PERFORMANCE, SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER SUPPLY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS51219

High Performance, Single-Synchronous Step-Down Controller with Differential Voltage Feedback

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI