TPS53119 [TI]

具有 Eco-Mode 的 3V 至 26V、20A 同步 D-CAP 降压控制器;
TPS53119
型号: TPS53119
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 Eco-Mode 的 3V 至 26V、20A 同步 D-CAP 降压控制器

控制器
文件: 总37页 (文件大小:1736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
TPS53119 宽输入电压、Eco-Mode、同步降压控制器  
1 特性  
2 应用  
1
转换输入电压范围:3V 26V  
存储  
VDD 输入电压范围:4.5V 25V  
输出电压范围:0.6V 5.5V  
服务器  
多功能打印机  
嵌入式计算  
内置 0.6V (±0.8%) 基准电压  
内置 LDO 线性稳压器  
3 说明  
自动跳跃 Eco-Mode可实现轻负载效率  
D-CAP™模式,提供 100ns 的负载阶跃响应  
TPS53119 器件是一款具有自适应导通时间 D-CAP 模  
式控制的小型单路降压控制器。此器件适合用于低输出  
电压、大电流、PC 系统电源轨以及数字消费类产品中  
类似的负载点 (POL) 电源。此器件的小型封装和最小  
引脚数量节省了 PCB 上的空间,同时可通过专用 EN  
引脚和预设频率选项来简化电源设计。轻载情况下的跳  
频模式、强大的栅极驱动器以及低侧 FET RDS(on) 电流  
检测功能可在广泛的负载范围内支持低损耗和高效率特  
性。转换输入电压(高侧 FET 漏极电压)范围介于  
4.5V 25V 之间,并且输出电压范围介于 0.6V 和  
5.5V 之间。TPS53119 采用 16 引脚 VQFN 封装,其  
额定工作温度为 –20°C +85°C。  
自适应导通时间控制架构,具有 8 种频率设置可供  
选择  
4700ppm/°C RDS(on) 电流检测  
0.7ms1.4ms2.8ms 5.6ms 可选内部电压伺  
服器软启动  
预充电启动能力  
内置输出放电  
开漏电源正常状态输出  
集成升压开关  
内置过压保护/欠压保护/过流保护  
热关断(非锁存)  
3mm × 3mm 16 引脚 VQFN (RGT) 封装  
使用 TPS53119 并借助 WEBENCH® 电源设计器  
创建定制设计  
器件信息(1)  
器件型号  
TPS53119  
封装  
VQFN (16)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
VOUT  
VIN  
VREG  
VIN  
VIN  
TG  
SW  
SW  
SW  
BG  
CSD86350  
16  
15  
14  
13  
PGOOD NC VBST DRVH  
1
TRIP  
SW 12  
DRVL 11  
VDRV 10  
EN  
2
3
4
EN  
TPS53119  
VFB  
RF  
TGR  
VREG  
9
Pad MODE VDD  
GND PGND  
PGND  
5
6
7
8
VDD  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSD61  
 
 
 
 
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Applications ................................................ 17  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 28  
11.1 器件支持................................................................ 28  
11.2 接收文档更新通知 ................................................. 28  
11.3 社区资源................................................................ 28  
11.4 ....................................................................... 28  
11.5 静电放电警告......................................................... 28  
11.6 术语表 ................................................................... 28  
12 机械、封装和可订购信息....................................... 28  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2017) to Revision A  
Page  
已添加 添加了 WEBENCH 链接 ............................................................................................................................................. 1  
Added "Repetitive spikes up to 9 V can be tolerated for up to 50 ns." to Note 2 of Absolute Maximum Ratings. ................ 4  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
5 Pin Configuration and Functions  
RGT Package  
16-Pin VQFN With Exposed Thermal Pad  
Top View  
16  
15  
14  
13  
1
2
3
4
12  
11  
10  
9
TRIP  
EN  
SW  
DVRL  
VDRV  
VREG  
TPS53119  
VFB  
RF  
5
6
7
8
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
High-side MOSFET driver output. The SW node referenced floating driver. The gate drive voltage is  
defined by the voltage across VBST to SW node bootstrap flying capacitor.  
DRVH  
13  
O
O
Synchronous MOSFET driver output. The PGND referenced driver. The gate drive voltage is defined by  
VDRV voltage.  
DRVL  
11  
EN  
2
7
I
Enable pin. Place a 1-kΩ resistor in series with this pin if the source voltage is higher than 5.5 V.  
GND  
G
Ground pin. This is the ground of internal analog circuitry. Connect to GND plane at single point.  
Soft-start and skip/CCM selection. Connect a resistor to select soft-start time using Table 1. The soft-  
start time is detected and stored into internal register during start-up.  
MODE  
5
I
NC  
15  
No connection.  
PAD  
Thermal pad. Use five vias to connect to GND plane.  
Open-drain power-good flag. Provides 1-ms start-up delay after the VFB pin voltage falls within specified  
limits. When VFB goes out specified limits PGOOD goes low after a 2-µs delay.  
PGOOD  
PGND  
RF  
16  
8
O
G
I
Power ground. Connect to GND plane.  
Switching frequency selection. Connect a resistor to GND or VREG to select switching frequency using  
Table 2. The switching frequency is detected and stored during the start-up.  
4
SW  
12  
1
P
I
Output of converted power. Connect this pin to the output inductor.  
OCL detection threshold setting pin —10 µA at room temp, 4700 ppm/°C current is sourced and set the  
OCL trip voltage as follows: VOCL = VTRIP / 8 ( VTRIP 3 V, VOCL 375 mV)  
TRIP  
Supply input for high-side FET gate driver (boost terminal). Connect a capacitor from this pin to SW  
node. Internally connected to VREG through bootstrap MOSFET switch.  
VBST  
14  
P
VDD  
6
10  
3
P
I
Controller power supply input. The input range is from 4.5 V to 25 V.  
VDRV  
VFB  
Gate drive supply voltage input. Connect to VREG if using LDO output as gate-drive supply.  
Output feedback input. Connect this pin to VOUT through a resistor divider.  
6.2-V LDO output. This is the supply of internal analog circuitry and driver circuitry.  
I
VREG  
9
O
(1) I=Input, O=Output, P=Power, G=Ground  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–2  
MAX  
35  
7
UNIT  
VBST  
VBST(2)  
VDD  
26  
28  
–7  
7
Input voltage  
V
DC  
SW  
Pulse < 20 ns, E = 5 µJ  
VDRV, EN, TRIP, VFB, RF, MODE  
DRVH  
DRVH(2)  
–0.3  
–2  
35  
7
–0.3  
–0.5  
–0.3  
Output voltage  
V
DRVL, VREG  
7
PGOOD  
Junction temperature, TJ  
Storage temperature, Tstg  
7
150  
150  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage values are with respect to the SW terminal. Repetitive spikes up to 9 V can be tolerated for up to 50 ns.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
34.5  
25  
UNIT  
VBST  
–0.1  
4.5  
VDD  
Input voltage  
SW  
–1  
28  
V
VBST(1)  
–0.1  
–0.1  
–1  
6.5  
6.5  
34.5  
6.5  
6.5  
6.5  
85  
EN, TRIP, VFB, RF, VDRV, MODE  
DRVH  
DRVH(1)  
DRVL, VREG  
PGOOD  
–0.1  
–0.3  
–0.1  
–20  
Output voltage  
V
Operating free-air temperature, TA  
°C  
(1) Voltage values are with respect to the SW terminal.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
6.4 Thermal Information  
TPS53119  
THERMAL METRIC(1)  
RGT (VQFN)  
16 PINS  
51.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
85.4  
20.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJB  
19.4  
RθJC(bot)  
6.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range, VDD = 12 V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VDD current, TA = 25°C, no load, VEN = 5 V,  
VVFB = 0.630 V  
IVDD  
VDD supply current  
420  
590  
10  
µA  
µA  
IVDDSDN  
VDD shutdown current  
VDD current, TA = 25°C, no load, VEN = 0 V  
INTERNAL REFERENCE VOLTAGE  
VVFB  
VVFB  
IVFB  
VFB regulation voltage  
VFB regulation voltage  
VFB input current  
VFB voltage, CCM condition(1)  
TA = 25°C  
600  
600  
mV  
mV  
µA  
597  
595.2  
592  
603  
604.8  
608  
0°C TA 85°C  
600  
–20°C TA 85°C  
VVFB = 0.63 V, TA = 25°C  
600  
0.002  
0.2  
OUTPUT DRIVERS  
Source, IDRVH = –50 mA  
Sink, IDRVH = 50 mA  
Source, IDRVL = –50 mA  
Sink, IDRVL = 50 mA  
1.5  
0.7  
1
3
1.8  
2.2  
1.2  
30  
RDRVH  
RDRVL  
tDEAD  
DRVH resistance  
Ω
Ω
DRVL resistance  
Dead time  
0.5  
17  
22  
DRVH-off to DRVL-on  
DRVL-off to DRVH-on  
7
ns  
10  
35  
LDO OUTPUT  
VVREG  
LDO output voltage  
LDO output current(1)  
LDO dropout voltage  
0 mA IVREG 50 mA  
5.76  
6.2  
6.67  
50  
V
IVREG  
Maximum current allowed from LDO  
VVDD = 4.5 V, IVREG = 50 mA  
mA  
mV  
VDO  
364  
BOOT STRAP SWITCH  
VFBST  
Forward voltage  
VBST leakagecurrent  
VVREG-VBST, IF = 10 mA, TA = 25°C  
VVBST = 23 V, VSW = 17 V, TA = 25°C  
0.1  
0.2  
1.5  
V
IVBSTLK  
0.01  
µA  
DUTY AND FREQUENCY CONTROL  
tOFF(min)  
Minimum off-time  
Minimum ON-time  
TA = 25°C  
150  
260  
35  
400  
ns  
ns  
VIN = 17 V, VOUT = 0.6 V, RRF = 0 Ω to VREG,  
tON(min)  
TA = 25°C(1)  
SOFT START  
0 V VOUT 95%, RMODE = 39 kΩ  
0 V VOUT 95%, RMODE = 100kΩ  
0 V VOUT 95%, RMODE = 200 kΩ  
0 V VOUT 95%, RMODE = 470 kΩ  
0.7  
1.4  
2.8  
5.6  
tSS  
Internal soft-start time  
ms  
(1) Ensured by design. Not production tested.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VDD = 12 V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER GOOD  
PG in from lower  
PG in from higher  
PG hysteresis  
92.5%  
108%  
2.5%  
15  
96%  
111%  
5%  
98.5%  
114%  
7.8%  
50  
VTHPG  
PG threshold  
RPG  
PG transistor on-resistance  
PG delay after soft start  
30  
Ω
tPG(del)  
0.8  
1
1.2  
ms  
LOGIC THRESHOLD AND SETTING CONDITIONS  
–20°C TA 85°C  
1.8  
1.7  
EN voltage threshold enable  
VEN  
0°C TA 85°C  
V
EN voltage threshold disable  
EN input current  
0.5  
1
IEN  
VEN = 5 V  
µA  
RRF = 0 Ω to GND, TA = 25°C(2)  
RRF = 187 kΩ to GND, TA = 25°C(2)  
RRF = 619 kΩ to GND, TA = 25°C(2)  
RRF = open, TA = 25°C(2)  
RRF = 866 kΩ to VREG, TA = 25°C(2)  
RRF = 309 kΩ to VREG, TA = 25°C(2)  
RRF = 124 kΩ to VREG, TA = 25°C(2)  
RRF = 0 Ω to VREG, TA = 25°C(2)  
200  
250  
350  
450  
580  
670  
770  
880  
250  
300  
400  
500  
650  
750  
850  
970  
300  
350  
450  
550  
720  
820  
930  
1070  
fSW  
Switching frequency  
kHz  
VO DISCHARGE  
IDischg  
VO discharge current  
VEN = 0 V, VSW = 0.5 V  
5
9
13  
mA  
PROTECTION: CURRENT SENSE  
ITRIP  
TRIP source current  
VTRIP = 1 V, TA = 25°C  
TA = 25°C(1)  
10  
11  
3
µA  
TCITRIP  
TRIP current temp. coef.  
4700  
ppm/°C  
Current limit threshold setting  
range  
VTRIP  
VTRIP-GND voltage  
0.2  
V
VTRIP = 3 V  
VTRIP = 1.6 V  
VTRIP = 0.2 V  
VTRIP = 3 V  
VTRIP = 1.6 V  
VTRIP = 0.2 V  
Positive  
355  
185  
17  
375  
200  
25  
395  
215  
VOCL  
Current limit threshold  
mV  
33  
–406  
–215  
–33  
3
–375  
–200  
–25  
15  
–355  
–185  
–17  
Negative current limit  
threshold  
VOCLN  
mV  
mV  
Auto zero cross adjustable  
range  
VAZC(adj)  
Negative  
–15  
–3  
PROTECTION: UVP AND OVP  
VOVP  
OVP trip threshold voltage  
OVP detect  
115%  
65%  
120%  
1
125%  
tOVP(del)  
OVP propagation delay time  
VFB delay with 50-mV overdrive  
µs  
Output UVP trip threshold  
voltage  
VUVP  
UVP detect  
70%  
75%  
Output UVP propagation  
delay time  
tUVP(del)  
0.8  
2
1
1.2  
3
ms  
ms  
tUVP(en)  
Output UVP enable delay time from EN to UVP workable, RMODE = 39 kΩ  
2.55  
UVLO  
Wake up  
VREG UVLO threshold  
Hysteresis  
4
4.18  
0.25  
4.5  
VUVVREG  
V
THERMAL SHUTDOWN  
Shutdown temperature(1)  
Hysteresis(1)  
145  
10  
TSDN Thermal shutdown threshold  
°C  
(2) Not production tested. Test conditions are VIN = 12 V, VOUT = 1.1 V, IOUT = 10 A and using the application circuit shown in Figure 18  
and Figure 22.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
6.6 Typical Characteristics  
700  
600  
500  
400  
300  
200  
100  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
Figure 1. VDD Supply Current vs Temperature  
Figure 2. VDD Shutdown Current vs Temperature  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
OVP  
UVP  
OVP  
UVP  
0
−50  
0
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
Figure 3. OVP/UVP Threshold vs Temperature  
Figure 4. TRIP Pin Current vs Temperature  
1000  
100  
10  
1000  
100  
10  
fSET = 300 kHz  
VIN = 12 V  
VOUT = 1.1 V  
fSET = 500 kHz  
VIN = 12 V  
VOUT = 1.1 V  
FCC Mode  
Skip Mode  
FCC Mode  
Skip Mode  
1
0.01  
1
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
Output Current (A)  
Output Current (A)  
Figure 5. Switching Frequency vs Output Current  
Figure 6. Switching Frequency vs Output Current  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
1000  
1000  
100  
10  
100  
fSET =750 kHz  
VIN = 12 V  
VOUT = 1.1 V  
fSET =1 MHz  
VIN = 12 V  
VOUT = 1.1 V  
10  
1
FCC Mode  
Skip Mode  
FCC Mode  
Skip Mode  
1
0.01  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
Output Current (A)  
Output Current (A)  
Figure 7. Switching Frequency vs Output Current  
Figure 8. Switching Frequency vs Output Current  
1200  
1.120  
fSET = 500 kHz  
VIN = 12 V  
VOUT = 1.1 V  
fSET = 1 MHz  
1.115  
1.110  
1.105  
1.100  
1.095  
1.090  
1.085  
1.080  
1000  
800  
600  
400  
200  
0
fSET = 750 kHz  
fSET = 500 kHz  
fSET = 300 kHz  
IOUT =10 A  
VIN = 12 V  
FCC Mode  
Skip Mode  
0
1
2
3
4
5
6
0
5
10  
15  
20  
25  
Output Voltage (V)  
Output Current (A)  
Figure 9. Switching Frequency vs Output Voltage  
Figure 10. Output Voltage vs Output Current  
1.110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.108  
1.106  
1.104  
1.102  
1.100  
1.098  
1.096  
1.094  
1.092  
1.090  
VIN = 12 V  
VOUT = 1.1 V  
Skip Mode, fSW = 500 kHz  
FCC Mode, fSW = 500 kHz  
Skip Mode, fSW = 300 kHz  
FCC Mode, fSW = 300 kHz  
FCC Mode, No Load  
Skip Mode, No Load  
All Modes, IOUT = 20 A  
fSW = 500 kHz  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0.01  
0.1  
1
10  
100  
Input Voltage (V)  
Output Current (A)  
Figure 11. Output Voltage vs Input Voltage  
Figure 12. Efficiency vs Output Current  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
Typical Characteristics (continued)  
Figure 13. Start-Up Waveform  
Figure 14. Prebias Start-Up Waveform  
Figure 15. Turnoff Waveform  
Figure 16. Load Transient Response  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS53119 is a high-efficiency, single-channel, synchronous buck regulator controller suitable for low output  
voltage point-of-load applications in computing and similar digital consumer applications. The device features  
proprietary D-CAP mode control combined with an adaptive ON-time architecture. This combination is ideal for  
building modern low duty ratio, ultra-fast load step response DC–DC converters. The output voltage ranges from  
0.6 V to 5.5 V. The conversion input voltage range is from 3 V up to 26 V. The D-CAP mode uses the ESR of the  
output capacitors to sense the device current. One advantage of this control scheme is that it does not require an  
external phase compensation network. This allows a simple design with a low external component count. Eight  
preset switching frequency values can be chosen using a resistor connected from the RF pin to ground or VREG.  
Adaptive ON-time control tracks the preset switching frequency over a wide input and output voltage range while  
allowing the switching frequency to increase at the step-up of the load.  
The TPS53119 has a MODE pin to select between auto-skip mode and forced continuous conduction mode  
(FCCM) for light load conditions. The MODE pin also sets the selectable soft-start time ranging from 0.7 ms to  
5.6 ms as shown in Table 1. The strong gate drivers allow low RDS(on) FETs for high-current applications.  
When the device starts (either by EN or VDD UVLO), the TPS53119 sends out a current that detects the  
resistance connected to the MODE pin to determine the soft-start time. After that (and before VOUT starts to ramp  
up) the MODE pin becomes a high-impedance input to determine skip mode or FCCM mode operation. When  
the voltage on the MODE pin is higher than 1.3 V, the converter enters into FCCM mode. If the voltage on  
MODE pin is less than 1.3 V, then the converter operates in skip mode.  
TI recommends connection of the MODE pin to the PGOOD pin if FCCM mode is desired. In this configuration,  
the MODE pin is connected to the GND potential through a resistor when the device is detecting the soft-start  
time, thus correct soft-start time is used. The device starts up in skip mode and only after the PGOOD pin goes  
high does the device enter into FCCM mode. When the PGOOD pin goes high there is a transition between skip  
mode and FCCM. A minimum off-time of 60 ns on DRVL is provided to avoid a voltage spike on the DRVL pin  
caused by parasitic inductance of the driver loop and gate capacitance of the low-side MOSFET.  
For proper operation, the MODE pin must not be connected directly to a voltage source.  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
7.2 Functional Block Diagram  
UV  
16 PGOOD  
0.6 V –30%  
0.6 V +10/15%  
+
+
+
+
Delay  
OV  
0.6 V +20%  
0.6 V –5/10%  
Control Logic  
Enable/SS Control  
14 VBST  
13 DRVH  
EN  
2
3
PWM  
VFB  
+
+
12 SW  
+
Ramp Comp  
XCON  
0.6 V  
GND  
TRIP  
7
1
10 mA  
+
tON  
OCP  
One-  
Shot  
x(-1/8)  
FCCM  
x(1/8)  
+
ZC  
10 VDRV  
11 DRVL  
Auto-skip  
Auto-skip/FCCM  
8
PGND  
Frequency  
Setting  
Detector  
EN  
RF  
4
LDO Linear  
Regulator  
TPS53119  
5
9
6
VDD  
Copyright © 2017, Texas Instruments Incorporated  
MODE  
VREG  
7.3 Feature Description  
7.3.1 Enable and Soft-Start  
When the EN pin voltage rises above the enable threshold voltage (typically 1.4 V), the controller enters its start-  
up sequence. The internal LDO regulator starts immediately and regulates to 6.2 V at the VREG pin. The  
controller then uses the first 250 µs to calibrate the switching frequency setting resistance attached to the RF pin  
and stores the switching frequency code in internal registers. However, switching is inhibited during this phase. In  
the second phase, an internal DAC starts ramping up the reference voltage from 0 V to 0.6 V. Depending on the  
MODE pin setting, the ramping up time varies from 0.7 ms to 5.6 ms. Smooth and constant ramp-up of the  
output voltage is maintained during start-up regardless of load current.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
Table 1. Soft-Start and MODE  
MODE  
SELECTION  
SOFT-START  
TIME (ms)  
ACTION  
RMODE (kΩ)  
0.7  
39  
1.4  
100  
200  
475  
39  
Auto skip  
Pulldown to GND  
2.8  
5.6  
0.7  
1.4  
100  
200  
475  
Forced CCM(1)  
Connect to PGOOD  
2.8  
5.6  
(1) Device goes into forced CCM after PGOOD becomes high.  
When the EN voltage is higher than 5.5 V, a 1-kΩ series resistor is needed for the EN pin.  
7.3.2 Adaptive ON-Time D-CAP Control and Frequency Selection  
The TPS53119 does not have a dedicated oscillator that determines switching frequency. However, the device  
operates with pseudo-constant frequency by feed-forwarding the input and output voltages into the ON-time one-  
shot timer. The adaptive ON-time control adjusts the ON-time to be inversely proportional to the input voltage  
and proportional to the output voltage (tON VOUT/VIN).  
This makes the switching frequency fairly constant in steady-state conditions over a wide input voltage range.  
The switching frequency is selectable from eight preset values by a resistor connected between the RF pin and  
GND or between the RF pin and the VREG pin as shown in Table 2. Leaving the resistance open sets the  
switching frequency to 500 kHz.  
Table 2. Resistor and Switching Frequency  
SWITCHING  
RESISTOR (RRF) CONNECTIONS  
FREQUENCY (kHz)  
0 Ω to GND  
187 kΩ to GND  
619 kΩ to GND  
Open  
250  
300  
400  
500  
650  
750  
850  
970  
866 kΩ to VREG  
309 kΩ to VREG  
124 kΩ to VREG  
0 Ω to VREG  
The OFF-time is modulated by a PWM comparator. The VFB node voltage (the mid-point of resistor divider) is  
compared to the internal 0.6-V reference voltage added with a ramp signal. When both signals match, the PWM  
comparator asserts a set signal to terminate the OFF-time (turn off the low-side MOSFET and turn on high-side  
MOSFET). The set signal is valid if the inductor current level is below the OCP threshold, otherwise the off time  
is extended until the current level falls below the threshold.  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
7.3.3 Small Signal Model  
From small-signal loop analysis, a buck converter using D-CAP mode can be simplified as shown in Figure 17.  
VIN  
TPS53119  
Switching Modulator  
DRVH  
R1  
R2  
L
VFB  
13  
11  
VOUT  
PWM  
Control  
Logic  
and  
3
DRVL  
+
IOUT  
IIND  
Driver  
IC  
+
0.6 V  
ESR  
RLOAD  
Voltage Divider  
VC  
COUT  
Output  
Capacitor  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. Simplified Modulator Model  
The output voltage is compared with the internal reference voltage (ramp signal is ignored here for simplicity).  
The PWM comparator determines the timing to turn on the high-side MOSFET. The gain and speed of the  
comparator can be assumed high enough to keep the voltage at the beginning of each on cycle substantially  
constant.  
1
H s =  
( )  
s´ESR ´C  
OUT  
(1)  
For the loop stability, the 0-dB frequency, f0, defined below must be lower than ¼ of the switching frequency.  
f
1
SW  
f =  
£
0
2p´ESR ´C  
4
OUT  
(2)  
According to Equation 2, the loop stability of D-CAP mode modulator is mainly determined by the capacitor  
chemistry. For example, specialty polymer capacitors (SP-CAP) have an output capacitance on the order of  
several 100 µF and ESR in range of 10 mΩ. These yields an f0 on the order of 100 kHz or less and a more stable  
loop. However, ceramic capacitors have an f0 at more than 700 kHz, and require special care when used with  
this modulator. An application circuit for ceramic capacitor is described in External Parts Selection With All  
Ceramic Output Capacitors.  
7.3.4 Ramp Signal  
The TPS53119 adds a ramp signal to the 0.6-V reference in order to improve jitter performance. As described in  
Small Signal Model, the feedback voltage is compared with the reference information to keep the output voltage  
in regulation. By adding a small ramp signal to the reference, the S/N ratio at the onset of a new switching cycle  
is improved. Therefore the operation becomes less jittery and more stable. The ramp signal is controlled to start  
with –7 mV at the beginning of an on-cycle and becomes 0 mV at the end of an off-cycle in steady-state.  
During skip mode operation, when the switching frequency is lower than 70% of the nominal frequency (because  
of longer OFF-time), the ramp signal exceeds 0 mV at the end of the OFF-time but is clamped at 3 mV to  
minimize DC offset.  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
 
 
 
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
7.3.5 Adaptive Zero Crossing  
The TPS53119 has an adaptive zero crossing circuit which performs optimization of the zero inductor current  
detection at skip mode operation. This function pursues ideal low-side MOSFET turning off timing and  
compensates inherent offset voltage of the Z-C comparator and delay time of the Z-C detection circuit. It  
prevents SW-node swing-up caused by too late detection and minimizes diode conduction period caused by too  
early detection. As a result, better light load efficiency is delivered.  
7.3.6 Output Discharge Control  
When EN becomes low, the TPS53119 discharges output capacitor using internal MOSFET connected between  
the SW pin and the PGND pin while the high-side and low-side MOSFETs are maintained in the OFF state. The  
typical discharge resistance is 40 Ω. The soft discharge occurs only as EN becomes low. After VREG becomes  
low, the internal MOSFET turns off, and the discharge function becomes inactive.  
7.3.7 Low-Side Driver  
The low-side driver is designed to drive high-current low-RDS(on) N-channel MOSFETs. The drive capability is  
represented by its internal resistance, which is 1 Ω for VDRV to DRVL and 0.5 Ω for DRVL to GND. A dead time  
to prevent shoot through is internally generated between high-side MOSFET off to low-side MOSFET on, and  
low-side MOSFET off to high-side MOSFET on. The bias voltage VDRV can be delivered from 6.2-V VREG  
supply or from external power source from 4.5 V to 6.5 V. The instantaneous drive current is supplied by an input  
capacitor connected between the VDRV and PGND pins.  
The average low-side gate drive current is calculated in Equation 3.  
I
= C ´ V  
´ f  
GL  
GL  
VDRV SW  
(3)  
When VDRV is supplied by external voltage source, the device continues to be supplied by the VREG pin. There  
is no internal connection from VDRV to VREG.  
7.3.8 High-Side Driver  
The high-side driver is designed to drive high current, low RDS(on) N-channel MOSFETs. When configured as a  
floating driver, the bias voltage is delivered from the VDRV pin supply. The average drive current is calculated  
using Equation 4.  
I
= C ´ V  
´ f  
GH  
GH  
VDRV SW  
(4)  
The instantaneous drive current is supplied by the flying capacitor between VBST and SW pins. The drive  
capability is represented by internal resistance, which is 1.5 Ω for VBST to DRVH and 0.7 Ω for DRVH to SW.  
The driving power which needs to be dissipated from TPS53119 package.  
PDRV = I + IGH ´ V  
)
(
GL  
VDRV  
(5)  
7.3.9 Power Good  
The TPS53119 has a power-good output that indicates high when switcher output is within the target. The power-  
good function is activated after soft-start has finished. If the output voltage becomes within +10% or –5% of the  
target value, internal comparators detect power-good state and the power-good signal becomes high after a 1-  
ms internal delay. If the output voltage goes outside of +15% or –10% of the target value, the power-good signal  
becomes low after two microsecond (2-µs) internal delay. The power-good output is an open-drain output and  
must be pulled up externally.  
In order for the PGOOD logic to be valid, the VDD input must be higher than 1 V. To avoid invalid PGOOD logic  
before the TPS53119 is powered up, TI recommends that the PGOOD pin be pulled up to VREG (either directly  
or through a resistor divider if a different pullup voltage is desired) because VREG remains low when the device  
is powered off. The pullup resistance can be chosen from a standard resistor value between 1 kΩ and 100 kΩ.  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
7.3.10 Current Sense and Overcurrent Protection  
TPS53119 has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the OFF state  
and the controller maintains the OFF state during the period in that the inductor current is larger than the  
overcurrent trip level. In order to provide both good accuracy and cost-effective solution, TPS53119 supports  
temperature compensated MOSFET RDS(on) sensing. The TRIP pin should be connected to GND through the trip  
voltage setting resistor, RTRIP. The TRIP terminal sources ITRIP current, which is 10 µA typically at room  
temperature, and the trip level is set to the OCL trip voltage VTRIP as shown in Equation 6.  
NOTE  
The VTRIP is limited up to approximately 3 V internally.  
V
mV = R  
kW ´I  
TRIP ( ) TRIP ( ) TRIP ( )  
mA  
(6)  
The inductor current is monitored by the voltage between GND pin and SW pin so that SW pin should be  
connected to the drain terminal of the low-side MOSFET properly. ITRIP has 4700-ppm/°C temperature slope to  
compensate the temperature dependency of the RDS(on). The GND pin is used as the positive current-sensing  
node. The GND pin should be connected to the proper current sensing device, (for example, the source terminal  
of the low-side MOSFET.)  
As the comparison is done during the OFF state, VTRIP sets the valley level of the inductor current. Thus, the load  
current at the overcurrent threshold, IOCP, can be calculated as shown in Equation 7.  
I
V
- V  
´ V  
IND ripple  
(
(
)
OUT OUT  
V
IN  
V
V
TRIP  
)
1
IN  
TRIP  
I
=
+
=
+
´
OCP  
2
2´L ´ f  
SW  
8´R  
8´R  
DS on  
)
)
(
(
DS on  
( )  
( )  
(7)  
In an overcurrent condition, the current to the load exceeds the current to the output capacitor thus the output  
voltage tends to fall down. Eventually, it crosses the undervoltage protection threshold and shuts down. After a  
hiccup delay (16 ms with 0.7-ms sort start), the controller restarts. If the overcurrent condition remains, the  
procedure is repeated and the device enters hiccup mode.  
During the CCM, the negative current limit (NCL) protects the external FET from carrying too much current. The  
NCL detect threshold is set as the same absolute value as positive OCL but negative polarity.  
NOTE  
The threshold still represents the valley value of the inductor current.  
7.3.11 Overvoltage and Undervoltage Protection  
TPS53119 monitors a resistor divided feedback voltage to detect overvoltage and undervoltage. When the  
feedback voltage becomes lower than 70% of the target voltage, the UVP comparator output goes high and an  
internal UVP delay counter begins counting. After 1 ms, TPS53119 latches OFF both high-side and low-side  
MOSFETs drivers. The controller restarts after a hiccup delay (16 ms with 0.7-ms soft-start). This function is  
enabled 1.5-ms after the soft-start is completed.  
When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes  
high and the circuit latches OFF the high-side MOSFET driver and latches ON the low-side MOSFET driver. The  
output voltage decreases. If the output voltage reaches UV threshold, then both high-side MOSFET and low-side  
MOSFET driver will be OFF and the device restarts after an hiccup delay. If the OV condition remains, both high-  
side MOSFET and low-side MOSFET driver remains OFF until the OV condition is removed.  
7.3.12 UVLO Protection  
The TPS53119 uses VREG undervoltage lockout protection (UVLO). When the VREG voltage is lower than 3.95  
V, the device shuts off. When the VREG voltage is higher than 4.2 V, the device restarts. This is non-latch  
protection.  
7.3.13 Thermal Shutdown  
The TPS53119 uses temperature monitoring. If the temperature exceeds the threshold value (typically 145°C),  
the device is shut off. This is non-latch protection.  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
 
 
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Light Load Condition in Auto-Skip Operation  
While the MODE pin is pulled low through RMODE, TPS53119 automatically reduces the switching frequency at  
light load conditions to maintain high efficiency. Detailed operation is described as follows. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to the point that  
its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The synchronous MOSFET is turned off when this zero inductor current is detected. As the  
load current further decreases, the converter runs into discontinuous conduction mode (DCM). The ON-time is  
kept almost the same as it was in the continuous conduction mode so that it takes longer time to discharge the  
output capacitor with smaller load current to the level of the reference voltage. The transition point to the light  
load operation IO(LL) (that is, the threshold between continuous and discontinuous conduction mode) can be  
calculated as shown in Equation 8.  
V
- V  
´ V  
(
)
OUT OUT  
V
IN  
1
IN  
I
=
´
OUT LL  
( )  
2´L ´ f  
SW  
where  
fSW is the PWM switching frequency  
(8)  
Switching frequency versus output current in the light load condition is a function of L, VIN and VOUT, but it  
decreases almost proportionally to the output current from the IO(LL) given in Equation 8. For example, it is 60  
kHz at IO(LL) / 5 if the frequency setting is 300 kHz.  
7.4.2 Forced Continuous Conduction Mode  
When the MODE pin is tied to PGOOD through a resistor, the controller keeps continuous conduction mode  
(CCM) in light load condition. In this mode, switching frequency is kept almost constant over the entire load  
range, which is suitable for applications need tight control of the switching frequency at a cost of lower efficiency.  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS53119 device is a small-sized, single-buck controller with adaptive ON-time DCAP mode control.  
8.2 Typical Applications  
8.2.1 Typical Application With Power Block  
R10  
100 kW  
R9  
0 W  
VREG  
VIN  
PGOOD  
R1  
10 kW  
CIN  
VIN  
VIN  
TG  
SW  
SW  
SW  
BG  
C5  
0.1 mF  
CSD86350  
22 mF x 4  
16  
15  
14  
13  
DRVH  
R8  
86.6 kW  
PGOOD NC  
VBST  
L1  
0.44 mH  
PA0513.441  
1
TRIP  
SW 12  
R11  
1 kW  
DRVL 11  
VDRV 10  
VOUT  
COUT  
EN  
2
3
EN  
TPS53119  
TGR  
VFB  
POSCAP  
330 mF x 2  
PGND  
VREG  
GND PGND Pad  
9
4
RF  
MODE  
5
VDD  
6
R2  
10 kW  
7
8
R4  
187 kW  
C4  
4.7 mF  
C3  
1 mF  
R5  
100 kW  
PGOOD  
VDD  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Typical Application Circuit Diagram With Power Block  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
This design uses the parameters listed in Table 3.  
Table 3. Design Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
VIN  
Voltage range  
5
12  
10  
18  
V
A
Maximum input current  
VIN = 5 V, IOUT = 25 A  
IMAX  
VIN = 12 V, IOUT = 0 A with auto-skip  
mode  
No load input current  
1
mA  
OUTPUT CHARACTERISTICS  
Output voltage  
1.2  
Line regulation, 5 V VIN 14 V with  
FCCM  
0.2%  
VOUT  
V
Output voltage regulation  
Load regulation, VIN = 12 V, 0 A IOUT  
25 A with FCCM  
0.5%  
10  
VRIPPLE  
ILOAD  
IOVER  
tSS  
Output voltage ripple  
VIN = 12 V, IOUT = 25 A with FCCM  
mVPP  
A
Output load current  
Output overcurrent  
Soft-start time  
0
25  
32  
1
ms  
SYSTEMS CHARACTERISTICS  
fSW  
Switching frequency  
Peak efficiency  
500  
91%  
91.5%  
25  
kHz  
°C  
VIN = 12 V, VOUT = 1.2 V, IOUT = 4 A  
VIN = 12 V, VOUT = 1.2 V, IOUT = 8 A  
η
Full load efficiency  
Operating temperature  
TA  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS53119 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
8.2.1.2.2 External Components Selection  
Selecting external components is a simple process using D-CAP mode.  
1. Choose the Inductor  
The inductance should be determined to give the ripple current of approximately ¼ to ½ of maximum output  
current. Larger ripple current increases output ripple voltage and improves the signal-to-noise ratio and helps  
stable operation.  
V
(
IN  
max  
(
- V  
´ V  
)
V
(
IN  
max  
(
- V  
´ V  
OUT OUT  
OUT  
OUT  
)
)
)
1
3
L =  
´
=
´
I
´ f  
V
I
´ f  
V
IN  
SW  
IN  
max  
(
OUT  
SW  
IND ripple  
(
max  
max  
)
)
(
)
(
)
(9)  
The inductor also requires a low DCR to achieve good efficiency. It also requires enough room above the  
peak inductor current before saturation. The peak inductor current can be estimated in Equation 10.  
V
(
IN  
max  
(
- V  
´ V  
OUT  
OUT  
)
)
)
V
1
TRIP  
I
=
+
´
IND peak  
(
)
8´R  
L ´ f  
V
IN  
SW  
DS on  
max  
( )  
(
(10)  
2. Choose the Output Capacitor  
When organic semiconductor capacitors or specialty polymer capacitors are used, for loop stability,  
capacitance and ESR should satisfy Equation 2. For jitter performance, Equation 11 is a good starting point  
to determine ESR.  
V
OUT ´10mV ´(1-D) 10mV ´L ´ fSW L ´ fSW  
ESR =  
=
=
W
( )  
0.6V ´I  
0.6V  
60  
IND ripple  
(
)
where  
D is the duty factor  
the required output ripple slope is approximately 10 mV per tSW (switching period) in terms of VFB terminal  
voltage  
(11)  
3. Determine the Value of R1 and R2  
The output voltage is programmed by the voltage-divider resistor, R1 and R2 shown in Figure 17. R1 is  
connected between the VFB pin and the output, and R2 is connected between the VFB pin and GND.  
Recommended R2 value is between 10 kΩ and 20 kΩ. Determine R1 using Equation 12.  
I
´ESR  
æ
ç
ö
÷
IND ripple  
(
)
VOUT  
-
- 0.6  
ç
è
÷
ø
2
R1=  
´R2  
0.6  
(12)  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
 
 
 
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
8.2.1.3 Application Curves  
100.00%  
90.00%  
80.00%  
70.00%  
60.00%  
50.00%  
40.00%  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
5.0Vin_1.2Vout_500kHz_25C  
12.0Vin_1.2Vout_500kHz_25C  
5.0Vin_1.2Vout_500kHz_25C  
12.0Vin_1.2Vout_500kHz_25C  
1.12  
1.10  
0.01  
0.10  
1.00  
IOUT (A)  
10.00  
0
5
10  
15  
20  
25  
IOUT (A)  
C009  
C008  
Figure 20. Efficiency Performance  
Figure 19. Load Regulation Performance  
700.00  
5.0Vin_1.2Vout_500kHz_25C  
12.0Vin_1.2Vout_500kHz_25C  
600.00  
500.00  
400.00  
300.00  
5
10  
15  
20  
25  
IOUT (A)  
C010  
Figure 21. Switching Frequency Performance  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
8.2.2 Typical Application With Ceramic Output Capacitors  
R1  
10 kW  
VIN  
R10  
100 kW  
R9  
0 W  
CIN  
22 mF x 4  
VREG  
PGOOD  
C2  
1 nF  
C1  
0.1 mF  
VIN  
VIN  
TG  
SW  
SW  
SW  
BG  
C5  
0.1 mF  
CSD86350  
16  
15  
14  
13  
DRVH  
R8  
20 kW  
PGOOD NC  
VBST  
L1  
0.44 mH  
PA0513.441  
R7  
10 kW  
1
TRIP  
SW 12  
R11  
1 kW  
DRVL 11  
VDRV 10  
VOUT  
COUT  
EN  
2
3
EN  
TPS53119  
TGR  
VFB  
Ceramic  
100 mF x 4  
PGND  
R12  
0 W  
VREG  
GND PGND Pad  
9
4
RF  
R2  
10 kW  
MODE  
5
VDD  
6
7
8
R4  
187 kW  
C4  
4.7 mF  
C3  
1 mF  
R5  
100 kW  
PGOOD  
VDD  
Copyright © 2017, Texas Instruments Incorporated  
Figure 22. Typical Application Circuit Diagram With Ceramic Output Capacitors  
8.2.2.1 Design Requirements  
This design uses the parameters listed in Table 4.  
Table 4. Design Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
VIN  
Voltage range  
5
12  
18  
V
A
Maximum input current  
VIN = 5 V, IOUT = 8 A  
2.5  
IMAX  
VIN = 12 V, IOUT = 0 A with auto-skip  
mode  
No load input current  
1
mA  
OUTPUT CHARACTERISTICS  
Output voltage  
1.2  
Line regulation, 5 V VIN 14 V with  
FCCM  
0.2%  
VOUT  
V
Output voltage regulation  
Load regulation, VIN = 12 V, 0 A IOUT  
8 A with FCCM  
0.5%  
10  
VRIPPLE  
ILOAD  
IOVER  
tSS  
Output voltage ripple  
VIN = 12 V, IOUT = 8 A with FCCM  
mVPP  
A
Output load current  
Output overcurrent  
Soft-start time  
0
8
25  
1
ms  
SYSTEMS CHARACTERISTICS  
fSW  
Switching frequency  
Peak efficiency  
500  
91%  
91.5%  
25  
1000  
kHz  
°C  
VIN = 12 V, VOUT = 1.2 V, IOUT = 4 A  
VIN = 12 V, VOUT = 1.2 V, IOUT = 8 A  
η
Full load efficiency  
Operating temperature  
TA  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
 
 
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 External Parts Selection With All Ceramic Output Capacitors  
When a ceramic output capacitor is used, the stability criteria in Equation 2 cannot be satisfied. The ripple  
injection approach as shown in Figure 22 is implemented to increase the ripple on the VFB pin and make the  
system stable. C2 can be fixed at 1 nF. The value of C1 can be selected between 10 nF to 200 nF.  
The increased ripple on the VFB pin causes the increase of the VFB DC value. The AC ripple coupled to the  
VFB pin has two components, one coupled from SW node and the other coupled from VOUT and they can be  
calculated using Equation 13 and Equation 14.  
V
- V  
OUT  
(
)
D
IN  
V
=
´
INJ SW  
(
)
R7´ C1  
f
SW  
(13)  
(14)  
I
IND ripple  
(
)
V
= ESR´I  
+
)
INJ OUT  
(
IND ripple  
(
)
8´ COUT ´ fSW  
The DC value of VFB can be calculated by Equation 15.  
+ V  
V
)
(
= 0.6 +  
INJ SW  
(
INJ OUT  
(
)
)
V
FB  
2
(15)  
(16)  
And the resistor divider value can be determined by Equation 16.  
- V  
V
(
)
OUT  
FB  
R1=  
´R2  
V
FB  
8.2.2.3 Application Curves  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
100.00%  
90.00%  
80.00%  
70.00%  
60.00%  
50.00%  
40.00%  
30.00%  
20.00%  
10.00%  
0.00%  
5.0Vin_1.2Vout_500kHz_25C  
12.0Vin_1.2Vout_500kHz_25C  
5.0Vin_1.2Vout_500kHz_25C  
12.0Vin_1.2Vout_500kHz_25C  
0
1
2
3
4
5
6
7
8
0.01  
0.10  
1.00  
10.00  
IOUT (A)  
IOUT (A)  
C004  
C005  
Figure 23. Load Regulation Performance  
Figure 24. Efficiency Performance  
800.00  
700.00  
600.00  
500.00  
400.00  
300.00  
200.00  
5.0Vin_1.2Vout_500kHz_25C  
12.0Vin_1.2Vout_500kHz_25C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
IOUT (A)  
C006  
Figure 25. Switching Frequency Performance  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
9 Power Supply Recommendations  
The TPS53119 is a small-sized single-buck controller with adaptive ON-time D-CAP mode control. The device is  
suitable for low output voltage, high current, PC system power rail and similar point-of-load (POL) power supplies  
in digital consumer products.  
10 Layout  
10.1 Layout Guidelines  
Certain points must be considered before starting a layout work using the TPS53119.  
Inductors, VIN capacitors, VOUT capacitors and MOSFETs are the power components and must be placed on  
one side of the PCB (solder side). Place other small signal components on another side (component side).  
Insert at least one inner plane, connected to power ground, in order to shield and isolate the small signal  
traces from noisy power lines.  
Place all sensitive analog traces and components such as VFB, PGOOD, TRIP, MODE, and RF away from  
high-voltage switching nodes such as SW, DRVL, DRVH or VBST to avoid coupling. Use internal layers as  
ground planes and shield feedback trace from power traces and components.  
The DC–DC converter has several high-current loops. The area of these loops must be minimized in order to  
suppress generating switching noise.  
The most important loop to minimize the area of is the path from the VIN capacitors through the high and  
low-side MOSFETs, and back to the capacitors through ground. Connect the negative node of the VIN  
capacitors and the source of the low-side MOSFET at ground as close as possible.  
The second important loop is the path from the low-side MOSFET through inductor and VOUT capacitors,  
and back to source of the low-side MOSFET through ground. Connect source of the low-side MOSFET  
and negative node of VOUT capacitors at ground as close as possible.  
The third important loop is of gate driving system for the low-side MOSFET. To turn on the low-side  
MOSFET, high current flows from VDRV capacitor through gate driver and the low-side MOSFET, and  
back to negative node of the capacitor through ground. To turn off the low-side MOSFET, high current  
flows from gate of the low-side MOSFET through the gate driver and PGND of the device, and back to  
source of the low-side MOSFET through ground. Connect negative node of VDRV capacitor, source of the  
low-side MOSFET and PGND of the device at ground as close as possible.  
Because the TPS53119 controls output voltage referring to voltage across VOUT capacitor, the high-side  
resistor of the voltage divider should be connected to the positive node of VOUT capacitor at the regulation  
point. Connect the low-side resistor to the GND (analog ground of the device). The trace from these resistors  
to the VFB pin must be short and thin. Place on the component side and avoid vias between these resistors  
and the device.  
Connect the overcurrent setting resistors from the TRIP pin to GND and make the connections as close as  
possible to the device. The trace from TRIP pin to resistor and from resistor to GND should avoid coupling to  
a high-voltage switching node.  
Connect the frequency setting resistor from RF pin to GND, or to the PGOOD pin and make the connections  
as close as possible to the device. The trace from the RF pin to the resistor and from the resistor to GND  
should avoid coupling to a high-voltage switching node.  
Connect all GND (analog ground of the device) trace together and connect to power ground or ground plane  
with a single via or trace or through a 0-Ω resistor at a quiet point  
Connections from gate drivers to the respective gate of the high-side or the low-side MOSFET should be as  
short as possible to reduce stray inductance. Use 0.65 mm (25 mils) or wider traces of at least 0.5 mm (20  
mils) diameter along this trace.  
The PCB trace defined as switch node, which connects to source of high-side MOSFET, drain of low-side  
MOSFET, and high-voltage side of the inductor, must be as short and wide as possible.  
Connect the ripple injection VOUT signal (VOUT side of the C1 capacitor in Figure 22) from the terminal of  
ceramic output capacitor. The AC-coupling capacitor (C7 in Figure 22 ) can be placed near the device.  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
10.2 Layout Example  
TEXAS  
INSTRUMENTS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 26. TPS53119EVM-690 Top Layer Assembly Drawing, Top View  
Figure 27. TPS53119EVM-690 Bottom Assembly Drawing, Bottom View  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
Layout Example (continued)  
Figure 28. TPS53119EVM-690 Top Copper, Top View  
Figure 29. TPS53119EVM-690 Layer-2 Copper, Top View  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
Layout Example (continued)  
Figure 30. TPS53119EVM-690 Layer-3 Copper, Top View  
Figure 31. TPS53119EVM-690 Layer-4 Copper, Top View  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53119  
www.ti.com.cn  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
Layout Example (continued)  
Figure 32. TPS53119EVM-690 Layer-5 Copper, Top View  
Figure 33. TPS53119EVM-690 Bottom Layer Copper, Top View  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
TPS53119  
ZHCSH67A DECEMBER 2017REVISED MARCH 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS53119 器件并借助 WEBENCH® 电源设计器创建定制设计。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
Eco-Mode, D-CAP, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS53119RGTR  
TPS53119RGTT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-20 to 85  
-20 to 85  
53119  
53119  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS53119RGTR  
TPS53119RGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS53119RGTR  
TPS53119RGTT  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.45 0.1  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4219032/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.45)  
SYMM  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
17  
(2.8)  
(0.475)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.475) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219032/A 02/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.34)  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219032/A 02/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS53119RGTR

具有 Eco-Mode 的 3V 至 26V、20A 同步 D-CAP 降压控制器 | RGT | 16 | -20 to 85
TI

TPS53119RGTT

具有 Eco-Mode 的 3V 至 26V、20A 同步 D-CAP 降压控制器 | RGT | 16 | -20 to 85
TI

TPS53124

Dual Synchronous Step-Down Controller For Low-Voltage Power Rails
TI

TPS53124PW

Dual Synchronous Step-Down Controller For Low-Voltage Power Rails
TI

TPS53124PWG4

Dual Synchronous Step-Down Controller for Low Voltage Power Rails, 380kHz Frequency 28-TSSOP -40 to 85
TI

TPS53124PWR

Dual Synchronous Step-Down Controller For Low-Voltage Power Rails
TI

TPS53124PWRG4

DUAL SWITCHING CONTROLLER, PDSO28, GREEN, PLASTIC, TSSOP-28
TI

TPS53124RGER

Dual Synchronous Step-Down Controller For Low-Voltage Power Rails
TI

TPS53124RGERG4

DUAL SWITCHING CONTROLLER, PQCC24, GREEN, PLASTIC, QFN-24
TI

TPS53124RGET

Dual Synchronous Step-Down Controller For Low-Voltage Power Rails
TI

TPS53125

DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS
TI

TPS53125PW

DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS
TI