TPS536C7B1RSLR [TI]

双通道 D-CAP+™、PMBus(N+M ≤ 12 相)降压多相 PWM 控制器 | RSL | 48 | -40 to 125;
TPS536C7B1RSLR
型号: TPS536C7B1RSLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道 D-CAP+™、PMBus(N+M ≤ 12 相)降压多相 PWM 控制器 | RSL | 48 | -40 to 125

控制器
文件: 总154页 (文件大小:6547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
TPS536C7B1 Dual-Channel D-CAP+™, Dual-Channel (N+M ≤ 12 Phases)  
Step-Down, Multiphase Controller with PMBusInterface  
1 Features  
3 Description  
Input Voltage Range: 4.5 V to 18 V  
The TPS536C7B1 is a step-down controller with  
dual channels, built-in non-volatile memory (NVM),  
and PMBus interface, and is fully compatible with  
TI NexFETsmart power stages. Advanced control  
features such as the D-CAP+ architecture provide  
fast transient response, low output capacitance, and  
good current sharing. The device also provides  
a novel phase interleaving strategy and flexible  
firing order. Adjustable control of output voltage  
slew rate and adaptive voltage positioning are  
also supported. In addition, the device supports  
the PMBus communication interface for reporting  
telemetry of voltage, current, power, temperature, and  
fault conditions to the system host. All programmable  
parameters can be configured by the PMBus  
interface, and can be stored in NVM as the new  
default values to minimize the external component  
count.  
Output Voltage Range: 0.25 V to 5.5 V  
Per-phase switching frequency range: 300 kHz to  
2000 kHz  
Dual Output Supporting N+M Phase  
Configurations (N+M ≤ 12, M ≤ 6)  
PMBus v1.3.1 system interface for configuration,  
control and telemetry of voltage, current, power,  
temperature, and fault status  
Adaptive voltage scaling (AVS) through  
VOUT_COMMAND  
Enhanced D-CAP+ control to provide super  
transient performance with excellent dynamic  
current sharing  
Programmable loop compensation  
Flexible phase-firing order  
External pinstrap for Ch. A boot voltage settings  
Individual phase current calibrations and reporting  
Phase thermal balance management (TBM)  
Full support for dynamic phase shedding (DPS)  
Fast phase-adding for undershoot reduction (USR)  
Body-diode braking for overshoot reduction (OSR)  
Driverless Configuration for efficient high-  
frequency switching  
Fully Compatible with TI NexFETpower stage for  
high-density solutions  
Accurate, Programmable Adaptive Voltage  
Positioning (AVP)  
Patented AutoBalancePhase Balancing  
6 mm × 6 mm, 48-Pin, QFN Package  
The TPS536C7B1 device if offered in a thermally  
enhanced 48-pin QFN packaged and is rated to  
operate from –40°C to 125°C.  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
TPS536C7B1  
QFN (48)  
6 mm × 6 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
TPS536C7B1  
PWM1  
Power  
2 Applications  
Stage  
CSP1  
Data center network switches  
Campus and branch switches  
Core and edge routers  
Hardware accelerator cards  
High performance CPU/ASIC/FPGA power  
PWM2  
CSP2  
PMBus  
Power  
Stage  
PWM12  
CSP12  
Power  
Stage  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Electrical Specifications.............................................. 7  
6.5 Typical Characteristics..............................................32  
7 Detailed Description......................................................33  
7.1 Overview...................................................................33  
7.2 Functional Block Diagram.........................................33  
7.3 Power-up and initialization........................................34  
7.4 Pin connections and bevahior...................................35  
7.5 Advanced power management functions..................46  
7.6 Control Loop Theory of Operation............................ 57  
7.7 Power supply fault protection....................................63  
7.8 Device Functional Modes..........................................77  
7.9 Programming............................................................ 79  
8 Application and Implementation................................127  
8.1 Typical Application.................................................. 127  
9 Power Supply Recommendations..............................141  
10 Layout.........................................................................142  
11 Mechanical, Packaging, and Orderable  
Information.................................................................. 145  
11.1 Tape and Reel Information....................................146  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
September 2020  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
5 Pin Configuration and Functions  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
APWM12 / BPWM1  
APWM11 / BPWM2  
APWM10 / BPWM3  
APWM9 / BPWM4  
APWM8 / BPWM5  
APWM7 / BPWM6  
1
2
ACSP10 / BCSP3  
TPS536C7B1  
ACSP9 / BCSP4  
ACSP8 / BCSP5  
ACSP7 / BCSP6  
ACSP6  
3
4
5
Thermal  
Pad  
ACSP5  
6
ACSP4  
APWM6  
APWM5  
APWM4  
APWM3  
APWM2  
APWM1  
7
ACSP3  
8
ACSP2  
9
ACSP1  
10  
11  
12  
AVSN  
AVSP  
Figure 5-1. RSL Package 48-Pin QFN Top View  
Table 5-1. Default functionality of multifunction pins  
PIN  
DEFAULT  
1, 2, 3, 4, 5, 6, 33, 34, 35, 36, 37, 38  
Based on ADDR_CONFIG pinstrap resistors  
19  
43  
44  
BVR_EN  
BTSEN  
ATSEN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
ACSP1  
ACSP2  
ACSP3  
ACSP4  
ACSP5  
ACSP6  
NO.  
27  
28  
29  
30  
31  
32  
33  
I
I
I
I
I
I
I
Current sense input for channel A. Connect to the IOUT pin of TI smart power stages. Float unused  
CSP pins.  
ACSP7 / BCSP6  
Current sense input for phase 7 of channel A or phase 6 of channel B. Float unused CSP pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
34  
35  
36  
37  
38  
ACSP8 / BCSP5  
ACSP9 / BCSP4  
ACSP10 / BCSP3  
ACSP11 / BCSP2  
ACSP12 / BCSP1  
I
I
I
I
I
Current sense input for phase 8 of channel A or phase 5 of channel B. Float unused CSP pins.  
Current sense input for phase 9 of channel A or phase 4 of channel B. Float unused CSP pins.  
Current sense input for phase 10 of channel A or phase 3 of channel B. Float unused CSP pins.  
Current sense input for phase 11 of channel A or phase 2 of channel B. Float unused CSP pins.  
Current sense input for phase 12 of channel A or phase 1 of channel B. Float unused CSP pins.  
Connect a voltage divider from VREF to ADDR_CONFIG to GND. The value of the resistor  
between this pin and ground selects the phase configuration, and the pin voltage selects the  
PMBus address. Both are latched at VCC power-up. See Pinstrapping for more information. Use  
the PIN_DETECT_OVERRIDE command to select options which are not available by pinstrapping.  
ADDR_CONFIG  
42  
I
PWM signal for phase 1 of channel A. Connect to the PWM pin of the TI smart power stage. Float  
unused PWM pins.  
APWM1  
12  
11  
10  
9
O
O
O
O
O
O
O
O
O
O
O
O
PWM signal for phase 2 of channel A. Connect to the PWM pin of the TI smart power stage. Float  
unused PWM pins.  
APWM2  
PWM signal for phase 3 of channel A. Connect to the PWM pin of the TI smart power stage. Float  
unused PWM pins.  
APWM3  
PWM signal for phase 4 of channel A. Connect to the PWM pin of the TI smart power stage. Float  
unused PWM pins.  
APWM4  
PWM signal for phase 5 of channel A. Connect to the PWM pin of the TI smart power stage. Float  
unused PWM pins.  
APWM5  
8
PWM signal for phase 6 of channel A. Connect to the PWM pin of the TI smart power stage. Float  
unused PWM pins.  
APWM6  
7
PWM signal for phase 7 of channel A, or phase 6 of channel B. Connect to the PWM pin of the TI  
smart power stage. Float unused PWM pins.  
APWM7 / BPWM6  
APWM8 / BPWM5  
APWM9 / BPWM4  
6
PWM signal for phase 8 of channel A, or phase 5 of channel B. Connect to the PWM pin of the TI  
smart power stage. Float unused PWM pins.  
5
PWM signal for phase 9 of channel A, or phase 4 of channel B. Connect to the PWM pin of the TI  
smart power stage. Float unused PWM pins.  
4
APWM10 /  
BPWM3  
PWM signal for phase 10 of channel A, or phase 3 of channel B. Connect to the PWM pin of the TI  
smart power stage. Float unused PWM pins.  
3
APWM11 /  
BPWM2  
PWM signal for phase 11 of channel A, or phase 2 of channel B. Connect to the PWM pin of the TI  
smart power stage. Float unused PWM pins.  
2
APWM12 /  
BPWM1  
PWM signal for phase 12 of channel A, or phase 1 of channel B. Connect to the PWM pin of the TI  
smart power stage. Float unused PWM pins.  
1
Multi-function pin. Configure through PMBus.  
ATSEN (default): Connect to the TAO pin of the TI smart power stages of channel A to sense the  
highest temperature of the power stages and to sense the built-in fault signal from the power stages.  
BTSEN: Connect to the TAO pin of the TI smart power stages of channel B to sense the highest  
temperature of the power stages and to sense the built-in fault signal from the power stages.  
Float unused TSEN pins.  
ATSEN / BTSEN  
44  
I
Active high enable input for channel A. By default, asserting the AVR_EN pin activates channel A.  
Polarity and enable conditions are programmable through ON_OFF_CONFIG.  
AVR_EN  
17  
16  
I
VRD "Ready" output signal of channel A. This open drain output requires an external pull-up resistor.  
The AVR_RDY pin is pulled low when a shutdown event occurs.  
AVR_RDY  
O
AVSN  
AVSP  
26  
25  
I
I
Negative input of the remote voltage sense of channel A.  
Positive input of the remote voltage sense of channel A.  
Multi-function pin. Configure through PMBus.  
BTSEN (default): Connect to the TAO pin of the TI smart power stages of channel B to sense the  
highest temperature of the power stages and to sense the built-in fault signal from the power stages.  
BTSEN: Connect to the TAO pin of the TI smart power stages of channel A to sense the highest  
temperature of the power stages and to sense the built-in fault signal from the power stages.  
TSEN: Connect to the TAO pin of the TI smart power stages of channels A and B to sense the highest  
temperature of the power stages and to sense the built-in fault signal from the power stages.  
Float unused TSEN pins.  
BTSEN . / ATSEN /  
TSEN  
43  
I
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
NAME  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
Multi-function pin. Configure through PMBus.  
BVR_EN (Default) : Active high enable input for channel B. Asserting the BVR_EN pin activates  
channel B. Polarity and enable conditions are programmable through ON_OFF_CONFIG.  
RESET#: Active low signal which causes both channels output voltage target to revert to their  
respective VBOOT values when asserted. Pull-up to 3.3 V.  
SYNC: If assigned as an output, this pin provides a free-running clock for other TPS536C7B1 devices  
to synchronize to. If assigned as an input, an internal phase locked-loop can synchronize switching of  
one or both channels to a clock supplied to this pin. Phase shift and data direction are programmable  
through NVM.  
BVR_EN /  
RESET# / SYNC  
19  
I
VRD "Ready" output signal of channel B. This open drain output requires an external pull-up resistor.  
The BVR_RDY pin is pulled low when a shutdown event occurs.  
BVR_RDY  
BVSN  
20  
39  
40  
O
I
Negative input of the remote voltage sense of channel B. If channel B is not used, connect BVSN to  
GND.  
Positive input of the remote voltage sense of channel B. If channel B is not used, connect BVSP to  
GND.  
BVSP  
I
Positive terminal of the integrated high-side current sensing amplifier. Connect to the supply side of  
the input current sense element. Tie to VIN_CSNIN, and to the input voltage, if measured input current  
sensing is not used.  
CSPIN  
NC  
45  
I
21  
22  
23  
24  
15  
14  
13  
-
-
Do not connect.  
-
-
SMB_ALERT#  
SMB_CLK  
O
SMBus or I2C bi-directional alert pin interface. (Open drain)  
SMBus or I2C serial clock interface. (Open drain)  
I
SMB_DIO  
I/O SMBus or I2C bi-directional serial data interface. (Open drain)  
Connect a resistor divider from VREF to VBOOT_CHA to GND. Pinstrap for Channel A boot  
VBOOT_CHA  
VCC  
18  
47  
46  
I
P
I
voltage. The value is latched at VCC power-up. See Pinstrapping for more information. Use the  
PIN_DETECT_OVERRIDE command to select options which are not available by pinstrapping.  
3.3-V power input. Bypass to GND with a ceramic capacitor with a value greater than or equal to 1 µF  
effective capacitance.  
Negative terminal of the integrated high-side current sense amplifier. Connect to the power-stage side  
of the current sense element. The VIN_CSNIN voltage is also used to determine the correct on-time  
for the converter. Tie to CSPIN, and to the input voltage, if measured input current sensing is not used.  
VIN_CSNIN  
1.5-V LDO reference voltage. Bypass to GND with a minimum effective 1-µF ceramic capacitor.  
Connect the VREF pin to the REFIN pin of the TI smart power stages as the current sense common-  
mode voltage.  
VREF  
48  
41  
O
VR fault indicator. (Open-drain). This alert pulls low to indicate the converter has experienced  
a potentially catastrophic fault. The failures include the high-side FETs short, over-voltage, over-  
temperature, and the input over-current conditions. Use the fault signal on the platform to remove the  
power source by turning off the AC power supply. When the failure occurs, the VR_FAULT# pin is  
LOW, and put the controller into latch-off mode.  
VR_FAULT#  
Thermal Pad  
O
G
Analog ground pad. Connect to GND plan with vias.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
CSPIN, VIN_CSNIN  
–0.3  
19  
Pin voltage, duration less than 100 ns  
ACSP1, ACSP2, ACSP3, ACSP4, ACSP5, ACSP6, ACSP7 / BCSP6, ACSP8 /  
BCSP5, ACSP9 / BCSP4, ACSP10 / BCSP3, ACSP11 / BSPC2, ACSP12 /  
BCSP1, ADDR_CONFIG, ATSEN / BTSEN, AVR_EN, AVSP, VBOOT_CHA,  
BTSEN / ATSEN / TSEN, BVSP, BVR_EN, SMB_CLK, SMB_DIO, SYNC,  
RESET#, VCC  
-0.3  
5.0  
3.6  
Input voltage (1) (2)  
V
Pin voltage, duration greater than or equal to 100 ns  
ACSP1, ACSP2, ACSP3, ACSP4, ACSP5, ACSP6, ACSP7 / BCSP6, ACSP8 /  
BCSP5, ACSP9 / BCSP4, ACSP10 / BCSP3, ACSP11 / BSPC2, ACSP12 /  
BCSP1, ADDR_CONFIG, ATSEN / BTSEN, AVR_EN, AVSP, VBOOT_CHA,  
BTSEN / ATSEN / TSEN, BVSP, BVR_EN, SMB_CLK, SMB_DIO, SYNC,  
RESET#, VCC  
–0.3  
AGND, AVSN, BVSN  
–0.3  
–0.3  
0.3  
5.0  
Pin voltage, duration less than 100 ns  
APWM1, APWM2, APWM3, APWM4, APWM5, APWM6, APWM7 / BPWM6,  
APWM8 / BPWM5, APWM9 / BPWM4, APWM10 / BPWM3, APWM11 / BPWM2,  
APWM12 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, SYNC, VR_FAULT#  
Output voltage (1) (2) Pin voltage, duration greater than or equal to 100 ns  
APWM1, APWM2, APWM3, APWM4, APWM5, APWM6, APWM7 / BPWM6,  
V
–0.3  
3.6  
APWM8 / BPWM5, APWM9 / BPWM4, APWM10 / BPWM3, APWM11 / BPWM2,  
APWM12 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, SYNC, VR_FAULT#  
VREF  
–0.3  
–40  
–55  
1.8  
150  
150  
Operating junction temperature, TJ  
Storage temperature, TSTG  
°C  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal GND unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
12  
MAX  
18  
UNIT  
CSPIN, VIN_CSNIN  
VCC  
2.97  
3.3  
3.6  
ACSP1, ACSP2, ACSP3, ACSP4, ACSP5, ACSP6, ACSP7 /  
BCSP6, ACSP8 / BCSP5, ACSP9 / BCSP4, ACSP10 / BCSP3,  
ACSP11 / BSPC2, ACSP12 / BCSP1, ADDR_CONFIG, ATSEN /  
BTSEN, AVR_EN, AVSP, VBOOT_CHA, BTSEN / ATSEN / TSEN,  
BVSP, BVR_EN, SMB_CLK, SMB_DIO, SYNC, RESET#  
Input voltage  
V
–0.1  
–0.1  
3.6  
0.1  
AGND, AVSN, BVSN  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
 
 
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
MIN  
NOM  
MAX  
UNIT  
V
VREF  
–0.1  
1.52  
APWM1, APWM2, APWM3, APWM4, APWM5, APWM6, APWM7 /  
BPWM6, APWM8 / BPWM5, APWM9 / BPWM4, APWM10 /  
BPWM3, APWM11 / BPWM2, APWM12 / BPWM1, AVR_RDY,  
BVR_RDY, SMB_ALERT#, SYNC, VR_FAULT#  
Output voltage  
–0.1  
–40  
3.6  
Ambient temperature, TA  
125  
°C  
6.4 Electrical Specifications  
6.4.1 Thermal Information  
TPS536C7B1  
THERMAL METRIC(1)  
RSL (VQFN)  
48 PINS  
25.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
14.8  
7.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
YJB  
7.8  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4.2 Supply  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply: Currents, UVLO, and Power-On Reset  
VCC supply current with all phases  
active  
IVCC  
Enable = 'HI '  
100  
mA  
VCCNORMAL  
VCCUVLOH  
VCCUVLOL  
VCCUVLOH  
VCC Normal Range  
Normal operation  
Ramp up  
2.97  
2.92  
2.68  
138  
3.6  
2.97  
2.82  
600  
V
V
VCC UVLO 'OK ' Threshold  
VCC UVLO Fault Threshold  
VCC UVLO Hysteresis  
Ramp down  
Hyseteresis  
V
mV  
6.4.3 DAC and Voltage Feedback  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
References: DAC and VREF  
ULINEAR16, Absolute,  
N = -10 exponent  
VMODE  
Supported VOUT_MODE  
VDAC range  
VOUT_MODE = 16h  
-
No external divider.  
VOUT_MAX ≤ 1.87 V  
VDACRNG  
0.25  
0.50  
1.87  
V
V
Ω
No external divider  
VOUT_MAX > 1.87 V  
3.74  
External resistor for output voltage  
scaling with Vout > 3.74 V  
RDIV  
VOUT to VSP resistor  
500  
500  
VSP to VSN resistor  
Ω
mV  
%
VDAC  
VSP accuracy  
0.25 ≤ VSP ≤ 1 V, ICORE = 0A  
1 V < VSP ≤ 1.87 V; ICORE = 0A  
1.87 V < VSP ≤ 5 V; ICORE = 0A  
VCC = 2.97 V to 3.6 V, IVREF = 0  
IVREF = 0A to 10 mA  
-5  
-0.5  
-1  
5
0.5  
1
%
VVREF  
VREF output accuracy  
1.493  
-8  
1.5  
1.507  
V
VVREF(REG)  
VREF load regulation (sourcing)  
mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
VREF load regulaiton (sinking)  
Vout offset NVM resolution (1)  
IVREF = -10 mA to 0A  
8
VTRIM(RES)  
MFR_SPECIFIC_ED[13:12] = 00b  
MFR_SPECIFIC_ED[13:12] = 01b  
MFR_SPECIFIC_ED[13:12] = 10b  
MFR_SPECIFIC_ED[13:12] = 11b  
VOUT_TRIM in SLINEAR16 format  
0.9765  
1.9531  
3.9063  
7.8125  
mV  
mV  
mV  
mV  
VTRIM(RNG)  
Vout offset NVM range (1)  
-128  
127  
50  
LSB  
Voltage Sense: AVSP/BVSP and AVSN/BVSN  
Not in Fault, Disable or UVLO;  
AVSP = VDAC = 1.8 V  
AVSN = 0 V  
IAVSP  
IAVSN  
IBVSP  
IBVSN  
AVSP Input Bias Current  
AVSN Input Bias Current  
BVSP Input Bias Current  
BVSN Input Bias Current  
µA  
µA  
µA  
µA  
Not in Fault, Disable or UVLO;  
AVSP = VDAC = 1.8 V,  
AVSN = 0 V  
-55  
-55  
Not in Fault, Disable or UVLO;  
BVSP = VDAC = 1.8 V,  
BVSN = 0 V  
50  
Not in Fault, Disable or UVLO;  
BVSP = VDAC = 1.8 V,  
BVSN = 0 V  
(1) Guaranteed by Design.  
6.4.4 Control Loop Parameters  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Programmable Loadline and Loop Compensation  
RDCLL(RES)  
DC load line resolution  
VOUT_DROOP = 0 to 1 mΩ  
VOUT_DROOP = 1 to 2 mΩ  
VOUT_DROOP = 2 to 4 mΩ  
VOUT_DROOP = 4 to 8 mΩ  
VOUT_DROOP > 0.3 mΩ  
7.8125  
15.625  
31.25  
62.5  
µΩ  
µΩ  
µΩ  
µΩ  
%
RDCLL(ACC)  
RACLL(RES)  
DC load line accuracy  
-2.5  
2.5  
USER_DATA_01[47:32] = 0 to 1.0 mΩ  
(program in SLINEAR11 format)  
AC loadline resolution (1)  
15.625  
31.25  
62.5  
µΩ  
µΩ  
µΩ  
µΩ  
USER_DATA_01[47:32] = 1 to 2 mΩ  
(program in SLINEAR11 format)  
USER_DATA_01[47:32] = 2 to 4 mΩ  
(program in SLINEAR11 format)  
USER_DATA_01[47:32] = 4 to 8 mΩ  
(program in SLINEAR11 format)  
125  
RACLL(RES)  
tINT  
AC loadline accuracy (1)  
AC loadline > 0.3 mΩ  
-5  
0.9  
1.8  
2.7  
3.6  
4.5  
5.4  
6.3  
7.2  
8.1  
9
5
1.1  
2.2  
3.3  
4.4  
5.5  
6.6  
7.7  
8.8  
9.9  
11  
%
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Static integration-time constant (1)  
USER_DATA_01[23:20] = 0000b  
USER_DATA_01[23:20] = 0001b  
USER_DATA_01[23:20] = 0010b  
USER_DATA_01[23:20] = 0011b  
USER_DATA_01[23:20] = 0100b  
USER_DATA_01[23:20] = 0101b  
USER_DATA_01[23:20] = 0110b  
USER_DATA_01[23:20] = 0111b  
USER_DATA_01[23:20] = 1000b  
USER_DATA_01[23:20] = 1001b  
USER_DATA_01[23:20] = 1010b  
1
2
3
4
5
6
7
8
9
10  
11  
9.9  
12.1  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
USER_DATA_01[23:20] = 1011b  
USER_DATA_01[23:20] = 1100b  
USER_DATA_01[23:20] = 1101b  
USER_DATA_01[23:20] = 1110b  
USER_DATA_01[23:20] = 1111b  
MIN  
10.8  
11.7  
12.6  
13.5  
14.4  
0.8  
TYP  
12  
13  
14  
15  
16  
1
MAX  
13.2  
14.3  
15.4  
16.5  
17.6  
1.2  
UNIT  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tDINT  
Dynamic integration-time constant (1) USER_DATA_01[27:24] = 0000b  
USER_DATA_01[27:24] = 0001b  
USER_DATA_01[27:24] = 0010b  
USER_DATA_01[27:24] = 0011b  
USER_DATA_01[27:24] = 0100b  
USER_DATA_01[27:24] = 0101b  
USER_DATA_01[27:24] = 0110b  
USER_DATA_01[27:24] = 0111b  
USER_DATA_01[27:24] = 1000b  
USER_DATA_01[27:24] = 1001b  
USER_DATA_01[27:24] = 1010b  
USER_DATA_01[27:24] = 1011b  
USER_DATA_01[27:24] = 1100b  
USER_DATA_01[27:24] = 1101b  
USER_DATA_01[27:24] = 1110b  
USER_DATA_01[27:24] = 1111b  
1.9  
2
2.1  
2.85  
3.8  
3
3.15  
4.2  
4
4.75  
5.7  
5
5.25  
6.3  
6
6.65  
7.6  
7
7.35  
8.4  
8
8.55  
9.5  
9
9.45  
10.5  
11.55  
12.6  
13.65  
14.7  
15.75  
16.8  
10  
11  
12  
13  
14  
15  
16  
10.45  
11.4  
12.35  
13.3  
14.25  
15.2  
Scaling factor for integration time  
USER_DATA_01[4] = 0b  
constants (1)  
GINTTC  
1
x
USER_DATA_01[4] = 1b  
6
0.5  
1
x
x
x
x
x
x
x
x
x
KAC  
AC gain settings (1)  
USER_DATA_01[13:12] = 00b  
USER_DATA_01[13:12] = 01b  
USER_DATA_01[13:12] = 10b  
USER_DATA_01[13:12] = 11b  
USER_DATA_01[15:14] = 00b  
USER_DATA_01[15:14] = 01b  
USER_DATA_01[15:14] = 10b  
USER_DATA_01[15:14] = 11b  
0.45  
0.9  
0.55  
1.1  
1.35  
1.8  
1.5  
2
1.65  
2.2  
KINT  
Integration gain settings (1)  
0.45  
0.9  
0.5  
1
0.55  
1.1  
1.35  
1.8  
1.5  
2
1.65  
2.2  
Dynamic Integration Voltage Setting.  
Based on VERR  
VDINT  
USER_DATA_01[11:8] = 000b  
48  
60  
72  
mV  
(1)  
USER_DATA_01[11:8] = 001b  
USER_DATA_01[11:8] = 010b  
USER_DATA_01[11:8] = 011b  
USER_DATA_01[11:8] = 100b  
USER_DATA_01[11:8] = 101b  
USER_DATA_01[11:8] = 110b  
USER_DATA_01[11:8] = 111b  
68  
88  
80  
100  
92  
112  
132  
152  
172  
192  
mV  
mV  
mV  
mV  
mV  
mV  
108  
128  
148  
168  
120  
140  
160  
180  
Disabled  
Ramp Selections  
VRAMP  
Ramp Setting (1)  
USER_DATA_01[19:17] = 000b  
USER_DATA_01[19:17] = 001b  
USER_DATA_01[19:17] = 010b  
USER_DATA_01[19:17] = 011b  
70  
110  
150  
190  
80  
120  
160  
200  
90  
130  
170  
210  
mV  
mV  
mV  
mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
USER_DATA_01[19:17] = 100b  
USER_DATA_01[19:17] = 101b  
USER_DATA_01[19:17] = 110b  
USER_DATA_01[19:17] = 111b  
MIN  
230  
270  
310  
350  
TYP  
240  
280  
320  
360  
MAX  
250  
290  
330  
370  
UNIT  
mV  
mV  
mV  
mV  
(1) Guaranteed by Design.  
6.4.5 Dynamic VID (DVID) Tuning  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Dynamic Voltage Transitions  
VOFS(WAKE)  
VDAC offset during soft-start (1)  
USER_DATA_04[1:0] = 00b  
USER_DATA_04[1:0] = 01b  
0
mV  
mV  
(independently programmable for each  
channel)  
30  
USER_DATA_04[1:0] = 10b  
USER_DATA_04[1:0] = 11b  
60  
90  
mV  
mV  
VDAC offset during upward  
transitions (1)  
VOFS(UP)  
USER_DATA_04[11:10] = 00b  
USER_DATA_04[11:10] = 01b  
0
mV  
mV  
(independently programmable for each  
channel)  
10  
USER_DATA_04[11:10] = 10b  
USER_DATA_04[11:10] = 11b  
20  
30  
mV  
mV  
VDAC offset during downward  
transitions (1)  
VOFS(DOWN)  
USER_DATA_04[9:8] = 00b  
USER_DATA_04[9:8] = 01b  
0
mV  
mV  
(independently programmable for each  
channel)  
10  
USER_DATA_04[9:8] = 10b  
USER_DATA_04[9:8] = 11b  
20  
30  
mV  
mV  
VOUT_DROOP = 0.0 to 1.0 mΩ  
USER_DATA_04[36:32] = 00h to 1Fh  
Resolution = 0.03125 mΩ  
Dynamic DC load line during up  
transitions (1)  
RDCLL(UP)  
0
0
0
0
0
0
0
0
0.96875  
1.9375  
3.8750  
7.75  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
VOUT_DROOP = 1.0 to 2.0 mΩ  
USER_DATA_04[36:32] = 00h to 1Fh  
Resolution = 0.0625 mΩ  
(independently programmable for each  
channel)  
VOUT_DROOP = 2.0 to 4.0 mΩ  
USER_DATA_04[36:32] = 00h to 1Fh  
Resolution = 0.125 mΩ  
VOUT_DROOP = 4.0 to 8.0 mΩ  
USER_DATA_04[36:32] = 00h to 1Fh  
Resolution = 0.250 mΩ  
RACLL = 0.0 to 1.0 mΩ  
USER_DATA_04[19:16] = 0h to Fh  
Resolution = 0.0625 mΩ  
Dynamic AC load line during up  
transitions (1)  
RACLL(UP)  
0.9375  
1.875  
3.75  
RACLL = 1.0 to 2.0 mΩ  
USER_DATA_04[19:16] = 0h to Fh  
Resolution = 0.125 mΩ  
(independently programmable for each  
channel)  
RACLL = 2.0 to 4.0 mΩ  
USER_DATA_04[19:16] = 0h to Fh  
Resolution = 0.250 mΩ  
RACLL = 4.0 to 8.0 mΩ  
USER_DATA_04[19:16] = 0h to Fh  
Resolution = 0.500 mΩ  
7.5  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT_DROOP = 0.0 to 1.0 mΩ  
USER_DATA_04[44:40] = 00h to 1Fh  
Resolution = 0.03125 mΩ  
Dynamic DC load line during down  
transitions (1)  
RDCLL(DOWN)  
0
0.96875  
mΩ  
VOUT_DROOP = 1.0 to 2.0 mΩ  
USER_DATA_04[44:40] = 00h to 1Fh  
Resolution = 0.0625 mΩ  
(independently programmable for each  
channel)  
0
0
0
0
1
2
4
1.9375  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
VOUT_DROOP = 2.0 to 4.0 mΩ  
USER_DATA_04[44:40] = 00h to 1Fh  
Resolution = 0.125 mΩ  
3.8750  
VOUT_DROOP = 4.0 to 8.0 mΩ  
USER_DATA_04[44:40] = 00h to 1Fh  
Resolution = 0.250 mΩ  
7.75  
RACLL = 0.0 to 1.0 mΩ  
USER_DATA_04[27:24] = 0h to Fh  
Resolution = 0.0625 mΩ  
Dynamic AC load line during down  
transitions (1)  
RACLL(DOWN)  
1
2
4
8
RACLL = 1.0 to 2.0 mΩ  
USER_DATA_04[27:24] = 0h to Fh  
Resolution = 0.125 mΩ  
(independently programmable for each  
channel)  
RACLL = 2.0 to 4.0 mΩ  
USER_DATA_04[27:24] = 0h to Fh  
Resolution = 0.250 mΩ  
RACLL = 4.0 to 8.0 mΩ  
USER_DATA_04[27:24] = 0h to Fh  
Resolution = 0.500 mΩ  
Dynamic load line up recovery delay  
(PWM cycles) (1)  
tLLR(UP)  
USER_DATA_04[23:22] = 00b  
USER_DATA_04[23:22] = 01b  
1
2
clks  
clks  
(independently programmable for each  
channel)  
USER_DATA_04[23:22] = 10b  
USER_DATA_04[23:22] = 11b  
4
8
clks  
clks  
Dynamic load line down recovery  
delay (PWM cycles) (1)  
tLLR(DOWN)  
USER_DATA_04[31:30] = 00b  
USER_DATA_04[31:30] = 01b  
1
2
clks  
clks  
(independently programmable for each  
channel)  
USER_DATA_04[31:30] = 10b  
4
8
clks  
USER_DATA_04[31:30] = 11b  
clks  
SRVOUT  
Slew Rate Setting  
VOUT_TRANSITION_RATE = E050h  
VOUT_TRANSITION_RATE = E0A0h  
VOUT_TRANSITION_RATE = E0F0h  
VOUT_TRANSITION_RATE = E140h  
VOUT_TRANSITION_RATE = E190h  
VOUT_TRANSITION_RATE = E1E0h  
VOUT_TRANSITION_RATE = E230h  
VOUT_TRANSITION_RATE = E280h  
5
10  
15  
20  
25  
30  
35  
39  
5.875  
11.75  
17.625  
23.5  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
29.375  
35.25  
41.125  
47  
0.36718  
8
VOUT_TRANSITION_RATE = E005h  
VOUT_TRANSITION_RATE = E00Ah  
0.3125  
0.625  
mV/µs  
mV/µs  
0.73437  
5
1.10156  
3
VOUT_TRANSITION_RATE = E00Fh  
VOUT_TRANSITION_RATE = E014h  
VOUT_TRANSITION_RATE = E019h  
0.9375  
1.25  
mV/µs  
mV/µs  
mV/µs  
1.46875  
1.83593  
8
1.5625  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.20312  
5
VOUT_TRANSITION_RATE = E01Eh  
1.875  
mV/µs  
2.57031  
3
VOUT_TRANSITION_RATE = E023h  
VOUT_TRANSITION_RATE = E028h  
2.1875  
2.5  
mV/µs  
mV/µs  
2.9375  
(1) Guaranteed by Design.  
6.4.6 Undershoot Reduction (USR) and Overshoot Reduciton (OSR)  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
Multi-Level OSR and USR  
USR Level 1 Voltage Setting (VDAC  
VDROOP  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
-
VUSR1  
USER_DATA_02[12:8] = 00010b  
5
15  
25  
mV  
)
USER_DATA_02[12:8] = 00011b  
USER_DATA_02[12:8] = 00100b  
USER_DATA_02[12:8] = 00101b  
USER_DATA_02[12:8] = 00110b  
USER_DATA_02[12:8] = 00111b  
USER_DATA_02[12:8] = 01000b  
USER_DATA_02[12:8] = 01001b  
USER_DATA_02[12:8] = 01010b  
USER_DATA_02[12:8] = 01011b  
USER_DATA_02[12:8] = 01100b  
USER_DATA_02[12:8] = 01101b  
USER_DATA_02[12:8] = 01110b  
USER_DATA_02[12:8] = 01111b  
USER_DATA_02[12:8] = 10000b  
USER_DATA_02[12:8] = 10001b  
USER_DATA_02[12:8] = 10010b  
USER_DATA_02[12:8] = 10011b  
USER_DATA_02[12:8] = 10100b  
USER_DATA_02[12:8] = 10101b  
USER_DATA_02[12:8] = 10110b  
USER_DATA_02[12:8] = 10111b  
USER_DATA_02[12:8] = 11000b  
USER_DATA_02[12:8] = 11001b (1)  
USER_DATA_02[12:8] = other (1)  
7.5  
10  
17.5  
20  
27.5  
30  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
12.5  
15  
22.5  
25  
32.5  
35  
17.5  
20  
27.5  
30  
37.5  
40  
22.5  
25  
32.5  
35  
42.5  
45  
27.5  
30  
37.5  
40  
47.5  
50  
32.5  
35  
42.5  
45  
52.5  
55  
37.5  
40  
47.5  
50  
57.5  
60  
42.5  
45  
52.5  
55  
62.5  
65  
47.5  
50  
57.5  
60  
67.5  
70  
52.5  
55  
62.5  
65  
72.5  
75  
57.5  
60  
67.5  
70  
77.5  
80  
62.5  
72.5  
Disabled  
82.5  
USR Level 2 Voltage Setting (VDAC  
-
VUSR2  
USER_DATA_02[36:32] = 00000b  
5
15  
25  
mV  
VDROOP  
)
USER_DATA_02[36:32] = 00001b  
USER_DATA_02[36:32] = 00010b  
USER_DATA_02[36:32] = 00011b  
USER_DATA_02[36:32] = 00100b  
USER_DATA_02[36:32] = 00101b  
USER_DATA_02[36:32] = 00110b  
USER_DATA_02[36:32] = 00111b  
USER_DATA_02[36:32] = 01000b  
7.5  
10  
17.5  
20  
27.5  
30  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
12.5  
15  
22.5  
25  
32.5  
35  
17.5  
20  
27.5  
30  
37.5  
40  
22.5  
25  
32.5  
35  
42.5  
45  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
27.5  
30  
TYP  
37.5  
40  
MAX  
47.5  
50  
UNIT  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
USER_DATA_02[36:32] = 01001b  
USER_DATA_02[36:32] = 01010b  
USER_DATA_02[36:32] = 01011b  
USER_DATA_02[36:32] = 01100b  
USER_DATA_02[36:32] = 01101b  
USER_DATA_02[36:32] = 01110b  
USER_DATA_02[36:32] = 01111b  
USER_DATA_02[36:32] = 10000b  
USER_DATA_02[36:32] = 10001b  
USER_DATA_02[36:32] = 10010b  
USER_DATA_02[36:32] = 10011b  
USER_DATA_02[36:32] = 10100b  
USER_DATA_02[36:32] = 10101b  
USER_DATA_02[36:32] = 10110b  
USER_DATA_02[36:32] = 10111b  
USER_DATA_02[36:32] = 11000b  
USER_DATA_02[36:32] = 11001b (1)  
USER_DATA_02[36:32] = others (1)  
32.5  
35  
42.5  
45  
52.5  
55  
37.5  
40  
47.5  
50  
57.5  
60  
42.5  
45  
52.5  
55  
62.5  
65  
47.5  
50  
57.5  
60  
67.5  
70  
52.5  
55  
62.5  
65  
72.5  
75  
57.5  
60  
67.5  
70  
77.5  
80  
62.5  
65  
72.5  
75  
82.5  
85  
67.5  
77.5  
Disabled  
87.5  
Maximum phase added in USR level 1  
PHUSR1  
USER_DATA_02[1:0] = 00b  
3
phases  
(1)  
USER_DATA_02[1:0] = 01b  
USER_DATA_02[1:0] = 10b  
4
5
phases  
phases  
All  
available  
USER_DATA_02[1:0] = 11b  
phases  
VOSR  
OSR Voltage Setting  
USER_DATA_02[19:16] = 0000b  
USER_DATA_02[19:16] = 0001b  
USER_DATA_02[19:16] = 0010b  
USER_DATA_02[19:16] = 0011b  
USER_DATA_02[19:16] = 0100b  
USER_DATA_02[19:16] = 0101b  
USER_DATA_02[19:16] = 0110b  
USER_DATA_02[19:16] = 0111b  
USER_DATA_02[19:16] = 1000b  
USER_DATA_02[19:16] = 1001b  
USER_DATA_02[19:16] = 1010b  
USER_DATA_02[19:16] = 1011b  
USER_DATA_02[19:16] = 1100b  
USER_DATA_02[19:16] = 1101b  
USER_DATA_02[19:16] = 1110b  
USER_DATA_02[19:16] = 1111b (1)  
USER_DATA_02[7] = 0b  
8
18  
20  
30  
32  
42  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
28  
40  
52  
38  
50  
62  
48  
60  
72  
58  
70  
82  
68  
80  
92  
78  
90  
102  
112  
122  
132  
142  
152  
162  
172  
88  
100  
98  
110  
108  
118  
128  
138  
148  
120  
130  
140  
150  
160  
Disabled  
Disable  
Enable  
BBOSR  
OSR pulse truncation for 1ph (1)  
USER_DATA_02[7] = 1b  
OSR body braking for normal phases USER_DATA_02[5] = 0b  
BBOSR  
Disable  
(1)  
and USER_DATA_02[7] = 0b  
USER_DATA_02[5] = 1b  
or USER_DATA_02[7] = 1b  
Enable  
0.4  
TBOSR  
OSR body braking time durations (1)  
USER_DATA_02[4:2] = 000b  
0.3  
0.5  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
USER_DATA_02[4:2] = 001b  
USER_DATA_02[4:2] = 010b  
USER_DATA_02[4:2] = 011b  
USER_DATA_02[4:2] = 100b  
USER_DATA_02[4:2] = 101b  
USER_DATA_02[4:2] = 110b  
USER_DATA_02[4:2] = 111b  
MIN  
0.4  
0.5  
0.8  
0.9  
1
TYP  
0.5  
0.6  
0.9  
1
MAX  
0.6  
0.7  
1
UNIT  
µs  
µs  
µs  
1.1  
1.2  
2
µs  
1.1  
1.9  
2
µs  
1.8  
1.9  
µs  
2.1  
µs  
(1) Specified by Design  
6.4.7 Dynamic Phase Shedding (DPS)  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Dynamic Phase Shedding  
Minimum operating phase numbers  
with DPS enabled (1)  
PHDPS  
tDPAFIL  
IDPA2  
USER_DATA_07[3:2] = 00b  
1
Phase  
USER_DATA_07[3:2] = 01b  
USER_DATA_07[3:2] = 10b  
USER_DATA_07[3:2] = 11b  
2
4
8
Phase  
Phase  
Phase  
Filter time constant for phase adding  
USER_DATA_07[7:6] = 00b  
0.5  
µs  
(1)  
USER_DATA_07[7:6] = 01b  
USER_DATA_07[7:6] = 10b  
USER_DATA_07[7:6] = 11b  
1
1.5  
2
µs  
µs  
µs  
Dynamic phase adding thresholds  
(1-2ph)  
USER_DATA_07[11:8] = 0h  
8.2  
8.8  
12  
15.4  
17.3  
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[11:8] = 1h  
13  
A
USER_DATA_07[11:8] = 2h  
USER_DATA_07[11:8] = 3h  
USER_DATA_07[11:8] = 4h  
USER_DATA_07[11:8] = 5h  
USER_DATA_07[11:8] = 6h  
USER_DATA_07[11:8] = 7h  
USER_DATA_07[11:8] = 8h  
USER_DATA_07[11:8] = 9h  
USER_DATA_07[11:8] = Ah  
USER_DATA_07[11:8] = Bh  
USER_DATA_07[11:8] = Ch  
USER_DATA_07[11:8] = Dh  
USER_DATA_07[11:8] = Eh  
USER_DATA_07[11:8] = Fh  
12.2  
13.3  
14.3  
15.1  
16.2  
17.3  
17.9  
19.2  
20.2  
21.3  
22.3  
23.2  
24  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
15.7  
16.7  
17.7  
18.7  
19.7  
20.7  
21.7  
22.7  
23.7  
24.8  
25.8  
26.8  
27.8  
28.8  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
24.9  
Dynamic phase adding thresholds  
(2-3ph)  
IDPA3  
USER_DATA_07[23:20] = 0h  
25.2  
27.5  
30  
35.8  
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[23:20] = 1h  
32  
37.4  
A
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
USER_DATA_07[23:20] = 2h  
USER_DATA_07[23:20] = 3h  
USER_DATA_07[23:20] = 4h  
USER_DATA_07[23:20] = 5h  
USER_DATA_07[23:20] = 6h  
USER_DATA_07[23:20] = 7h  
USER_DATA_07[23:20] = 8h  
USER_DATA_07[23:20] = 9h  
USER_DATA_07[23:20] = Ah  
USER_DATA_07[23:20] = Bh  
USER_DATA_07[23:20] = Ch  
USER_DATA_07[23:20] = Dh  
USER_DATA_07[23:20] = Eh  
USER_DATA_07[23:20] = Fh  
MIN  
29.1  
31.9  
33.5  
35.6  
37.8  
39.7  
45.6  
55.6  
65.8  
75.3  
85.8  
95.8  
105.7  
114.3  
TYP  
34  
MAX  
40  
UNIT  
A
36  
41.2  
43.5  
45.4  
47  
A
38  
A
40  
A
42  
A
44  
49.3  
55.2  
65.3  
75.2  
85.5  
95  
A
50  
A
60  
A
70  
A
80  
A
90  
A
100  
110  
120  
105  
A
114.9  
125.9  
A
A
Dynamic phase adding thresholds  
(3-4ph)  
IDPA4  
USER_DATA_07[19:16] = 0h  
40.6  
46  
52.2  
A
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[19:16] = 1h  
43.5  
48  
53.6  
USER_DATA_07[19:16] = 2h  
USER_DATA_07[19:16] = 3h  
USER_DATA_07[19:16] = 4h  
USER_DATA_07[19:16] = 5h  
USER_DATA_07[19:16] = 6h  
USER_DATA_07[19:16] = 7h  
USER_DATA_07[19:16] = 8h  
USER_DATA_07[19:16] = 9h  
USER_DATA_07[19:16] = Ah  
USER_DATA_07[19:16] = Bh  
USER_DATA_07[19:16] = Ch  
USER_DATA_07[19:16] = Dh  
USER_DATA_07[19:16] = Eh  
USER_DATA_07[19:16] = Fh  
43.2  
47.5  
50  
52  
57.4  
57.6  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
48.2  
54  
60.2  
51.5  
56  
61.4  
52.8  
58  
64.4  
54.7  
60  
66.3  
74.7  
80  
86  
94.6  
100  
120  
140  
160  
180  
200  
220  
106.1  
125.4  
145.4  
166.1  
185.5  
205.6  
226.7  
114.9  
135.2  
154.6  
175.1  
194.5  
213.4  
Dynamic phase adding thresholds  
(4-5ph)  
IDPA5  
USER_DATA_07[31:28] = 0h  
55.9  
62  
69  
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[31:28] = 1h  
59.5  
64  
69.6  
A
USER_DATA_07[31:28] = 2h  
USER_DATA_07[31:28] = 3h  
USER_DATA_07[31:28] = 4h  
USER_DATA_07[31:28] = 5h  
USER_DATA_07[31:28] = 6h  
USER_DATA_07[31:28] = 7h  
USER_DATA_07[31:28] = 8h  
USER_DATA_07[31:28] = 9h  
59.6  
63.4  
65.1  
67.3  
69  
66  
68  
73.2  
73.3  
76  
A
A
A
A
A
A
A
A
70  
72  
77.3  
79.6  
81.4  
95.4  
105.8  
74  
71.1  
85.1  
94.9  
76  
90  
100  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
USER_DATA_07[31:28] = Ah  
USER_DATA_07[31:28] = Bh  
USER_DATA_07[31:28] = Ch  
USER_DATA_07[31:28] = Dh  
USER_DATA_07[31:28] = Eh  
USER_DATA_07[31:28] = Fh  
MIN  
104.9  
115.2  
135.2  
154.5  
175.2  
193.4  
TYP  
110  
120  
140  
160  
180  
200  
MAX  
115.8  
125.4  
145.4  
165.6  
185.2  
206.7  
UNIT  
A
A
A
A
A
A
Dynamic phase adding thresholds  
(5-6ph)  
IDPA6  
IDPA7  
IDPA8  
USER_DATA_07[27:24] = 0h  
71.7  
78  
84.8  
A
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[27:24] = 1h  
74.8  
81  
87.1  
USER_DATA_07[27:24] = 2h  
USER_DATA_07[27:24] = 3h  
USER_DATA_07[27:24] = 4h  
USER_DATA_07[27:24] = 5h  
USER_DATA_07[27:24] = 6h  
USER_DATA_07[27:24] = 7h  
USER_DATA_07[27:24] = 8h  
USER_DATA_07[27:24] = 9h  
USER_DATA_07[27:24] = Ah  
USER_DATA_07[27:24] = Bh  
USER_DATA_07[27:24] = Ch  
USER_DATA_07[27:24] = Dh  
USER_DATA_07[27:24] = Eh  
USER_DATA_07[27:24] = Fh  
77.9  
81.6  
84  
87  
90.6  
92.8  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
84.5  
90  
95.7  
87.2  
93  
99.5  
89.9  
96  
102.7  
105.5  
117  
93  
99  
103.4  
114.5  
124  
110  
120  
130  
140  
160  
180  
200  
220  
126.5  
137.1  
145.1  
166.6  
185.5  
205.8  
227.3  
134.7  
154.1  
174.8  
194.2  
213.2  
Dynamic phase adding thresholds  
(6-7ph)  
USER_DATA_07[39:36] = 0h  
100.1  
105  
110.5  
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[39:36] = 1h  
105.6  
110  
114.7  
A
USER_DATA_07[39:36] = 2h  
USER_DATA_07[39:36] = 3h  
USER_DATA_07[39:36] = 4h  
USER_DATA_07[39:36] = 5h  
USER_DATA_07[39:36] = 6h  
USER_DATA_07[39:36] = 7h  
USER_DATA_07[39:36] = 8h  
USER_DATA_07[39:36] = 9h  
USER_DATA_07[39:36] = Ah  
USER_DATA_07[39:36] = Bh  
USER_DATA_07[39:36] = Ch  
USER_DATA_07[39:36] = Dh  
USER_DATA_07[39:36] = Eh  
USER_DATA_07[39:36] = Fh  
109.8  
115.5  
120.2  
125.2  
130.6  
135.3  
155.1  
175.2  
195.2  
215  
115  
120  
125  
130  
135  
140  
160  
180  
200  
220  
240  
280  
320  
360  
120.8  
125  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
130.2  
135.4  
140.1  
144.8  
165.2  
185.1  
205  
225.3  
245.2  
285.7  
325.7  
366.1  
235  
274.7  
314.3  
353.9  
Dynamic phase adding thresholds  
(7-8ph)  
USER_DATA_07[35:32] = 0h  
139.5  
145  
150.8  
A
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[35:32] = 1h  
145.4  
150  
155.3  
A
USER_DATA_07[35:32] = 2h  
USER_DATA_07[35:32] = 3h  
USER_DATA_07[35:32] = 4h  
USER_DATA_07[35:32] = 5h  
USER_DATA_07[35:32] = 6h  
USER_DATA_07[35:32] = 7h  
USER_DATA_07[35:32] = 8h  
USER_DATA_07[35:32] = 9h  
USER_DATA_07[35:32] = Ah  
USER_DATA_07[35:32] = Bh  
USER_DATA_07[35:32] = Ch  
USER_DATA_07[35:32] = Dh  
USER_DATA_07[35:32] = Eh  
USER_DATA_07[35:32] = Fh  
149.7  
154.9  
160.4  
165.1  
169.9  
175.5  
214.9  
234.7  
254.9  
274.6  
334.1  
373.7  
413.3  
452.9  
155  
160  
165  
170  
175  
180  
220  
240  
260  
280  
340  
380  
420  
460  
160.4  
165.5  
170.1  
174.9  
180.3  
185.1  
225.3  
245.4  
265.1  
285.8  
345.9  
386.3  
426.7  
467.1  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Dynamic phase adding thresholds  
(8-9ph)  
IDPA9  
USER_DATA_07[47:44] = 0h  
180.2  
188  
194.8  
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[47:44] = 1h  
186.9  
194  
200.6  
A
USER_DATA_07[47:44] = 2h  
USER_DATA_07[47:44] = 3h  
USER_DATA_07[47:44] = 4h  
USER_DATA_07[47:44] = 5h  
USER_DATA_07[47:44] = 6h  
USER_DATA_07[47:44] = 7h  
USER_DATA_07[47:44] = 8h  
USER_DATA_07[47:44] = 9h  
USER_DATA_07[47:44] = Ah  
USER_DATA_07[47:44] = Bh  
USER_DATA_07[47:44] = Ch  
USER_DATA_07[47:44] = Dh  
USER_DATA_07[47:44] = Eh  
USER_DATA_07[47:44] = Fh  
192.8  
198.8  
205.4  
211.2  
216.9  
223.6  
243  
200  
206  
212  
218  
224  
230  
250  
270  
290  
330  
370  
410  
450  
490  
206.6  
212.6  
217.9  
224.1  
230.3  
235.8  
256.2  
276.4  
295.7  
336.4  
376.6  
417.1  
457.5  
498  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
262.9  
283.3  
323  
362.9  
402.9  
442.5  
482  
Dynamic phase adding thresholds  
(9-10ph)  
IDPA10  
USER_DATA_07[43:40] = 0h  
217.5  
225  
231.7  
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[43:40] = 1h  
224  
230  
235.6  
A
USER_DATA_07[43:40] = 2h  
USER_DATA_07[43:40] = 3h  
USER_DATA_07[43:40] = 4h  
USER_DATA_07[43:40] = 5h  
USER_DATA_07[43:40] = 6h  
227.4  
232.8  
238.7  
243.3  
247.7  
235  
240  
245  
250  
255  
241.1  
246.6  
250.7  
256.1  
261.6  
A
A
A
A
A
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
USER_DATA_07[43:40] = 7h  
USER_DATA_07[43:40] = 8h  
USER_DATA_07[43:40] = 9h  
USER_DATA_07[43:40] = Ah  
USER_DATA_07[43:40] = Bh  
USER_DATA_07[43:40] = Ch  
USER_DATA_07[43:40] = Dh  
USER_DATA_07[43:40] = Eh  
USER_DATA_07[43:40] = Fh  
MIN  
253.3  
273.1  
292.7  
332.8  
373  
TYP  
260  
280  
300  
340  
380  
420  
460  
500  
540  
MAX  
266.1  
286.2  
306.1  
346.4  
386.6  
427.4  
467.9  
508.4  
548.9  
UNIT  
A
A
A
A
A
412.6  
452.1  
491.6  
531.1  
A
A
A
A
Dynamic phase adding thresholds  
(10-11ph)  
IDPA11  
USER_DATA_07[55:52] = 0h  
257.4  
265  
271.7  
A
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[55:52] = 1h  
262.7  
270  
276.6  
USER_DATA_07[55:52] = 2h  
USER_DATA_07[55:52] = 3h  
USER_DATA_07[55:52] = 4h  
USER_DATA_07[55:52] = 5h  
USER_DATA_07[55:52] = 6h  
USER_DATA_07[55:52] = 7h  
USER_DATA_07[55:52] = 8h  
USER_DATA_07[55:52] = 9h  
USER_DATA_07[55:52] = Ah  
USER_DATA_07[55:52] = Bh  
USER_DATA_07[55:52] = Ch  
USER_DATA_07[55:52] = Dh  
USER_DATA_07[55:52] = Eh  
USER_DATA_07[55:52] = Fh  
267.8  
273.1  
278  
275  
280  
285  
290  
295  
300  
320  
340  
360  
400  
440  
480  
520  
560  
281.2  
285.6  
291.4  
296  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
283.4  
288.2  
292.7  
312.9  
332.7  
352.7  
392.3  
431.9  
471.3  
510.8  
550.2  
300.9  
306.7  
326.5  
346.7  
367  
407.3  
448.1  
488.7  
529.2  
569.8  
Dynamic phase adding thresholds  
(11-12ph)  
IDPA12  
USER_DATA_07[51:48] = 0h  
297.9  
305  
311.3  
A
Average current, assuming DPA  
Hysteresis is set equal to 1/2 ISUM  
ripple for active phase number,  
accounting for ripple cancellation  
USER_DATA_07[51:48] = 1h  
302.7  
310  
316  
A
USER_DATA_07[51:48] = 2h  
USER_DATA_07[51:48] = 3h  
USER_DATA_07[51:48] = 4h  
USER_DATA_07[51:48] = 5h  
USER_DATA_07[51:48] = 6h  
USER_DATA_07[51:48] = 7h  
USER_DATA_07[51:48] = 8h  
USER_DATA_07[51:48] = 9h  
USER_DATA_07[51:48] = Ah  
USER_DATA_07[51:48] = Bh  
USER_DATA_07[51:48] = Ch  
USER_DATA_07[51:48] = Dh  
USER_DATA_07[51:48] = Eh  
306.8  
313  
315  
320  
325  
330  
335  
340  
360  
380  
420  
440  
480  
520  
560  
321.8  
326.2  
331.3  
336.3  
341.5  
346.5  
367.1  
387.4  
427.7  
448  
A
A
A
A
A
A
A
A
A
A
A
A
A
317.7  
322.7  
328.1  
332.1  
352.8  
372.7  
412.4  
432.1  
471.2  
510.6  
550  
488.9  
529.5  
570.1  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USER_DATA_07[51:48] = Fh  
589.4  
600  
610.7  
A
DPA Hysteresis (1-2ph)  
Set equal to 1/2 ISUM ripple with 1  
phase operational  
IHYST2  
IHYST3  
IHYST4  
IHYST5  
IHYST6  
IHYST7  
IHYST8  
IHYST9  
IHYST10  
IHYST11  
USER_DATA_07[59:56] = 0h to Fh  
USER_DATA_07[71:68] = 0h to Fh  
USER_DATA_07[67:64] = 0h to Fh  
USER_DATA_07[79:76] = 0h to Fh  
USER_DATA_07[75:72] = 0h to Fh  
USER_DATA_07[87:84] = 0h to Fh  
USER_DATA_07[83:80] = 0h to Fh  
USER_DATA_07[95:92] = 0h to Fh  
USER_DATA_07[91:88] = 0h to Fh  
USER_DATA_07[103:100] = 0h to Fh  
USER_DATA_07[99:96] = 0h to Fh  
0
0
0
0
0
0
0
0
0
0
0
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
A
A
A
A
A
A
A
A
A
A
A
DPA Hysteresis (2-3ph)  
Set equal to 1/2 ISUM ripple with 2  
phases operational  
DPA Hysteresis (3-4ph)  
Set equal to 1/2 ISUM ripple with 3  
phases operational  
DPA Hysteresis (4-5ph)  
Set equal to 1/2 ISUM ripple with 4  
phases operational  
DPA Hysteresis (5-6ph)  
Set equal to 1/2 ISUM ripple with 5  
phases operational  
DPA Hysteresis (6-7ph)  
Set equal to 1/2 ISUM ripple with 6  
phases operational  
DPA Hysteresis (7-8ph)  
Set equal to 1/2 ISUM ripple with 7  
phases operational  
DPA Hysteresis (8-9ph)  
Set equal to 1/2 ISUM ripple with 8  
phases operational  
DPA Hysteresis (9-10ph)  
Set equal to 1/2 ISUM ripple with 9  
phases operational  
DPA Hysteresis (10-11ph)  
Set equal to 1/2 ISUM ripple with 10  
phases operational  
DPA Hysteresis (11-12ph)  
Set equal to 1/2 ISUM ripple with 11  
phases operational  
IHYST12  
IHYST-DPS  
Dynamic phase shedding hysteresis  
USER_DATA_07[15:14] = 00b  
USER_DATA_07[15:14] = 01b  
USER_DATA_07[15:14] = 10b  
USER_DATA_07[15:14] = 11b  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
Avg. current, calculated  
0
1
2
3
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
IDPS2  
IDPS3  
IDPS4  
IDPS5  
IDPS6  
IDPS7  
IDPS8  
IDPS9  
IDPS10  
IDPS11  
IDPS12  
Phase shed threshold (2-1ph)  
Phase shed threshold (3-2ph)  
Phase shed threshold (4-3ph)  
Phase shed threshold (5-4ph)  
Phase shed threshold (6-5ph)  
Phase shed threshold (7-6ph)  
Phase shed threshold (8-7ph)  
Phase shed threshold (9-8ph)  
Phase shed threshold (10-9ph)  
Phase shed threshold (11-10ph)  
Phase shed threshold (12-11ph)  
IDPA2 – 1 × IHYST-DPS  
IDPA3 – 2 × IHYST-DPS  
IDPA4 – 3 × IHYST-DPS  
IDPA5 – 4 × IHYST-DPS  
IDPA6 – 5 × IHYST-DPS  
IDPA7 – 6 × IHYST-DPS  
IDPA8 – 7 × IHYST-DPS  
IDPA9 – 8 × IHYST-DPS  
IDPA10 – 9 × IHYST-DPS  
IDPA11 – 10 × IHYST-DPS  
IDPA12 – 11 × IHYST-DPS  
Dynamic phase shedding delay (N+1  
ph to N ph) (1)  
TDPS_DELAY  
115  
120  
125  
µs  
(1) Guaranteed by Design.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
6.4.8 Turbo Mode and Thermal Balance Management (TBM)  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Turbo Mode and Thermal Management  
Nturbo  
Number of turbo phases  
0
4
Current share gain for Turbo Phases  
GTURBO  
USER_DATA_10[6:5] = 00b  
100  
%
(1)  
USER_DATA_10[6:5] = 01b  
USER_DATA_10[6:5] = 10b  
USER_DATA_10[6:5] = 11b  
USER_DATA_10[3:0] = 0000b  
USER_DATA_10[3:0] = 0001b  
USER_DATA_10[3:0] = 0010b  
USER_DATA_10[3:0] = 0011b  
USER_DATA_10[3:0] = 0100b  
USER_DATA_10[3:0] = 0101b  
USER_DATA_10[3:0] = 0110b  
USER_DATA_10[3:0] = 0111b  
USER_DATA_10[3:0] = 1000b  
150  
180  
220  
0.8  
%
%
%
%
%
%
%
%
%
%
%
%
KT  
Thermal balance gain (1)  
0.85  
0.9  
0.95  
1
1.05  
1.1  
1.15  
1.2  
(1) Guaranteed by Design.  
6.4.9 Overcurrent Limit (OCL)  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Overcurrent Limit Thresholds  
IOCL  
Phase Valley OCL Thresholds  
Programmable Range  
17  
130  
A
A
(Program through  
IOUT_OC_FAULT_LIMIT)  
Programmable Resolution  
17 A ≤ IOCL ≤ 80 A  
3
5
Programmable Resolution  
85 A ≤ IOCL ≤ 130 A  
A
A
A
Threshold Accuracy  
17 A ≤ IOCL ≤ 80 A  
-3.05  
-5.55  
3.05  
5.55  
Threshold Accuracy  
85 A ≤ IOCL ≤ 130 A  
6.4.10 Telemetry  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Telemetry  
Per-phase current filter time constant  
tCS_FIL  
300  
20  
µs  
(1)  
tCS_UPDATE  
ICS_RNG  
Per-phase current update time (1)  
Per-phase current reporting range  
IMON average time (1)  
µs  
A
-10  
-10  
120  
tIMON_FIL  
290  
24  
µs  
µs  
tIMON_UPDATE IMON update time (1)  
70 x  
Nph  
IMON_RNG  
IMON reporting range  
A
A/ph  
A
Summed of the per-phase currents  
and the total current  
IMON_ERROR  
Per-phase and total current error (1)  
IMON Calibration Offset LSB (1)  
1.0  
IMON_CAL_OF_  
IOUT_CAL_OFFSET resolution  
0.125  
LSB  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IMON_CAL_OF_  
IMON Calibration Offset Range (1)  
IOUT_CAL_OFFSET range  
-4  
3.75  
A
RNG  
IMON_CAL_GA_  
IMON Calibration Gain LSB (1)  
IMON Calibration Gain Range (1)  
IOUT_CAL_GAIN resolution  
IOUT_CAL_GAIN range  
0.2  
%
%
LSB  
IMON_CAL_GA_  
-10  
10  
RNG  
IMON_LSB  
IMON_ACC  
IMON LSB via PMBus (1)  
Digital IMON Accuracy  
0.125  
3.5  
A
A
12-phase, IOUT = 0 A  
12-phase, IOUT = 60 A  
12-phase, IOUT = 120 A  
12-phase, IOUT = 240 A  
12-phase, IOUT = 360 A  
12-phase, IOUT = 600 A  
12-phase, IOUT = 840 A  
10-phase, IOUT = 0 A  
10-phase, IOUT = 50 A  
10-phase, IOUT = 100 A  
10-phase, IOUT = 200 A  
10-phase, IOUT = 300 A  
10-phase, IOUT = 500 A  
8-phase, IOUT = 0 A  
-3.5  
-9  
9
%
%
%
%
%
%
A
-4.5  
-3  
4.5  
3
-2.25  
-0.9  
-0.64  
-4  
2.25  
0.9  
0.64  
4
-8  
8
%
%
%
%
%
A
-4  
4
-2  
2
-1.33  
-0.8  
-2.5  
-8  
1.33  
0.8  
2.5  
8-phase, IOUT = 45 A  
8-phase, IOUT = 90 A  
8-phase, IOUT = 135 A  
8-phase, IOUT = 180 A  
8-phase, IOUT = 225 A  
8-phase, IOUT = 270 A  
8-phase, IOUT = 450 A  
6-phase, IOUT = 0 A  
8
%
%
%
%
%
%
%
A
-4  
4
-2.67  
-2  
2.67  
2
-1.6  
-1.33  
-0.8  
-2.4  
-9.41  
-4.71  
-3.14  
-2.35  
-1.88  
-1.57  
-0.94  
-0.8  
-9.76  
-4.88  
-3.25  
-2.44  
-1.95  
-1.63  
-0.98  
-0.35  
-11.67  
1.6  
1.33  
0.8  
2.4  
6-phase, IOUT = 25.5 A  
6-phase, IOUT = 51 A  
6-phase, IOUT = 76.5 A  
6-phase, IOUT = 102 A  
6-phase, IOUT = 127.5 A  
6-phase, IOUT = 153 A  
6-phase, IOUT = 255 A  
2-phase, IOUT = 0 A  
9.41  
4.71  
3.14  
2.35  
1.88  
1.57  
0.94  
0.8  
%
%
%
%
%
%
%
A
2-phase, IOUT = 8.2 A  
2-phase, IOUT = 16.4 A  
2-phase, IOUT = 24.6 A  
2-phase, IOUT = 32.8 A  
2-phase, IOUT = 41 A  
2-phase, IOUT = 49.2 A  
2-phase, IOUT = 82 A  
1-phase, IOUT = 0 A  
9.76  
4.88  
3.25  
2.44  
1.95  
1.63  
0.98  
0.35  
11.67  
%
%
%
%
%
%
%
A
1-phase, IOUT = 3 A  
%
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
-5.83  
-3.89  
-2.92  
-2.33  
-1.94  
-1.17  
-5  
TYP  
MAX  
5.83  
3.89  
2.92  
2.33  
1.94  
1.17  
5
UNIT  
%
1-phase, IOUT = 6 A  
1-phase, IOUT = 9 A  
1-phase, IOUT = 12 A  
1-phase, IOUT = 15 A  
1-phase, IOUT = 18 A  
1-phase, IOUT = 30 A  
VVSP = 0.25 V to 0.75 V  
VVSP = 0.75 V to 1.5 V  
VVSP > 1.5 V  
%
%
%
%
%
VREAD_VOUT READ_VOUT accuracy  
mV  
mV  
mV  
-10  
10  
-15.0  
15.0  
VREAD_VOUT_  
READ_VOUT update rate (1)  
200  
2
µs  
%
UPDATE  
VREAD_VIN  
READ_VIN accuracy  
VIN = 4.5 V to 17 V  
-2  
VREAD_VIN_UP  
READ_VIN update rate (1)  
150  
µs  
DATE  
0.28 V to 1.8 V on TSEN pin (-40C to  
150C)  
Temp  
READ_TEMPERATURE_1 accuracy  
-2.5  
2.5  
C
READ_TEMPERATURE_1 update  
rate (1)  
TempUPDATE  
VTSENUVR  
VTSENUVF  
VTSENUVH  
150  
245  
160  
µs  
Low voltage detection on TSEN pin  
before soft-start and during operations  
TSEN low voltage (rising edge)  
TSEN low voltage (falling edge)  
220  
135  
50  
270  
185  
mV  
mV  
mV  
Low voltage detection on TSEN pin  
before soft-start and during operations  
Low voltage detection on TSEN pin  
before soft-start and during operations  
TSEN low voltage (hysteresis) (1)  
TSEN filter time constant (1)  
tTSEN  
5
MHz  
pF  
CTSEN  
Maximum capacitance on TSEN pin (1) To get < 0.5us response time  
220  
10  
RINSHUNT  
Input current shunt range  
0.1  
mΩ  
Input amplifer gain options for different  
GINSHUNT = 0h  
GINSHUNT  
20  
V/V  
shunts (analog gain setting)  
GINSHUNT = 1h  
GINSHUNT = 2h  
GINSHUNT = 3h  
GINSHUNT = 4h  
GINSHUNT = 5h  
GINSHUNT = 6h  
GINSHUNT = 7h  
30  
40  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
50  
60  
70  
80  
100  
Maximum CSPIN-CSNIN voltage can  
IIN x Shunt (mohm) x Analog Gain  
be sensed (1)  
VCSIN_MAX  
800  
mV  
tIIN_FIL  
IIN average time (1)  
IIN update time (1)  
IIN reporting range (1)  
IIN = 5.0 A (1 mV),  
440  
24  
µs  
µs  
A
tIIN_UPDATE  
IIIN_RNG  
-5  
-1  
100  
1
IIN  
READ_IIN accuracy  
RSHUNT = 0.2 mΩ,  
A
A
GINSHUNT = 20 and 100 V/V  
IIN = 10.0 A (2 mV),  
RSHUNT = 0.2 mΩ,  
-1  
1
GINSHUNT = 20 and 100 V/V  
IIN = 20.0 A (4 mV),  
RSHUNT = 0.2 mΩ,  
-3.25  
3.25  
%
GINSHUNT = 20 and 100 V/V  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IIN = 40.0 A (8 mV),  
RSHUNT = 0.2 mΩ,  
-3.25  
3.25  
%
GINSHUNT = 20 and 100 V/V  
IIN = 70.0 A (14 mV),  
RSHUNT = 0.2 mΩ,  
-2  
2
%
GINSHUNT = 20 and 100 V/V  
IIN_CAL  
Calculated input current accuracy (1)  
IIN = 5A; 12Vin to 1.8Vout  
IIN = 10A  
-10  
-5  
10  
5
%
%
%
%
IIN = 40A  
-3.5  
-3  
3.5  
3
IIN = 70A  
VIN = 12 V; VCSPIN-VCSNIN = 14 mV;  
(70A @ 0.2 mohm shunt); Exclude  
ripple;  
VREAD_PIN  
POUT_ACC  
READ_PIN accuracy  
-2.5  
2.5  
%
%
READ_POUT Accuracy  
Per IOUT and VOUT  
(1) Guaranteed by Design.  
6.4.11 Phase-Locked Loop and Closed-Loop Frequency Control  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Switching Frequency  
VIN = 12 V, VVSP = 1.0 V  
fSW × NΦ 8 MHz  
fSW(RNG)  
fSW(TOL)  
Switching Frequency Range  
300  
–10  
2000  
10  
kHz  
%
VIN = 12 V, VVSP = 1.0 V  
fSW × NΦ 8 MHz  
Switching Frequency Tolerance  
Phase-Lock Loop and Synchronization  
VIL(SYNC)  
VIH(SYNC)  
VOL(SYNC)  
VOH(SYNC)  
tPW(SYNC)  
DSYNCOUT  
fSYNC  
SYNC input logic low (1)  
0.8  
0.4  
V
V
SYNC input logic high (1)  
1.35  
SYNC output logic low (1)  
SYNC output logic high (1)  
SYNC input minimum pulse width (1)  
SYNC output duty cycle (1)  
Synchronization frequency (1)  
IPIN = ± 0.5 mA  
IPIN = ± 0.5 mA  
V
1.7  
100  
40  
V
ns  
%
50  
60  
200  
2000  
kHz  
SYNC allowable frequency difference FREQUENCY_SWITCH from 300 kHz  
DfSYNC  
–50  
50  
kHz  
from free-running frequency (1)  
Channel A Sync mode (1)  
to 2 MHz  
MFR_SPECIFIC_E4[5] = X  
MFR_SPECIFIC_E4[8] = 0b  
MFR_SPECIFIC_E4[14] = 0b  
MSYNCA  
Disabled  
MFR_SPECIFIC_E4[5] = 0b  
MFR_SPECIFIC_E4[8] = 1b  
MFR_SPECIFIC_E4[14] = 0b  
Internal Clock, CLF Mode  
External Clock, PLL Mode  
Disabled  
MFR_SPECIFIC_E4[5] = 1b  
MFR_SPECIFIC_E4[8] = 0b  
MFR_SPECIFIC_E4[14] = 1b  
MFR_SPECIFIC_E4[6] = X  
MFR_SPECIFIC_E4[9] = 0b  
MFR_SPECIFIC_E4[15] = 0b  
MSYNCB  
Channel B Sync mode (1)  
MFR_SPECIFIC_E4[6] = 0b  
MFR_SPECIFIC_E4[9] = 1b  
MFR_SPECIFIC_E4[15] = 0b  
Internal Clock, CLF Mode  
MFR_SPECIFIC_E4[6] = 1b  
MFR_SPECIFIC_E4[9] = 0b  
MFR_SPECIFIC_E4[15] = 1b  
External Clock, PLL Mode  
0
PHSYNCA  
Channel A SYNC Phase Offset (1)  
MFR_SPECIFIC_E4[23:20] = 0h  
deg  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MFR_SPECIFIC_E4[23:20] = 1h  
MFR_SPECIFIC_E4[23:20] = 2h  
MFR_SPECIFIC_E4[23:20] = 3h  
MFR_SPECIFIC_E4[23:20] = 4h  
MFR_SPECIFIC_E4[23:20] = 5h  
MFR_SPECIFIC_E4[23:20] = 6h  
MFR_SPECIFIC_E4[23:20] = 7h  
MFR_SPECIFIC_E4[23:20] = 8h  
MFR_SPECIFIC_E4[23:20] = 9h  
MFR_SPECIFIC_E4[23:20] = Ah  
MFR_SPECIFIC_E4[23:20] = Bh  
MFR_SPECIFIC_E4[31:28] = 0h  
MFR_SPECIFIC_E4[31:28] = 1h  
MFR_SPECIFIC_E4[31:28] = 2h  
MFR_SPECIFIC_E4[31:28] = 3h  
MFR_SPECIFIC_E4[31:28] = 4h  
MFR_SPECIFIC_E4[31:28] = 5h  
MFR_SPECIFIC_E4[31:28] = 6h  
MFR_SPECIFIC_E4[31:28] = 7h  
MFR_SPECIFIC_E4[31:28] = 8h  
MFR_SPECIFIC_E4[31:28] = 9h  
MFR_SPECIFIC_E4[31:28] = Ah  
MFR_SPECIFIC_E4[31:28] = Bh  
MIN  
TYP  
30  
MAX  
UNIT  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
60  
90  
120  
150  
180  
210  
240  
270  
300  
330  
0
PHSYNCB  
Channel B SYNC Phase Offset (1)  
30  
60  
90  
120  
150  
180  
210  
240  
270  
300  
330  
(1) Guaranteed by Design.  
6.4.12 Logic Interface  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.975  
0.6  
UNIT  
Logic Interface Pins  
VAENL  
Channel A ENABLE Logic Low  
Channel A ENABLE Logic High  
Channel A ENABLE Hysteresis (1)  
Channel A ENABLE Deglitch (1)  
V
V
VAENH  
1.525  
0.4  
VAENHYS  
tAENDIG  
V
0.275  
µs  
Channel A ENABLE Low to VRRDY  
Low  
No soft-stop; Only valid when using  
AVR_EN pin.  
tAENVRRDYF  
1.5  
µs  
IAENH  
Channel A I/O Leakage  
Leakage current , VAVR_EN = 1.1 V  
25  
µA  
V
VBENL  
Channel B ENABLE Logic Low  
Channel B ENABLE Logic High  
Channel B ENABLE Hysteresis (1)  
Channel B ENABLE Deglitch (1)  
0.925  
VBENH  
VBENHYS  
tBENDIG  
1.225  
0.2  
V
0.3  
1.5  
V
0.275  
µs  
Channel B ENABLE Low to VRRDY  
Low (1)  
No soft-stop; Only valid when using  
BVR_EN pin.  
tBENVRRDYF  
µs  
IBENH  
Channel B I/O Leakage  
PWMx Output Low-level  
PWMx Output High-level  
PWMx Tri-State  
Leakage current , VBVR_EN = 1.1 V  
ILOAD = ± 0.5 mA  
25  
µA  
V
VPWML  
VPWMH  
VPWM_Tri  
0.11  
ILOAD = ± 0.5 mA; VCC = 2.97 V  
ILOAD = ± 100 µA  
2.85  
V
1.440  
1.5  
1.560  
V
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CLOAD = 10 pF; ILOAD = ± 100 µA; 10%  
to 90% both edges  
tP-S_H-L  
tP-S_TRI  
PWMx H-L Transition-time (1)  
10  
ns  
CLOAD = 10 pF; ILOAD = ± 100 µA; 10%  
or 90% to tri-state; both edges  
PWMx Tri-State Transition (1)  
20  
ns  
(1) Guaranteed by Design.  
6.4.13 Current Sensing and Current Sharing  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Current Sense and Current Sharing  
IACSPx  
ACSPx leakage current  
VACSPx = 2.1 V  
75  
µA  
%
IBAL_TOL  
Internal current share tolerance (1)  
At 20.5A/ph operations  
-4.5  
2.8  
4.5  
Based on the filtered CSPx average  
current  
USER_DATA_11[47:46] = 00b  
ISHARE_WRN_T  
Current Share Warning Threshold  
5
7.2  
A
H
(independently programmable for each  
channel)  
USER_DATA_11[47:46] = 01b  
USER_DATA_11[47:46] = 10b  
7.5  
10  
15  
12.5  
17.5  
A
A
12.5  
(1) Guaranteed by Design.  
6.4.14 Pin Detection Thresholds  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-Side Pinstrap Resistor Decode (3  
LSB bits) (1)  
RDECODE  
RLOWER = 154 kΩ with 1% tolerance  
111  
Bin  
RLOWER = 115 kΩ with 1% tolerance  
RLOWER = 86.6 kΩ with 1% tolerance  
RLOWER = 64.9 kΩ with 1% tolerance  
RLOWER = 49.9 kΩ with 1% tolerance  
RLOWER = 37.4 kΩ with 1% tolerance  
RLOWER = 27.4 kΩ with 1% tolerance  
RLOWER = 20.0 kΩ with 1% tolerance  
VPIN = 22.5 mV  
110  
101  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
100  
011  
010  
001  
000  
VDECODE Pin Voltage Decode (5 MSB bits) (1)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
VPIN = 67.5 mV  
VPIN = 112.5 mV  
VPIN = 157.5 mV  
VPIN = 202.5 mV  
VPIN = 247.5 mV  
VPIN = 292.5 mV  
VPIN = 337.5 mV  
VPIN = 382.5 mV  
VPIN = 427.5 mV  
VPIN = 472.5 mV  
VPIN = 517.5 mV  
VPIN = 562.5 mV  
VPIN = 607.5 mV  
VPIN = 652.5 mV  
VPIN = 697.5 mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
MAX  
UNIT  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
VPIN = 742.5 mV  
VPIN = 787.5 mV  
VPIN = 832.5 mV  
VPIN = 877.5 mV  
VPIN = 922.5 mV  
VPIN = 967.5 mV  
VPIN = 1012.5 mV  
VPIN = 1057.5 mV  
VPIN = 1102.5 mV  
VPIN = 1147.5 mV  
VPIN = 1192.5 mV  
VPIN = 1237.5 mV  
VPIN = 1282.5 mV  
VPIN = 1327.5 mV  
VPIN = 1372.5 mV  
VPIN = 1417.5 mV  
(1) The same decoding scheme and thresholds apply to both the ADDR_CONFIG and VBOOT_CHA pins.  
6.4.15 ADDR_CONFIG Pinstrap Decoding  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Phase Configuration (Channel A +  
Channel B)  
Pinstrap Mode  
Decode 3 LSB = 000b  
PHCFG  
12+0  
Phases  
Pinstrap Mode  
Decode 3 LSB = 001b  
11+0  
10+2  
9+2  
8+2  
7+2  
6+2  
5+2  
Phases  
Phases  
Phases  
Phases  
Phases  
Phases  
Pinstrap Mode  
Decode 3 LSB = 010b  
Pinstrap Mode  
Decode 3 LSB = 011b  
Pinstrap Mode  
Decode 3 LSB = 100b  
Pinstrap Mode  
Decode 3 LSB = 101b  
Pinstrap Mode  
Decode 3 LSB = 110b  
Pinstrap Mode  
Decode 3 LSB = 111b  
Phases  
Phases  
Bin  
NVM Mode (PIN_DETECT_OVERRIDE)  
Pinstrap Mode  
PHASE_CONFIG  
PMBADD  
PMBus Address (7 bit I2C Address)  
88d + 5 MSB of decode  
SLAVE_ADDRESS  
R
NVM Mode (PIN_DETECT_OVERRIDE)  
Bin  
6.4.16 VBOOT_CHA Pinstrap Decoding  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pinstrap Mode  
Decode = 0d  
VBOOTA  
Boot voltage for Channel A  
0
V
Pinstrap Mode  
Decode = 1d to 253d  
0.24 + (Decode × 0.01)  
V
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pinstrap Mode  
Decode = 254d  
3.3  
V
Pinstrap Mode  
5
V
V
Decode = 255d(1)  
NVM Mode (PIN_DETECT_OVERRIDE)  
VOUT_COMMAND  
(1) Requires an external divider on the VSP and VSN pins. VOUT_SCALE_LOOP is automatically programmed to 0.5  
6.4.17 Timing Specifications  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Timing Specifications  
TON_DELAY range = 0.5 ms to 127.5  
ms with  
tENABLE  
Enable delay time options (1)  
0.5  
127.5  
ms  
(independently programmable for each  
channel)  
TON_DELAY resolution  
TON_DELAY accuracy  
0.5  
ms  
%
-10  
0.5  
10  
TOFF_DELAY range = 0.5 ms to 127.5  
ms  
tDISABLE  
Disable delay time options (1)  
127.5  
ms  
(independently programmable for each  
channel)  
TOFF_DELAY resolution  
TOFF_DELAY accuracy  
0.5  
ms  
-10  
10  
%
PHSTART  
Operating Phases during Soft-Start (1) USER_DATA_07[5:4] = 00b  
MIN(4, NTOTAL  
)
)
)
ph  
(independently programmable for each  
USER_DATA_07[5:4] = 01b  
channel)  
MIN(6, NTOTAL  
ph  
USER_DATA_07[5:4] = 10b  
USER_DATA_07[5:4] = 11b  
MIN(8, NTOTAL  
NTOTAL  
ph  
ph  
Programmable Range  
Controller minimum OFF time range  
tOFF_MIN  
40  
135  
ns  
ns  
USER_DATA_02[23:20] = 0 to Fh  
(independently programmable for each  
Resolution  
channel)  
15  
Accuracy (all settings)  
-25  
30  
25  
60  
ns  
ns  
tON_MIN  
Controller minimum ON time (1)  
USER_DATA_02[39:38] = 0 to 3h  
Resolution  
(independently programmable each  
channel)  
10  
ns  
ns  
ns  
Accuracy  
-12  
20  
12  
Programmable Range  
USER_DATA_02[31:24]  
tON_BLANK  
Rising-edge blanking time range (1)  
155  
(independently programmable for each  
channel)  
Resolution  
Accuracy  
5
ns  
ns  
-25  
25  
(1) Guaranteed by Design.  
6.4.18 Faults and Converter Protection  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
32  
TYP  
MAX  
UNIT  
PROTECTION  
Programmable Range (2)  
448  
16  
mV  
mV  
mV  
Channel A Tracking OV Fault Threshold  
VOVTRKA ( Offset with respect to output voltage  
target including VDROOP )  
Resolution  
32  
Accuracy (all settings)  
-16  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
mV  
mV  
V
Programmable Range (2)  
32  
448  
Channel B Tracking OV Fault Threshold  
VOVTRKB ( Offset with respect to output voltage  
target including VDROOP )  
Resolution  
32  
Accuracy (all settings)  
Programmable Range (2)  
Resolution  
-20  
0.6  
20  
3.7  
0.1  
0.1  
V
VOVFIXA Channel A Fixed OV Fault Threshold  
Accuracy (VOVFIX < 3.6 V)  
Accuracy (VOVFIX ≥ 3.6 V)  
Programmable Range (2)  
Resolution  
-50  
-65  
0.6  
50  
65  
mV  
mV  
V
3.7  
V
VOVFIXB Channel B Fixed OV Fault Threshold  
Accuracy (VOVFIX < 3.6 V)  
Accuracy (VOVFIX ≥ 3.6 V)  
-50  
-65  
50  
65  
mV  
mV  
V
VOVPB-A Pre-biased OVP Channel A threshold (1)  
VOVPB-B Pre-biased OVP Channel B threshold (1)  
3.7  
3.7  
V
Programmable Range (2)  
Resolution  
16  
448  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
Channel A Tracking OV Warning  
Threshold (Offset with respect to output  
voltage target including VDROOP)  
VOVW-A  
VOVW-B  
VUVW-A  
VUVW-B  
VUVF-A  
VUVF-B  
8
8
Accuracy (all settings)  
Programmable Range (2)  
Resolution  
-12  
24  
12  
448  
Channel B Tracking OV Warning  
Threshold (Offset with respect to output  
voltage target including VDROOP)  
Accuracy (all settings)  
Programmable Range (2)  
Resolution  
-23  
-16  
23  
-448  
Channel A UV Warning Threshold ( Offset  
with respect to output voltage target  
including VDROOP )  
8
Accuracy (all settings)  
Programmable Range (2)  
Resolution  
-11  
-8  
11  
-448  
Channel B UV Warning Threshold ( Offset  
with respect to output voltage target  
including VDROOP )  
8
Accuracy (all settings)  
Programmable Range (2)  
Resolution  
-22  
32  
22  
448  
Channel A Tracking UV Fault Threshold  
( Offset with respect to output voltage  
target including VDROOP )  
32  
32  
Accuracy (all settings)  
Programmable Range (2)  
Resolution  
-16  
32  
16  
448  
Channel B Tracking UV Fault Threshold  
( Offset with respect to output voltage  
target including VDROOP )  
Accuracy (all settings)  
-21  
21  
VOUT_UV_FAULT_RESPONSE[2:0] =  
x00b  
tDLY(UVF) Deglitch Time for Triggering UV Fault (1)  
4
8
µs  
µs  
µs  
µs  
VOUT_UV_FAULT_RESPONSE[2:0] =  
x01b  
VOUT_UV_FAULT_RESPONSE[2:0] =  
x10b  
12  
16  
VOUT_UV_FAULT_RESPONSE[2:0] =  
x11b  
Programmable Range (2)  
1
1023  
A
A
Resolution  
1
1
Channel A Overcurrent Protection  
Threshold  
IOCP-A  
Accuracy (11 phase, IOCP ≤ 135 A)  
Accuracy (11 phase, IOCP > 135 A)  
Programmable Range (2)  
Resolution  
-7  
-4  
1
7
4
A
%
A
1023  
A
Channel B Overcurrent Protection  
Threshold  
IOCP-B  
Accuracy (4 phase, IOCP ≤ 75 A)  
Accuracy (4 phase, IOCP > 75 A)  
-3  
-3  
3
3
A
%
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
A
Programmable Range (2)  
1
1023  
Resolution  
1
A
Channel A Overcurrent Warning  
Threshold  
IOCW-A  
Accuracy (11 phase, IOCW ≤ 135 A)  
Accuracy (11 phase, IOCW > 135 A)  
Programmable Range (2)  
Resolution  
-7  
-4  
1
7
4
A
%
A
1023  
1
A
Channel B Overcurrent Warning  
Threshold  
IOCW-B  
Accuracy (4 phase, IOCW ≤ 75 A)  
Accuracy (4 phase, IOCW > 75 A)  
Programmable Range  
Resolution  
-3  
-3  
3
3
A
%
°C  
°C  
°C  
°C  
°C  
°C  
V
90  
160  
TOTF  
Over-temperature Fault threshold  
Over-temperature Warning threshold(1)  
Input over-voltage fault threshold  
Input over-voltage warning threshold  
Input under-voltage warning threshold  
Input under-voltage fault threshold  
1
10  
Accuracy (all settings)  
Programmable Range  
Resolution  
-3  
3
90  
160  
TOTW  
VIOVF  
VIOVW  
VIUVW  
VIUVF  
tIUVF  
Accuracy (all settings)  
Programmable Range  
Resolution  
-3  
4
3
18  
1
V
Accuracy  
-2  
4
2
%
V
Programmable Range  
Resolution  
18  
1
V
Accuracy  
-2  
2
%
V
Programmable Range  
Resolution  
4.25  
11.5  
0.25  
0.25  
V
Accuracy (all settings)  
Programmable Range  
Resolution  
-0.25  
4.0  
0.25  
V
11.25  
Accuracy (all settings)  
-0.25  
0.25  
300  
128  
V
Input Under-Voltage Fault Response  
Time (1)  
Time from VIN < VIUVF to converter  
shutdown  
VIN_UV_FAULT_RESPONSE = 80h  
Shutdown immediately, do not restart  
µs  
Programmable Range  
Resolution  
4
A
A
IIOCF  
Input over-current fault threshold  
4
4
Accuracy (all settings)  
Programmable Range  
Resolution  
-3.5  
4
3.5  
A
128  
A
IIOCW  
Input over-current warning threshold  
A
Accuracy (all settings)  
USER_DATA_11[15:14] = 00b  
USER_DATA_11[15:14] = 01b  
USER_DATA_11[15:14] = 10b  
USER_DATA_11[15:14] = 11b  
-4  
4
A
5
10  
25  
50  
ms  
ms  
ms  
ms  
Hiccup Wait Time (1)  
Applies only to HICCUP fault responses  
tHICCUP  
ATSEN/BTSEN pin voltage causing  
Power stage fault (TAO HIGH)  
VPSFLT  
2.6  
2.4  
0.2  
V
V
V
ATSEN/BTSEN pin voltage clearing  
Power stage fault (TAO HIGH)  
ATSEN/BTSEN pin voltage hysteresis for  
Power stage fault (TAO HIGH)  
(1) Guaranteed by Design.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
(2) Settings are programmed through PMBus commands as described in the Programming section of this document. The device internally  
maps programmed settings to hardware supported values.  
6.4.19 PMBus Interface  
VCC = 3.3 V, CSPIN = VIN_CSNIN = 12 V, TJ = -40 to 125 unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PMBus Interface and Timing  
PMBus Free time between STOP and  
START conditions (1)  
tPMB-BUF  
0.5  
0.26  
0.26  
0
µs  
µs  
µs  
µs  
ns  
ms  
tPMB-HD- Hold time after Repeated Start Condition  
(1)  
STA  
tPMB-SU-  
Stop condition Setup time (1)  
STO  
tPMB-HD-  
SMB_DIO Hold Time (1) (2)  
DAT  
tPMB-SU-  
SMB_DIO Setup Time (1)  
50  
DAT  
tPMB-  
SMB_CLK low timeout (1) (3)  
25  
35  
TIMEOUT  
tPMB-LOW SMB_CLK low time (1)  
0.5  
µs  
µs  
tPMB-HIGH SMB_CLK high time (1) (4)  
0.26  
50  
25  
tPMB-LOW- Maximum clock stretching time (slave)  
ms  
ms  
(1) (5)  
SEXT  
tPMB-LOW- Maximum clock stretching time (master)  
10  
(1) (6)  
MEXT  
100 kHz Class  
1000  
300  
120  
1000  
300  
120  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SMB_DIO/SMB_CLK rise time,  
tR-PMB  
400 kHz Class  
1000 kHz Class  
100 kHz Class  
400 kHz Class  
1000 kHz Class  
( VIL(MAX)-150 mV to VIH(MIN)+150 mV) (1)  
SMB_DIO/SMB_CLK fall time, ( VIH(MIN)  
tF-PMB  
+150 mV to VIL(MAX) + 150 mV) (1)  
tPMB-REJ Noise spike suppression-time (1) (7)  
ILK-PMB-  
Input leakage per PMBus segment (1)  
-200  
-10  
200  
10  
µA  
µA  
BUS  
ILK-PMB-  
Input leakage for PMBus pins  
PIN  
CPMB-BUS PMBus Bus Capacitance (1)  
400  
10  
pF  
pF  
CPMB-PIN PMBus Pin Capacitance (1)  
VPULLUP_  
PMBus interface pull ups (1)  
1.62  
1.35  
3.6  
0.8  
V
V
V
PMBus  
VIL_PMBus SMB_DIO, SMB_CLK Input logic low  
VIH_PMBu  
SMB_DIO, SMB_CLK Input logic high  
s
VHYST_PM  
Hysteresis voltage (1)  
150  
250  
350  
2
mV  
Bus  
PMBCLKR PMBus clock frequency range (1)  
PMBus clock (8)  
0.05  
MHz  
(1) Guaranteed by Design.  
(2) A device must internally provide sufficient hold time for the SMBDAT signal (with respect to the VIH, MIN of the SMBCLK signal) to  
bridge the undefined region of the falling edge of SMBCLK.  
(3) Devices participating in a transfer can abort the transfer in progress and release the bus when any single clock low interval exceeds  
the value of tTIMEOUT, MIN. After the master in a transaction detects this condition, it must generate a stop condition within or after  
the current data byte in the transfer process. Devices that have detected this condition must reset their communication and be able  
to receive a new START condition no later than tTIMEOUT, MAX. Typical device examples include the host controller, and embedded  
controller, and most devices that can master the SMBus. Some simple devices do not contain a clock low drive circuit; this simple kind  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
of device typically may reset its communications port after a start or a stop condition. A timeout condition can only be ensured if the  
device that is forcing the timeout holds the SMBCLK low for tTIMEOUT, MAX or longer  
(4) tPMB-HIGH, MAX provides a simple guaranteed method for masters to detect bus idle conditions. A master can assume that the bus is  
free if it detects that the clock and data signals have been high for greater than tHIGH, MAX  
.
(5) tPMB-LOW-SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in one message from the initial START  
to the STOP. It is possible that another slave device or the master extends the clock causing the combined clock low extend time to be  
greater than tLOW:SEXT. Therefore, this parameter is measured with the slave device as the sole target of a full-speed master  
(6) tPMB-LOW-MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined  
from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master extends the clock causing the  
combined clock low time to be greater  
(7) Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.  
(8) I2C High-Speed mode is not supported  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
 
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
6.5 Typical Characteristics  
Figure 6-1. Quiescent current vs. junction  
temperature  
Figure 6-2. VREF voltage vs. junction temperature  
Figure 6-3. Pull-down resistance vs. junction  
temperature  
Figure 6-4. PWM output voltage vs. junction  
temperature (0.5 mA bias)  
Figure 6-5. AVR_EN / BVR_EN logic threshold vs.  
junction temperature  
Figure 6-6. AVSP, BVSP, AVSN, BVSN leakage vs.  
junction temperature (1.0 V bias)  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS536C7B1 is a 12-phase step-down controller with two channels, built-in non-volatile memory (NVM), a  
PMBus v1.3.1 interface, and is fully compatible with TI NexFET power stages.  
7.2 Functional Block Diagram  
DCLLA  
COMPA  
Tristate  
Driver /  
Logic  
AVSP  
AVSN  
Differential  
Amplifier  
TON  
1-Shot  
VRAMPA  
VCOMPA  
VISUMA  
APWM1  
+
VDIFFA  
VISUMA  
VFBDRPA  
VDACA  
+
+
CLKA_ON  
CLKB_ON  
Loadline  
Control  
Programmable  
Loop  
Mode Control  
and  
Programmable  
Phase Manager  
BVSP  
BVSN  
Differential  
Amplifier  
VRAMPB  
VCOMPB  
VISUMB  
+
VDIFFB  
VISUMB  
VFBDRPB  
VDACB  
+
+
Loadline  
Control  
Programmable  
Loop  
Tristate  
Driver /  
Logic  
TON  
1-Shot  
APWM12 / BPWM1  
DCLLB  
COMPB  
Phase Config  
VISUMA  
ACSP1  
VISUMB  
IL1  
Current  
Sensing  
Amplifiers  
AVR_EN  
Analog  
Mux  
IL1  
BVR_EN  
ACSP12 / BCSP1  
Fault Management,  
Status Detection and  
State Control  
IL12  
IL12  
AVR_RDY  
BVR_RDY  
VR_FAULT#  
Adaptive  
On-Time Control  
and  
Current Sharing  
Circuitry  
V3P3  
GND  
FAULT  
VRAMPA VRAMPB  
Ramp  
Generator  
VDACA  
VDACB  
ADDR_CONFIG  
VBOOT_CHA  
I2C Interface and  
Digital Logic  
Pin Detection  
Circuit  
IIN  
SMB_CLK  
NVM  
AFE, ADC, and DAC  
SMB_ALERT#  
SMB_DIO  
VDACA  
VDACB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.3 Power-up and initialization  
7.3.1 First power-up  
When power is applied to TPS536C7B1, an initialization procedure performs self-checks of internal memories,  
performs pin detection, and loads the values stored in non-volatile memory to operating memory. This procedure  
can take up to 20 ms to complete, during which time the device may not respond to PMBus commands.  
Initialization takes place the first time power is applied to the VCC pin and does not repeat unless the device  
is power cycled. Pin configuration is loaded during this time. Until initialization is complete, all pins remain high  
impedance, except for the AVR_RDY and BVR_RDY pins which are pulled low by default.  
Once initialization is complete, the device waits for an enable condition specified by the ON_OFF_CONFIG  
command to begin power conversion. By default the device is configured to wait for the AVR_EN pin to be set  
high to enable channel A, and the BVR_EN pin to be set high to enable channel B. Once an enable condition is  
received, TPS536C7B1 checks that the powerstage input supply (VIN_CSNIN pin) is above the VIN_ON value,  
and the powerstage driver is fully powered (e.g. that no TAO_LOW condition exists). This takes approximately  
750 μs (up to 1.0 ms) to complete before the first PWM pulses are output by the controller. This process repeats  
each time power conversion is enabled for any reason, including enable cycling or fault shutdown.  
Continue  
Waiting  
Begin accepting  
PMBus commands.  
Initialize  
+3.3 V Power  
Applied to VCC  
NVM and Trim bits,  
Pinstrap Detection  
Up to 20 ms  
Wait for Enable  
Condition per  
ON_OFF_CONFIG,  
or hiccup/hysteresis  
fault recovery  
Fault  
Not  
Ready  
Yet  
Power  
Conversion  
Continues  
Check for faults, UVLO  
and Powerstages ready,  
begin enable sequence  
Power Conversion  
Output voltage begins  
rising to VBOOT,  
VR_RDY releases  
Up to 1 ms  
Fault Condition  
Figure 7-1. Initialization process  
7.3.2 Boot voltage configuration (VBOOT)  
By default, the boot voltage for channel A is given by pin-detection on the VBOOT_CHA pin. Alternatively,  
configure the device to use a value stored in non-volatile memory (NVM) for VOUT_COMMAND using  
the PIN_DETECT_OVERRIDE command. See Pin-strap Detection and PIN_DETECT_OVERRIDE for more  
information. The boot voltage for Channel B is given by the value stored in non-volatile memory for  
VOUT_COMMAND always. Whenever power conversion is enabled, each channel boots to its VBOOT value,  
regardless of whether the output voltage was changed after the last boot-up.  
Use the VOUT_COMMAND PMBus command to change the output voltage on-the-fly. This is one  
implementation of adaptive voltage scaling (AVS) or dynamic VID (DVID). Output voltage transitions occur at  
the value slew rate specified by the VOUT_TRANSITION_RATE command.  
7.3.3 Power Sequencing  
There are no strict supply sequencing requirements for TPS536C7B1. VIN_CSNIN and CSP, the powerstage 5-  
V supply, and the controller VCC (3.3-V) may be safely powered up independently of each other. TI recommends  
that power conversion be commanded on only after all supplies are established and have had time to settle.  
Refer to Power Supply Recommendations for more detailed information.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.4 Pin connections and bevahior  
7.4.1 Supplies: VCC and VREF  
The VCC pin supplies all analog and digital circuits internal to the device. Connect a 3.3-V supply voltage, and  
local ceramic bypass capacitor with a minimum effective capacitance of 1.0 µF.  
The VREF pin is the output of an internal LDO with a nominal voltage of 1.5 V. The VREF voltage provides a  
common-mode voltage for the power stage IOUT pins, as well as internal analog circuits. Bypass the VREF pin  
local to the controller, with a ceramic bypass capacitor with a minimum effective capacitance of 1.0 µF. Connect  
VREF to the REFIN pins of the power stages.  
7.4.2 Differential remote sensing and output voltage scaling: AVSP/AVSN, BVSP/BVSN  
A differential remote sense amplifier enables the controller to compensate for I×R drop due to PCB copper, in  
high current applications. Connect the AVSP/BVSP and AVSN/BVSN pins respectively to the output voltage at  
the load point, through the network described in Figure 7-2. A connection to the output voltage, local to the  
power stages, shown by RLCL_P and RLCL_N, maintains closed loop operation even if the load is uninstalled, or  
the remote sense connection is opened. Route the differential remote sense lines as a tightly-coupled differential  
pair, and maintain a wide clearance to any fast switching nets, such as power stage switch nodes or power  
input voltage. Optionally, use a small filtering capacitor, shown as CFILT, at the controller side to improve noise  
immunity.  
The output voltage set-point is generated by an internal precision reference DAC. The reference DAC is capable  
of producing reference voltages up to 1.87 V. For output voltage set-points below 1.87 V, no scaling (internal or  
external) is required, and the sensed output voltage is compared directly to the reference voltage.  
For output voltage set-points between 1.87 V and 3.74 V, the controller applies internal scaling of the remote  
sense amplifier, and no external sense divider is needed. Set the VOUT_MAX command greater than 1.87 V to  
enable this internal scaling. For output voltage set-points greater than 3.74 V, apply an external sense divider  
with RRMT_P = RDIV = 500 Ω, and set the VOUT_SCALE_LOOP command to 0.5 V/V. This enables output  
voltage set-points up to 5.5 V. The overvoltage/undervoltage thresholds are referenced to the VSP/VSN pins  
only and need to be scaled appropriately for applications with an external resistor divider. Refer to Table 7-1 for  
more information.  
TPS536C7B1 performs an open/short detection on the AVSP/AVSN and BVSP/BVSN pins at initialization to  
determine if the voltage sense lines are open. The controller flags a fault condition and does not attempt to boot  
if an open sense line is detected. Ground the VSP/VSN lines for unused channels to prevent false-triggering,  
in applications which do not make use of both channels. As such, the local sense resistor connection may be  
omitted, but is still recommended for debug and system bode plot measurement.  
VOUT Local  
RLCL_P  
RRMT_P  
AVSP/BVSP  
VOUT+  
VDROOP  
Remote Sense and  
Droop Amplifier  
CFILT  
RDIV  
To Control Loop  
RRMT_N  
AVSN/BVSN  
VOUT-  
RLCL_N  
GND Local  
VDAC  
Voltage  
Reference  
DAC  
VOUT_COMMAND  
×
VOUT_SCALE_LOOP  
VOUT_MAX  
Figure 7-2. Differential remote sensing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-1. Component and command values  
Component / Command  
RLCL_P  
Value (Vout ≤ 1.87 V)  
Value (1.87 V < Vout ≤ 3.74 V)  
Value (3.74 V < Vout ≤ 5.5 V)  
DNP  
DNP  
DNP  
RRMT_P  
0 Ω  
0 Ω  
500 Ω  
RRMT_N  
0 Ω  
0 Ω  
0 Ω  
RLCL_N  
DNP  
DNP  
DNP  
DNP  
DNP  
500 Ω  
RDIV  
CFILT  
100 pF (optional)  
1.0  
100 pF (optional)  
1.0  
100 pF (optional)  
0.5  
VOUT_SCALE_LOOP  
VOUT_MAX  
VOUT_COMMAND  
VOUT_MAX ≤ 1.87 V  
VOUT_COMMAND ≤ 1.87 V  
1.87 V < VOUT_MAX ≤ 3.74 V  
VOUT_COMMAND ≤ 3.74 V  
3.74 V < VOUT_MAX ≤ 5.5 V  
VOUT_COMMAND ≤ 5.5 V  
7.4.3 Input current sensing: VIN_CSNIN and CSPIN  
The VIN_CSNIN and CSP pins are internally connected to a high-side current sense amplifier. Kelvin connect  
these pins to the external sense element RSENSE as shown in Figure 7-3, and route back to the controller as  
a tightly coupled differential pair. RSENSE may be a precision current sense shunt resistor or an input inductor  
DCR, with an associated temperature compensation network. TI recommends adding common-mode filtering  
capacitors, shown as CCMFILT, and a differential-mode filtering capacitor CDMFILT to reduce measurement noise.  
A typical value for these capacitors is 1.0 µF.  
For designs that do not use input current sensing, connect VIN_CSNIN and CSPIN together, and to the  
input voltage supply. The controller requires input voltage sense for proper on-time generation. Ensure the  
VIN_CSNIN and CSPIN pins remain within ± 300 mV due to internal ESD protection structures on these pins.  
To Power stage VIN  
RSENSE  
Pins/pads  
PVIN  
TPS536xx  
To On-Time  
Generators  
VIN_CSNIN  
CSPIN  
CDMFILT  
œ
READ_IIN  
ADC  
+
800mV  
Max  
GINSHUNT  
Digital Gain  
GIINMAX = 0 to 255  
CCMFILT  
Analog Front-End Gain  
20 to 100  
IIN Offset  
IIN_OFS = -8 A to +7.9375A  
Figure 7-3. Input current sensing  
Once properly calibrated, the READ_IIN command returns measured input current data in real time. Power  
supply telemetry and calibration describes the process and equations for input current calibration.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.4.4 Pin-strap detection and PIN_DETECT_OVERRIDE  
The ADDR_CONFIG pin provides limited resistor pin detection for the PMBus slave address, and phase  
configuration. Connect a resistor divider to ADDR_CONFIG as shown in Figure 7-4. Refer to Table 7-2 to  
select resistor values. The table shows series E96 value equivalents. Use 1% tolerance resistors for all values.  
After pin detection completes, the decoded results are loaded into the SLAVE_ADDRESS and PHASE_CONFIG  
commands. Phase firing order is automatically selected by pin detection. Disable phase number detection on the  
ADDR_CONFIG pin detection using PIN_DETECT_OVERRIDE, to use a non-default firing order.  
The VBOOT_CHA pin provides resistor pin detection for the channel A boot voltage. The channel B boot  
voltage does not have pin detection and must be programmed in non-volatile memory. Connect a resistor divider  
to VBOOT_CHA as shown in Figure 7-4. The table shows series E96 value equivalents. Use 1% tolerance  
resistors for all values. After pin detection completes, the decoded result is loaded into the VOUT_COMMAND  
command for PAGE 0.  
For each each pin detection, during boot-up the device performs two measurements to determine an 8 bit binary  
number, referred to as the pinstrap decode. The 3 LSB bits are determined by shorting the high-side resistor  
and measuring the low-side resistor value. The 5 MSB bits are determined by measuring the pin voltage. The  
decoded value is then mapped to the configuration values shown in the tables below.  
Values not given by ADDR_CONFIG pinstrap decoding and VBOOT_CHA pinstrap decoding can still be  
achieved using the PIN_DETECT_OVERRIDE command. This command instructs the device at power-up,  
whether to follow the values given by pin detection, or use values stored in non-volatile memory to populate  
the SLAVE_ADDRESS, PHASE_CONFIG and VOUT_COMMAND commands. Each parameter has a separate  
control, so it is possible, for example, to pin detect PMBus address, while taking phase configuration from NVM.  
TPS536xx  
VREF  
RHB  
RHA  
ADDR_CONFIG  
VBOOT_CHA  
RLB  
RLA  
Figure 7-4. Pin-strap pin connections  
Example: Selecting a PMBus address not available by pin-strapping  
1. Select the ADDR_CONFIG resistors RHA and RLA to ensure each device on the bus still has a unique  
adddress at the first power-up. Each device still must be addressed uniquely, in order to configure the  
PIN_DETECT_OVERRIDE command.  
2. Write bit 2 in PIN_DETECT_OVERRIDE command to 0b, to disable pin detection for the PMBus Address on  
the ADDR_CONFIG pin.  
3. Write the SLAVE_ADDRESS command, to configure the new slave address, in 7-bit right-justified binary  
format (e.g. 96d = 1100000b).  
4. Issue a STORE_USER_ALL command to commit the configuration to non-volatile memory  
5. At the next power cycle, the values stored in non-volatile memory are used, instead of those selected by the  
ADDR_CONFIG resistors selected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
SPACE  
Table 7-2. ADDR_CONFIG pinstrap decoding  
Phase Configuration  
12 + 0  
LSB = 000b  
11 + 0  
10 + 2  
9 + 2  
8 + 2  
7 + 2  
6 + 2  
5 + 2  
(Ch. A + Ch. B)  
LSB = 001b  
LSB = 010b  
LSB = 011b  
LSB = 100b  
LSB = 101b  
LSB = 110b  
LSB = 111b  
RHA  
RLA  
RHA  
RLA  
RHA  
RLA  
RHA  
RLA  
RHA  
RLA  
RHA  
RLA  
RHA  
RLA  
RHA  
RLA  
MSB  
PMBus Address  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
(kΩ)  
00000b  
00001b  
00010b  
00011b  
00100b  
00101b  
00110b  
00111b  
01000b  
01001b  
01010b  
01011b  
01100b  
01101b  
01110b  
01111b  
10000b  
10001b  
10010b  
10011b  
10100b  
10101b  
10110b  
10111b  
11000b  
11001b  
11010b  
11011b  
11100b  
11101b  
11110b  
11111b  
88d / B0h  
89d / B2h  
90d / B4h  
91d / B6h  
92d / B8h  
93d / BAh  
94d / BCh  
95d / BEh  
96d / C0h  
97d / C2h  
98d / C4h  
99d / C6h  
100d / C8h  
101d / CAh  
102d / CCh  
103d / CEh  
104d / D0h  
105d / D2h  
106d / D4h  
107d / D6h  
108d / D8h  
109d / DAh  
110d / DCh  
111d / DEh  
112d / E0h  
113d / E2h  
114d / E4h  
115d / E6h  
116d / E8h  
117d / EAh  
118d / ECh  
119d / EEh  
1300  
422  
249  
169  
127  
102  
82.5  
68.1  
59  
20  
20  
20  
20  
20  
20  
20  
20  
20  
1780  
576  
340  
232  
174  
140  
113  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
2430  
787  
464  
316  
237  
191  
154  
130  
110  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
3240  
1050  
619  
422  
316  
255  
205  
174  
147  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
4220  
1370  
806  
549  
412  
332  
267  
226  
191  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
5620  
1820  
1070  
732  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
7500  
2430  
1430  
976  
115  
115  
115  
115  
115  
115  
115  
115  
115  
9760  
3240  
1910  
1300  
976  
154  
154  
154  
154  
154  
154  
154  
154  
154  
549  
732  
442  
576  
787  
357  
475  
634  
95.3  
80.6  
301  
392  
536  
255  
332  
453  
Not recommended - reserved SMBus address  
43.2  
38.3  
33.2  
29.4  
26.1  
23.2  
20.5  
18.2  
16.2  
14.3  
12.4  
11.0  
9.5  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
59  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
27.4  
80.6  
71.5  
61.9  
54.9  
48.7  
43.2  
38.3  
34.0  
30.1  
26.7  
23.2  
20.5  
18.2  
15.8  
13.3  
11.5  
9.5  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
37.4  
110  
95.3  
82.5  
73.2  
64.9  
57.6  
51.1  
45.3  
40.2  
35.7  
30.9  
27.4  
24.3  
21.0  
17.8  
15.4  
13.0  
10.5  
8.5  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
49.9  
140  
124  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
64.9  
187  
165  
143  
127  
113  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
86.6  
249  
221  
191  
169  
150  
133  
118  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
115  
332  
294  
255  
226  
200  
178  
158  
140  
124  
110  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
154  
52.3  
45.3  
40.2  
35.7  
31.6  
28.0  
24.9  
22.1  
19.6  
17.4  
15.0  
13.3  
11.5  
9.8  
107  
95.3  
84.5  
73.2  
66.5  
57.6  
51.1  
45.3  
40.2  
35.7  
30.9  
26.7  
23.2  
19.6  
16.5  
13.7  
11.0  
8.5  
97.6  
88.7  
78.7  
69.8  
61.9  
53.6  
47.5  
41.2  
36.5  
30.9  
26.7  
22.1  
18.2  
14.7  
11.3  
8.1  
105  
93.1  
82.5  
71.5  
63.4  
54.9  
48.7  
41.2  
35.7  
29.4  
24.3  
19.6  
15.0  
10.7  
6.7  
95.3  
84.5  
75.0  
64.9  
54.9  
47.5  
40.2  
32.4  
26.1  
20.0  
14.3  
8.9  
8.5  
7.2  
6.2  
8.5  
5.1  
7.2  
4.2  
5.8  
7.9  
3.4  
4.6  
6.3  
2.6  
3.6  
4.9  
6.5  
1.9  
2.6  
3.5  
4.6  
6.0  
1.2  
1.6  
2.2  
2.9  
3.7  
5.0  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
SPACE  
Table 7-3. VBOOT_CHA Pinstrap Decoding  
RLB = 20.0 kΩ  
LSB = 000b  
RLB = 27.4 kΩ  
LSB = 001b  
RLB = 37.4 kΩ  
RLB = 49.9 kΩ  
RLB = 64.9 kΩ  
RLB = 86.6 kΩ  
RLB = 115.0 kΩ  
LSB = 110b  
RLB = 154.0 kΩ  
LSB = 111b  
LSB = 010b  
LSB = 011b  
LSB = 100b  
LSB = 101b  
VBOOTA  
VBOOTA  
VBOOTA  
VBOOTA  
VBOOTA  
VBOOTA  
VBOOTA  
VBOOTA  
RHB (kΩ)  
(V)  
MSB  
RHB (kΩ)  
RHB (kΩ)  
RHB (kΩ)  
RHB (kΩ)  
RHB (kΩ)  
RHB (kΩ)  
RHB (kΩ)  
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
0.3  
00000b  
00001b  
00010b  
00011b  
00100b  
00101b  
00110b  
00111b  
01000b  
01001b  
01010b  
01011b  
01100b  
01101b  
01110b  
01111b  
10000b  
10001b  
10010b  
10011b  
10100b  
10101b  
10110b  
10111b  
11000b  
11001b  
11010b  
11011b  
11100b  
11101b  
11110b  
11111b  
Do Not Use  
0.25  
0.33  
0.41  
0.49  
0.57  
0.65  
0.73  
0.81  
0.89  
0.97  
1.05  
1.13  
1.21  
1.29  
1.37  
1.45  
1.53  
1.61  
1.69  
1.77  
1.85  
1.93  
2.01  
2.09  
2.17  
2.25  
2.33  
2.41  
2.49  
2.57  
2.65  
2.73  
1780  
576  
340  
232  
174  
140  
113  
0.26  
0.34  
0.42  
0.5  
2430  
787  
0.27  
0.35  
0.43  
0.51  
0.59  
0.67  
0.75  
0.83  
0.91  
0.99  
1.07  
1.15  
1.23  
1.31  
1.39  
1.47  
1.55  
1.63  
1.71  
1.79  
1.87  
1.95  
2.03  
2.11  
2.19  
2.27  
2.35  
2.43  
2.51  
2.59  
2.67  
2.75  
3240  
1050  
619  
422  
316  
255  
205  
174  
147  
124  
110  
0.28  
0.36  
0.44  
0.52  
0.6  
4220  
1370  
806  
549  
412  
332  
267  
226  
191  
162  
140  
124  
107  
95.3  
84.5  
75  
0.29  
0.37  
0.45  
0.53  
0.61  
0.69  
0.77  
0.85  
0.93  
1.01  
1.09  
1.17  
1.25  
1.33  
1.41  
1.49  
1.57  
1.65  
1.73  
1.81  
1.89  
1.97  
2.05  
2.13  
2.21  
2.29  
2.37  
2.45  
2.53  
2.61  
2.69  
2.77  
5620  
1820  
1070  
732  
7500  
2430  
1430  
976  
732  
576  
475  
392  
332  
287  
249  
221  
191  
169  
150  
133  
118  
0.31  
0.39  
0.47  
0.55  
0.63  
0.71  
0.79  
0.87  
0.95  
1.03  
1.11  
1.19  
1.27  
1.35  
1.43  
1.51  
1.59  
1.67  
1.75  
1.83  
1.91  
1.99  
2.07  
2.15  
2.23  
2.31  
2.39  
2.47  
2.55  
2.63  
2.71  
5 (1)  
9760  
3240  
1910  
1300  
976  
787  
634  
536  
453  
383  
332  
294  
255  
226  
200  
178  
158  
140  
124  
110  
0.32  
0.4  
422  
249  
169  
127  
102  
82.5  
68.1  
59  
0.38  
0.46  
0.54  
0.62  
0.7  
464  
0.48  
0.56  
0.64  
0.72  
0.8  
316  
0.58  
0.66  
0.74  
0.82  
0.90  
0.98  
1.06  
1.14  
1.22  
1.3  
237  
549  
191  
0.68  
0.76  
0.84  
0.92  
1
442  
154  
357  
0.78  
0.86  
0.94  
1.02  
1.1  
95.3  
80.6  
68.1  
59  
130  
301  
0.88  
0.96  
1.04  
1.12  
1.2  
110  
255  
49.9  
43.2  
38.3  
33.2  
29.4  
26.1  
23.2  
20.5  
18.2  
16.2  
14.3  
12.4  
11  
93.1  
80.6  
71.5  
61.9  
54.9  
48.7  
43.2  
38.3  
34  
215  
1.08  
1.16  
1.24  
1.32  
1.4  
187  
52.3  
45.3  
40.2  
35.7  
31.6  
28  
95.3  
82.5  
73.2  
64.9  
57.6  
51.1  
45.3  
40.2  
35.7  
30.9  
27.4  
24.3  
21  
165  
1.18  
1.26  
1.34  
1.42  
1.5  
143  
1.28  
1.36  
1.44  
1.52  
1.6  
127  
1.38  
1.46  
1.54  
1.62  
1.7  
113  
1.48  
1.56  
1.64  
1.72  
1.8  
97.6  
88.7  
78.7  
69.8  
61.9  
53.6  
47.5  
41.2  
36.5  
30.9  
26.7  
22.1  
18.2  
14.7  
11.3  
8.06  
4.99  
66.5  
59  
1.58  
1.66  
1.74  
1.82  
1.9  
24.9  
22.1  
19.6  
17.4  
15  
105  
93.1  
82.5  
71.5  
63.4  
54.9  
48.7  
41.2  
35.7  
29.4  
24.3  
19.6  
15  
1.68  
1.76  
1.84  
1.92  
2
30.1  
26.7  
23.2  
20.5  
18.2  
15.8  
13.3  
11.5  
9.53  
7.87  
6.34  
4.87  
3.48  
2.15  
52.3  
46.4  
40.2  
35.7  
30.9  
27.4  
23.2  
20  
1.78  
1.86  
1.94  
2.02  
2.1  
1.88  
1.96  
2.04  
2.12  
2.2  
95.3  
84.5  
75  
1.98  
2.06  
2.14  
2.22  
2.30  
2.38  
2.46  
2.54  
2.62  
2.70  
3.3 (1)  
9.53  
8.45  
7.15  
6.19  
5.11  
4.22  
3.4  
13.3  
11.5  
9.76  
8.45  
7.15  
5.76  
4.64  
3.57  
2.55  
1.58  
2.08  
2.16  
2.24  
2.32  
2.4  
64.9  
54.9  
47.5  
40.2  
32.4  
26.1  
20  
2.18  
2.26  
2.34  
2.42  
2.50  
2.58  
2.66  
2.74  
17.8  
15.4  
13  
2.28  
2.36  
2.44  
2.52  
2.60  
2.68  
2.76  
16.9  
13.7  
11  
10.5  
8.45  
6.49  
4.64  
2.87  
2.48  
2.56  
2.64  
2.72  
2.61  
1.87  
1.15  
8.45  
6.04  
3.74  
10.7  
6.65  
14.3  
8.87  
(1) Requires the use of an external output voltage divider.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.4.5 Enable and disable: AVR_EN and BVR_EN  
The ON_OFF_CONFIG command controls the conditions which TPS536C7B1 requires to enable power  
conversion. By default only the AVR_EN (active high) pin enables channel A, and only the BVR_EN pin (active  
high) enables channel B. This command can program the controller ignore the VR_EN pins and require the  
OPERATION command to be sent to enable power conversion, or even require a combination of the two.  
When enabled, first the controller waits for a delay time given by TON_DELAY, then ramps the output voltage at  
a controlled slew rate SRBOOT. The device requires 750 μs typically (up to 1.0 ms), to begin ramping the output  
voltage, after being enabled. Turn-on delay added by the TON_DELAY is in addition to this delay.  
The ON_OFF_CONFIG command also controls the turn-off behavior. When configured for immediate-off, the  
controller immediately tri-states all PWM pins assigned to that channel and stops transferring power immediately.  
When configured for soft-off the controller first waits for the TOFF_DELAY time, then actively ramps down the  
output voltage at a controlled slew rate.  
VR_EN  
VR_EN  
SROFF  
VOUT  
VOUT  
SRBOOT  
SRBOOT  
Decay based  
on load current  
tEN_INIT  
tEN_INIT  
TON_DELAY  
TON_DELAY  
TOFF_DELAY  
Figure 7-5. Soft-start and immediate-off (decay)  
Figure 7-6. Soft-start and soft-off  
The TON_RISE and TOFF_FALL commands are used to calculate the turn-on and turn-off (in the case of  
soft-off) slew rates. While these commands are numerically programmable from 0 to 31.75 ms, only a limited  
set of slew rates are supported. During enable, the device calculates the target rising and falling slew rates  
according to Equation 1 and Table 7-4, then selects the nearest available value from Table 7-4.  
VOUT_COMMAND  
SR  
= LOOKUP  
(1)  
(2)  
BOOT  
TON_RISE  
VOUT_COMMAND  
TOFF_FALL  
SR  
= LOOKUP  
OFF  
Table 7-4. Supported SRBOOT and SROFF slew rates  
Supported slew rates (mV/μs)  
0.093  
0.097  
0.101  
0.105  
0.111  
0.117  
0.124  
0.131  
0.140  
0.151  
1.163  
0.175  
0.192  
0.313  
0.625  
0.938  
1.250  
1.563  
1.875  
2.188  
2.50  
5.00  
10.00  
15.00  
20.00  
25.00  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-4. Supported SRBOOT and SROFF slew rates (continued)  
Supported slew rates (mV/μs)  
0.213  
0.238  
0.265  
30.00  
35.00  
40.00  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Example: VOUT_COMMAND = 0.88 V, TON_RISE = 1.0 ms  
The target slew rate is calculated as SRBOOT = LOOKUP(880 mV/1000 μs) = 0.88 mV/μs. The nearest supported  
value of 0.9375 mV/μs is selected.  
The expected rise time is approximately (880 mV / 0.9375 mV/μs) ≈ 940 μs.  
7.4.6 System feedback: AVR_RDY and BVR_RDY  
The AVR_RDY and BVR_RDY pins are used to signal to the system, when each channel is in regulation. These  
pins are open drain structures, and require external pull-up resistors. During boot-up, the VR_RDY pins are  
released when the internal reference DAC reaches the boot voltage. Any condition which causes the channel to  
stop converting power, causes its VR_RDY pin to pull low. This includes any fault protection-related shutdown, or  
the channel simply being disabled. The VR_RDY pins do not assert to alert the host to any warning conditions or  
faults configured to be ignored.  
7.4.7 Catastrophic fault alert: VR_FAULT#  
The VR_FAULT# pin is an open drain output which alerts the system to potentially catastrophic power supply  
faults. The VR_FAULT# pin is an open drain structure. Connect an external pull-up resistor to this pin.  
Only the most critical fault conditions assert the VR_FAULT# pin. Fault responses configured to be ignored do  
not assert the VR_FAULT# pin. The VR_FAULT_CONFIG PMBus command provides some options to control  
which fault conditions cause this pin to assert.  
Fault conditions which assert the VR_FAULT# pin include:  
Over-voltage fault (including pre-bias OVP, fixed OVP, and tracking OVP)  
Powerstage fault (TAO_HIGH)  
Input overcurrent fault  
Output overcurrent fault (configurable)  
Over-temperature fault (configurable)  
Faults from channel A only, or channel A+B (configurable)  
7.4.8 Output voltage reset: RESET#  
By default, pin 19 functions as the channel B enable pin, BVR_EN. Use the command to assign pin 19 as a  
hardware voltage reset signal, RESET#, as needed. When pin 19 is not assigned as BVR_EN, the AVR_EN pin  
becomes a shared enable pin for both channels. RESET# is an active-low signal. Connect an external pull-up to  
this pin to make its default state high (e.g. not in reset).  
Asserting the RESET# pin low during regulation causes the output voltage of both channels to slew back to their  
respective VBOOT values, at the slew rate defined by . While RESET# is asserted low, new output voltage targets  
from PMBus are ignored. Figure 7-7 describes the behavior of the RESET# pin.  
VR_EN  
RESET#  
VNEW  
SRVOTR  
SRVOTR  
VBOOT  
VBOOT  
Reset  
After  
VBOOT  
SRBOOT  
voltage  
settled  
New target  
from PMBus  
New target  
from PMBus  
Reset during  
Voltage slew  
Figure 7-7. RESET# behavior  
The RESET# pin is not a global reset pin for the device. Asserting RESET# changes only the output voltage  
target of both channels. RESET# does not cause any operating state change or re-initialization.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.4.9 Synchronization: SYNC  
By default, pin 19 functions as the channel B enable pin, BVR_EN. Use the MULTIFUNCTION_PIN_CONFIG  
command to assign pin 19 as a synchronization pin as needed. When pin 19 is not assigned as BVR_EN,  
the AVR_EN pin becomes a shared enable pin for both channels. When there is no SYNC pin assigned,  
configure the SYNC_CONFIG to operate based on internal timing, in order to maintain an accurate switching  
frequency over the full range of operation. Any external clock applied to must have a 50% duty cycle,  
and the FREQUENCY_SWITCH command must still be programmed as close as possible to the desired  
switching frequency after any scaling. The input on the SYNC pin must be ±50 kHz from the configured  
FREQUENCY_SWITCH value.  
An internal phase-locked loop (PLL) adjusting the on-time of each phase enables edge synchronization. During  
steady-state operation, when synchronization is used, the PWM pin assigned to order 0 is synchronized to  
a clock on the SYNC pin. The DCAP+ control topology is inherently a variable frequency scheme. During  
load transients, the pulse frequency of each channel modulates to maintain voltage regulation. Load transients  
cause the PLL to lose phase lock, and slowly return to phase lock based on the PLL loop bandwidth. The  
PLL bandwidth is much slower than the voltage regulation loop, and it can take many cycles for the PLL to  
re-lock following a transient event. Figure 7-8 illustrates the DCAP+ response to a load transient using edge  
synchronization.  
IOUT  
PLL corrects phase error  
Phase delay of  
between PWM1 and SYNC  
SYNC to PWM1  
SYNC  
CLK_ON  
PLL  
PLL  
Locked  
PLL  
PLL  
PLL  
Locked  
PLL  
Locked  
Not  
Not  
Not  
Locked  
Locked  
Locked  
PWM1  
PWM2  
Figure 7-8. Synchronization behavior (2 phase example, no phase shift)  
The SYNC_CONFIG command configures various options related to synchronization. These include: enable/  
disable of the PLL, sync direction (clock master or clock slave), input clock division ratio, phase shift, and  
gain/scalar terms to increase/decrease the PLL loop bandwidth. Refer to the Technical Reference Manual for a  
complete register map.  
Figure 7-9 and Figure 7-10 illustrate two common methods of synchronizing multiple converters based on  
TPS536C7B1. Use the programmable phase shift parameters to phase spread multiple converters, to improve  
ripple cancellation and reduce beat frequencies on input supplies.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
TPS536xx  
TPS536xx  
TPS536xx  
TPS536xx  
50% duty  
50% duty  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC_DIR = IN  
SYNC_DIR = IN  
SYNC_DIR = OUT  
SYNC_PHASE = 0°  
SYNC_DIR = IN  
SYNC_PHASE = 0°  
SYNC_PHASE = 180°  
SYNC_PHASE = 180°  
Figure 7-10. Two clock slaves driven externally  
Figure 7-9. Clock master driving a clock slave  
7.4.10 Smart power stage connections: PWM, CSP and TSEN  
Interface the controller to TI smart power stage devices, as shown in Figure 7-11.  
Connect the PWM pins of the controller to the PWM pins of the power stage devices. The PWM pins are  
three-state logic outputs of the controller. A PWM pin being logic-high commands the power stage device to turn  
its high-side FET on, and its low-side FET off. A PWM pin being logic-low commands the power stage device to  
turn its low-side FET on and its high-side FET off. TI power stage devices provide a weak drive on their PWM  
pins, causing them to float to a mid-level value when the controller stops driving them. During enable, or dynamic  
phase addition, the controller starts phases switching with a transition from tri-state to high. Similarly, during  
disable or dynamic phase shedding, the controller disables phases with a transition from low-to-tri-state. Float  
unused PWM pins on the controller.  
Connect the IOUT pins of the powerstage devices to the CSP pins of the controller. Connect the VREF pin  
of the controller to the REFIN pins of the powerstage devices. A local bypass capacitor CVREF, is required  
for the controller VREF pin. Optionally, add a local VREF bypass capacitor at the powerstage devices. VREF  
provides common-mode voltage for the IOUT signal, which is a voltage representing the output current of each  
powerstage with a nominal gain of 5 mV/A. Float unused CSP pins on the controller.  
Connect the TAO/FAULT pins of all powerstages within a channel to each other, and to the corresponding TSEN  
pin of the controller. For example, tie all TAO/FAULT pins of powerstages used on channel A together and to  
the controller ATSEN pin. TI recommends adding a 2200 pF capacitor to the TSEN pins at the controller to  
reduce temperature measurement noise. TI recommends keeping a place holder for a 1000 pF capacitor at  
the powerstage side. Refer to the individual powerstage datasheet for more detailed recommendations. During  
normal operation, the TSEN pins provide a voltage signal proportional to the temperature of the warmest  
powerstage device according to Equation 3 . During a UVLO condition, the powerstages pull the shared TAO line  
low to inform the controller they are not able to accept PWM input. When powerstages detect a fault condition  
internally, they pull the shared TAO pin high to inform the controller a fault condition has occurred. If channel B is  
not used, float the BTSEN pin.  
V
600mV  
TSEN  
8mV  
READ_TEMPERATURE_1 =  
°C  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
TPS536xx  
CSD9xxx  
APWM1  
ACSP1  
PWM  
IOUT  
Channel A  
Phase 1  
TAO/FAULT  
REFIN  
DNP  
VREF  
CVREF  
...  
CSD9xxx  
APWMx  
ACSPx  
PWM  
Controller  
IOUT  
Channel A  
Phase N  
TAO/FAULT  
REFIN  
ATSEN  
CATSEN  
DNP  
CSD9xxx  
BPWMx  
BCSPx  
BTSEN  
PWM  
IOUT  
Channel B  
Phase 1  
TAO/FAULT  
CBTSEN  
DNP  
REFIN  
to other channel  
B power stages  
Figure 7-11. Power stage pin connections  
7.4.11 PMBus pins: SMB_DIO, SMB_CLK, and SMB_ALERT#  
The SMB_CLK, SMB_DIO, and SMB_ALERT# pins are used for PMBus communication, an open-drain  
interface. TPS536C7B1 is compatible with both 1.8-V and 3.3-V logic levels as shown in to Part I of the PMBus  
specification, revision v1.3.1. At least one external pull-up resistor is required for these pins. The 100 kHz, 400  
kHz and 1 MHz modes of operation are supported. PMBus is a shared bus, where devices are assigned a  
communication address. Select the PMBus slave address as described in Section 7.4.4. The controller device  
stretches clock pulses during operation when more processing time is required. Clock stretching support in the  
PMBus master is mandatory. See the Section 7.9 section for more information about PMBus functionality.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.5 Advanced power management functions  
7.5.1 Adaptive voltage scaling or dynamic VID (DVID) through VOUT_COMMAND  
Figure 7-12 shows a conceptual view of the TPS536C7B1 output voltage control, and dynamic behavior.  
Update the VOUT_COMMAND value through PMBus to change the output voltage of each channel on-the-fly.  
Optionally, use the OPERATION command to toggle the output voltage bewteen the VOUT_MARGIN_HIGH,  
VOUT_MARGIN_LOW and VOUT_COMMAND values. This is described in more detail in Output voltage  
margining.  
The VOUT_MAX and VOUT_MIN commands define the maximum and minimum allowed voltage, through any  
combination of offsets and voltage target commands. If commanded higher or lower than these limits, the output  
voltage transitions to these limits and stops.  
The soft-start and soft-off slew rates are calculated using the current output voltage target and TON_RISE and  
TOFF_FALL command values. All output voltage transitions which occur during normal power conversion follow  
the slew rate defined by VOUT_TRANSITION_RATE.  
The VOUT_SCALE_LOOP parameter must be set properly when an external output voltage divider is being  
used. This value is used internally to provide scaling for all output voltage related parameters.  
Update the VOUT_TRIM value to apply a static offset to the output voltage target. This may be used to fine-tune  
the output voltage in production, or null any board related offsets.  
OPERATION[5:2]  
VOUT_MAX  
VOUT_MIN  
VOUT_SCALE_LOOP  
VOUT_COMMAND  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
MUX  
VTARGET  
+
DAC  
Code  
Slew Rate  
+
VOUT_TRIM  
DAC  
VDAC  
×
Control  
Limiter  
+
OFS_DACUP  
OFS_DACDWN  
OFS_WAKE  
Dynamic  
Offset  
Control  
DCLL  
Dynamic  
Load line  
control  
ACLL  
DAC moving up,  
down, softstart  
VOUT_TRANSITION_RATE  
Slew rate  
(TON_RISE / VOUT_COMMAND)  
(TOFF_FALL / VOUT_COMMAND)  
MUX  
DCLL_DACUP, DCLL_DACDWN,  
ACLL_DACDWN, ACLL_DACUP  
Soft-start, soft-stop, normal operation  
Figure 7-12. Output voltage control conceptual view  
TPS536C7B1 provides several options to fine-tune the controller response to high speed output voltage  
transitions. For example, large output voltage steps upward cause an inrush current, required to charge the  
output capacitors for that channel. This inrush current combined with the DC load line setting make the output  
voltage appear to move more slowly than the commanded slew rate. Use the DVID_CONFIG command to  
configure dynamic loadlines and offsets which apply only during output voltage transitions. Typically, set the DC  
and AC load lines for upward moving transitions to a value equal or lower than the nominal. Similarly, typically,  
set the DC and AC loadlines to a value larger than the nominal value for downward moving transitions. Refer to  
the Technical Reference Manual for a register map of this command.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
DACUP_DLY  
DACDWN_DLY  
OFS_DACDWN  
OFS_DACUP  
VDAC  
DACUP_DCLL  
DACUP_ACLL  
DACDWN_DCLL  
DACDWN_ACLL  
OFS_DACDWN removed at  
1/16 × VOUT_TRANSITION_RATE  
VTARGET  
Figure 7-13. Dynamic load line and offset control  
The DVID_CONFIG command also allows the user to configure dynamic offsets which are only applied during  
output voltage transitions. The configured recovery delays determine when the load line and offset values return  
to nominal settings, in terms of PWM (order 0) cycle counts. Figure 7-13 illustrates the dynamic load line, offset  
and recovery delay behavior of the controller.  
7.5.2 Output voltage margining  
Output voltage margin testing allows power designers to test the response of their system to across output  
voltage tolerance corners.  
The MARGIN bits in the OPERATION command can be used to toggle the active channel between several  
states:  
Table 7-5. Supported MARGIN settings  
MARGIN  
bits  
Description  
Output voltage target  
Voltage fault detection  
0000b  
0101b  
0110b  
1001b  
1010b  
Other  
Margin none  
VOUT_COMMAND  
VOUT_MARGIN_LOW  
VOUT_MARGIN_LOW  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_HIGH  
Enabled  
Enabled  
Disabled  
Enabled  
Disabled  
Margin low (act on faults)  
Margin low (ignore on faults)  
Margin high (act on faults)  
Margin high (ignore on faults)  
Not supported/invalid data  
Example procedure: voltage margin (ignore fault) testing  
1. Write to the PAGE command to select the desired channel (E.g. 00h for channel A).  
2. Write VOUT_COMMAND to the desired value during margin none operation.  
3. Write VOUT_MARGIN_LOW to the desired value during margin low operation.  
4. Write VOUT_MARGIN_HIGH to the desired value during margin high operation.  
5. Write the ON_OFF_CONFIG command to ensure the device is configured to respect the OPERATION  
command.  
6. Toggle to margin none operation. Write OPERATION to 80h.  
7. Toggle to margin low (ignore fault) operation. Write OPERATION to 94h.  
8. Toggle to margin high (ignore fault) operation. Write OPERATION to A4h.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.5.3 Power supply telemetry and calibration  
Table 7-6 summarizes the available telemetry functions through PMBus.  
Table 7-6. Summary of telemetry functions  
Shared/  
Update Rate  
and filter  
time  
Parameter  
Output voltage  
Output current  
Sensed Signal(s)  
Paged/  
Phased  
PMBus Command(s)  
Range  
constant  
0 to 3.74 V  
(VOUT_SCALE_LOOP=1.0)  
0 to 5.5 V  
24 µs update  
+
330 µs time  
const.  
VSP-VSN  
Paged  
Paged  
READ_VOUT  
(VOUT_SCALE_LOOP=0.5)  
24 µs update  
+
290 µs time  
const.  
READ_IOUT (PHASE=FFh)  
IOUT_CAL_GAIN  
(-10.0 to 70.0 A) × Nϕ +  
Offset  
CSP1 to CSP12  
IOUT_CAL_OFFSET  
20 µs update  
+
300 µs time  
const.  
READ_IOUT  
(PHASE=00h, 01h, ...)  
IOUT_CAL_OFFSET  
Paged,  
Phased  
Per-phase current  
Output power  
CSP1 to CSP12  
Calculated  
-10.0 to 70.0 A per phase  
Paged  
Paged  
READ_POUT  
Per READ_VOUT and READ_IOUT  
(VOUT × IOUT  
)
150 µs  
update  
+
650 µs time  
const.  
Power stage  
temperature  
ATSEN, BTSEN  
READ_TEMPERATURE_1  
-40 to 165 °C  
150 µs  
update  
+
Input voltage  
VIN_CSNIN  
Shared  
READ_VIN  
0.0 to 18.7 V  
660 µs time  
const.  
24 µs update  
+
440 µs time  
const.  
READ_IIN  
MFR_CALIBRATION_  
CONFIG  
Input current  
Input power  
CSPIN, VIN_CSNIN  
Shared  
Shared  
-5.0 to 100.0 A  
Calculated  
(VIN × IIN)  
READ_PIN  
Per READ_VIN and READ_IIN  
No sensor gain or offset calibration is required for output voltage, temperature or input voltage telemetry.  
7.5.3.1 Output current calibration  
Use the IOUT_CAL_GAIN to adjust the gain of the output current telemetry. One gain setting is provided which  
applies to all phases in the channel. Use the IOUT_CAL_OFFSET to adjust the current measurement offset  
for each phase. The offset for the total channel is calculated as a sum of the configured offsets for all phases.  
During power supply characterization use the PHASE_CONFIG command to configure the controller for 1-phase  
mode, to enable measurement of a single phase measurement offset. Refer to the example below.  
The READ_IOUT command value is calculated according to Equation 4 and Equation 5.  
1
active  
active  
READ_IOUT  
=
× ∑  
CSP VREF + ∑  
IOUT_CAL_OFFSET  
i
(4)  
TOTAL  
i
IOUT_CAL_GAIN  
phases  
phases  
where  
READ_IOUTTOTAL is the total output current telemetry value, accessible with PHASE=FFh  
IOUT_CAL_GAIN is the output current gain setting (one per channel)  
CSPi is the voltage of the current sense signal from each power stage  
VREF is the digitized value of the internal 1.5-V LDO  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
IOUT_CAL_OFFSETi is the output current offset setting for each phase  
1
READ_IOUT  
=
× CSP VREF + IOUT_CAL_OFFSET  
i
(5)  
PHASE i  
i
IOUT_CAL_GAIN  
where  
READ_IOUTPHASE i is the per-phase current telemetry value, accessible with PHASE=00h for phase 1, 01h  
for phase 2, etc ...  
IOUT_CAL_GAIN is the output current gain setting (one per channel)  
CSPi is the voltage of the current sense signal for that phase  
VREF is the digitized value of the internal 1.5-V LDO  
IOUT_CAL_OFFSETi is the output current offset setting for that phase  
Example procedure: Per-Phase calibration of READ_IOUT  
First select the correct IOUT_CAL_GAIN for the whole channel:  
1. With all phases active, apply the first load current, IOUT1, to the converter and wait for the READ_IOUT value  
to stabilize. Read-back and record the value of READ_IOUT as IMON1  
.
2. With all phases active, apply the second load current, IOUT2, to the converter and wait for the READ_IOUT  
value to stabilize. Read-back and record the value of READ_IOUT as IMON2  
3. Calculate the new gain setting according to Equation 6.  
4. Write the PAGE to the current channel, and the PHASE to FFh.  
5. Write the newly calculated value to IOUT_CAL_GAIN.  
6. Perform an NVM Store operation and power cycle.  
.
I
I  
I  
OUT2  
OUT1  
IOUT_CAL_GAIN  
=
× IOUT_CAL_GAIN  
current  
(6)  
new  
I
MON2  
MON1  
Next, select the IOUT_CAL_OFFSET for each phase according to the procedure below:  
1. Record the current values of PHASE_CONFIG and IOUT_CAL_OFFSET for each phase.  
2. Adjust the TON_RISE temporarily to accomodate enabling power conversion with one phase only active, if  
needed.  
3. With power conversion disabled for both channels, update the PHASE_CONFIG command so that only the  
first phase is active, and its assigned ORDER is 0.  
4. Enable power conversion through the VR_EN pins or OPERATION as configured through  
ON_OFF_CONFIG.  
5. Apply a known load current, IOUT1. Wait for the READ_IOUT to stabilize and record the value as IMON1  
6. Calculate the new IOUT_CAL_OFFSET per Equation 7, where i is the currently configured phase.  
7. Store the newly calculated offset for the first phase value in memory temporarily.  
8. Repeat steps 3-7 for each phase in the converter.  
.
9. Disable power conversion.  
10. Set the PHASE_CONFIG back to the original value.  
11. Write the PAGE to the current channel, and the PHASE to 00h for the first phase.  
12. Write the newly calculated IOUT_CAL_OFFSET value.  
13. Repeat steps 11-12 for each phase. PHASE value 01h refers to the 2nd phase, 02h refers to the 3rd phase  
and so on.  
14. Re-set the TON_RISE to the desired value during normal operation, if needed.  
15. Perform an NVM Store operation and power cycle.  
IOUT_CAL_OFFSET  
= I  
I  
+ IOUT_CAL_OFFSET  
(7)  
new  
OUT i  
MON i current  
7.5.3.2 Input current calibration (measured)  
Use MFR_CALIBRATION_CONFIG command to adjust the gain and offset of the input current sensor. First, set  
analog front-end gain such to keep the signal at the ADC to be less than 800 mV. Then set the digital gain to  
fine-tune the total gain based on the selected input current shunt. Finally adjust the input current offset based  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
on lab measurements. A detailed example of input current sensor calibration is shown in Input current sensing:  
VIN_CSNIN and CSPIN.  
The equation for input current sense measurements is shown in Equation 8.  
G
IINMAX  
READ_IIN = I × R  
× G ×  
INSHUNT  
+ IIN_OFS  
(8)  
IN  
SENSE  
800 mV  
where  
IIN is the true input current in amperes  
RSENSE is the effective sense element gain in ohms  
GINSHUNT is the analog front-end gain  
GIINMAX is a digital-domain gain factor used for fine tuning  
IIN_OFS is an offset factor applied to the resulting value in amperes  
Estimate the maximum input current for the design using Equation 9.  
V
× I  
OUT(A) PEAK(A)  
V
× I  
OUT(B) IPEAK(B)  
I
=
+
× K  
MARGIN  
(9)  
IN(MAX)  
V
× η  
V
× η  
IN  
IPEAK(A)  
IN IPEAK(B)  
where  
VOUT(A) and VOUT(B) are the output voltage for channels A and B respectively  
IPEAK(A) and IPEAK(B) are the peak design currents for channels A and B respectively  
VIN is the input voltage for the design  
ɳIPEAK(A) and ɳIPEAK(B) are the full-load conversion efficiency for channels A and B respectively  
KMARGIN is a factor of safety used for design margin  
Select the analog front-end gain, GIINSHUNT, to maximize the signal level at the ADC whie remaining within its full  
scale range of 800 mV. Select the closest available value less than the result of Equation 10.  
800 mV  
G
I
(10)  
IINSHUNT  
× R  
IN(MAX)  
SENSE  
Finally select the digital gain factor, GIINMAX, with a resolution of 0.5 per LSB, to fine-tune the current sense gain  
using Equation 11.  
800 mV  
G
=
G
(11)  
IINMAX  
× R  
IINSHUNT  
SENSE  
Example: 12V to 0.88 V 12+0 design at 400 A / 25 A, RSENSE = 0.3 mΩ  
Channel B is not used in this design. Estimate the maximum input current, according to the calculation below.  
1.8V × 400A  
12V × 95%  
1.0V × 25A  
× 1.25 = 82A  
12V × 90%  
I
=
+
IN(MAX)  
Select the analog front-end gain, and digital gain factors as shown below. Set the IIN_OFS should to 0.0 A, and  
tune the value based on design characterization measurements.  
800mV  
82A × 0.2mΩ  
G
G
G
= 40  
IINSHUNT  
IINSHUNT  
800mV  
40 × 0.2mΩ  
=
100  
IINMAX  
Finally, the calibrated input current measurement is verified to be calibrated properly.  
100  
800mV  
READ_IIN = I × 0.2mΩ × 40 ×  
IN  
1.0 × I  
IN  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.5.3.3 Input current calibration (calculated)  
Applications which do not use measured current sensing can still report calculated input current based on the  
output voltage, output current and input voltage of each channel. To use calculated input current reporting,  
connect the VIN_CSNIN and CSPIN pins together, and to the input voltage. A connection to the input voltage  
is still required for the control loop to set the correct on-time. Use the CALCIIN_RD setting in MISC_OPTIONS  
to enable calculated input current reporting. The controller estimates the converter power efficiency for each  
channel by comparing the actual on-time of the PWM pins, which get wider as the conversion loss increases  
to maintain voltage and frequency regulation, to the idealized on-time assuming no power loss. Fine-tune the  
gain of the calculated input current measurement through PMBus, using the MFR_CALIBRATION_CONFIG  
command.  
V
× I  
OUT(A) OUT(A)  
V
× I  
OUT(B) OUT(B)  
I
=
+
(16)  
IN(CALC)  
V
× η × CALCIIN_EFF_A V  
× η × CALCIIN_EFF_B  
IN  
est(A)  
IN  
est(B)  
where  
VOUT(A) is the output voltage telemetry value for channel A  
IOUT(A) is the output current telemetry value for channel A  
VIN is the input current telemetry value (shared)  
ηest(A) is the controller's estimated conversion efficiency on channel A  
CALCIIN_EFF_A is the PMBus programmable gain factor to fine-tune the current gain for channel A  
VOUT(B) is the output voltage telemetry value for channel B  
IOUT(B) is the output current telemetry value for channel B  
ηest(B) is the controller's estimated conversion efficiency on channel B  
CALCIIN_EFF_B is the PMBus programmable gain factor to fine-tune the current gain for channel B  
7.5.4 Flexible phase assignment  
Use the PHASE_CONFIG command to assign each PWM pin to a logical phase number. By default, phase  
configuration settings are derived from pinstrapping and not from non-volatile memory. Refer to Section 7.4.4, for  
more information about enabling NVM phase configuration settings. Refer to the Technical Reference Manual for  
a register map of the PHASE_CONFIG command. Each PWM pin has 4 available settings:  
ENABLE: Controls whether the phase is active or remains at tristate always.  
PAGE: Assigns each phase to channel A or channel B. This setting also determines which CSP pins are  
incorporated in the ISUM control signals for each channel.  
PHASE: Assigns each phase within a channel a PHASE setting at which it can be addressed. The PHASE  
assignment is not backed by non-volatile memory, and each phase is assigned a derived PHASE setting at  
power-on.  
ORDER: Controls the order in which phases are fired with respect to each other. Figure 7-14 and Figure  
7-15 illustrate the effect of different ordering assignments. Reconfigure the phase ordering to ensure adjacent  
phases do not interfere with each other due to layout related coupling issues. If dynamic phase shedding is  
used, phases add or drop according to their assigned ORDER value.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
CLK_ON  
CLK_ON  
PWM1  
ORDER=0  
0
PWM1  
ORDER=0  
0
1
2
PWM2  
ORDER=1  
PWM2  
ORDER=2  
2
4
PWM3  
ORDER=2  
PWM3  
ORDER=4  
3
PWM4  
ORDER=3  
PWM4  
ORDER=1  
1
4
3
PWM5  
ORDER=4  
PWM5  
ORDER=3  
5
5
PWM6  
ORDER=5  
PWM6  
ORDER=5  
Figure 7-14. 0-1-2-3-4-5 fire order (6 phase  
example)  
Figure 7-15. 0-2-4-1-3-5 fire order (6 phase  
example)  
Observe the following rules when updating the phase configuration settings. The Fusion Digital Power Designer  
GUI enforces these rules, but the controller itself does not:  
Channel A may be assigned up to 12 phases. Channel B may be assigned up to 6 phases.  
The ORDER assignments within a channel must be continuous, and start at 0. Do not skip phase order  
assignments.  
The PHASE assignments within a channel must be continuous, start at 0 counting upward from APWM1 for  
channel A and downward from APWM12/BPWM1 for channel B.  
Example: 8+2 phase configuration with non-standard fire order  
1. Write the PIN_DETECT_OVERRIDE command to ensure the controller takes its phase configuration from  
non-volatile memory at the next power-up.  
2. Write the PHASE_CONFIG command as shown below.  
3. Issue STORE_USER_ALL. At the next power-on, the phase configuration is restored from NVM.  
Table 7-7. Example settings: 8+2, 0-2-4-6-1-3-5-7 ordering  
Pin Name  
APWM12/BPWM1  
APWM11/BPWM2  
APWM10/BPWM3  
APWM9/BPWM4  
APWM8/BPWM5  
APWM7/BPWM6  
APWM6  
Bit Numbers  
191:176  
175:160  
159:144  
143:128  
127:112  
111:96  
95:80  
Phase Enable  
PAGE  
PHASE  
ORDER  
1
1
0
0
1
1
1
1
1
1
1
1
1
1
X
X
0
0
0
0
0
0
0
0
0
1
X
X
7
6
5
4
3
2
1
0
0
1
X
X
7
5
3
1
6
4
2
0
APWM5  
79:64  
APWM4  
63:48  
APWM3  
47:32  
APWM2  
31:16  
APWM1  
15:0  
7.5.5 Thermal balance management (TBM)  
In any practical multiphase printed circuit board design, some power stages are physically located near to, or  
between other phases. Power stages physically located between two other power stages experience mutual  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
heating as a result of power dissipation from adjacent power stages. Hence, even though the controller device  
regulates the DC current sharing of each phase, the temperature of each power stage may be different.  
Optionally, adjust the per-phase current sharing ratio KT for each phase using the ISHARE_CONFIG command.  
This open-loop adjustment allows the designer to balance the temperature of each phase to compensate for  
mutual heating and non-uniform ground copper for heat spreading. The per-phase current limit of each phase is  
not affected by this setting. Refer to the Technical Reference Manual for a register map of ISHARE_CONFIG.  
Thermal balancing is accomplished by scaling the gain of each phase current, as provided to the current sharing  
amplifier, in the on-time generator circuit for each phase. Refer to Figure 7-23 for more information. Each phase  
has an independently programmable gain KT. Current share gain is assigned according to the logical phase  
number (PHASE setting) for each phase. The current carried by each phase when thermal balancing is active,  
can be calculated according to Equation 13.  
First, calculate the effective thermal phase number, NT as shown in Equation 13. This value changes with  
different numbers of operational phases, when phase shedding is enabled.  
1
1
1
N =  
+
+ … +  
K
(17)  
T
K
K
T1  
T2  
Tn  
where  
NT is the effective thermal phase number.  
KT1, KT2, KTn are the individual thermal balance gains for phase 1, phase 2, ... phase n.  
Then each phase carries a proportion of the total current, ISUM, as shown in Equation 14.  
I
SUM  
I
=
N
(18)  
PHASE i  
× K  
T
Ti  
where  
Ii is the phase current for the i-th phase in amperes  
ISUM is the total current carried by all phases in amperes  
KTi is thermal balance gain assigned to the i-th phase  
NT is the effective thermal phase number, calculated above  
Then, the current sharing ratio, comparing one phase to another is given by Equation 15.  
K
K
I
I
Tj  
Ti  
PHASE i  
PHASE j  
=
(19)  
where  
Ii and Ij are the phase current of the i-th and j-th phases in amperes  
KTi and KTj are the thermal balance gains of the i-th and j-th phases  
Example: Balancing phase temperature for 7-phase converter  
Consider a 7-phase converter with the following thermal balance gains assigned:  
Thermal Balance  
Gain Ki  
Thermal Balance  
PHASE  
VALUE  
PHASE  
VALUE  
Gain Ki  
Phase 1  
Phase 2  
Phase 3  
Phase 4  
K1  
K2  
K3  
K4  
0.8  
0.9  
1.0  
1.0  
Phase 5  
Phase 6  
Phase 7  
K5  
1.0  
0.9  
0.8  
K6  
K7  
Calculate NT according to Equation 16.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
1
0.8  
1
0.9  
1
1.0  
1
1.0  
1
1.0  
1
0.9  
1
0.8  
N =  
+
+
+
+
+
+
7.722  
(20)  
T
Phases 1 and 7 have the same thermal balance gain, and carry the same proportion of the total current. Phases  
2 and 6 have the same thermal balance gain and carry the same proportion of total current. Similarly, phases  
3, 4, and 5 carry the same proportion of total current. Equation 17, Equation 18, and Equation 19 show the  
expected phase currents as a fraction of the total current ISUM  
.
I
I
SUM  
7.722 × 0.8  
SUM  
× K  
I = I =  
=
=
I  
× 0.162  
× 0.144  
(21)  
(22)  
(23)  
1
7
SUM  
SUM  
N
T
1
I
I
SUM  
SUM  
I = I =  
I  
2
6
N
× K  
7.722 × 0.9  
T
2
I
I
SUM  
× K  
SUM  
I = I = I =  
=
I × 0.129  
SUM  
3
4
5
N
7.772 × 1.0  
T
3
The ratios of two phase currents can be easily calculated as shown in Equation 20 and Equation 21.  
I
I
K
K
2
1
T1  
T2  
0.9  
0.8  
=
=
=
=
1.125  
0.9  
(24)  
(25)  
I
I
K
K
4
6
T6  
T4  
0.9  
1.0  
7.5.6 Dynamic phase adding/shedding (DPA/DPS)  
The dynamic phase shedding (DPS) feature allows the controller to dynamically select the number of operational  
phases for each channel, based on the total output current. This increases the total converter efficiency by  
reducing unnecessary switching losses when the output current is low enough to be supported by a fewer  
number of phases, than are available in hardware. Use the PHASE_SHED_CONFIG command to configure  
the phase adding/shedding thresholds. Refer to the Technical Reference Manual for a full listing of available  
thresholds.  
Set the DPS_EN bit to 0b to disable phase shedding operation. The MIN_PH setting determines the minimum  
number of phases which are active during light-load operation.  
Phase adding is detected based on the summed peak current of all phases in the analog domain. Phase  
shedding is detected based on average current telemetry, with a forced delay of 120 μs. The phase add  
thresholds are not affected by current measurement calibration, but the phase shed thresholds are.  
Each phase has 3 settings available:  
Phase add threshold (PH_ADDx) selects the nominal phase adding threshold. Set this value approximately  
equal to the peak efficiency point per phase to optimize overall converter efficiency.  
Phase add hysteresis (DPA_HYSTx) selects the phase add threshold hsyteresis. Nominally set this value to  
one-half the value of the ripple current on the ISUM current for that number of phases.  
Phase drop hysteresis (DPS_HYST) selects the phase drop hysteresis (per-phase average current). There  
is one setting per channel.  
The phase add/drop thresholds can be calculated according to the equations below. First determine the ripple  
cancellation effect for each combination of phase numbers, for the chosen duty cycle using Equation 22. This  
value affects the true add thresholds.  
m
m + 1  
N × D −  
×
D  
i
ΔI  
RIPPLE(ISUM)  
N
N
i
i
K =  
(26)  
i
ΔI  
D × 1 D  
RIPPLE(PHASE)  
where  
Ki is the ripple cancellation ratio before the phase transition  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
 
 
 
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
ΔIripple(ISUM) is the ripple in the summed current after cancellation  
ΔIripple(IPHASE) is the ripple each individual phase  
Ni is the number of phases currently active  
D is the converter duty cycle, nominally Vout / Vin  
m is the maximum integer which does not exceed Ni × D (can be zero)  
Calculate the DC phase adding thresholds based on the chosen configuration using Equation 23. Phases are  
added based on peak ISUM current, after being passed through a 1 μs filter. Typically, choose the DPA_HYST  
settings to cancel out the current ripple term. Then the DC current adding threshold is equal to the PH_ADDx  
value selected.  
ΔI  
RIPPLE(PHASE)  
I
PH_ADD  
+ DPA_HYST  
K ×  
(27)  
DPA(i to i+1)  
i+1  
i+1 i  
2
where  
IDPA(i to i+1) is the DC current at which the controller transitions from i to i+1 phases  
PH_ADDi is the selected phase add threshold for phase number i  
DPA_HYSTi is the selected phase add hysteresis for phase number i  
ΔIRIPPLE(PHASE) is the ripple each individual phase  
Calculate the DC phase drop thresholds based on the chosen configuration using Equation 24 phases are  
added based on the output current telemetry value, with a deglitch filter of 120 μs.  
I
PH_ADD  
i × DPS_HYST  
(28)  
DPS(i+1 to i)  
i+1  
where  
IDPS(i+1 to i) is the DC current at which the controller transitions from i+1 to i phases  
PH_ADDi+1 is the selected phase add threshold for phase number i+1  
Ni is the number of phases currently active before the phase shed event  
DPA_HYSTi is the selected phase shed hysteresis  
Phase add/shed example: 600-kHz, 8-phase, 12-V to 0.8-V converter, with 120 nH inductor  
Assume VIN = 12 V, VOUT = 0.88, fSW = 600 kHz, L = 120 nH.  
The example below explains how to calculate the phase adding and shedding thresholds for 2 to 3 phases. First  
calculate the inductor ripple current in one phase. Set the DPA_HYST3 setting to approximately 1/2 the inductor  
current ripple in one phase. Assuming the phase adding threshold for phase 3, PH_ADD3, parameter is set to  
40.0 A, and the phase shed hysteresis, DPS_HYST is set to 2.0 A, the phase adding and shedding thresholds  
are calculated as shown below.  
V
× V  
V  
IN  
0.88V × 12V 0.88V  
OUT  
V
OUT  
× L × f  
I
=
=
= 11.3A  
12V × 120nH × 600kHz  
RIPPLE(PHASE)  
IN  
SW  
0.88V  
12V  
m = FLOOR 2 ×  
= 0  
m
m + 1  
0.88V  
12V  
0
0 + 1  
12phases  
0.88V  
12V  
0.88V  
12V  
N × D −  
×
D  
2phases ×  
×
i
N
N
12phases  
i
i
K ≈  
0.92  
2
0.88V  
12V  
D × 1 D  
× 1 −  
ΔI  
RIPPLE(PHASE)  
2
11.3A  
2
I
I
PH_ADD + DPA_HYST K ×  
40A + 6A 0.92 ×  
= 40.8A  
DPA(2 to 3)  
3
3
i
PH_ADD 2 × DPS_HYST = 40A 2 × 2A = 36A  
DPS(3 to 2)  
3
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.5.7 Turbo Mode  
The turbo mode feature enables multiphase systems to boost their efficiency by separating phases which carry  
the thermal steady state current of the load (normal phases) from those which only need to turn on to support  
fast load transient events (turbo phases).  
Normal phases carry the steady state current, and are operational all or most of the time. Normal phases  
can use larger inductance values to enable converter operation at lower switching frequency, as well as  
reduce inductor core loss.  
Turbo phases carry the AC load transient current and are not intended to remain operational always.  
Uselower inductance values for turbo phases to enable them to ramp up their phase current quickly as  
they turn on during transient events. Assign a higher current sharing ratio to turbo phases using the  
ISHARE_CONFIG command. Turbo phases are activated whenever USR2 is triggered, or whenever the  
converter output current exceeds their respective phase adding threshold. Turbo phases are always added  
last, and multiple turbo phases are added at the same time, regardless of their ordering assignment.  
Turbo mode is only applicable to systems which use dynamic phase shedding. This feature is optional, and only  
recommended in cases where the system provides enough margin for the turbo phase power stages to operate  
within their safe operating area. The per-phase current report is not correct in turbo mode.  
Use the PHASE_CONFIG command to assign phases as being either normal phases or turbo phases.  
Example: 7 phases with 2 turbo phases  
Use the PHASE_CONFIG command to assign phase order 3 and 6 as turbo phases. Assign turbo phases  
out-of-phase with each other to avoid increasing the converter output ripple by a large amount due to loss of  
interleaving benefits.  
Use the ISHARE_CONFIG command to assign the "turbo gain" ratio as 2.0. This means the turbo phases will  
carry 2.0x the current of normal phases when turned on. Ensure that the turbo phase power stages are still  
operated within their safe operating area at worst case.  
Nominally, assign the turbo phases an inductance value proportionally lower compared to normal phases.  
In this case, normal phases use 150 nH inductance, and turbo phases use 75 nH. Without turbo phase, all  
normal phases would require 120nH.  
Use the PHASE_CONFIG command to set the dynamic phase adding thresholds for 5-6 phases and 6-7  
phases high enough that they do not add during steady state current operation.  
Use the FREQUENCY_SWITCH command to reduce the switching frequency, to reduce switching loss.  
As shown in Figure 7-16 and Figure 7-17, the design still meets the transient requirement. The efficiency  
improvement is approximately 0.3-0.5%.  
Figure 7-16. Load step with Turbo Mode  
Figure 7-17. Load removal with Turbo Mode  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.6 Control Loop Theory of Operation  
7.6.1 Adaptive voltage positioning and DC load line (droop)  
TPS536C7B1 supports adaptive voltage positioning (AVP) through the VOUT_DROOP PMBus command. This  
feature is also referred to as the DC load line (DCLL) for the control loop. Use a non-zero DC load line to reduce  
output voltage set-point as a function of the load current, with a controlled slope. This feature is optional. Set the  
DC load line to 0.0 mΩ in applications which do not use a load line.  
The DC load line provides two main benefits:  
Reducing the output voltage set-point, reduces the power consumption of the system, when the load current  
is high.  
Adaptive voltage positioning increases the allowable undershoot and overshoot during load transient events.  
Figure 7-18 and Figure 7-19 compare example output voltage specifications for systems with zero load line  
and non-zero load line. The nominal setting for the output voltage is chosen to be higher, to allow the entire  
transient window as margin for transient overshoot and undershoot.  
ILOAD  
ILOAD  
VMAX(AC)  
VMAX(AC)  
VMARG(OVER)  
VMARG(OVER)  
û VOVER(SPEC)  
û VOVER(SPEC)  
û VDROOP = VOUT_DROOP × ILOAD  
û VUNDER(SPEC)  
û VUNDER(SPEC)  
VMARG(UNDER)  
VMARG(UNDER)  
VMIN(AC)  
VMIN(AC)  
Figure 7-18. Load transient specification (zero load Figure 7-19. Load transient specification (non-zero  
line) load line)  
7.6.2 DCAP+ conceptual overview  
Figure 7-20 below describes the theory of operation for multiphase DCAP+ control, in continuous conduction  
mode (CCM).  
The summed inductor currents, ISUM, and output voltage deviation information, along with appropriate gain  
and integration, are processed to form a control signal VCOMP. Neglecting the output voltage information and  
integration, the VCOMP signal is a scaled version of ISUM. A compensating ramp signal, VRAMP, has a slope  
proportional to the number of phases, and switching frequency setting. When the VRAMP and VCOMP signals  
intersect, the controller fires a new pulse.  
Phase management logic distributes new pulses to the next phase in the firing order sequence. Each phase is  
assigned a firing order, at which pulses are passed to that phase. A separate, slower loop adjusts the on-times  
for each phase based on the output voltage setpoint, switching frequency setting, and current balance error.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VCORE  
VCORE  
VCOMP  
(includes ISUM  
VRAMP  
)
VCOMP  
(includes ISUM  
VRAMP  
ISUM  
)
CLK_ON  
PWM1  
ISUM  
ZC  
ZC  
ZC  
PWM2  
CLK_ON  
PWM1  
PWM3  
PWM4  
Time  
Time  
Figure 7-21. DCAP+ conceptual diagram (DCM)  
Figure 7-20. DCAP+ conceptual diagram (FCCM)  
7.6.3 Off-time control: loop compensation and transient tuning  
Figure 7-22 shows a conceptual block diagram of the DCAP+ off-time control loop. Transient response tuning is  
accomplished by changing the parameters which generate the VCOMP signal. These parameters are accessible  
using the COMPENSATION_CONFIG command. Refer to the Technical Reference Manual for a register map of  
this command.  
The VCOMP signal is generated by the sum of three signal paths. Finally the VCOMP signal is scaled by the AC  
gain parameter, KAC  
.
Proportional path: An error amplifier subtracts the sensed output voltage from the output voltage target, set  
by VDAC. The gain of the proportional path is set by the AC load line (ACLL). Reducing the value of the AC  
load line increases the proportional path gain, which gives faster transient response. Setting the AC load line  
to a very low value can lead to low phase margin. The minimum recommended ACLL value is 0.125 m ohm.  
Integral path: The difference between the sensed output voltage and the output voltage target, VDAC, is  
compared to the ideal droop (ISUM × DCLL) value to create an error voltage, VERR. An integrator adjusts  
the setpoint of VCOMP, to drive the output voltage error to zero. Integration provides high DC gain, giving  
the power supply excellent output regulation and DC load line performance. The programmable integration  
time constant, τINT changes the settling time of of the output voltage folliowing a transient. Increasing the  
integration time constant improves phase margin. The programmable integration path gain, KINT, sets the  
gain of the integral path.  
Current feedback: The summed phase current, ISUM, with a nominal gain of 5 mV/A, is used directly to  
generate VCOMP, as well as in the integral path to set the DC load line. The gain of this path is not affected by  
the IOUT_CAL_GAIN or IOUT_CAL_OFFSET calibration commands.  
VRAMP  
Loop  
Comparator  
Proportional Path  
Error Amplifier  
+
1/ACLL  
CLK_ON  
+
VERR  
Integral Path  
KINT  
+
VDAC  
VVSP - VVSN  
VDROOP  
+
+
KDIV  
-KAC  
N
DCLL  
Þ
VCOMP  
œ
tINT  
Current Feedback  
5mΩ  
ISUM  
ISUM  
Figure 7-22. Loop compensation conceptual block diagram  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.6.4 On-time control: adaptive ton and autobalance current sharing  
The nominal on-time for each phase is determined by an adaptive one-shot circuit, which generates on-times  
according to Equation 25. PWM on-times are adjusted very slowly compared to off-times, so the DCAP+  
modulator behaves similar to a constant-on-time architecture.  
Use the FREQUENCY_SWITCH command to set the nominal per-phase switching frequency.  
V
+ K × I I  
ISHARE L AVG  
× FREQUENCY_SWITCH  
DAC  
t
=
+ ΔPLL_CLF  
(34)  
ON  
V
IN  
where  
tON is the on-time for the phase in seconds  
VDAC is the output voltage set-point in volts  
FREQUENCY_SWITCH is the commanded switching frequency in Hz  
VIN is the sensed input voltage from the VIN_CSNIN pin  
KISHARE is the gain of the current share loop  
IL is the current carried by the phase  
IAVG is the average phase current for all phases  
ΔPLL_CLF is the on-time adjustment from the closed loop frequency correction circuit  
Current sharing is implemented by adapting the on-time for each phase, according to the difference between its  
own phase current IL, and the average of all phase currents IAVG. When the phase current for any one phase  
is greater than the average of all phase currents, the on-time of that phase is reduced accordingly. Similarly, if  
the phase current of any one phase is less than the average of all phase currents, the on-time of that phase is  
increased.  
The on-time is also proportional to the sensed input voltage, which provides the controller with inherent input  
voltage feed-forward.  
Furthermore, a frequency control loop adjusts the on-times for each phase to drive the actual switching  
frequency equal to the FREQUENCY_SWITCH setting. An internal clock counts the number of observed pulses  
over a set interval, and compares the result to the calculated ideal number. If too many pulses are fired in the  
sampling period, the switching frequency is too high, and the on-times are increased to reduce the steady-state  
switching frequency. If too few pulses are fired during the sampling period, the switching frequency is too low  
and the on-times are reduced to increase the steady-state frequency. The PWM pin assigned to ORDER=0 is  
used for counting purposes, as it does not drop due to phase shedding.  
gm  
FREQUENCY_SWITCH  
+
VIN  
CLK_ON  
œ
discharge  
Tristate  
PWM  
Logic  
tON1  
PWM1  
+
VOUT_SCALE_LOOP  
VDAC  
KT1  
×
+
IL1  
+
1 µs  
Filter  
+
œ
IAVG  
+
PWM  
Frequency  
Control  
REFCLK  
(one per channel)  
Figure 7-23. On-time generation and auto-balance current sharing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.6.5 Load transient response  
TPS536C7B1 achieves fast load transient performance using the inherently variable switching frequency  
characteristics of DCAP+ control. Figure 7-24 illustrates the load insertion behavior, in which PWM pulses are  
generated with faster frequency than the steady-state frequency, to provide more energy to the output voltage,  
improving undershoot performance. Figure 7-25 illustrates the load release behavior, in which PWM pulses can  
be delayed to avoid charging extra energy to the load until the output voltage reaches the peak overshoot.  
When there is a sudden load increase, the output voltage immediately drops. The controller device reacts to this  
drop by lowering the voltage on internal VCOMP signal. This forces PWM pulses to fire more frequently, which  
causes the inductor current to rapidly increase. As the converter output current reaches the new load current, the  
device reaches a steady-state operating condition and the PWM switching resumes the steady-state frequency.  
When there is a sudden load release, the output voltage immediately overshoots. The control loop reacts to this  
rise by increasing the voltage of the internal VCOMP signal. This rise forces the PWM pulses to be delayed until  
the converter output current reaches the new load current. At that point, the switching resumes and steady-state  
switching continues. In Figure 7-24 and Figure 7-25, the ripples on VOUT , and VCOMP voltages are not shown for  
simplicity.  
IOUT  
ISUM  
VOUT  
VCOMP  
VRAMP  
CLK_ON  
PWM1  
PWM2  
PWM3  
PWM4  
Figure 7-24. Load insertion response (4-phase example, 0-1-2-3 ordering)  
IOUT  
ISUM  
VOUT  
VCOMP  
VRAMP  
CLK_ON  
PWM1  
PWM2  
PWM3  
PWM4  
Figure 7-25. Load release response (4-phase Example, 0-1-2-3 ordering)  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.6.6 Forced minimum on-time, minimum off-time and leading-edge blanking time  
Under normal linear operation, the PWM on- and off-times are generated by the control loop. To improve noise  
immunity, the controller forces a minimum on-time whenever the PWM pins pulse high. The off-time for any  
phase is limited by a forced minimum off-time. Although TI smart power stage devices have built-in protection  
from glitches on the PWM pins also, this feature provides redundant protection against cross-conduction issues.  
The controller also limits the time between sending pulses to any two adjacent phases. This is referred to as  
the leading-edge blanking time, tBLANK. Increase the leading edge blanking time to prevent over-compensation  
(or "ring-back") by the controller during heavy load transient events. The minimum on-time, minimum off-time,  
and leading edge blanking time are programmable by the NONLINEAR_CONFIG PMBus command. Refer to the  
Technical Reference Manual for a register map of this command.  
For multiphase designs, the maximum per-phase switching frequency during transients, is limited by the leading  
edge blanking time parameters as shown in Equation 26. The controller also forces a minimum-off-time per  
phase. The greater of the two limits the maximum frequency.  
1
f
=
N
(35)  
PHASE(max)  
× t  
Φ
BLANK  
where  
NΦ is the number of active phases  
tBLANK is the leading edge blanking time in seconds  
7.6.7 Nonlinear: undershoot reduction (USR), overshoot reduction (OSR) and dynamic integration  
Nonlinear features improve the controller response to severe repetitive load transient conditions.  
When the controller is subjected to load transients at very high frequency, the output voltage may not be able to  
completely settle before the next transient event occurs. As a result, particularly during overshoot events, when  
the controller is firing pulses infrequently, the controller integration path can see error which does not completely  
settle. Accumulation of large overshoot error can cause the controller response to following undershoot events  
to be slower. To prevent excess accumulation of error during repetitive load transient events, the controller  
implements dynamic integration. When the output voltage overshoots its target by a certain voltage, VDINT, the  
controller integration time constant can be changed to an alternate value, the dynamic integration time constant.  
Use the COMPENSATION_CONFIG command to configure the dynamic integration time constant and threshold  
voltage. Typically, set the dynamic integration constant to a longer time than the static integration time constant.  
ISUM slew rate limited by inductors  
IOUT  
ISUM  
VOUT  
VDAC  
VDROOP  
ISUM×RDCLL  
VDROOP  
VUSR2  
VUSR1  
VERR  
VDINT  
VOSR  
Dynamic  
integration  
active  
USR1 phases added  
All phases added  
Diode braking,  
Pulse truncation  
Figure 7-26. Dynamic integration, OSR, USR detection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Systems which use the dynamic phase shedding feature, may still have sudden and severe load transient events  
occur. The undershoot reduction (USR) feature allows the controller to add phases even before the output  
current reaches the dynamic phase adding thresholds. This ensures the transient undershoot event is stopped  
as quickly as possible. TPS536C7B1 has two levels of USR. The USR1 threshold is used to quickly enable  
a configurable number of phases, USR1_PH. The USR2 threshold adds all enabled phases, assigned to that  
channel. Use the NONLINEAR_CONFIG command to configure the USR1 and USR2 features.  
The overshoot reduction (OSR) feature reduces output voltage overshoot during severe load transient events,  
by turning off the low-side FETs of the powerstage devices (e.g. tri-stating the controller PWM pins), when an  
overshoot event occurs. The inductor current of each phase must remain continuous, forcing the output current  
through the body diode of each low-side FET. This dissipates excess energy more quickly than keeping the  
powerstage low-side FET fully conducting, due to the forward voltage drop characteristics of the body diodes. As  
a result, the transient overshoot is smaller when this technique is used, compared to simply turning on the low-  
side FET of each powerstage. However, this results in excess heat which must be properly managed in systems  
with highly repetitive transient conditions. Additionally, TPS536C7B1 can be configured to truncate PWM pulses,  
to reduce the worst-case response time to overshoot events. The NONLINEAR_CONFIG command provides  
four controls for overshoot reduction: an enable bit for diode braking, an enable bit for pulse truncation, the OSR  
threshold, VOSR, and the diode braking timeout, which limits the maximum amount of time during which diode  
braking takes place, to manage excess heating. Refer to the Technical Reference Manual for a register map of  
this command.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.7 Power supply fault protection  
7.7.1 Host notification and status reporting  
The supported status bits and registers are detailed in Figure 7-27. All of the fault conditions listed in Section  
7.7.3 have associated status bits. Status bits and SMB_ALERT# may be cleared using the CLEAR_FAULTS  
command, commanding the offending channel to disable (as specified in ON_OFF_CONFIG), or by power  
cycling. Most commonly, issue CLEAR_FAULTS with the PAGE set to FFh, to clear faults for both channels.  
(78h) STATUS_BYTE [paged] (and LSB of STATUS_WORD)  
(79h) STATUS_WORD [paged]  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
LSB  
MSB  
Bit 15: More info in STATUS_VOUT  
Bit 14: More info in STATUS_IOUT  
Bit 13: More info in STATUS_INPUT  
Bit 12: More info in STATUS_MFR  
Bit 11: VR_RDY pin is low  
Bit 7: Device was busy and could not respond  
Bit 6: Power conversion is disabled for any reason  
Bit 5: Vout OV Fault  
Bit 4: Iout OC Fault  
Bit 3: Vin UV Fault  
Bit 9: More info in STATUS_OTHER  
Bit 2: More info in STATUS_TEMPERATURE  
Bit 1: More info in STATUS_CML  
Bit 0: More info in MSB  
(7Ah) STATUS_VOUT [paged]  
(7Bh) STATUS_IOUT [paged]  
(7Ch) STATUS_INPUT [shared]  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Bit 7: Vout OV Fault (Fixed or Tracking). More  
info in STATUS_EXTENDED  
Bit 6: Vout OV Warn  
Bit 7: Iout (Isum) OC Fault  
Bit 5: Iout (Isum) OC Warn  
Bit 3: Ishare Warn. More info in  
STATUS_PHASES  
Bit 7: Vin OV Fault  
Bit 6: Vin OV Warn  
Bit 5: Vin UV Warn  
Bit 4: Vin UV Fault  
Bit 5: Vout UV Warn  
Bit 4: Vout UV Fault (Tracking)  
Bit 3: Vout commanded outside  
VOUT_MIN/VOUT_MAX window  
Bit 2: TON_MAX Fault  
Bit 3: Unit off due to low input voltage  
Bit 2: Iin OC Fault  
Bit 1: Iin OC Warn  
Bit 0: Pin OP Warn  
(7Fh) STATUS_OTHER [shared]  
(7Dh) STATUS_TEMPERATURE [paged]  
(7Eh) STATUS_CML [shared]  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Bit 7: Power stage OT Fault  
Bit 6: Power stage OT Warn  
Bit 0: Device was first to assert SMB_ALERT#  
Bit 7: Invalid command  
Bit 6: Invalid data  
Bit 5: Packet error check failed  
Bit 4: Memory failure  
Bit 1: Communication error  
Bit 0: Other communication error occurred  
(DCh) STATUS_PHASES [paged][phased]  
15 14 13 12 ...  
If PHASE=FFh (address all phases)  
(DDh) STATUS_EXTENDED [shared]  
(80h) STATUS_MFR_SPECIFIC [paged]  
2
1
0
55 54 53 52  
...  
2
1
0
7
6
5
4
3
2
1
0
Bit 7: Power-on self-check failed  
Bit 55: CML Access error  
Bit 54: Bad group command  
Bit 53: Attempted group read  
Bit 52: Unknown CML error  
Bit 51: Transaction aborted  
Bit 50: Lost arbitration  
Bit 49: Block size was NACK  
Bit 45: Too few bytes rx‘d  
Bit 44: Too many bytes rx‘d  
Bit 43: Block size too small  
Bit 42: Block size too large  
Bit 41: Write to protected cmd  
Bit 39: VSP open Ch. B  
Bit 38: VSP open Ch. A  
Bit 37: VSN open Ch. B  
Bit 36: VSN open Ch. A  
Bit 28: SYNC/CLF fault  
Bit 26: Update not allowed  
Bit 25: BOOT pin detect failed  
Bit 24: ADDR pin detect failed  
Bit 19: Invalid phase config  
Bit 18: Invalid config file  
Bit 15: TAO low Ch. B  
Bit 6: More info in STATUS_EXTENDED  
Bit 4: More info in STATUS_PHASES  
Bit 3: RESET# Vout occurred  
Bit 0: Warn info available about Phase 1  
Bit 1: Warn info available about Phase 2  
Bit 0: Power stage fault (TAO High)  
If PHASE=00h, 01h, (individual phase)  
Bit 7: Ishare (higher than avg) warning  
Bit 6: Ishare (lower than avg) warning  
Bit 1: Per-phase OCL warning  
Bit 14: TAO low Ch. A  
Bit 5: Pre-bias OVP Ch. B  
Bit 4: Pre-bias OVP Ch. A  
Bit 3: Tracking OVP Ch. B  
Bit 2: Tracking OVP Ch. A  
Bit 1: Fixed OVP Ch. B  
Bit 0: Fixed OVP Ch. A  
Figure 7-27. Status register support and decoding  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
TPS536C7B1 supports a full set of PMBus status registers and the SMB_ALERT# notification protocol. Any  
condition which causes a status bit to assert, also causes TPS536C7B1 to assert the SMB_ALERT# signal  
(unless that bit is masked via SMBALERT_MASK). Use the alert response address (ARA) protocol to determine  
the address of the device experiencing a fault condition in multi-slave systems. The SMB_ALERT# protocol is  
optional, and the system designer may choose to implement fault management through other means. Figure  
7-28 shows a flow diagram of using the ARA protocol.  
SMB_ALERT#  
Asserted  
Issue ARA  
SMBus ReceiveByte  
to Address 12d  
If fault re-occurs and is  
not masked, ARA returns  
the same address again.  
Otherwise, it returns the  
address of next device  
with a fault  
Return  
(Confirm  
SMB_ALERT# has  
been cleared)  
No  
Data Received?  
Ack/Nack  
Yes  
Receive address of  
highest priority device  
with an alert (lowest  
numerical address)  
Read (79h)  
STATUS_WORD  
from received  
address at all Pages  
More  
Yes  
Information in  
other status  
registers?  
Read other status  
registers  
No  
If applicable, write  
(1Bh) SMBALERT_  
MASK bits to mask  
faults and issue (03h)  
CLEAR_FAULTS  
Manage and log fault  
at system level  
Figure 7-28. Flow diagram of SMB_ALERT# response protocol  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.7.2 Fault type and response definitions  
Paged fault conditions apply only to a single channel and are duplicated for channel A and channel B. Paged  
fault conditions only cause one channel to shut down when triggered. For latch-off faults, the enable for that  
channel must be toggled to re-enable power conversion. For example, if channel B experiences an overvoltage  
fault, only channel B stops power conversion, and channel B must be commanded to disable power conversion,  
and re-enable power conversion to continue normal operation.  
Shared fault conditions apply to channels A and B simultaneously. Shared fault conditions cause both channels  
A and B to shut down when triggered.  
Warning conditions do not cause any interruption to power conversion. They are meant to inform the system  
host of changing conditions so that it can react prior to a fault being triggered. Warnings do conditions set  
associated PMBus status bits and trigger the SMB_ALERT# signal when not masked.  
Fault conditions set to the ignore response are treated as warnings. Faults set to the ignore response do not  
cause any interruption of power conversion but do still cause status bits and SMB_ALERT# to trigger.  
Fault conditions set to the latch-off response cause power conversion to stop immediately. The channel must  
be commanded to stop power conversion then restart to continue operation. Start-up from a latch-off fault  
is identical to a normal power-up and the configured TON_DELAY is still observed. The RSTOSD option in  
MISC_OPTIONS controls whether the boot voltage returns to its last programmed value, or boots to its VBOOT  
value.  
Fault conditions set to the hysteretic response cause power conversion to stop immediately. When the fault  
condition no longer exists, the TPS536C7B1 attempts to restart immediately. The configured TON_DELAY is still  
observed.  
Fault conditions set to the hiccup response cause power condition to stop immediately. After a hiccup wait time,  
25 ms by default, TPS536C7B1 attempts to re-enable power conversion. The configured TON_DELAY is still  
observed. If the fault condition has disappeared, the start-up attempt succeeds and power conversion continues.  
Otherwise, the process repeats indefinitely. The RSTOSD option in MISC_OPTIONS controls whether the boot  
voltage returns to its last programmed value, or boots to its VBOOT value.  
The TOFF_DELAY is not respected during any fault shutdown response.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.7.3 Fault behavior summary  
Table 7-8. Fault detection and behavior  
Shared /  
Fault Name  
Paged /  
Phased  
Condition  
Latency  
Enabled  
Programmable Range  
Response  
Alerts (1)  
Clearing (2)  
Output Voltage / Current / Power  
Until  
initialization  
after 3.3V OK complete, then  
disabled  
VSP voltage  
exceeded  
threshold  
Pre-Bias OV  
Fault  
Max 350 µs  
Shared  
3.7 V fixed by design  
All PWM Low, Latch-Off  
VR_FAULT#  
3.3 V Power Cycle  
3.3 V power cycle  
if triggered while  
power conversion  
is disabled.  
VSP voltage  
exceeded fixed 1.0 µs  
threshold  
After  
initialization  
complete  
VR_FAULT# if  
not ignore  
response  
Ignore, Latch-Off, Hiccup  
PWM Pulled Low  
Fixed OV Fault Paged  
0.6 V to 3.7 V  
Otherwise,  
clearable through  
Enable cycle, or  
CLEAR_FAULTS  
VSP-VSN  
voltage  
VR_FAULT# if  
not ignore  
response  
Tracking OV  
Paged  
During power  
conversion  
Offset from current VID+Droop, Ignore, Latch-Off, Hiccup  
Enable cycle, or  
CLEAR_FAULTS  
exceeded VID 1.0 µs  
+ Droop + OV  
Offset  
Fault  
+32 to +448 mV Offset  
PWM pulled low  
Warning only  
Warning only  
VSP-VSN  
voltage  
exceeded VID 2.0 µs  
+ Droop + OV  
Offset  
Tracking OV  
Paged  
During power  
conversion  
Offset from current VID + Droop  
+24 to +448 mV Offset  
Enable cycle, or  
CLEAR_FAULTS  
n/a  
Warn  
VSP-VSN  
voltage below  
VID + Droop -  
UV Offset  
Tracking UV  
Paged  
During power  
conversion  
Offset from current VID + Droop  
-24 to -448 mV Offset  
Enable cycle, or  
CLEAR_FAULTS  
2.0 µs  
n/a  
n/a  
Warn  
VSP-VSN  
Tracking UV  
Paged  
voltage below  
1.0 µs  
During power  
conversion  
Offset from current VID + Droop Ignore, Latch-Off, Hiccup  
Enable cycle, or  
CLEAR_FAULTS  
Fault  
VID + Droop-  
-32 to -448 mV Offset  
PWM Tri-State  
UV Offset  
VSP-VSN did  
not rise to  
threshold  
quickly enough  
during soft-  
start  
Max Turn-on  
time  
(TON_MAX)  
During soft-  
start only  
Ignore, Latch-Off, Hiccup  
PWM Tri-State  
Enable cycle, or  
CLEAR_FAULTS  
Paged  
500 µs  
0 ms to 31.75 ms  
n/a  
n/a  
Vout  
commanded  
Vout Min/Max  
Warning  
above  
VOUT_MAX or  
below  
VOUT_MIN  
During power  
conversion  
VOUT_MAX and  
VOUT_MIN  
DAC Voltage clamped to limit  
Warning only  
Enable cycle, or  
CLEAR_FAULTS  
Paged  
Paged  
N/A  
Total current  
exceeded  
threshold  
Over-current  
Fault  
During power  
conversion  
Ignore, Latch-Off, Hiccup  
PWM Tri-State  
VR_FAULT#  
configurable  
Enable cycle, or  
CLEAR_FAULTS  
175 µs  
0 to 1023 A(3)  
17 to 130 A(3)  
Per-Phase  
Over-current  
Limit  
Phase current  
exceeded  
threshold  
Warning only,  
PWM pulses skipped to limit  
phase current  
Paged,  
Phased  
During power  
conversion  
Enable cycle, or  
CLEAR_FAULTS  
Cycle-by-cycle  
n/a  
n/a  
Phase current  
above or below  
average  
current for all  
phases by  
Current Share Paged,  
Warning Phased  
During power  
conversion  
Enable cycle, or  
CLEAR_FAULTS  
175 µs  
5 to 20 A per phase  
Warning only  
threshold  
(1) Any fault response which causes a shutdown event de-asserts VR_RDY. All faults have associated PMBus status bits and  
SMB_ALERT# response (unless masked by SMBALERT_MASK commands)  
(2) Fault condition must have disappeared, otherwise fault re-triggers immediately  
(3) IOUT_OC_FAULT_LIMIT[PAGE=x][PHASE=FFh] sets the per-page OC fault threshold, IOUT_OC_FAULT_LIMIT[PAGE=x]  
[PHASE=Other] sets the per-phase OCL threshold  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-9. Fault detection and behavior (continued)  
Shared /  
Paged /  
Phased  
Fault Name  
Condition  
Latency  
Enabled  
Programmable Range  
Response  
Alerts (1)  
Clearing (2)  
Power Stage Feedback  
Power Stage  
Temperature  
exceeded  
Over-  
Temperature  
Fault  
After  
initialization  
complete  
Ignore, Latch-Off, Hiccup  
PWM Tri-State  
VR_FAULT#  
configurable  
Enable cycle, or  
CLEAR_FAULTS  
Paged  
950 µs  
+90 to +160 °C  
threshold  
Power Stage  
Temperature  
exceeded  
Over-  
Temperature  
Warning  
After  
initialization  
complete  
Enable cycle, or  
CLEAR_FAULTS  
Paged  
Paged  
Paged  
950 µs  
+90 to +160 °C  
TAO > 2.5 V  
Warning only  
n/a  
threshold  
TAO pulled  
high by power 1.0 µs  
stage  
After  
initialization  
complete  
VR_FAULT# if  
not ignore  
response  
Power Stage  
Fault  
Ignore, Latch-Off, Hiccup  
PWM Tri-State  
Enable cycle, or  
CLEAR_FAULTS  
Hysteresis  
Power Stage  
Not Ready  
(TAO LOW)  
After  
initialization  
complete  
TAO pulled low  
1.0 µs  
TAO < 230 mV Falling (50mV  
hysteresis)  
Start-up is blocked if not yet  
enabled, or rail is shutdown.  
PWM tristated  
Enable cycle, or  
CLEAR_FAULTS  
n/a  
by power stage  
Input Voltage / Current / Power  
VIN_CSNIN  
After  
initialization  
complete  
Input Over-  
voltage  
Ignore, Latch-Off, Hiccup  
PWM Tri-State  
Enable cycle, or  
CLEAR_FAULTS  
Shared  
Shared  
Shared  
Shared  
Shared  
Shared  
Shared  
950 µs  
950 µs  
0 to 19 V  
n/a  
n/a  
n/a  
n/a  
Voltage Fault  
exceeded  
threshold  
VIN_CSNIN  
voltage  
exceeded  
threshold  
Input Over-  
Voltage  
Warning  
After  
initialization  
complete  
Enable cycle, or  
CLEAR_FAULTS  
0 to 19 V  
Warning only  
Warning only  
VIN > VIN_ON  
first time and  
either channel  
enabled  
Input Under-  
Voltage  
Warning  
VIN_CSNIN  
voltage below 950 µs  
threshold  
Enable cycle, or  
CLEAR_FAULTS  
4.0 to 11.25 V  
4.0 to 11.25 V  
4 to 128 A  
4 to 128 A  
8 to 2044 W  
VIN > VIN_ON  
first time and  
either channel  
enabled  
VIN_CSNIN  
voltage below 950 µs  
threshold  
Input Under-  
Voltage Fault  
Ignore, Latch-Off, Hiccup  
PWM Tri-State  
Enable cycle, or  
CLEAR_FAULTS  
CSPIN-  
VR_FAULT# if  
not ignore  
response  
Input Over-  
VIN_CSNIN  
During power  
conversion  
Ignore, Latch-Off, Hiccup  
PWM Tri-State  
Enable cycle, or  
CLEAR_FAULTS  
525 µs  
Current Fault  
current below  
threshold  
CSPIN-  
Input Over-  
Current  
Warning  
VIN_CSNIN  
525 µs  
During power  
conversion  
Enable cycle, or  
CLEAR_FAULTS  
Warning only  
Warning only  
n/a  
n/a  
current below  
threshold  
Computed  
Input Over-  
input power  
During power  
conversion  
Enable cycle, or  
CLEAR_FAULTS  
525 µs  
Power Warning  
above  
threshold  
Self-Checking  
ADDR pin  
open, low,  
high, or non-  
convergent  
detection  
Checked  
Invalid ADDR  
Pinstrap  
Checked once  
at initialization  
Shared  
Shared  
during power- Per detection thresholds  
on and enable  
Latch-Off, PWM tristate  
Latch-Off, PWM tristate  
n/a  
n/a  
3.3 V Power Cycle  
3.3 V Power Cycle  
BOOT pin  
open, low,  
high, or non-  
convergent  
detection  
Checked  
Invalid BOOT  
Pinstrap  
Checked once  
at initialization  
during power- Per detection thresholds  
on and enable  
PMBus Interface  
PMBus  
PMBus  
Communicatio Shared  
n Error  
Per PMBus  
communication initialization  
frequency complete  
After  
Communicatio  
n Error (See  
STATUS_CML)  
Enable cycle, or  
CLEAR_FAULTS  
See PMBus Specification  
Warning only  
n/a  
(1) Any fault response which causes a shutdown event de-asserts VR_RDY. All faults have associated PMBus status bits and  
SMB_ALERT# response (unless masked by SMBALERT_MASK commands)  
(2) Fault condition must have disappeared, otherwise fault re-triggers immediately  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.7.4 Detailed fault descriptions  
7.7.4.1 Overvoltage fault (OVF) and warning (OVW)  
TPS536C7B1 supports several forms of overvoltage protection. Figure 7-29 describes the overvoltage protection  
scheme in more detail.  
Pre-Bias OVF protects the converter while initialization runs. This protection is active tINIT-PBOV, 350 μs  
maximum after the VCC pin voltage is established, until initialization is complete. The threshold is hard-coded  
to 3.7 V. In response to this condition, all PWM pins (regardless of channel assignment) pull low, regardless  
of the overvoltage response setting. This fault cannot be cleared without a power cycle of the VCC pin.  
The fixed overvoltage protection becomes active after tINIT-LOGIC , up to 20 ms after the VCC pin voltage is  
established. This fault detection cannot be disabled.  
Fixed OVF is a programmable limit based on the VSP pin voltage, above which it is not safe to operate  
the load device. Program the threshold through MFR_PROTECTION_CONFIG. This fault detection is active  
regardless of power conversion. If triggered while power conversion is disabled, this fault is treated as  
potentially catastrophic, and cannot be cleared without a power cycle of the VCC pin.  
Tracking OVF is a fault limit, programmable as an offset from the current VOUT_COMMAND value. Program  
this threshold through VOUT_OV_FAULT_LIMIT. When the VSP-VSN pin differential voltage exceeds this  
limit during power conversion, the tracking overvoltage fault condition is detected. This fault detection is  
disabled whenever power conversion is disabled.  
Tracking OVW is a warning limit, programmable as an offset from the current VOUT_COMMAND value.  
Program this threshold through VOUT_OV_WARN_LIMIT. When the VSP-VSN pin differential voltage  
exceeds this limit during power conversion, the tracking overvoltage warning condition is detected. This is a  
warning condition only, and does not cause any interruption to power conversion. The overvoltage warning  
provides early feedback to they system host allowing it to make adjustments prior a fault triggering.  
In response to the overvoltage warning condition, TPS536C7B1 sets the appropriate status bits in  
STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.  
In response to the overvoltage fault condition TPS536C7B1 responds according to the programmed  
VOUT_OV_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail  
which experienced a fault to pull low immediately. Additionally, TPS536C7B1 sets the appropriate status bits in  
STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.  
VCC  
VR_EN  
VR_RDY  
VOV-PREBIAS  
tINIT-LOGIC  
tINIT-PBOV  
VOV-FIXED  
Fixed +Tracking OVP  
VOFS-OVFTRK  
Fixed  
OVP only  
No Pre-Bias  
OVP OVP only  
Fixed  
OVP only  
VOFS-UVFTRK  
First PWM pulses  
VOFS-UVFTRK  
VOFS-UVWTRK  
VOUT  
Figure 7-29. Overvoltage Protection  
Program the tracking overvoltage fault threshold through the VOUT_OV_FAULT_LIMIT command as an absolute  
voltage. When a new VOUT_OV_FAULT_LIMIT command is received the device calculates the tracking  
overvoltage offset value internally according to Equation 27. The threshold voltages get scaled with the use  
of an external voltage sensing divider and VOUT_SCALE_LOOP. TPS536C7B1 supports tracking overvoltage  
fault offsets from +32 mV to +448 mV in 32 mV steps.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Program the tracking overvoltage warning through the VOUT_OV_WARN_LIMIT command as an absolute  
voltage. Similarly, when a new VOUT_OV_WARN_LIMIT command is received, the device calculates the  
tracking overvoltage warning offset according to Equation 28. The threshold voltages get scaled with the use  
of an external voltage sensing divider and VOUT_SCALE_LOOP. TPS536C7B1 supports tracking overvoltage  
warning offsets from +24 mV to +448 mV in 8 mV steps.  
Program the fixed overvoltage fault threshold through MFR_PROTECTION_CONFIG. TPS536C7B1 supports  
values from 0.6 V to 3.7 V, in 100 mV steps.  
VOUT_OV_FAULT_LIMIT VOUT_COMMAND  
V
V
=
(36)  
(37)  
OFS(OVF TRK)  
VOUT_SCALE_LOOP  
VOUT_OV_WARN_LIMIT VOUT_COMMAND  
=
OFS(OVW TRK)  
VOUT_SCALE_LOOP  
The over-voltage warning and fault trip thresholds include the load-line setting as shown in Equation 29 and  
Equation 30.  
V
V
= VOUT_COMMAND + V  
VOUT_DROOP × I  
(38)  
(39)  
OVW(trip)  
OVF(trip)  
OFS(OVW TRK) OUT  
= Min V  
, VOUT_COMMAND + V  
VOUT_DROOP × I  
OFS(OVF TRK) OUT  
OVFIX  
Updates to VOUT_COMMAND do not cause these the overvoltage offsets to be recalculated. After the output  
voltage target has been changed, TPS536C7B1 reports the fault and warning thresholds by adding the  
previously select offset value to the current VOUT_COMMAND.  
Example: Programming the OVF and OVW offsets  
Assume the current VOUT_COMMAND is 1.000 V, the VOUT_DROOP setting is equal to 0.5 mΩ, and the load  
current is equal to 100 A.  
Program the VOUT_OV_WARN_LIMIT to 1.128 V (1.0 V + 128 mV), to select the +128 mV tracking  
overvoltage warning offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However,  
the over-voltage warning trip threshold does account for the load-line setting and is equal to 1.128 V - 0.5 mΩ  
× IOUT  
.
Program the VOUT_OV_FAULT_LIMIT to 1.256 V (1.0 V + 256 mV) , to select the +256 mV tracking  
overvoltage fault offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However, the  
over-voltage fault trip threshold does account for the load-line setting and is equal to 1.256 V - 0.5 mΩ × IOUT  
.
If the VOUT_COMMAND value is changed to is 1.100 V, the TPS536C7B1 reports VOUT_OV_WARN_LIMIT as  
1.228 V (1.1 V + 128 mV), and VOUT_OV_FAULT_LIMIT as 1.356 V (1.1 V + 256 mV). The offset values are not  
changed.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.7.4.2 Undervoltage fault (UVF) and warning (UVW)  
Two undervoltage threshold limits are provided:  
Tracking UVF is a fault limit, programmable as an offset from the current VOUT_COMMAND value. Program  
this threshold through VOUT_UV_FAULT_LIMIT. When the VSP-VSN pin differential voltage falls below this  
limit during power conversion, the tracking undervoltage fault condition is detected. This fault detection is  
disabled whenever power conversion is disabled.  
Tracking UVW is a warning limit, programmable as an offset from the current VOUT_COMMAND value.  
Program this threshold through VOUT_UV_WARN_LIMIT. When the VSP-VSN pin differential voltage  
exceeds this limit during power conversion, the tracking undervoltage warning condition is detected. This  
is a warning condition only, and does not cause any interruption to power conversion. The undervoltage  
warning provides early feedback to they system host allowing it to make adjustments prior a fault triggering.  
In response to the undervoltage warning condition, TPS536C7B1 sets the appropriate status bits in  
STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.  
In response to the undervoltage fault condition TPS536C7B1 responds according to the programmed  
VOUT_UV_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the  
rail which experienced a fault to tristate immediately. TPS536C7B1 then sets the appropriate status bits in  
STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.  
Program the tracking undervoltage fault threshold through the VOUT_UV_FAULT_LIMIT command as an  
absolute voltage. When a new VOUT_UV_FAULT_LIMIT command is received, the device calculates the  
tracking undervoltage offset value internally according to Equation 38. Threshold voltages get scaled with  
the use of an external voltage sensing divider, and VOUT_SCALE_LOOP. TPS536C7B1 supports tracking  
undervoltage fault offsets from -32 mV to -448 mV in 32 mV steps.  
Program the tracking undervoltage warning through the VOUT_UV_WARN_LIMIT command as an absolute  
voltage. When a new VOUT_UV_WARN_LIMIT command is received, the device calculates the tracking  
undervoltage warning offset according to Equation 39. Threshold voltages get scaled with the use of an external  
voltage sensing divider, and VOUT_SCALE_LOOP. TPS536C7B1 supports tracking undervoltage warning  
offsets from -24 mV to -448 mV in 8 mV steps.  
space  
VOUT_COMMAND VOUT_UV_WARN_LIMIT  
V
V
=
(40)  
(41)  
OFS(UVW TRK)  
VOUT_SCALE_LOOP  
VOUT_COMMAND VOUT_UV_FAULT_LIMIT  
=
OFS(UVF TRK)  
VOUT_SCALE_LOOP  
The undervoltage warning and fault trip thresholds include the load-line setting as shown in Equation 33 and  
Equation 34.  
V
V
= VOUT_COMMAND V  
VOUT_DROOP × I  
OFS(UVW TRK) OUT  
(42)  
(43)  
UVW(trip)  
UVF(trip)  
= VOUT_COMMAND V  
VOUT_DROOP × I  
OFS(UVF TRK)  
OUT  
Example: Programming the UVF and UVW thresholds  
Assume the current VOUT_COMMAND is 1.000 V, the VOUT_DROOP setting is equal to 0.5 mΩ, and the load  
current is equal to 100 A.  
Program the VOUT_UV_WARN_LIMIT to 0.872 V (1.0 V - 128 mV), to select the -128 mV tracking  
undervoltage warning offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However,  
the undervoltage warning trip threshold does account for the load-line setting and is equal to 0.872 V - 0.5  
mΩ × IOUT  
.
Program the VOUT_UV_FAULT_LIMIT to 0.744 V (1.0 V - 256 mV), to select the -256 mV tracking  
undervoltage fault offset. The VOUT_DROOP is assumed to be zero for calculation purposes. However,  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
the undervoltage fault trip threshold does account for the load-line setting and is equal to 0.744 V - 0.5 mΩ ×  
IOUT  
.
If the VOUT_COMMAND value is changed to is 1.100 V, the TPS536C7B1 reports VOUT_UV_WARN_LIMIT as  
0.972 V (1.1 V - 128 mV), and VOUT_UV_FAULT_LIMIT as 0.844 V (1.1 V - 256 mV). The offset values are not  
changed.  
7.7.4.3 Maximum turn-on time exceeded (TON_MAX)  
The TON_MAX_FAULT_LIMIT command sets a maximum allowable time during which the output voltage must  
reach the regulation window during turn-on. The TON_MAX time is defined as the time between the first  
switching pulses, and the sensed output voltage exceeding the the minimum allowed regulation point, defined as  
VTONMAX, in Equation 35. Program the TON_MAX_FAULT_LIMIT greater than the TON_RISE.  
V
= VOUT_UV_FAULT_LIMIT VOUT_DROOP × IOUT_OC_FAULT_LIMIT  
(44)  
TONMAX  
Figure 7-30 illustrates the TON_MAX fault. TPS536C7B1 enables its undervoltage fault protection at the first  
PWM pulses, during the output voltage rise time. Consequently, whenever the VOUT_UV_FAULT_RESPONSE  
is not set to the ignore response, it triggers first and disables power conversion prior to the TON_MAX time.  
VR_EN  
VOV-TRACK  
TON_MAX  
Shutdown  
Tracking UV triggers  
first if not Ignore  
Response  
VUV-TRACK  
VTONMAX  
VDAC  
VOUT  
TON_RISE  
TON_MAX  
Figure 7-30. TON_MAX fault  
In response to the TON_MAX fault condition, TPS536C7B1 responds according to the programmed  
TON_MAX_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail  
which experienced the fault to tristate immediately. The TPS536C7B1 then sets the appropriate status bits in  
STATUS_WORD and STATUS_VOUT and asserts the SMB_ALERT# line if these bits are not masked.  
7.7.4.4 Output commanded out-of-bounds (VOUT_MIN_MAX)  
The VOUT_MIN and VOUT_MAX commands set the minimum and maximum allowed output voltage targets.  
TPS536C7B1 does not ramp the output voltage target for either channel outside these limits for any reason. This  
includes being commanded to do so by VOUT_COMMAND, VOUT_MARGIN_HIGH, VOUT_MARGIN_LOW or  
VOUT_TRIM.  
Whenever the output voltage target is commanded outside the limits set by VOUT_MIN and VOUT_MAX,  
TPS536C7B1 detects the VOUT_MIN_MAX warning condition. In response, TPS536C7B1 begins ramping the  
output voltage target of that channel to the new target, and "clamps" to the VOUT_MIN or VOUT_MAX value. An  
example is shown in Figure 7-31.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
VOUT-MAX = 0.9 V  
VOUT_TRANSITION_RATE  
VOUT_TRANSITION_RATE  
VOUT-MIN = 0.7 V  
VOUT_COMMAND  
0.8 V  
0.6 V  
0.8 V  
1.0 V  
0.8 V  
Figure 7-31. VOUT_MIN_MAX example  
7.7.4.5 Overcurrent fault (OCF), warning (OCW), and per-phase overcurrent limit (OCL)  
TPS536C7B1 provides three layers of overcurrent protection:  
Overcurrent fault (OCF) is a programmable threshold which sets the maximum allowed total current (sum  
of all phases) for a channel. Detection is based on output current telemetry. When the sensed output current  
for a channel exceeds this limit, the output overcurrent fault is detected. Program this threshold using the  
IOUT_OC_FAULT_LIMIT command with the PHASE set to FFh. TPS536C7B1 supports values of 0 to 1023 A  
per channel.  
Per-phase overcurrent limit (OCL) is a programmable cycle-by-cycle valley current limit for each individual  
phase current, to protect against inductor saturation. TPS536C7B1 does not pass PWM pulses to phases  
when their current is above the configured OCL threshold. Other than cycle-by-cycle current limit, no action  
is taken when the per-phase OCL is engaged. Typically, in the case of a severe overload event, power  
conversion is disabled when the output voltage reaches the VOUT_UV_FAULT_LIMIT. This is illustrated in  
Figure 7-32. Program the OCL threshold using the IOUT_OC_FAULT_LIMIT command with the PHASE set to  
00h. TPS536C7B1 supports values of 17 A to 130 A per phase.  
Overcurrent warning (OCW) is a programmable warning threshold based on the total current (sum of all  
phases) for a channel. Detection is based on output current telemetry. When the sensed output current for  
a channel exceeds this limit, the output overcurrent warning is detected. Program this threshold using the  
IOUT_OC_WARN_LIMIT. TPS536C7B1 supports values of 0 to 1023 A per channel.  
Over-Load  
Event  
UVP  
Shutdown  
VOUT  
VOUT falls  
because IOUT > IOCL  
VUV-TRK  
IOCL  
IPHASE1  
IPK = IOCL + ûIRIPPLE  
IPHASE2  
Pulses are blocked while IPHASE > IOCL  
CLK_ON  
PWM1  
PWM2  
Figure 7-32. Per-phase OCL (2 phase example)  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Typically, set the per-phase OCL threshold greater than total peak design current IPK-CHANNEL to allow margin for  
transient events, as shown in Equation 36. TI recommends 30-50% design margin. Then peak current allowed  
in any individual phase is given by Equation 37. Select output inductor components such that current saturation  
levels are above this limit, including margin for threshold and current sensing accuracy.  
I
OUT(peak)  
1
2
I
= K  
×
ΔI  
RIPPLE  
(45)  
OCL(min)  
MARGIN  
N
Φ
where  
IOCL(min) is the per-phase overcurrent limit in amperes  
IOUT(PEAK) is the peak design current in amperes  
Nϕ is the number of phases assigned to the channel  
KMARGIN is a factor of safety for design margin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
I
= I  
+ ΔI  
(46)  
PEAK(phase)  
OCL RIPPLE  
where  
IPEAK(phase) is the peak current observed in any individual phase  
IOCL is the per-phase overcurrent limit in amperes  
ΔIRIPPLE is the peak-to-peak inductor current ripple  
In response to the overcurrent warning condition, TPS536C7B1 sets the appropriate status bits in  
STATUS_WORD and STATUS_IOUT and asserts the SMB_ALERT# line if these bits are not masked.  
In response to the overcurrent fault condition, TPS536C7B1 responds according to the programmed  
IOUT_OC_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the  
rail which experienced a fault to tristate immediately. TPS536C7B1 then sets the appropriate status bits in  
STATUS_WORD and STATUS_IOUT and asserts the SMB_ALERT# line if these bits are not masked.  
7.7.4.6 Current share warning (ISHARE)  
The TPS536C7B1 telemetry system continually monitors the average current in each phase, and compares it to  
the average current of all phases assigned the channel. For each phase, whenever the condition described by  
Equation 38 is satisfied, the current share warning condition is detected. Configure the current share warning  
threshold through the MFR_PROTECTION_CONFIG command.  
I
I
SUM  
SUM  
I  
≤ − I  
or  
I
+ I  
SHAREW  
(47)  
PHASE  
SHAREW  
PHASE  
N
N
Φ
Φ
where  
IPHASE is the current in each individual phase of a channel  
ISUM is the total current in that channel  
Nϕ is the total number of phases assigned to that channel  
ISHAREW is the programmed ISHARE warning in amperes  
In response to the current share warning condition, TPS536C7B1 sets the appropriate status bits in  
STATUS_WORD and STATUS_IOUT and asserts the SMB_ALERT# line if these bits are not masked.  
7.7.4.7 Overtemperature fault protection (OTF) and warning (OTW)  
TI smart power stages sense their internal die temperature and output temperature information as a voltage  
signal through their TAO pins. The temperature sense output of the powerstage device includes an OR'ing  
function such that the voltage signal present at the TSEN pin of the TPS536C7B1 represents that of the hottest  
powerstage in the channel. The TPS536C7B1 digitizes its TSEN pins to provide temperature telemetry.  
Overtemperature fault (OTF) is a programmable threshold which sets the maximum allowed temperature of  
the powerstage devices attached to a channel. Detection is based on output temperature telemetry. When the  
sensed temperature for a channel exceeds this limit, the overtemperature fault condition is detected. Program  
this threshold using the OT_FAULT_LIMIT command. TPS536C7B1 supports values of 90 to 160 °C.  
Overtemperature warning (OTW) is a programmable threshold which sets a warning based on the  
temperature sense telemetry for a channel. Detection is based on temperature sense telemetry. When the  
sensed temperature for a channel exceeds this limit, the overtemperature warning is detected. Program this  
threshold using the OT_WARN_LIMIT. TPS536C7B1 supports values of 90 to 160 °C.  
In response to the overtemperature warning condition, TPS536C7B1 sets the appropriate status bits in  
STATUS_WORD and STATUS_TEMPERATURE and asserts the SMB_ALERT# line if these bits are not  
masked.  
In response to the overtemperature fault condition, TPS536C7B1 responds according to the programmed  
OT_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail  
which experienced a fault to tristate immediately. TPS536C7B1 then sets the appropriate status bits in  
STATUS_WORD and STATUS_TEMPERATURE and asserts the SMB_ALERT# line if these bits are not  
masked.  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.7.4.8 Powerstage fault (TAO_HIGH) and powerstage not ready (TAO_LOW)  
In addition to temperature sense information, the TPS536C7B1 and TI smart power stage devices use the TAO  
lines to communicate fault information:  
Powerstage fault (TAO_HIGH) is a fault condition detected when any of the connected powerstage devices  
pulls its TAO line high (> 2.5 V). This occurs for any fault conditions detected inside the smart powerstage  
itself. Refer to the individual powerstage datasheets for a complete list of conditions which cause the  
powerstage fault. Program the controller response to a powerstage fault with MFR_PROTECTION_CONFIG.  
Powerstage not ready (TAO_LOW) is a fault condition detected when the TAO line is low (160 mV falling,  
245 mV rising) for any reason. At power-on, the TI smart power stages hold their TSEN/TAO lines low,  
until their internal logic is valid, and their state is known (TAO_LOW condition). Once each device is in a  
valid state, it's pull-down of the shared TSEN/TAO line is released, and the TAO/TSEN lines are driven by  
the power-stage devices, based on temperature sense telemetry. The start-up of TPS536C7B1 is blocked  
while the TAO_LOW condition exists, such that the controller does not attempt to begin conversion, until the  
TAO/TSEN line is released by all power stages. During the initial power-on, no status bit or alerts are set if  
the controller is commanded to enable with one of its TSEN/TAO pins low. This is done to accomodate power  
sequences which have the power stage 5V rail being enabled after the controller 3.3V. The TAO_LOW fault  
is a hysteretic-type response. When the TSEN/TAO pin is released, if the VR enable condition is still active,  
power conversion starts immediately.  
In response to the powerstage fault, the TPS536C7B1 responds according to the configured fault response  
in MFR_PROTECTION_CONFIG. When not set to the ignore response, this causes the PWM pins for that  
channel to tristate immediately. TPS536C7B1 then sets the appropriate status bits in STATUS_WORD and  
STATUS_MFR_SPECIFIC and asserts the SMB_ALERT# line if these bits are not masked.  
In response to the TAO_LOW condition, TPS536C7B1 tristates the PWM pins for that channel. TPS536C7B1  
then sets the appropriate status bits in STATUS_WORD and STATUS_MFR_SPECIFIC and asserts the  
SMB_ALERT# line if these bits are not masked. TAO_LOW is a hysteretic fault and cannot be configured  
otherwise.  
7.7.4.9 Input overvoltage fault (VIN_OVF) and warning (VIN_OVW)  
TPS536C7B1 supports two layers of input overvoltage protection:  
Input overvoltage fault (VIN_OVF) is a programmable threshold which sets the maximum allowed input  
voltage, above which it is not safe to convert power. Detection is based on input voltage telemetry. When  
the sensed input voltage exceeds this limit, the input overvoltage fault condition is detected. Program this  
threshold using the VIN_OV_FAULT_LIMIT command. TPS536C7B1 supports values of 0 to 19 V.  
Input overvoltage warning (VIN_OVW) is a programmable threshold which sets a warning based on the  
input voltage sense telemetry. Detection is based on input voltage sense telemetry. When the sensed input  
voltage for a channel exceeds this limit, the input overvoltage warning is detected. Program this threshold  
using the VIN_OV_WARN_LIMIT command. TPS536C7B1 supports values of 0 to 19 V.  
In response to the input overvoltage fault, the TPS536C7B1 responds according to the configured fault response  
in VIN_OV_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins for both  
channels to tristate immediately. TPS536C7B1 then sets the appropriate status bits in STATUS_WORD and  
STATUS_INPUT and asserts the SMB_ALERT# line if these bits are not masked.  
7.7.4.10 Input undervoltage fault (VIN_UVF), warning (VIN_UVW) and turn-on voltage (VIN_ON)  
Three programmable parameters control the TPS536C7B1 input undervoltage protection. More detail is shown  
in Figure 7-33.  
Turn-on voltage (VIN_ON) is the input voltage at which TPS536C7B1 allows power conversion to be  
enabled. Program this threshold through the VIN_ON command. The input undervoltage fault and warning  
are masked until the turn-on voltage is exceeded the first time during power-up. TPS536C7B1 does not act  
on commands to enable power conversion while the input voltage is below this limit. No action is taken when  
the input voltage falls below this threshold during power conversion. Detection is based on input voltage  
telemetry. TPS536C7B1 supports values from 4.25 V to 11.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Input undervoltage fault (VIN_UVF) is the input voltage at which power conversion stops. Program this  
threshold through the VIN_UV_FAULT_LIMIT command. This command is also forced equal to the turn-off  
voltage (VIN_OFF). Detection is based on input voltage telemetry. When the sensed input voltage falls below  
this limit, the input undervoltage fault condition is detected. This fault is masked until the sensed input voltage  
exceeds the turn-on voltage VIN_ON for the first time. TPS536C7B1 supports values from 4.00 V to 11.25 V.  
Input undervoltage warning (VIN_UVW) is a programmable threshold which sets a warning based on the  
input voltage sense telemetry for a channel. Detection is based on input voltage sense telemetry. When the  
sensed input voltage below this limit, the input undervoltage warning is detected. Program this threshold  
using the VIN_UV_WARN_LIMIT. TPS536C7B1 supports values of 4.0 V to 11.25 V.  
The input undervoltage fault is triggered when the sensed input voltage falls below the VIN_UV_FAULT_LIMIT  
threshold, and considered to be cleared when the sensed input voltage exceeds the VIN_ON limit. The input  
undervoltage fault is enabled only when either of the channels is enabled. Toggling the enable for both channels  
at the same time with the input voltage above the VIN_UV_FAULT_LIMIT threshold clears the fault, and enables  
power conversion to begin automatically after the input voltage exceeds the VIN_ON limit. In the case where  
the enable for each channel is independent, commanding one channel to enable conversion does not clear the  
input undervoltage condition and power conversion may not start automatically when the input voltage exceeds  
the VIN_ON thresholds. TI recommends to enable power conversion only after the input voltage exceeds the  
VIN_ON as shown in Figure 7-33.  
VR_EN  
VIN-ON  
VIN-UVW  
VINOFF = VIN-UVF  
VIN  
0.0 V  
VIN UVW is clearable  
Power Conversion  
OFF  
ON  
OFF  
ON  
Fault Status  
VIN_UVW  
VIN_UVF  
VIN_UVW  
None  
None  
Figure 7-33. Input undervoltage protection (VR_EN active high control)  
7.7.4.11 Input overcurrent fault (IIN_OCF) and warning (IIN_OCW)  
Input overcurrent fault (IIN_OCF) is a programmable threshold which sets the maximum allowed input  
current for the converter. Detection is based on input current telemetry. When the sensed input current  
exceeds this limit, the input overcurrent fault condition is detected. Program this threshold using the  
IIN_OC_FAULT_LIMIT command. TPS536C7B1 supports values of 4 to 128A.  
Input overcurrent warning (IIN_OCW) is a programmable threshold which sets a warning threshold for  
the input current for the converter. Detection is based on input current telemetry. When the sensed input  
current exceeds this limit, the input overcurrent warning condition is detected. Program this threshold using  
the IIN_OC_WARN_LIMIT command. TPS536C7B1 supports values of 4 to 128A.  
In response to the input overcurrent fault, the TPS536C7B1 responds according to the configured fault response  
in IIN_OC_FAULT_RESPONSE. When not set to the ignore response, this causes the PWM pins for both  
channels to tristate immediately. TPS536C7B1 then sets the appropriate status bits in STATUS_WORD and  
STATUS_INPUT and asserts the SMB_ALERT# line if these bits are not masked.  
7.7.4.12 Input overpower warning (PIN_OPW)  
The PIN_OP_WARN_LIMIT command sets an input overpower warning limit for the converter. Detection is  
based on the input power telemetry, which is derived by multiplying the input voltage and input current  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
measurement values. When the input current telemetry measurements exceeds this limit, TPS536C7B1 detects  
the input overpower warning condition. TPS536C7B1 supports values from 8 to 2044 W.  
The input overpower warning does not interrupt power conversion. In response, TPS536C7B1 sets the  
appropriate status bits in STATUS_WORD and STATUS_INPUT and asserts the SMB_ALERT# line if these  
bits are not masked.  
7.7.4.13 PMBus command, memory and logic errors (CML)  
The STATUS_CML command provides information about communication errors which have occurred.  
Communication errors are warnings and do not cause any interruption to power conversion.  
Invalid command (IVC) occurs when the host attempts to access TPS536C7B1 at a command which it does  
not support.  
Invalid data (IVD) occurs when the host sends data to a supported command which is out of range or  
unsupported.  
Packet error check (PEC) error occurs when TPS536C7B1 receives a transaction with an invalid or  
incorrect PEC byte.  
Communication error (COMM) occurs when the SMBus timeout condition is detected.  
Other (CML_OTHER) can occur due to multiple conditions (may not be an exhaustive list):  
– Wrong transaction prototype - e.g. accessing a read word command as a read block  
– Block command send with the incorrect number of bytes, or block count was not acknowledged  
– Bus arbitration was lost  
– Transaction aborted  
7.8 Device Functional Modes  
Power-on Reset (POR)  
When the VCC in voltage is below approximately 2.5 V, the TPS536C7B1 enters power-on reset, and all internal  
blocks return to their unpowered state. Raise the VCC voltage above the input UVLO threshold to exit the POR  
state. Exiting POR requires up to 20 ms before power conversion can be enabled, during which the device  
re-loads all NVM values and performs pinstrap detection.  
Disabled state  
The ON_OFF_CONFIG PMBus command specifies the combination of VR_EN pins and OPERATION command  
input required to start power conversion. When the specified combination is not met (e.g. VR_EN is low, for  
VR_EN only, active high configuration), power conversion is disabled. The PWM pins assigned to the channel  
remain at tri-state, and the VR_RDY pin for the channel is pulled low. Once the enable conditions are met (e.g.  
VR_EN pulled high for VR_EN only, active high configuration), the controller begins power conversion, after a  
period of approximately 750 μs plus any added turn-on delay. The TPS536C7B1 device returns to the disabled  
state after being disabled by the same means.  
Turn-on and turn-off delay  
The TON_DELAY and TOFF_DELAY commands allow the user to add additional turn-on or turn-off delay  
between the time that enable/disable conditions are satisfied, and the TPS536C7B1 begins ramping the output  
voltage. To ensure consistent behavior, TI recommends not to interrupt the turn-on or turn-off delays with  
additional enable/disable requests.  
Soft-start and soft-off shutdown  
The soft-start period begins when the first PWM pulses are fired after a channel is enabled, and ends when the  
internal loop DAC reaches the boot voltage. During this time, the controller is raising the output voltage at a slew  
rate derived from to track the loop DAC, and tracking over/undervoltage protections are active.  
TPS536C7B1 may be configured to actively ramp the output voltage down to zero after being disabled through  
the ON_OFF_CONFIG command. During this time, the controller ramps down the loop DAC to zero at the slew  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
rate derived from TOFF_FALL. This behavior is optional, and the default configuration is to have the channel  
enter directly into the disabled state (immediate off).  
Normal operation  
The TPS536C7B1 is in the normal state when converting power. During this time, the device responds to new  
output voltage target (DVID) commands through PMBus as configured through the OPERATION command.  
Power conversion continues in Auto-DCM, FCCM dynamic phase shedding, or all phases FCCM, as configured  
through the PMBus interface.  
Fault shutdown (Latch-off)  
Any time a fault which is configured with the latch-off response is triggered, the device stops power conversion  
on the affected channel (or both if caused by a shared fault). The PWM pins remain at tri-state for all faults,  
excepting over-voltage faults which cause the PWM pins to remain low. The VR_RDY pin remains low as  
long as the converter is disabled. It remains in this state until commanded to re-enable as specified in  
ON_OFF_CONFIG.  
Fault shutdown (Hiccup)  
Any time a fault which is configured with the hiccup response is triggered, the device stops power conversion  
on the affected channel (or both if caused by a shared fault). The PWM pins remain at tri-state for all faults,  
excepting over-voltage faults which cause the PWM pins to remain low. It remains in this state until a timer  
expires, then attempt to re-enable itself, while respecting the configured TON_DELAY and TOFF_DELAY times.  
The VR_RDY pin remains low as long as the converter is disabled, and re-asserts after a successful start-up  
attempt.  
POR Fault shutdown  
Some fault conditions are considered catastrophic and cause the TPS536C7B1 to refuse any further enable  
attempts. These include: memory errors, internal logic errors, invalid pinstrap, pre-bias overvoltage protection  
conditions. The only way to recover from a POR fault is to re-cycle the VCC pin voltage below the POR  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9 Programming  
7.9.1 PMBus overview  
TPS536C7B1 is designed to be compatible with the timing and physical layer electrical characteristics of the  
Power Management Bus (PMBus) Specification, part I, revision 1.3.1 available at http://pmbus.org. The 100-kHz,  
400-kHz, and 1000-kHz classes are supported. Input logic levels are designed to be compaitible with 1.8-V and  
3.3-V logic. PMBus revision 1.3 is derived from the System Managmenet Bus (SMBus) revision 3.0, available at  
http://smbus.org/. The communication mechanism is based on the inter-integrated circuit I2C protocol.  
A master with clock stretching support is mandatory for communication with TPS536C7B1 through the PMBus  
interface. TPS536C7B1 does support the packet error check (PEC) protocol. If the system host supplies clock  
pulses for the PEC byte, PEC is used. If the CLK pulses are not present before a STOP, the PEC is not used.  
TPS536C7B1 can be configured to require PEC for each transaction in systems which require high reliability of  
communication.  
TPS536C7B1 supports the SMB_ALERT# response protocol. The SMB_ALERT# response protocol is a  
mechanism by which a slave device can alert the master device that it is available for communication. The  
master device processes this event and simultaneously accesses all slave devices on the bus (that support the  
protocol) through the alert response address (ARA). Only the slave device that caused the alert acknowledges  
this request. The host device performs a modified receive byte operation to ascertain the slave devices address.  
At this point, the master device can use the PMBus status commands to query the slave device that caused the  
alert. By default, these devices implement the auto alert response, a manufacturer specific improvement to the  
SMB_ALERT# response protocol, intended to mitigate the issue of bus hogging. For more information on the  
SMBus alert response protocol, see the System Management Bus (SMBus) specification.  
7.9.2 PMBus transaction types  
Support for the following SMBus transaction types is mandatory. The use of PEC is optional. Refer to the SMBus  
specification and Technical Reference Manual for more detailed transaction diagrams.  
SMBus Write Block and Read Block transaction types contain a repeated start condition, which may not be  
compatible with all I2C master device IP.  
Write Byte / Read Byte  
Write Word / Read Word  
Write Block / Read Block  
Send Byte / Receive Byte  
Block-Write-Block-Read Process Call (for SMBALERT_MASK commands)  
7.9.3 PMBus data formats  
TPS536C7B1 supports 3 data formats according to the PMBus specification. The data format for each command  
is listed along with its address and supported values.  
ULINEAR16 format uses a 16-bit unsigned integer. The default LSB size is 2-10 = 0.97656 mV  
SLINEAR16 format uses a 16-bit number representing a decimal. This number has two fields: the 5 MSB  
bits form an two's complement exponent, referred to as N, and the 11 LSB bits form a two's complement  
mantissa, referred to as M. The decimal number is represented as D = M × 2N  
Unsigned binary format uses direct bit maps with each command being subdivided into multiple fields  
that can have different meaning. Refer to the register maps in the Technical Reference Manual for these  
commands.  
TPS536C7B1 accepts writes to SLINEAR11 format commands with any desired exponent value. TI recommends  
using the default exponent listed for each command for writes to ensure consistent NVM store and restore  
behavior.  
Telemetry commands in the SLINEAR11 format return data with variable exponent values according to the  
absolute value of the retured value. As a rule TPS536C7B1 returns data in the SLINEAR11 format with the  
smallest possible exponent, to provide the highest possible command resolution. As a result the host must be  
able to support decoding of the SLINEAR11 format with any exponent value.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.3.1 Example PMBus number format conversions  
Example: Decode SLINEAR11 number E804h  
E804h = 11101 00000000100b  
Exponent = 11101b. N = -3 (5-bit two's complement)  
Mantissa = 00000000100b. M = 4 (11-bit two's complement)  
The decimal number D = M × 2N = 4 × 2-3 = 0.5  
SPACE  
Example: Encode 5.25 to SLINEAR11 with exponent -4  
Exponent = -4 = 11100b (5-bit two's complement)  
Mantissa = 5.25 / 2N = 5.25 / 2-4 = 84d = 00001010100b (11-bit two's complement)  
SLINEAR11 representation = 11100 00001010100b = E054h  
SPACE  
Example: Encode 1.00 V to ULINEAR16 with VOUT_MODE = 16h  
VOUT_MODE = 16h (Linear Absolute). Exponent (PARAMETER) = 10110b = -10 (5-bit two's complement)  
1.00 V = 1.00 / 2-10 = 1024d = 0400h  
SPACE  
Example: Decode 03E6h in ULINEAR16 with VOUT_MODE = 16h  
VOUT_MODE = 16h (Linear Absolute). Exponent (PARAMETER) = 10110b = -10 (5-bit two's complement)  
2-10 × 03D6h = 0.9746 V  
7.9.3.2 Example system code for PMBus format conversion  
Example code for handling the SLINEAR11 and ULINEAR16 formats at the system level is given below.  
Example code in a syntax similar to the C programming language is provided for reference only. Error checking  
code is not included. It is the responsibility of the system designer to verify and test all system code.  
//Maps 5 bit linear exponent to LSB value (2^(twos complement of index))  
const float LUT_linear_exponents[32] = {  
1.0,2.0,4.0,8.0,16.0,32.0,64.0,128.0,256.0,512.0,1024.0,2048.0,4096.0,8192.0,  
16384.0,32768.0,0.0000152587890625,0.000030517578125,0.00006103515625,  
0.0001220703125,0.000244140625,0.00048828125,0.0009765625,0.001953125,0.00390625,  
0.0078125,0.015625,0.03125,0.0625,0.125,0.25,0.5  
};  
Figure 7-34. Linear exponent to LSB converstion (look-up table approach)  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
unsigned int float_to_slinear11(float number, signed int exponent)  
{
signed int mantissa;  
float lsb;  
//Decode the exponent and generate twos complement form  
if(exponent < 0) {  
lsb = LUT_linear_exponents[(exponent+32)];  
} else {  
lsb = LUT_linear_exponents[exponent];  
}
//Decode mantissa based on exponent and generate twos complement form  
mantissa = (signed int)(number / lsb);  
//If numbers are negative, de-sign-extend to 5/11 bit numbers  
mantissa &= 0x07FF;  
exponent &= 0x1F;  
return (mantissa | (exponent << 11));  
}
Figure 7-35. Floating point to SLINEAR11 conversion  
float slinear11_to_float(unsigned int number)  
{
unsigned int exponent;  
int mantissa;  
float lsb;  
exponent = number >> 11;  
mantissa = number & 0x07FF;  
//Sign extend Mantissa to 32 bits (use your int size here)  
if (mantissa > 0x03FF) {  
mantissa |= 0xFFFFF800;  
}
lsb = LUT_linear_exponents[exponent];  
return ((float)mantissa)*lsb;  
}
Figure 7-36. SLINEAR11 to floating point conversion  
unsigned int float_to_ulinear16(float number, unsigned char vout_mode)  
{
float lsb;  
lsb = LUT_linear_exponents[(vout_mode & 0x1F)];  
return (unsigned int)(number/lsb);  
}
Figure 7-37. Floating point to ULINEAR16 conversion  
float ulinear16_to_float(unsigned int number, unsigned char vout_mode)  
{
float lsb;  
lsb = LUT_linear_exponents[(vout_mode & 0x1F)];  
return ((float)number)*lsb;  
}
Figure 7-38. ULINEAR16 to floating point conversion  
7.9.4 Raw non-volatile memory programming  
TPS536C7B1 has 256 bytes of internal EEPROM non-volatile memory (NVM). Each PMBus command with  
NVM backup is mapped into the NVM array. For example, if a command supports 16 possible values, there are 4  
corresponding bits for that field. The NVM array is designed withstand being overwritten greater than 1,000 times  
over the lifetime of the device.  
The USER_NVM_INDEX and USER_NVM_EXECUTE commands provide access to read and write the raw data  
bytes. These commands allow the entire configuration data for the device to be read/written with a minimum  
number of transactions, to save programming time. The USER_NVM_EXECUTE command is a 32 byte block  
which accesses blocks of raw NVM data. The USER_NVM_INDEX command is an auto-incrementing byte  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
command which which selects which 32 bytes of memory are being accessed via the USER_NVM_EXECUTE  
command.  
The Fusion Digital Power Designer software provided for this device is capable of exporting raw configuration  
data, as well as XML configuration files containing the value of each PMBus command.  
Configuration validation  
The first 9 bytes of data returned by USER_NVM_EXECUTE with index zero, are identifying information for  
the configuration. Bytes 0 to 6 represent the IC_DEVICE_ID. Bytes 7-8 represent the IC_DEVICE_REV. Byte 9  
represents the currently configured PMBus slave address.  
During the NVM import process, the controller checks these 9 bytes versus its current configuration, and NACKs  
theUSER_NVM_EXECUTE (index = 0) command if the data does not match.  
Example: Configuration validation  
Reading the USER_NVM_EXECUTE (index 0) from a configured device returns value 0x54 49 53 6C 70 00  
00 04 60 … [NVM bytes 0 to 22]. This indicates the configuration data was generated from a device with  
IC_DEVICE_ID 0x54 49 53 6C 70 00, IC_DEVICE_REV 00 04 and PMBus address 0x60.  
Writing the USER_NVM_EXECUTE (index 0) with the value 0x54 49 53 6C 70 00 00 04 60 … [NVM bytes  
0 to 22] to a new device causes it to check its IC_DEVICE_ID is equal to 0x54 49 53 6C 70 00, check its  
IC_DEVICE_REV is equal to 00 04 and check its PMBus address 0x60. If any of these checks fail, the write  
operation is rejected.  
Writing the USER_NVM_EXECUTE (index 0) with the value 0xFF FF FF FF FF FF 00 04 60 … [NVM bytes  
0 to 22] to a new device causes it skip the IC_DEVICE_ID check, but still check its IC_DEVICE_REV is equal  
to 00 04 and check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.  
Writing the USER_NVM_EXECUTE (index 0) with the value 0xFF FF FF FF FF FF FF FF 60 … [NVM bytes  
0 to 22] to a new device causes it skip the IC_DEVICE_ID check, skip its IC_DEVICE_REV check, but still  
check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.  
Writing the USER_NVM_EXECUTE (index 0) with the value 0xFF FF FF FF FF FF FF FF FF … [NVM bytes  
0 to 22] to a new device causes it skip the IC_DEVICE_ID check, skip its IC_DEVICE_REV check, and skip  
its PMBus address check. No checks were performed, so the data is accepted.  
Procedure: Read all configuration data  
Follow the procedures below to read-back NVM data for TPS536C7B1 devices.  
1. Configure the device as desired through PMBus commands, then issue STORE_USER_ALL. Power cycle  
the device or issue RESTORE_USER_ALL with power conversion disabled to ensure operating memory and  
non-volatile memory bytes are matching.  
2. Write the USER_NVM_INDEX command to 00h.  
3. Read back and record the USER_NVM_EXECUTE command (index = 0).  
4. Read back and record the USER_NVM_EXECUTE command (index = 1).  
5. Read back and record the USER_NVM_EXECUTE command (index = 2).  
6. Read back and record the USER_NVM_EXECUTE command (index = 3).  
7. Read back and record the USER_NVM_EXECUTE command (index = 4).  
8. Read back and record the USER_NVM_EXECUTE command (index = 5).  
9. Read back and record the USER_NVM_EXECUTE command (index = 6).  
10. Read back and record the USER_NVM_EXECUTE command (index = 7).  
11. Read back and record the USER_NVM_EXECUTE command (index = 8). The last 23 bytes of this  
command are not used by the device. TI recommends replacing these bytes with 00h for consistency across  
different configurations.  
Procedure: Write all configuration data  
Follow the procedures below to write NVM data for TPS536C7B1 devices.  
1. Apply +3.3V to the VCC pin of TPS536C7B1  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
2. Ensure power conversion is disabled for both channels.  
3. Write the USER_NVM_INDEX command to 00h.  
4. Write the previously recorded USER_NVM_EXECUTE (index = 0). In this example, disable the self-  
validation checks by replacing the first 9 bytes with FFh.  
5. Write the previously recorded USER_NVM_EXECUTE (index = 1).  
6. Write the previously recorded USER_NVM_EXECUTE (index = 2).  
7. Write the previously recorded USER_NVM_EXECUTE (index = 3).  
8. Write the previously recorded USER_NVM_EXECUTE (index = 4).  
9. Write the previously recorded USER_NVM_EXECUTE (index = 5).  
10. Write the previously recorded USER_NVM_EXECUTE (index = 6).  
11. Write the previously recorded USER_NVM_EXECUTE (index = 7).  
12. Write the previously recorded USER_NVM_EXECUTE (index = 8). Replace the last 23 bytes with 00h. An  
NVM store operation is automatically performed once the last block is successfully received.  
13. Wait 100 ms for non-volatile memory programming to complete successfully. Ensure that the +3.3V power  
supply to the device is not interrupted during this time to guarantee proper memory storage and retention.  
14. Do not issue an NVM store operation at this point. This overwrites the NVM array with the data values in  
operating memory.  
15. Power cycle the device or issue RESTORE_USER_ALL to continue operation with the newly programmed  
values. Multifunction pin configurations require a power cycle to take effect.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-10. Supported Commands and NVM Defaults  
Default  
Hex(2)  
Ch. A  
Default  
R/W  
Access,  
NVM  
CMD  
Default Behavior  
Ch. A (PAGE = 0)  
Default Behavior  
Ch. B (PAGE = 1)  
Command Name  
Code  
Hex(2)  
Ch. B  
00h  
01h  
02h  
03h  
PAGE  
Commands address both Channel A and Channel B  
FFh  
R/W  
R/W  
OPERATION  
ON_OFF_CONFIG  
CLEAR_FAULTS  
OPERATION Off, Margin None  
AVR_EN pin only, Active High  
Clears all faults related to channel A  
OPERATION Off, Margin None  
BVR_EN pin only, Active High  
Clears all faults related to channel B  
00h  
17h  
N/A  
00h  
17h  
N/A  
R/W, NVM  
W
Commands address all phases in channel Commands address all phases in channel  
04h  
PHASE  
FFh  
FFh  
R/W  
A
B
05h  
06h  
10h  
15h  
16h  
19h  
1Bh  
1Bh  
1Bh  
1Bh  
PAGE_PLUS_WRITE  
PAGE_PLUS_READ  
Utility to send PAGE along with a PMBus write transaciton  
Utility to send PAGE along with a PMBus read transaciton  
All commands are writeable  
Per command  
W
R
Per command  
WRITE_PROTECT  
00h  
N/A  
N/A  
D0h  
R/W, NVM  
W
STORE_USER_ALL  
Stores all current storable register settings into NVM as new defaults  
Restores all storable register settings from NVM  
1 MHz, PEC, SMB_ALERT Supported  
RESTORE_USER_ALL  
CAPABILITY  
W
R
SMBALERT_MASK_WORD  
SMBALERT_MASK_VOUT  
SMBALERT_MASK_IOUT  
SMBALERT_MASK_INPUT  
No SMB_ALERT sources masked  
No SMB_ALERT sources masked  
No SMB_ALERT sources masked  
LOW VIN bit is masked  
No SMB_ALERT sources masked  
00h  
00h  
00h  
00h  
R/W  
No SMB_ALERT sources masked  
No SMB_ALERT sources masked  
00h  
00h  
R/W, NVM  
R/W, NVM  
R/W, NVM  
08h  
SMBALERT_MASK_  
TEMPERATURE  
1Bh  
No SMB_ALERT sources masked  
No SMB_ALERT sources masked  
00h  
00h  
R/W, NVM  
1Bh  
1Bh  
1Bh  
SMBALERT_MASK_CML  
SMBALERT_MASK_MFR  
No SMB_ALERT sources masked  
VR SETTLED is masked  
No SMB_ALERT sources masked  
No SMB_ALERT sources masked  
00h  
26h  
00h  
06h  
R/W, NVM  
R/W, NVM  
R
FIRST_TO_ALERT does not assert SMB_ALERT#  
00h  
ULINEAR16 Mode, Absolute,  
Exponent = -10  
ULINEAR16 Mode, Absolute,  
20h  
VOUT_MODE  
16h  
16h  
R
Exponent = -10  
R/W,  
NVM/  
0.880 V  
21h  
VOUT_COMMAND  
1.000 V  
03 85h  
00 00h  
04 00h  
From pin-detection by default  
Pin Detect  
(Ch A)  
22h  
24h  
VOUT_TRIM  
VOUT_MAX  
+0.000 V  
+0.000 V  
1.400 V  
00 00h  
05 9Ah  
R/W, NVM  
R/W, NVM  
1.869 V (VBOOT_CHA pinstrp active by  
default) NVM stored value is 1.200 V  
07 7Ah /  
04 CDh  
25h  
26h  
27h  
28h  
29h  
2Bh  
33h  
34h  
35h  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VOUT_TRANSITION_RATE  
VOUT_DROOP  
0.000 V  
0.000 V  
00 00h  
00 00h  
E0 50h  
C8 00h  
E8 08h  
00 00h  
01 F4h  
03h  
00 00h  
00 00h  
E0 50h  
C80 0h  
E8 08h  
00 00h  
01 F4h  
03h  
R/W  
0.000 V  
0.000 V  
R/W  
5.0 mV/µs  
5.0 mV/µs  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W  
0.000 mΩ  
0.000 mΩ  
VOUT_SCALE_LOOP  
VOUT_MIN  
1.000  
1.000  
0.000 V  
0.000 V  
FREQUENCY_SWITCH  
POWER_MODE  
500 kHz  
500 kHz  
DPS disabled, all phases FCCM  
9.250 V  
DPS disabled, all phases FCCM  
VIN_ON  
F0 25h  
R/W, NVM  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-10. Supported Commands and NVM Defaults (continued)  
Default  
Hex(2)  
Ch. A  
Default  
Hex(2)  
Ch. B  
R/W  
Access,  
NVM  
CMD  
Default Behavior  
Ch. A (PAGE = 0)  
Default Behavior  
Ch. B (PAGE = 1)  
Command Name  
Code  
38h  
IOUT_CAL_GAIN  
5.000 mΩ  
5.000 mΩ  
CA 80h  
CA 80h  
E8 00h  
R/W, NVM  
R/W, NVM  
+0.125 A (phase 10)  
E8 01h  
39h  
IOUT_CAL_OFFSET  
0.000 A (all phases)  
0.000 A (other phases)  
/ E8 00h  
40h  
41h  
42h  
43h  
44h  
45h  
VOUT_OV_FAULT_LIMIT  
VOUT_OV_FAULT_RESPONSE  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
VOUT_UV_FAULT_RESPONSE  
1.072 V (VOUT_COMMAND + 192 mV)  
Latch-off and do not restart  
1.192 V (VOUT_COMMAND + 192 mV)  
Latch-off and do not restart  
04 4Ah(1) 04 C5h(1) R/W, NVM  
80h  
80h  
R/W, NVM  
1.040 V (VOUT_COMMAND + 160 mV)  
0.704 V (VOUT_COMMAND - 176 mV)  
0.688 V (VOUT_COMMAND - 192 mV)  
Latch-off after 5.0 μs and do not restart  
1.160 V (VOUT_COMMAND + 160 mV)  
0.824 V (VOUT_COMMAND - 176 mV)  
0.808 V (VOUT_COMMAND - 192 mV)  
Latch-off after 5.0 μs and do not restart  
04 29h(1)  
04 A4h(1) R/W, NVM  
02 D1h(1) 03 4Ch(1) R/W, NVM  
02 C0h(1) 03 3Bh(1) R/W, NVM  
40h  
40h  
R/W, NVM  
R/W, NVM  
480 A total current  
53 A phase current  
80 A total current  
10 E0h  
00 35h  
00 50h  
00 35h  
46h  
IOUT_OC_FAULT_LIMIT  
53 A phase current  
47h  
4Ah  
4Fh  
50h  
51h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
60h  
61h  
62h  
63h  
64h  
65h  
6Bh  
IOUT_OC_FAULT_RESPONSE  
IOUT_OC_WARN_LIMIT  
OT_FAULT_LIMIT  
Latch-off and do not restart  
Latch-off and do not restart  
60 A total current  
120°C  
C0h  
01 B8h  
00 78h  
80h  
C0h  
00 3Ch  
00 78h  
80h  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
440 A total current  
120°C  
OT_FAULT_RESPONSE  
OT_WARN_LIMIT  
Latch-off and do not restart  
Latch-off and do not restart  
110°C  
110°C  
00 6Eh  
00 6Eh  
VIN_OV_FAULT_LIMIT  
VIN_OV_FAULT_RESPONSE  
VIN_OV_WARN_LIMIT  
VIN_UV_WARN_LIMIT  
VIN_UV_FAULT_LIMIT  
VIN_UV_FAULT_RESPONSE  
IIN_OC_FAULT_LIMIT  
IIN_OC_FAULT_RESPONSE  
IIN_OC_WARN_LIMIT  
TON_DELAY  
15.0 V  
00 0Fh  
Latch-off and do not restart  
80h  
14.0 V  
00 0Eh  
F0 22h  
F0 20h  
80h  
8.50 V  
8.00 V  
Latch-off and do not restart  
52.0 A  
00 34h  
C0h  
Latch-off and do not restart  
44.0 A  
00 2Ch  
0.00 ms  
0.00 ms  
F8 00h  
F8 00h  
F0 06h  
F0 08h  
80h  
TON_RISE  
1.5 ms (SRBOOT = 0.625 mV/μs)  
2.0 ms  
1.5 ms (SRBOOT = 0.625 mV/μs)  
2.0 ms  
F0 06h  
F0 08h  
80h  
TON_MAX_FAULT_LIMIT  
TON_MAX_FAULT_RESPONSE  
TOFF_DELAY  
Latch-off and do not restart  
0.00 ms  
Latch-off and do not restart  
0.00 ms  
F8 00h  
F0 06h  
F8 00h  
F0 06h  
TOFF_FALL  
1.5 ms (SROFF = 0.625 mV/μs)  
592.0 W  
1.5 ms (SROFF = 0.625 mV/μs)  
PIN_OP_WARN_LIMIT  
09 28h  
Current  
Status  
Current  
Status  
78h  
79h  
7Ah  
STATUS_BYTE  
STATUS_WORD  
STATUS_VOUT  
Current status channel A  
Current status channel A  
Current status channel A  
Current status channel B  
Current status channel B  
Current status channel B  
R
Current  
Status  
Current  
Status  
R/W  
R/W  
Current  
Status  
Current  
Status  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-10. Supported Commands and NVM Defaults (continued)  
Default  
Hex(2)  
Ch. A  
Default  
R/W  
Access,  
NVM  
CMD  
Default Behavior  
Ch. A (PAGE = 0)  
Default Behavior  
Ch. B (PAGE = 1)  
Command Name  
Code  
Hex(2)  
Ch. B  
Current  
Status  
Current  
Status  
7Bh  
7Ch  
7Dh  
STATUS_IOUT  
Current status channel A  
Current status channel B  
R/W  
R/W  
R/W  
STATUS_INPUT  
Current status  
Current Status  
Current  
Status  
Current  
Status  
STATUS_TEMPERATURE  
Current status channel A  
Current status channel B  
Current  
Status  
Current  
Status  
7Eh  
7Fh  
80h  
STATUS_CML  
Current status  
R/W  
R/W  
R/W  
Current  
status  
Current  
status  
STATUS_OTHER  
Current status  
Current  
Status  
Current  
Status  
STATUS_MFR_SPECIFIC  
Current status channel A  
Current status channel B  
88h  
89h  
READ_VIN  
READ_IIN  
Measured input voltage  
Measured input current  
Current Status  
Current Status  
R
R
Current  
Current  
Status  
8Bh  
8Ch  
8Dh  
96h  
READ_VOUT  
Measured output voltage channel A  
Measured output current channel A  
Measured output voltage channel B  
Measured output current channel B  
R
R
R
R
Status  
Current  
Status  
Current  
Status  
READ_IOUT  
Measured power stage temperature  
channel A  
Measured power stage temperature  
channel B  
Current  
Status  
Current  
Status  
READ_TEMPERATURE_1  
READ_POUT  
Current  
Status  
Current  
Status  
Calculated output power channel A  
Calculated output power channel B  
97h  
98h  
99h  
9Ah  
9Bh  
9Dh  
ADh  
AEh  
READ_PIN  
Calculated input power  
Current Status  
R
R
PMBUS_REVISION  
MFR_ID  
Revision 1.3, Part I and Part II compatible  
Manufacturer company identification  
Manufacturer model identification  
Manufacturer revision identification  
Manufacturer date identification  
TPS536C7B1  
33h  
02 00 00h  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R/W, NVM  
R
MFR_MODEL  
MFR_REVISION  
MFR_DATE  
00 00 00h  
00 00 00h  
00 00 00h  
IC_DEVICE_ID  
IC_DEVICE_REV  
54 49 53 6C 70 00h  
00 04h  
Revision 2  
R
DC load line: 0.00 mΩ  
DC load line: 0.00 mΩ  
AC load line: 0.20 mΩ  
AC load line: 0.4375 mΩ  
Integration time contsant: 7.0 μs  
Dynamic integration contsant: 3.0 μs  
Dynamic integration threshold: 120 mV  
AC gain: 1.0  
Integration time contsant: 1.0 μs  
Dynamic integration contsant: 4.0 μs  
Dynamic integration threshold: 60 mV  
AC gain: 1.0  
00 D0 0E  
73 0D D0 72 1C D0 R/W, NVM  
00 C8h 00 C8h  
00 53 66  
USER_DATA_01  
B1h  
(COMPENSATION_CONFIG)  
Integration gain: 1.0  
Integration gain: 1.0  
Ramp amplitude: 360 mV  
Ramp amplitude: 200 mV  
USR1 threshold: 120 mV  
USR2 threshold: 50 mV  
Min off time: 30 ns  
USR1 threshold: 120 mV  
USR2 threshold: 50 mV  
Min off time: 30 ns  
USER_DATA_02  
31 1A 0F 31 1A 0F  
06 DAh 07 DAh  
B2h  
R/W, NVM  
(NONLINEAR_CONFIG)  
Blanking time: 30 ns  
OSR: Disabled  
Blanking time: 35 ns  
OSR: Disabled  
USR1 phases: 4 phases  
USR1 phases: 4 phases  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-10. Supported Commands and NVM Defaults (continued)  
Default  
Hex(2)  
Ch. A  
Default  
Hex(2)  
Ch. B  
R/W  
Access,  
NVM  
CMD  
Default Behavior  
Ch. A (PAGE = 0)  
Default Behavior  
Ch. B (PAGE = 1)  
Command Name  
Code  
00 80 02 81 04 82 06  
USER_DATA_03  
12+0 configuration, 0-2-4-6-8-10-1-3-5-7-9-11  
From pin-detection by default  
83 08 84 0A 85 01 86 R/W, NVM  
03 87 05 88 07 89 09 Pin Detect  
8A 0B 8Bh  
B3h  
(PHASE_CONFIG)  
DCLL up: 0.00 mΩ  
DCLL down: 0.00 mΩ  
ACLL up: 0.50 mΩ  
ACLL down: 0.50 mΩ  
Boot offset: 90mV  
DCLL up: 0.00 mΩ  
DCLL down: 0.00 mΩ  
USER_DATA_04  
(DVID_CONFIG)  
ACLL up: 0.75 mΩ  
ACLL down: 0.50 mΩ  
Boot offset: 40mV  
03 60 08  
03 20 0C  
B4h  
R/W, NVM  
08 00 00h 08 00 00h  
Dynamic offsets: 0 mV  
Dynamic offsets: 0 mV  
30 08 44  
44 44 44  
30 08 44  
44 44 44  
USER_DATA_07  
B7h  
BAh  
BBh  
Phase shedding disabled  
Phase shedding disabled  
44 2F FF 48 2F FF R/W, NVM  
FF FF FF FF FF FF  
(PHASE_SHED_CONFIG)  
FFh  
FFh  
USER_DATA_10  
04h all  
phases  
04h all  
phases  
All phases = 1.0 KT  
All phases = 1.0 KT  
RW, NVM  
RW, NVM  
(ISHARE_CONFIG)  
ISHARE warning: 50 mV  
Fixed OVP channel A: 1.2 V  
Fixed OVP channel B: 1.6 V  
Powerstage fault response: Ignore  
Hiccup wait time: 25 ms  
USER_DATA_11  
8C 99 00 00 00 55 00  
00 00 00h  
(MFR_PROTECTION_CONFIG)  
88 00 00 00 50 00 00  
USER_DATA_13  
BDh  
IIN shunt: 0.5 mΩ (analog gain: 20, digital gain = 80)  
00 00 00 00 00 00 00 RW, NVM  
00h  
(MFR_CALIBRATION_CONFIG)  
MFR_SPECIFIC_CD  
Pin 43: BTSEN  
Pin 19: BVR_EN  
CDh  
CEh  
CFh  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
Default Settings  
Default Settings  
RW, NVM  
RW, NVM  
RW  
(MULTIFUNCTION_PIN_CONFIG_1)  
MFR_SPECIFIC_CE  
Pin 44: ATSEN  
(MULTIFUNCTION_PIN_CONFIG 2)  
MFR_SPECIFIC_CF  
On-the-fly SMB_ALERT# Mask bits for bits in STATUS_EXTENDED  
Peak logging function for output voltage telemetry  
Peak logging function for output current telemetry  
Peak logging function for temperature telemetry  
Ouptut voltage telemetry in SLINEAR11 format  
Peak logging function for input voltage telemetry  
Peak logging function for input current telemetry  
Peak logging function for input power telemetry  
00 00 00 00 00 00 00h  
(SMBALERT_MASK_EXTENDED)  
MFR_SPECIFIC_D1  
Current  
status  
Current  
status  
RW  
(READ_VOUT_MIN_MAX)  
MFR_SPECIFIC_D2  
Current  
status  
Current  
status  
RW  
(READ_IOUT_MIN_MAX)  
MFR_SPECIFIC_D3  
Current  
status  
Current  
status  
RW  
(READ_TEMPERATURE_MIN_MAX)  
MFR_SPECIFIC_D4  
(READ_MFR_VOUT)  
Current  
status  
Current  
status  
R
MFR_SPECIFIC_D5  
Current status  
RW  
(READ_VIN_MIN_MAX)  
MFR_SPECIFIC_D6  
READ_IIN_MIN_MAX  
Current status  
Current status  
RW  
MFR_SPECIFIC_D7  
RW  
(READ_PIN_MIN_MAX)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 7-10. Supported Commands and NVM Defaults (continued)  
Default  
Hex(2)  
Ch. A  
Default  
R/W  
Access,  
NVM  
CMD  
Default Behavior  
Ch. A (PAGE = 0)  
Default Behavior  
Ch. B (PAGE = 1)  
Command Name  
Code  
Hex(2)  
Ch. B  
MFR_SPECIFIC_D8  
D8h  
Current  
status  
Current  
status  
Peak logging function for ouptut power telemetry  
Returns all telemetry data for the current channel  
Returns all status information for the current channel  
RW  
(READ_POUT_MIN_MAX)  
MFR_SPECIFIC_DA  
Current  
status  
Current  
status  
DAh  
R
(READ_ALL)  
MFR_SPECIFIC_DB  
DBh  
Current  
status  
Current  
status  
R
(STATUS_ALL)  
MFR_SPECIFIC_DC  
DCh  
Returns status information for phase-wise faults OCL and ISHARE  
Returns status information for Manufacturer specific bits  
Current status  
R
R
(STATUS_PHASES)  
MFR_SPECIFIC_DD  
DDh  
Current status  
00 0Eh  
(STATUS_EXTENDED)  
MFR_SPECIFIC_E3  
E3h  
VR_FAULT# asserts only due to faults on channel A. OC and OT fault assert  
VR_FAULT#  
RW, NVM  
(VR_FAULT_CONFIG)  
MFR_SPECIFIC_E4  
E4h  
Closed loop frequency enabled for both channels  
FCCM mode, both channels, PEC not required.  
Pin detect enabled for ADDR_CONFIG and VBOOT_CHA  
00 12 0A 0A 00 00h  
10 00 00 60 00h  
13h  
(SYNC_CONFIG)  
MFR_SPECIFIC_ED  
EDh  
RW, NVM  
RW, NVM  
RW, NVM  
R
(MISC_OPTIONS)  
MFR_SPECIFIC_EE  
EEh  
(PIN_DETECT_OVERRIDE)  
MFR_SPECIFIC_EF  
EFh  
00h  
00h  
(SLAVE_ADDRESS)  
Given by pin-detection by default  
MFR_SPECIFIC_F0  
F0h  
CRC of NVM data bytes  
Index = 0 (auto-incrementing)  
Raw NVM data bytes  
Curren status  
Default Settings  
Default Settings  
00 00h  
(NVM_CHECKSUM)  
MFR_SPECIFIC_F5  
F5h  
RW  
(USER_NVM_INDEX)  
MFR_SPECIFIC_F6  
F6h  
RW, NVM  
RW, NVM  
RW, NVM  
(USER_NVM_EXECUTE)  
MFR_SPECIFIC_FA  
FAh  
NVM unlocked  
(NVM_LOCK)  
MFR_SPECIFIC_FB  
FBh  
No command groups write protected  
00 00h  
(MFR_WRITE_PROTECT)  
(1) Tracking OV, UV offset value only is stored in NVM. Hex value is calculated based on VOUT_COMMAND in the ULINEAR16 format.  
By default VOUT_COMMAND is restored based on pin detection, so the hex value of these commands differ from this table based on  
the VBOOT_CHA pinstrap detection results.  
(2) Block commands are documented LSB ... MSB, as displayed in Fusion Digital Power Designer.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5 PMBus Command Descriptions  
7.9.5.1 (00h) PAGE  
Address:  
00h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
No / No  
Paged / Phased:  
Reset Value:  
FFh  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Channel A  
01h: Channel B  
FFh: Both channels  
Description:  
Selects which channel future PMBus commands address, in multi-channel devices.  
7.9.5.2 (01h) OPERATION  
Address:  
01h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
00h  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Immediate Off, Margin None  
40h: Soft-Off, Margin None  
80h: On, Margin None  
98h: On, Margin Low, Act on Faults  
A8h: On, Margin High, Act on Faults  
94h: On, Margin Low, Ignore Faults  
A4h: On, Margin High, Ignore Faults  
Other possible values not shown. See the Technical Reference Manual  
Description:  
The OPERATION command is used to enable or disable power conversion, in conjunction input from the enable pins, according to the configuration  
of the ON_OFF_CONFIG command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.3 (02h) ON_OFF_CONFIG  
Address:  
02h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
03h: Always converting when power is present  
16h: VR_EN pin only, Active High, Soft-Off  
17h: VR_EN pin only, Active High, Immediate Off  
1Bh: OPERATION command only  
Other possible values not shown. See the Technical Reference Manual  
Description:  
The ON_OFF_CONFIG command configures the combination of enable pin input and serial bus commands needed to enable/disable power  
conversion.  
7.9.5.4 (03h) CLEAR_FAULTS  
Address:  
03h  
Transaction Type:  
Data Format:  
Send Byte  
Data-less  
Yes / No  
N/A  
Paged / Phased:  
Reset Value:  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
N/A  
CLEAR_FAULTS is used to clear any fault bits that have been set. This command simultaneously clears all bits in all status registers in the  
selected PAGE. At the same time, the device releases its SMB_ALERT# signal output, if SMB_ALERT# is asserted. CLEAR_FAULTS is a write-only  
command with no data.  
7.9.5.5 (04h) PHASE  
Address:  
04h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
FFh  
Updates Allowed:  
Supported Values:  
On-the-fly  
FFh: Address all phases in the current PAGE  
00h to 0Bh: Address individual phases. For example, 00h addresses Phase 1 (Order 0), and so on.  
Description:  
Selects which phase future PMBus commands address within the active PAGE.  
7.9.5.6 (05h) PAGE_PLUS_WRITE  
Address:  
05h  
Transaction Type:  
Data Format:  
Block Write  
Unsigned Binary (variable block length)  
Paged / Phased:  
Reset Value:  
No  
N/A  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Per command description.  
Utility to send PAGE along with a PMBus command write. See the Technical Reference Manual for more information.  
7.9.5.7 (06h) PAGE_PLUS_READ  
Address:  
06h  
Transaction Type:  
Data Format:  
Block-Write-Block-Read Process Call  
Unsigned Binary (variable block size)  
Paged / Phased:  
Reset Value:  
No / No  
N/A  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Per command description.  
Utility to send a PAGE and a PMBus read in the same transaction. See the Technical Reference Manual for more information.  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
 
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.8 (10h) WRITE_PROTECT  
Address:  
10h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Write protection disabled (all writeable commands are accessible)  
20h: Disable writes to all commands except WRITE_PROTECT, OPERATION, PAGE, ON_OFF_CONFIG, and VOUT_COMMAND.  
40h: Disable writes to all commands except WRITE_PROTECT, OPERATION and PAGE  
80h: Disable writes to all commands except WRITE_PROTECT  
Description:  
The WRITE_PROTECT command controls which commands are writeable by the PMBus host.  
7.9.5.9 (15h) STORE_USER_ALL  
Address:  
15h  
Transaction Type:  
Data Format:  
Send Byte  
Data-less  
Paged / Phased:  
Reset Value:  
No / No  
N/A  
Updates Allowed:  
Supported Values:  
Description:  
Not recommended for on-the-fly-use, but not explicitly blocked  
N/A  
The STORE_USER_ALL command instructs the PMBus device to copy the entire contents of the Operating Memory to the matching locations in the  
non-volatile User Store memory.  
7.9.5.10 (16h) RESTORE_USER_ALL  
Address:  
16h  
Transaction Type:  
Data Format:  
Send Byte / N/A  
Data-less  
Paged / Phased:  
Reset Value:  
No / No  
N/A  
Updates Allowed:  
Supported Values:  
Description:  
Blocked During Regulation  
N/A  
The RESTORE_USER_ALL command instructs the PMBus device to copy the entire contents of the non-volatile User Store memory to the matching  
locations in the Operating Memory.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.11 (19h) CAPABILITY  
Address:  
19h  
Transaction Type:  
Data Format:  
Read Byte  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
No / No  
D0h  
Updates Allowed:  
Supported Values:  
Description:  
N/A  
D0h: PEC, 1MHz, SMB_ALERT, Supported, Linear format.  
This command provides a way for the host to determine the capabilities of this PMBus device.  
7.9.5.12 (1Bh) SMBALERT_MASK_WORD  
Address:  
1Bh (with CMD byte = 79h)  
Transaction Type:  
Data Format:  
Write Word / Block-Write-Block-Read Process Call  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
One mask bit for each supported status bit  
SMBALERT_MASK bits for the STATUS_WORD (upper byte of STATUS_BYTE) command.  
7.9.5.13 (1Bh) SMBALERT_MASK_VOUT  
Address:  
1Bh (with CMD byte = 7Ah)  
Transaction Type:  
Data Format:  
Write Word / Block-Write-Block-Read Process Call  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
One mask bit for each supported status bit  
SMBALERT_MASK bits for the STATUS_VOUT command.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.14 (1Bh) SMBALERT_MASK_IOUT  
Address:  
1Bh (with CMD byte = 7Bh)  
Transaction Type:  
Data Format:  
Write Word / Block-Write-Block-Read Process Call  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
One mask bit for each supported status bit  
SMBALERT_MASK bits for the STATUS_IOUT command.  
7.9.5.15 (1Bh) SMBALERT_MASK_INPUT  
Address:  
1Bh (with CMD byte = 7Ch)  
Transaction Type:  
Data Format:  
Write Word / Block-Write-Block-Read Process Call  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
One mask bit for each supported status bit  
SMBALERT_MASK bits for the STATUS_INPUT command.  
7.9.5.16 (1Bh) SMBALERT_MASK_TEMPERATURE  
Address:  
1Bh (with CMD byte = 7Dh)  
Transaction Type:  
Data Format:  
Write Word / Block-Write-Block-Read Process Call  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
One mask bit for each supported status bit  
SMBALERT_MASK bits for the STATUS_TEMPERATURE command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.17 (1Bh) SMBALERT_MASK_CML  
Address:  
1Bh (with CMD byte = 7Eh)  
Transaction Type:  
Data Format:  
Write Word / Block-Write-Block-Read Process Call  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
One mask bit for each supported status bit  
SMBALERT_MASK bits for the STATUS_CML command.  
7.9.5.18 (1Bh) SMBALERT_MASK_MFR  
Address:  
1Bh (with CMD byte = 80h)  
Transaction Type:  
Data Format:  
Write Word / Block-Write-Block-Read Process Call  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
One mask bit for each supported status bit  
SMBALERT_MASK bits for the STATUS_MFR command.  
7.9.5.19 (20h) VOUT_MODE  
Address:  
20h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
Blocked during regulation  
16h: Linear Mode, Absolute, Exponent = -10  
Specifies the data format for all output voltage related commands.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.20 (21h) VOUT_COMMAND  
Address:  
21h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
Channel A: NVM or Pinstrap depending on the setting of PIN_DETECT_OVERRIDE for VBOOT_CHA  
Channel B: NVM only.  
Updates Allowed:  
Supported Values:  
on-the-fly  
0.000 to 1.87 V, VOUT_MAX ≤ 1.870 V  
0.000 to 3.740 V, 1.870 < VOUT_MAX ≤ 3.740 V  
0.000 to 5.500 V, VOUT_MAX > 3.74 V  
LSB = 2N per VOUT_MODE  
Description:  
Updates the output voltage target for the controller when the OPERATION command is set to "Margin None."  
7.9.5.21 (22h) VOUT_TRIM  
Address:  
22h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR16 (N = -10)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
on-the-fly  
-125 mV to +124 mV  
LSB = 2N per VOUT_MODE  
Description:  
Used to apply a fixed offset voltage to the output voltage command value.  
7.9.5.22 (24h) VOUT_MAX  
Address:  
24h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
NVM  
If VBOOT pinstrapping is used, VOUT_MAX is initialized to 1.87 V, or 5.5 V based on the selected option.  
Updates Allowed:  
Supported Values:  
On-the-fly  
0.000 V to 5.500 V  
LSB = 2N per VOUT_MODE  
Description:  
Sets an upper limit on the output voltage the unit can command regardless of any other commands or combinations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.23 (25h) VOUT_MARGIN_HIGH  
Address:  
25h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
Paged / Phased:  
Reset Value:  
0.000 V  
Updates Allowed:  
Supported Values:  
On-the-fly  
Same as VOUT_COMMAND.  
LSB = 2N per VOUT_MODE  
Description:  
Loads the unit with the voltage to which the output is to be changed when the OPERATION command is set to "Margin High."  
7.9.5.24 (26h) VOUT_MARGIN_LOW  
Address:  
26h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
Paged / Phased:  
Reset Value:  
0.000 V  
Updates Allowed:  
Supported Values:  
On-the-fly  
Same as VOUT_COMMAND.  
LSB = 2N per VOUT_MODE  
Description:  
Loads the unit with the voltage to which the output is to be changed when the OPERATION command is set to "Margin Low."  
7.9.5.25 (27h) VOUT_TRANSITION_RATE  
Address:  
27h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -4)  
Yes / No  
Paged / Phased:  
Reset Value:  
Yes  
Updates Allowed:  
Supported Values:  
On-the-fly  
0.3125 to 40 mV/μs  
See the Technical Reference Manual for all supported values.  
Description:  
Sets the slew rate at which any output voltage changes during normal power conversion occur.  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.26 (28h) VOUT_DROOP  
Address:  
28h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -7)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
0.0 to 1.0 mΩ with 7.8125 μΩ resolution  
1.0 to 2.0 mΩ with 15.625 μΩ resolution  
2.0 to 4.0 mΩ with 31.25 μΩ resolution  
4.0 to 8.0 mΩ with 62.50 μΩ resolution  
Description:  
Sets the rate, in mV/A (mΩ) at which the output voltage decreases with increasing output current for use with adaptive voltage positioning. Also  
referred to as the DC Load Line (DCLL).  
7.9.5.27 (29h) VOUT_SCALE_LOOP  
Address:  
29h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -3)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
Blocked during regulation  
1.000  
0.500 (Recommended for output voltages greater than 3.74 V)  
Description:  
Sets the scaling factor between the output voltage and the input voltage to the controller VSP, VSN pins.  
7.9.5.28 (2Bh) VOUT_MIN  
Address:  
2Bh  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
NVM  
Initialized to 0.00 V when VBOOT pinstrap is used.  
Updates Allowed:  
Supported Values:  
On-the-fly  
0.000 to 5.500 V  
LSB = 2N per VOUT_MODE  
Description:  
Sets a lower limit on the output voltage the unit can command regardless of any other commands or combinations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.29 (33h) FREQUENCY_SWITCH  
Address:  
33h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
300 to 2000 kHz, 50 kHz steps to 1800 kHz, 100 kHz steps after.  
Sets the per-phase switching frequency for the controller.  
7.9.5.30 (34h) POWER_MODE  
Address:  
34h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / No  
00h or 03h depending if dynamic phase shedding is enabled  
On-the-fly  
Updates Allowed:  
Supported Values:  
00h: DPS enabled, Auto-DCM allowed on all phases  
03h: DPS disabled, all phases FCCM  
04h: DPS enabled, Auto-DCM allowd in 1 phase mode only  
Description:  
Change the power stage of the converter on-the-fly.  
7.9.5.31 (35h) VIN_ON  
Address:  
35h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -2)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
4.25 to 11.50 V, in 0.25 V steps  
Sets the value of the input voltage, in Volts, at which the unit starts power conversion.  
7.9.5.32 (38h) IOUT_CAL_GAIN  
Address:  
38h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -7)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
4.500 to 5.493 mΩ in 7.8125 μΩ steps  
Sets the ratio of the voltage at the current sense pins to the sensed current for the READ_IOUT command in miliohms.  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.33 (39h) IOUT_CAL_OFFSET  
Address:  
39h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -3)  
Paged / Phased:  
Reset Value:  
Yes / Yes  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
-4.000 to +3.750 A in 125 mA steps  
Used to compensate for offset errors in the power stage for each individual phase, in amperes.  
7.9.5.34 (40h) VOUT_OV_FAULT_LIMIT  
Address:  
40h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
(VOUT_COMMAND + 32 mV) to (VOUT_COMMAND + 448 mV) in 32 mV steps  
LSB = 2N per VOUT_MODE  
Description:  
Sets the value of the tracking overvoltage fault limit. Refer to MFR_PROTECTION_CONFIG to set the fixed overvoltage fault limit.  
7.9.5.35 (41h) VOUT_OV_FAULT_RESPONSE  
Address:  
41h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
80h: Latch-Off immediately, require enable cycle to recover  
B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.  
Description:  
Instructs the device on what action to take in response to an output overvoltage fault.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.36 (42h) VOUT_OV_WARN_LIMIT  
Address:  
42h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
(VOUT_COMMAND + 24 mV) to (VOUT_COMMAND + 448 mV) in 8 mV steps  
LSB = 2N per VOUT_MODE  
Description:  
Sets the value of the output voltage at the sense or output pins that causes an output voltage high warning.  
7.9.5.37 (43h) VOUT_UV_WARN_LIMIT  
Address:  
43h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
(VOUT_COMMAND - 24 mV) to (VOUT_COMMAND - 448 mV) in 8 mV steps  
LSB = 2N per VOUT_MODE  
Description:  
Sets the value of the output voltage at the sense or output pins that causes an output voltage low warning.  
7.9.5.38 (44h) VOUT_UV_FAULT_LIMIT  
Address:  
44h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
ULINEAR16 per VOUT_MODE  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
(VOUT_COMMAND - 32 mV) to (VOUT_COMMAND - 448 mV) in 32 mV steps  
LSB = 2N per VOUT_MODE  
Description:  
Sets the value of the tracking undervoltage fault limit.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.39 (45h) VOUT_UV_FAULT_RESPONSE  
Address:  
45h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
80h: Latch-off immediately, require enable cycle to recover.  
B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.  
Other combinations are possible. See the Techinical Reference Manual.  
Description:  
Instructs the device on what action to take in response to an output undervoltage fault.  
7.9.5.40 (46h) IOUT_OC_FAULT_LIMIT  
Address:  
46h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Yes / Yes  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
0 to 1023 A per-page OCP in 1 A steps  
17 A to 130 A per-phase OCL (shared among all phases) in 3 A steps to 80 A, 5 A steps after  
Description:  
Sets the total page overcurrent protection threshold in amperes when written with PHASE = FFh.  
Sets the per-phase overcurrent limit in amperes when written with PHASE ≠ FFh  
7.9.5.41 (47h) IOUT_OC_FAULT_RESPONSE  
Address:  
47h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
C0h: Latch-off immediately, require enable cycle to recover.  
F8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.  
Description:  
Instructs the device on what action to take in response to an output overcurrent fault.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.42 (4Ah) IOUT_OC_WARN_LIMIT  
Address:  
4Ah  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
0 to 1023 A in 1 A steps  
Sets the value of the output current, in amperes, that causes the over-current detector to indicate an over-current warning condition.  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.43 (4Fh) OT_FAULT_LIMIT  
Address:  
4Fh  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
90°C to 160°C in 10°C steps  
Sets the value of the temperature limit, in degrees Celsius, that causes an over-temperature fault condition.  
7.9.5.44 (50h) OT_FAULT_RESPONSE  
Address:  
50h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
80h: Latch-off immediately, require enable cycle to recover  
B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.  
F8h: Hysteresis. Shutdown immediately and restart when the temperature falls.  
Description:  
Instructs the device on what action to take in response to an Over temperature Fault.  
7.9.5.45 (51h) OT_WARN_LIMIT  
Address:  
51h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
90°C to 160°C in 10°C steps  
Sets the value of the temperature limit, in degrees Celsius, that causes an over-temperature warning.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.46 (55h) VIN_OV_FAULT_LIMIT  
Address:  
55h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
0.00 to 19.00 V in 1.0 V steps  
Sets the value, in Volts, of the input voltage that causes an input overvoltage fault.  
7.9.5.47 (56h) VIN_OV_FAULT_RESPONSE  
Address:  
56h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
80h: Latch-off immediately, require enable cycle to recover  
B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.  
Description:  
Instructs the device on what action to take in response to an input overvoltage fault.  
7.9.5.48 (57h) VIN_OV_WARN_LIMIT  
Address:  
57h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
0.00 to 19.00 V in 1.0 V steps  
Sets the value, in Volts, of the input voltage that causes an input overvoltage warning.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.49 (58h) VIN_UV_WARN_LIMIT  
Address:  
58h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -2)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
4.00 to 11.25 V in 0.25 V steps  
Sets the value, in Volts, of the input voltage that causes an input undervoltage warning.  
7.9.5.50 (59h) VIN_UV_FAULT_LIMIT  
Address:  
59h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -2)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
4.00 to 11.25 V in 0.25 V steps  
Sets the value, in Volts, of the input voltage that causes an input undervoltage fault.  
7.9.5.51 (5Ah) VIN_UV_FAULT_RESPONSE  
Address:  
5Ah  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
80h: Latch-off immediately, require enable cycle to recover  
B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.  
Description:  
Instructs the device on what action to take in response to an input under-voltage fault.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.52 (5Bh) IIN_OC_FAULT_LIMIT  
Address:  
5Bh  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = 0)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
4.0 to 128.0 A in 4 A steps  
Sets the value of the input current, in Amperes, that causes an Input Overcurrent Fault.  
7.9.5.53 (5Ch) IIN_OC_FAULT_RESPONSE  
Address:  
5Ch  
Transaction Type:  
Data Format:  
Write Word / Read Word  
Unsigned Binary (1 byte)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
C0h: Latch-off immediately, require enable cycle to recover  
F8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time  
Description:  
Instructs the device on what action to take in response to an input overcurrent fault.  
7.9.5.54 (5Dh) IIN_OC_WARN_LIMIT  
Address:  
5Dh  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11(N = 0)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
4.0 to 128.0 A in 4 A steps  
Sets the value of the input current, in Amperes, that causes an Input Overcurrent warning.  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.55 (60h) TON_DELAY  
Address:  
60h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -1)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
0.0 to 127.5 ms in 0.5 ms steps  
Sets the time, in milliseconds, from when a start condition is received (as programmed by the ON_OFF_CONFIG command) until the output voltage  
starts to rise.  
7.9.5.56 (61h) TON_RISE  
Address:  
61h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -2)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
0.00 to 31.75 ms in 0.25 ms steps  
This value used to calculate slew rate during boot only. Supported slew rates follow those of VOUT_TRANSITION_RATE.  
Description:  
Sets the desired rise time of the output voltage, which allows the device to calculate the slew rate setting during bootup.  
7.9.5.57 (62h) TON_MAX_FAULT_LIMIT  
Address:  
62h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -2)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
0.00 ms: function disabled.  
0.00 to 31.75 ms in 0.25 ms steps  
Description:  
Sets an upper limit, in milliseconds, on how long the unit can attempt to power up the output without reaching the undervoltage fault limit (including  
droop).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.58 (63h) TON_MAX_FAULT_RESPONSE  
Address:  
63h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
00h: Ignore  
80h: Latch-off immediately, require enable cycle to recover  
B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time  
Description:  
Instructs the device on what action to take in response to TON_MAX fault.  
7.9.5.59 (64h) TOFF_DELAY  
Address:  
64h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -1)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
0.0 to 127.5 ms in 0.5 ms steps  
Sets the time, in milliseconds, from when a stop condition is received (as programmed by the ON_OFF_CONFIG command) until the unit stops  
transferring energy to the output.  
7.9.5.60 (65h) TOFF_FALL  
Address:  
65h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = -2)  
Yes / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
0.00 to 31.75 ms in 0.25 ms steps  
This value used to calculate slew rate during soft-off only. Supported slew rates follow those of VOUT_TRANSITION_RATE.  
Description:  
Sets the desired fall time of the output voltage, which allows the device to calculate the slew rate setting during soft-off.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.61 (6Bh) PIN_OP_WARN_LIMIT  
Address:  
6Bh  
Transaction Type:  
Data Format:  
Write Word / Read Word  
SLINEAR11 (N = +1)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-fly  
8.0 to 2048 W  
Non-uniform step size. See the Technical Reference Manual.  
Description:  
Sets the value of the input power, in watts, that causes a warning that the input power is high.  
7.9.5.62 (78h) STATUS_BYTE  
Address:  
78h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
BUSY, OFF, VOUT_OV, IOUT_OC, VIN_UV, TEMP CML, OTHER  
Returns one byte of information with a summary of the most critical faults.  
7.9.5.63 (79h) STATUS_WORD  
Address:  
79h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Word / Read Word  
Unsigned Binary (2 bytes)  
Yes / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
VOUT, IOUT, INPUT, MFR, PGOOD, plus the STATUS_BYTE  
Returns two bytes of information with a summary of the most critical faults.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.64 (7Ah) STATUS_VOUT  
Address:  
7Ah  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
VOUT_OVF, VOUT_OVW, VOUT_UVW, VOUT_UVF, VOUT_MINMAX, TON_MAX  
Returns one data byte with information about output voltage related faults and warnings.  
7.9.5.65 (7Bh) STATUS_IOUT  
Address:  
7Bh  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
IOUT_OCF, IOUT_OCW, CUR_SHAREF  
Returns one data byte with information about output current related faults and warnings.  
7.9.5.66 (7Ch) STATUS_INPUT  
Address:  
7Ch  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
No / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
VIN_OVF, VIN_OVW, VIN_UVW, VIN_UVF, LOW_VIN, IIN_OCF, IIN_OCW, PIN_OPW  
Returns one data byte with information about input voltage/current related faults and warnings.  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.67 (7Dh) STATUS_TEMPERATURE  
Address:  
7Dh  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
OTF, OTW  
Returns one data byte with information about temperature related faults and warnings.  
7.9.5.68 (7Eh) STATUS_CML  
Address:  
7Eh  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
No / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
IVC, IVD, PEC, MEM, COMM, CML_OTHER  
Returns one data byte with information about communication related warnings.  
7.9.5.69 (7Fh) STATUS_OTHER  
Address:  
7Eh  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
No / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
FIRST_TO_ALERT  
Returns one data byte with information about warnings not defined in the other standard status registers.  
7.9.5.70 (80h) STATUS_MFR_SPECIFIC  
Address:  
80h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Yes / No  
Current Status  
Updates Allowed:  
Supported Bits:  
Description:  
On-the-fly  
POR, EXT, PSFLT  
Returns one data byte with information about manufacturer-defined warnings and faults.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.71 (88h) READ_VIN  
Address:  
88h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
SLINEAR11 (variable exponent)  
Yes / No  
Current Status  
Update Rate:  
Supported Range:  
Description:  
150 μs update / 300 μs time filtering  
0.000 V to 18.700 V  
Returns the sensed input voltage in volts.  
7.9.5.72 (89h) READ_IIN  
Address:  
89h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
SLINEAR11 (variable exponent)  
Yes / No  
Current Status  
Update Rate:  
Supported Range:  
16 μs update / 120 μs time filtering  
-5.0 to 100.0 A  
(VCSPIN-VVIN_CSN)× GIINSHUNT = 800 mV max  
Description:  
Returns the sensed input current in amperes.  
7.9.5.73 (8Bh) READ_VOUT  
Address:  
8Bh  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
ULINEAR16  
Yes / No  
Current Status  
Update Rate:  
Supported Range:  
200 μs update / 250 μs time filtering  
0.00 to 3.74 V (VOUT_SCALE_LOOP = 1.0)  
0.00 to 6.00 V (VOUT_SCALE_LOOP = 0.5)  
Description:  
Returns the sensed output voltage in volts.  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.74 (8Ch) READ_IOUT  
Address:  
8Ch  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
SLINEAR11 (variable exponent)  
Yes / Yes  
Current Status  
Update Rate:  
Supported Range:  
16 μs update / 80 μs time filtering  
Per Channel:  
(-10.0 to +70.0 A) × Nphases× (5.0 mΩ / IOUT_CAL_GAIN) + Σ(IOUT_CAL_OFFSET)Phases  
Per Phase:  
(-10.0 to +70.0 A) × (5.0 mΩ / IOUT_CAL_GAIN) + (IOUT_CAL_OFFSET)Phases  
Description:  
Returns the sensed output current in amperes.  
Can be calibrated by IOUT_CAL_GAIN and IOUT_CAL_OFFSET.  
Read with PHASE = FFh to read total page current.  
Read with PHASE = 00h to read first phase (order 0) current, and so on.  
7.9.5.75 (8Dh) READ_TEMPERATURE_1  
Address:  
8Dh  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
SLINEAR11 (variable exponent)  
Yes / No  
Current Status  
Update Rate:  
Supported Range:  
Description:  
TBD  
-40.0°C to 150.0°C  
Returns the sensed power stage temperature in degrees Celsius.  
7.9.5.76 (96h) READ_POUT  
Address:  
96h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
SLINEAR11 (variable exponent)  
Yes / No  
Current Status  
Update Rate:  
Supported Range:  
Description:  
Per READ_VOUT and READ_IOUT  
Per READ_VOUT and READ_IOUT  
Returns the sensed output power in Watts.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.77 (97h) READ_PIN  
Address:  
97h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
SLINEAR11 (variable exponent)  
Yes / No  
Current Status  
Update Rate:  
Supported Range:  
Description:  
Per READ_VIN and READ_IIN  
Per READ_VIN and READ_IIN  
Returns the sensed input power in Watts.  
7.9.5.78 (98h) PMBUS_REVISION  
Address:  
98h  
Transaction Type:  
Data Format:  
Read Byte  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
No / No  
33h  
Updates Allowed:  
Supported Values:  
Description:  
N/A  
33h: PMBus 1.3, Part I and II  
Reads the revision of the PMBus to which the device is compatible.  
7.9.5.79 (99h) MFR_ID  
Address:  
99h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (3 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-Fly  
000000h to FFFFFFh  
Arbitrary NVM for user tracking purposes.  
Description:  
3 bytes of arbitrarily writeable non-volatile memory intended for manufacturer identification.  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.80 (9Ah) MFR_MODEL  
Address:  
9Ah  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (3 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-Fly  
000000h to FFFFFFh  
Arbitrary NVM for user tracking purposes.  
Description:  
3 bytes of arbitrarily writeable non-volatile memory intended for model identification.  
7.9.5.81 (9Bh) MFR_REVISION  
Address:  
9Bh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (3 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-Fly  
000000h to FFFFFFh  
Arbitrary NVM for user tracking purposes.  
Description:  
3 bytes of arbitrarily writeable non-volatile memory intended for revision identification.  
7.9.5.82 (9Dh) MFR_DATE  
Address:  
9Dh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (3 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
On-the-Fly  
000000h to FFFFFFh  
Arbitrary NVM for user tracking purposes.  
Description:  
3 bytes of arbitrarily writeable non-volatile memory intended for date tracking.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.83 (ADh) IC_DEVICE_ID  
Address:  
ADh  
Transaction Type:  
Data Format:  
Read Block  
Unsigned Binary (6 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
5449536C7000h  
Updates Allowed:  
Supported Values:  
Description:  
N/A  
5449536C7000h (TPS536C7B1)  
Returns the part number of the device.  
7.9.5.84 (AEh) IC_DEVICE_REV  
Address:  
AEh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (2 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
Current Device Revision  
N/A  
Updates Allowed:  
Supported Values:  
Description:  
Set by TI during device manufacturing.  
Returns device revision.  
7.9.5.85 (B1h) USER_DATA_01 (COMPENSATION_CONFIG)  
Address:  
B1h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (8 bytes)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
See the Technical Reference Manual for a complete register map.  
Configures the control loop compensation parameters including AC load line, integration time constant, dynamic integration, compensating ramp, AC  
gain, integration gain.  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.86 (B2h) USER_DATA_02 (NONLINEAR_CONFIG)  
Address:  
B2h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (5 bytes)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
See the Technical Reference Manual for a complete register map.  
Configures the nonlinear controller parameters including minimum on time, minimum off time, leading edge blanking time, USR and OSR thresholds.  
7.9.5.87 (B3h) USER_DATA_03 (PHASE_CONFIG)  
Address:  
B3h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (24 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM or Pinstrap  
Updates Allowed:  
Supported Values:  
Description:  
Blocked during regulation.  
See the Technical Reference Manual for a complete register map.  
Configures phase assignments: Assign phases to channels, phase number, and firing position.  
7.9.5.88 (B4h) USER_DATA_04 (DVID_CONFIG)  
Address:  
B4h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (6 bytes)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
See the Technical Reference Manual for a complete register map.  
Configures DVID options including dynamic AC and DC load lines.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.89 (B7h) USER_DATA_07 (PHASE_SHED_CONFIG)  
Address:  
B7h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (13 bytes)  
Paged / Phased:  
Reset Value:  
Yes / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
on-the-fly  
See the Technical Reference Manual for a complete register map.  
Configures phase add/drop functionality and thresholds.  
7.9.5.90 (BAh) USER_DATA_10 (ISHARE_CONFIG)  
Address:  
BAh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
Yes / Yes  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
on-the-fly  
See the Technical Reference Manual for a complete register map.  
Configures the current sharing ratios for each phase for thermal balance management.  
7.9.5.91 (BBh) USER_DATA_11 (MFR_PROTECTION_CONFIG)  
Address:  
BBh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (10 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
on-the-fly  
See the Technical Reference Manual for a complete register map.  
Configures manufacturer-specific fault features such as the fixed overvoltage protection, hiccup wait time, and current share warning.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.92 (BDh) USER_DATA_13 (MFR_CALIBRATION_CONFIG)  
Address:  
BDh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (15 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
on-the-fly  
See the Technical Reference Manual for a complete register map.  
Configures telemetry calibration features including input current sensing gain/offset.  
7.9.5.93 (CDh) MFR_SPECIFIC_CD (MULTIFUNCTION_PIN_CONFIG_1)  
Address:  
CDh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (32 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly (takes effect only after power on).  
Do not modify.  
Device configuration bits which are set by TI during manufacturing. Do not change from default settings.  
7.9.5.94 (CEh) MFR_SPECIFIC_CE (MULTIFUNCTION_PIN_CONFIG_2)  
Address:  
CEh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (31 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly (takes effect only after power on).  
Do not modify.  
Device configuration bits which are set by TI during manufacturing. Do not change from default settings.  
7.9.5.95 (CFh) SMBALERT_MASK_EXTENDED  
Address:  
CFh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (7 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Refer to the technical reference manual.  
SMBALERT MASK bits for STATUS_EXTENDED bits  
7.9.5.96 (D1h) READ_VOUT_MIN_MAX  
Address:  
D1h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Block / Read Block  
SLINEAR11 (2 MSB for min, 2 LSB for max)  
Yes / No  
Current Status  
Update Rate:  
Logging Control:  
Same as READ_VOUT.  
0000 0004h: Pause logging (min and max)  
0000 0020h: Resume logging (min and max)  
0000 0100h: Reset logs (min and max)  
Description:  
Returns maximum and minimum output voltage values logged since last reset.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
 
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.97 (D2h) READ_IOUT_MIN_MAX  
Address:  
D2h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Block / Read Block  
SLINEAR11 (2 MSB for min, 2 LSB for max)  
Yes / No  
Current Status  
Update Rate:  
Logging Control:  
Same as READ_IOUT.  
0000 0004h: Pause logging (min and max)  
0000 0020h: Resume logging (min and max)  
0000 0100h: Reset logs (min and max)  
Description:  
Returns maximum and minimum output current values logged since last reset.  
7.9.5.98 (D3h) READ_TEMPERATURE_MIN_MAX  
Address:  
D3h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Block / Read Block  
SLINEAR11 (2 MSB for min, 2 LSB for max)  
Yes / No  
Current Status  
Update Rate:  
Logging Control:  
Same as READ_TEMPERATURE_1.  
0000 0004h: Pause logging (min and max)  
0000 0020h: Resume logging (min and max)  
0000 0100h: Reset logs (min and max)  
Description:  
Returns maximum and minimum temperature values logged since last reset.  
7.9.5.99 (D4h) READ_MFR_VOUT  
Address:  
D4h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Read Word  
SLINEAR11 (variable exponent)  
Yes / No  
Current Status  
Per READ_VOUT.  
Update Rate:  
Supported Range:  
0.00 to 3.74 V (VOUT_SCALE_LOOP = 1.0)  
0.00 to 6.00 V (VOUT_SCALE_LOOP = 0.5)  
Description:  
Returns the sensed output voltage in volts.  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.100 (D5h) READ_VIN_MIN_MAX  
Address:  
D5h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Block / Read Block  
SLINEAR11 (2 MSB for min, 2 LSB for max)  
Yes / No  
Current Status  
Update Rate:  
Logging Control:  
Same as READ_VIN.  
0000 0004h: Pause logging (min and max)  
0000 0020h: Resume logging (min and max)  
0000 0100h: Reset logs (min and max)  
Description:  
Returns maximum and minimum input voltage values logged since last reset.  
7.9.5.101 (D6h) READ_IIN_MIN_MAX  
Address:  
D6h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Block / Read Block  
SLINEAR11 (2 MSB for min, 2 LSB for max)  
Yes / No  
Current Status  
Update Rate:  
Logging Control:  
Same as READ_IIN.  
0000 0004h: Pause logging (min and max)  
0000 0020h: Resume logging (min and max)  
0000 0100h: Reset logs (min and max)  
Description:  
Returns maximum and minimum input current values logged since last reset.  
7.9.5.102 (D7h) READ_PIN_MIN_MAX  
Address:  
D7h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Block / Read Block  
SLINEAR11 (2 MSB for min, 2 LSB for max)  
Yes / No  
Current Status  
Update Rate:  
Logging Control:  
Same as READ_PIN.  
0000 0004h: Pause logging (min and max)  
0000 0020h: Resume logging (min and max)  
0000 0100h: Reset logs (min and max)  
Description:  
Returns maximum and minimum input power values logged since last reset.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.103 (D8h) READ_POUT_MIN_MAX  
Address:  
D8h  
Transaction Type:  
Data Format:  
Paged / Phased:  
Reset Value:  
Write Block / Read Block  
SLINEAR11 (2 MSB for min, 2 LSB for max)  
Yes / No  
Current Status  
Update Rate:  
Logging Control:  
Same as READ_POUT.  
0000 0004h: Pause logging (min and max)  
0000 0020h: Resume logging (min and max)  
0000 0100h: Reset logs (min and max)  
Description:  
Returns maximum and minimum output power values logged since last reset.  
7.9.5.104 (DAh) READ_ALL  
Address:  
DAh  
Transaction Type:  
Data Format:  
Read Block  
Unsigned Binary (14 bytes)  
Paged / Phased:  
Reset Value:  
Yes / No  
0d  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Refer to the technical reference manual.  
Read all supported telemetry values in a single block to reduce bus utilization.  
7.9.5.105 (DBh) STATUS_ALL  
Address:  
DBh  
Transaction Type:  
Data Format:  
Read Block  
Unsigned Binary (18 bytes)  
Paged / Phased:  
Reset Value:  
Yes / No  
0d  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Refer to the technical reference manual.  
Read all supported status registers in a single block to reduce bus utilization.  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.106 (DCh) STATUS_PHASES  
Address:  
DCh  
Transaction Type:  
Data Format:  
Write Word / Read Word  
Unsigned Binary (2 bytes)  
Paged / Phased:  
Reset Value:  
Yes / Yes  
0d  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Refer to the technical reference manual.  
Identify which phases have experienced a phased fault.  
7.9.5.107 (DDh) STATUS_EXTENDED  
Address:  
DDh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (7 bytes)  
Paged / Phased:  
Reset Value:  
Yes / Yes  
0d  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Refer to the technical reference manual.  
Report non-standard status information which is not captured in STATUS_X registers or STATUS_PHASES.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.108 (E3h) MFR_SPECIFIC_E3 (VR_FAULT_CONFIG)  
Address:  
E3h  
Transaction Type:  
Data Format:  
Write Word / Read Word  
Unsigned Binary (2 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
on-the-fly  
Bit 0: Set to 1b to assert VR_FAULT# for channels A and B, 0 channel A only otherwise  
Bit 1: Set to 1b to assert VRFAULT# for overcurrent faults, 0 otherwise  
Bit 2: Set to 1b to assert VRFAULT# for overtemperature faults, 0 otherwise  
Description:  
Configure the behavior of the VR_FAULT# pin.  
7.9.5.109 (E4h) SYNC_CONFIG  
Address:  
E4h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (6 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
Blocked during regulation.  
Refer to the technical reference manual.  
Configure phase synchronization and frequency control.  
7.9.5.110 (EDh) MFR_SPECIFIC_ED (MISC_OPTIONS)  
Address:  
EDh  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (5 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
on-the-fly  
See the Technical Reference Manual for a complete register map.  
Configure miscellaneous options.  
7.9.5.111 (EEh) MFR_SPECIFIC_EE (PIN_DETECT_OVERRIDE)  
Address:  
EEh  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 byte)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
on-the-fly (pin detection occurs on POR only).  
Set bit 0 to 0b to derive channel A VBOOT from NVM  
Set bit 1 to 0b to derive PMBus address from NVM.  
Set bit 4 to 0b to derive phase configuration from NVM.  
Description:  
Configure whether the device follows pinstrapping or NVM settings for the parameters associated with the VBOOT_CHA and ADDR_CONFIG pins.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.112 (EFh) MFR_SPECIFIC_EF (SLAVE_ADDRESS)  
Address:  
EFh  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM or Pinstrap  
Updates Allowed:  
Supported Values:  
Description:  
on-the-fly, only takes effect at power-on.  
00h to 7Fh (7 bit address right justified)  
Configure the PMBus slave address, when the PIN_DETECT_OVERRIDE command is configured to ignore the ADDR_CONFIG pinstrap detection.  
7.9.5.113 (F0h) MFR_SPECIFIC_F0 (NVM_CHECKSUM)  
Address:  
F0h  
Transaction Type:  
Data Format:  
Read Word  
Unsigned Binary (2 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
Current Status  
Updates Allowed:  
Supported Values:  
Description:  
Only following NVM Store/Restore Operations  
0000h to FFFFh  
CRC16 of the internal NVM array. This can be used to verify proper NVM programming.  
7.9.5.114 (F5h) MFR_SPECIFIC_F5 (USER_NVM_INDEX)  
Address:  
F5h  
Transaction Type:  
Data Format:  
Write Byte / Read Byte  
Unsigned Binary (1 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
00h  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly (Auto-increments with USER_NVM_EXECUTE access)  
00h to 08h  
Used for batch-loading of NVM data via PMBus.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
7.9.5.115 (F6h) MFR_SPECIFIC_F6 (USER_NVM_EXECUTE)  
Address:  
F6h  
Transaction Type:  
Data Format:  
Write Block / Read Block  
Unsigned Binary (32 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
Current NVM status  
On-the-fly  
Updates Allowed:  
Supported Values:  
Description:  
All NVM bytes  
With USER_NVM_INDEX = 0, this command writes/returns 9 bytes of identifying information, plus the first 23 bytes of NVM data  
With USER_NVM_INDEX = 1 to 7, this command writes/returns the next 32 bytes of NVM data  
With USER_NVM_INDEX = 8, this command writes the last NVM data bytes, and automatically performs an NVM Store operation.  
Each time this command is accessed, USER_NVM_INDEX increments automatically.  
7.9.5.116 (FAh) NVM_LOCK  
Address:  
FAh  
Transaction Type:  
Data Format:  
Write Word / Read Word (when locked, this command does not read back the password value).  
Unsigned Binary (2 bytes)  
No / No  
Paged / Phased:  
Reset Value:  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
0000-FFFEh  
NVM password. Used to lock or unlock WRITE_PROTECT and MFR_WRITE_PROTECT commands, which in turn provide write protection.  
7.9.5.117 (FBh) MFR_SPECIFIC_WRITE_PROTECT  
Address:  
FBh  
Transaction Type:  
Data Format:  
Write Word / Read Word  
Unsigned Binary (2 bytes)  
Paged / Phased:  
Reset Value:  
No / No  
NVM  
Updates Allowed:  
Supported Values:  
Description:  
On-the-fly  
Refer to the Technical Reference Manual for a bit map  
Provides additional resolution to WRITE_PROTECT, allowing different groups of commands to be write protected. Access to this command is  
controlled by NVM_LOCK.  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Typical Application  
8.1.1 Application  
The TPS536C7B1 is a fully PMbus 1.3.1 compliant step-down controller with dual channels. All programmable  
parameters can be configured by PMBus and stored in NVM as the new default value to minimize external  
component count.  
This design uses a 0.88-V / 400-A, 1-V / 50-A design as an example. Use the following design procedure to  
select key components.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
8.1.1.1 Schematic  
Iin_CSP  
ATSEN  
C1  
1µF  
C9  
1nF  
C3  
1µF  
BTSEN  
C10  
1nF  
Iin_CSN  
R18 110 kΩ  
C2  
1µF  
VREF  
R19  
37.4 kΩ  
R1 1Ω  
3.3Vin  
VR_FAULT#  
C4  
1µF  
R16 0 Ω  
R15 0 Ω  
VOUTB+  
VOUTB-  
VREF  
BCSP1  
BCSP2  
C5  
1µF  
41  
38  
3.3-V VIN  
48  
47  
46  
45  
42  
39  
37  
43  
40  
44  
R20  
10 kΩ  
R21  
R22  
R23  
R24  
R25  
C8  
0.1 mF  
10 kΩ 10 kΩ 10 kΩ 10 kΩ 10 kΩ  
ACSP10/  
BCSP3  
36  
ACSP10  
ACSP9  
ACSP9/BCSP4 35  
AVR_RDY  
BVR_RDY  
BPWM1  
1
APWM12/BPWM1  
APWM11/BPWM2  
APWM10/BPWM3  
BPWM2  
2
ACSP8/BCSP5 34  
ACSP7/BCSP6 33  
ACSP8  
ACPS7  
APWM10  
3
VR_FAULT#  
APWM9  
APWM8  
4
ACSP6  
ACSP5  
ACSP6 32  
ACSP5 31  
APWM9/BPWM4  
APWM8/BPWM5  
PMB_CLK  
PMB_DIO  
TPS536C7B1  
U1  
5
PMB_ALERT#  
6
7
APWM7/BPWM6  
APWM6  
APWM7  
APWM6  
ACPS4 30  
ACSP3 29  
ACSP4  
ACSP3  
ACSP2  
ACSP1  
APWM5  
8
APWM5  
28  
27  
ACPS2  
ACSP1  
9
APWM4  
APWM3  
APWM2  
APWM4  
APWM3  
APWM2  
10  
11  
R10 0Ω  
26  
VOUTA-  
AVSN  
R8 0Ω  
AVSP 25  
VOUTA+  
APWM1  
APWM1  
12  
AGND  
13  
14  
15  
16  
17  
18  
20  
22  
23  
19  
21  
24  
PMB_DIO#  
PMB_CLK#  
BVR_RDY  
BVR_EN  
R4 0 Ω  
C11  
DNP  
PMB_ALERT#  
AVR_RDY  
AVR_EN  
R18 59 kΩ  
VREF  
R2 0 Ω  
R19  
20 kΩ  
C6  
1nF  
Figure 8-1. Controller Schematic  
Copyright © 2021 Texas Instruments Incorporated  
128  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
R31A  
2.2 Ω  
R31B  
2.2 Ω  
5VIN  
5VIN  
C12A  
2.2 mF  
C13A  
2.2 mF  
C12B  
2.2 mF  
C13B  
2.2 mF  
C14A  
0.1 mF  
C14B  
0.1 mF  
4
3
37  
33  
32  
4
3
37  
33  
32  
12VIN  
12VIN  
VIN 30  
VIN 29  
VIN 28  
VIN 30  
VIN 29  
VIN 28  
APWM1  
34 PWM  
APWM2  
34 PWM  
C15A  
1µF  
C16A  
22 mF  
C17A  
22 mF  
C18A  
22 mF  
C15B  
1µF  
C16B  
22 mF  
C17B  
22 mF  
C18B  
22 mF  
35  
35  
EN/FCCM  
EN/FCCM  
VIN  
27  
VIN  
27  
36 TAO/FLT  
36 TAO/FLT  
ATSEN  
ATSEN  
VIN 26  
VIN 26  
25  
25  
VIN  
VIN  
ACSP1  
VREF  
38 IOUT  
39 REFIN  
ACSP2  
VREF  
38 IOUT  
39 REFIN  
1
1
VOS  
SW  
VOS  
SW  
U2A  
CSD95410RRB  
U2B  
CSD95410RRB  
19  
19  
L1A  
150 nH  
0.2 mΩ  
L1B  
150 nH  
0.2mΩ  
SW 18  
SW 18  
17  
16  
15  
14  
13  
12  
11  
10  
VOUTA  
17  
16  
15  
14  
13  
12  
11  
10  
VOUTA  
SW  
SW  
SW  
SW  
C20A  
470 mF  
C21A  
C22A C23A  
C20B  
470 mF  
C21B C22B C23B  
220 mF 220 mF 470 mF  
C19B  
DNP  
C19A  
DNP  
220 mF 220 mF 470 mF  
SW  
SW  
SW  
SW  
SW  
SW  
6
NC  
6
NC  
R34B  
DNP  
R34A  
DNP  
31 NC  
31 NC  
41  
41  
NC  
NC  
SW  
SW  
SW  
SW  
SW  
SW  
2
40 24 23 22 21 20  
7
8
9
5
2
40 24 23 22 21 20  
7
8
9
5
R31D  
2.2 Ω  
R31E  
2.2 Ω  
5VIN  
5VIN  
C12D  
2.2 mF  
C13D  
2.2 mF  
C12E  
2.2 mF  
C13E  
2.2 mF  
C14D  
0.1 mF  
C14E  
0.1 mF  
4
3
37  
33  
32  
4
3
37  
33  
32  
12VIN  
12VIN  
VIN 30  
VIN 30  
APWM4  
34 PWM  
APWM5  
34 PWM  
C15D  
1µF  
C16D  
22 mF  
C17D  
22 mF  
C18D  
22 mF  
C15E  
1µF  
C16E  
22 mF  
C17E  
22 mF  
C18E  
22 mF  
VIN 29  
VIN 28  
VIN 29  
VIN 28  
35  
35  
EN/FCCM  
EN/FCCM  
VIN  
27  
VIN  
27  
36 TAO/FLT  
36 TAO/FLT  
ATSEN  
ATSEN  
VIN 26  
VIN 26  
25  
25  
VIN  
VIN  
ACSP4  
VREF  
38 IOUT  
39 REFIN  
ACSP5  
VREF  
38 IOUT  
39 REFIN  
1
1
VOS  
SW  
VOS  
SW  
U2D  
CSD95410RRB  
U2E  
CSD95410RRB  
19  
19  
L1D  
150 nH  
0.2mΩ  
L1E  
150 nH  
0.2mΩ  
SW 18  
SW 18  
17  
VOUTA  
17  
VOUTA  
SW  
SW  
C20D  
470 mF  
C21D  
C22D  
C23D  
C20E  
470 mF  
C21E  
C22E  
C23E  
C19D  
DNP  
C19E  
DNP  
SW  
SW  
16  
15  
14  
13  
12  
11  
10  
16  
15  
14  
13  
12  
11  
10  
220 mF 220 mF 470 mF  
220 mF 220 mF 470 mF  
SW  
SW  
SW  
SW  
SW  
SW  
6
NC  
6
NC  
R34D  
DNP  
R34E  
DNP  
31 NC  
31 NC  
41  
41  
NC  
NC  
SW  
SW  
SW  
SW  
SW  
SW  
2
40 24 23 22 21 20  
7
8
9
5
2
40 24 23 22 21 20  
7
8
9
5
Figure 8-2. Powerstages Schematic (1/3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
129  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
R31G  
2.2 Ω  
R31H  
2.2 Ω  
5VIN  
5VIN  
C12G  
2.2 mF  
C13G  
2.2 mF  
C12H  
2.2 mF  
C13H  
2.2 mF  
C14G  
0.1 mF  
C14H  
0.1 mF  
4
3
37  
33  
32  
4
3
37  
33  
32  
12VIN  
12VIN  
VIN 30  
VIN 29  
VIN 28  
VIN 30  
VIN 29  
VIN 28  
APWM7  
34 PWM  
APWM8  
34 PWM  
C15G  
1µF  
C16G  
22 mF  
C17G  
22 mF  
C18G  
22 mF  
C15H  
1µF  
C16H  
22 mF  
C17H  
22 mF  
C18H  
22 mF  
35  
35  
EN/FCCM  
EN/FCCM  
VIN  
27  
VIN  
27  
36 TAO/FLT  
36 TAO/FLT  
ATSEN  
ATSEN  
VIN 26  
VIN 26  
25  
25  
VIN  
VIN  
ACSP7  
VREF  
38 IOUT  
39 REFIN  
ACSP8  
VREF  
38 IOUT  
39 REFIN  
1
1
VOS  
SW  
VOS  
SW  
U2G  
CSD95410RRB  
U2H  
CSD95410RRB  
19  
19  
L1G  
150 nH  
0.2mΩ  
L1H  
150 nH  
0.2mΩ  
SW 18  
SW 18  
17  
VOUTA  
C23G  
17  
VOUTA  
SW  
SW  
C20G  
470 mF  
C21G  
C22G  
C20H  
470 mF  
C21H C22H  
C23H  
C19G  
DNP  
C19H  
DNP  
SW  
SW  
16  
15  
14  
13  
12  
11  
10  
16  
15  
14  
13  
12  
11  
10  
220 mF 220 mF 470 mF  
22 mF 220 mF 470 mF  
SW  
SW  
SW  
SW  
SW  
SW  
6
NC  
6
NC  
R34G  
DNP  
R34H  
DNP  
31 NC  
31 NC  
41  
41  
NC  
NC  
SW  
SW  
SW  
SW  
SW  
SW  
2
40 24 23 22 21 20  
7
8
9
5
2
40 24 23 22 21 20  
7
8
9
5
R31J  
2.2 Ω  
R35A  
2.2 Ω  
5VIN  
5VIN  
C12J  
2.2 mF  
C13J  
2.2 mF  
C24A  
2.2 mF  
C25A  
2.2 mF  
C14J  
0.1 mF  
C26A  
0.1 mF  
4
3
37  
33  
32  
4
3
37  
33  
32  
12VIN  
12VIN  
VIN 30  
VIN 29  
VIN 28  
VIN 30  
VIN 29  
VIN 28  
APWM10  
34 PWM  
BPWM1  
34 PWM  
C15J  
1µF  
C16J  
22 mF  
C17J  
22 mF  
C18J  
22 mF  
C27A  
1µF  
C29A  
22 mF  
C30A  
22 mF  
C31A  
22 mF  
35  
35  
EN/FCCM  
EN/FCCM  
VIN  
27  
VIN  
27  
36 TAO/FLT  
36 TAO/FLT  
ATSEN  
BTSEN  
VIN 26  
VIN 26  
25  
25  
VIN  
VIN  
ACSP10  
VREF  
38 IOUT  
39 REFIN  
BCSP1  
VREF  
38 IOUT  
39 REFIN  
1
1
VOS  
SW  
VOS  
SW  
U2J  
CSD95410RRB  
U3A  
CSD95410RRB  
19  
19  
L1J  
150 nH  
0.2mΩ  
L2A  
150 nH  
0.2mΩ  
SW 18  
SW 18  
17  
VOUTA  
17  
VOUTB  
SW  
SW  
C20J  
470 mF  
C21J  
C22J  
C23J  
C33A  
470 mF  
C34A C35A  
C36A  
C19J  
DNP  
C32A  
DNP  
SW  
SW  
16  
15  
14  
13  
12  
11  
10  
16  
15  
14  
13  
12  
11  
10  
220 mF 220 mF 470 mF  
220 mF 220 mF 470 mF  
SW  
SW  
SW  
SW  
SW  
SW  
6
NC  
6
NC  
R34J  
DNP  
R38A  
DNP  
31 NC  
31 NC  
41  
41  
NC  
NC  
SW  
SW  
SW  
SW  
SW  
SW  
2
40 24 23 22 21 20  
7
8
9
5
2
40 24 23 22 21 20  
7
8
9
5
Figure 8-3. Powerstages Schematic (2/3)  
Copyright © 2021 Texas Instruments Incorporated  
130  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
R31C  
2.2 Ω  
R31I  
2.2 Ω  
5VIN  
5VIN  
C12C  
2.2 mF  
C13C  
2.2 mF  
C12I  
2.2 mF  
C13I  
2.2 mF  
C14C  
0.1 mF  
C14I  
0.1 mF  
4
3
37  
33  
32  
4
3
37  
33  
32  
12VIN  
12VIN  
VIN 30  
VIN 29  
VIN 28  
VIN 30  
VIN 29  
VIN 28  
APWM3  
34 PWM  
APWM9  
34 PWM  
C15C  
1µF  
C16C  
22 mF  
C17C  
22 mF  
C18C  
22 mF  
C15I  
1µF  
C16I  
22 mF  
C17I  
22 mF  
C18I  
22 mF  
35  
EN/FCCM  
35  
EN/FCCM  
VIN  
27  
VIN  
27  
36 TAO/FLT  
ATSEN  
36 TAO/FLT  
VIN 26  
ATSEN  
VIN 26  
25  
VIN  
25  
VIN  
ACSP3  
VREF  
38 IOUT  
39 REFIN  
ACSP9  
VREF  
38 IOUT  
39 REFIN  
1
VOS  
SW  
1
U2C  
CSD95410RRB  
VOS  
SW  
U2I  
CSD95410RRB  
19  
L1C  
150 nH  
0.2mΩ  
19  
L1I  
150 nH  
0.2mΩ  
SW 18  
SW 18  
17  
16  
15  
14  
13  
12  
11  
10  
VOUTA  
SW  
SW  
17  
16  
15  
14  
13  
12  
11  
10  
VOUTA  
SW  
SW  
C20C  
470 mF  
C21C C22C C23C  
220 mF 220 mF 470 mF  
C19C  
DNP  
C20I  
470 mF  
C21I  
C22I C23I  
C19I  
DNP  
220 mF 220 mF 470 mF  
SW  
SW  
SW  
SW  
SW  
SW  
6
NC  
R34C  
DNP  
6
NC  
R34I  
DNP  
31 NC  
31 NC  
41  
NC  
41  
NC  
SW  
SW  
SW  
SW  
SW  
SW  
2
40 24 23 22 21 20  
7
8
9
5
2
40 24 23 22 21 20  
7
8
9
5
R31F  
2.2 Ω  
5VIN  
R35B  
2.2 Ω  
C12F  
2.2 mF  
C13F  
2.2 mF  
5VIN  
C14F  
0.1 mF  
C24B  
2.2 mF  
C25B  
2.2 mF  
C26B  
0.1 mF  
4
3
37  
33  
32  
12VIN  
4
3
37  
33  
32  
VIN 30  
VIN 29  
VIN 28  
APWM6  
34 PWM  
12VIN  
C15F  
1µF  
C16F  
22 mF  
C17F  
22 mF  
C18F  
22 mF  
VIN 30  
VIN 29  
VIN 28  
BPWM2  
34 PWM  
35  
EN/FCCM  
C27B  
1µF  
C29B  
22 mF  
C30B  
22 mF  
C31B  
22 mF  
VIN  
27  
35  
EN/FCCM  
36 TAO/FLT  
ATSEN  
VIN 26  
VIN  
27  
36 TAO/FLT  
25  
BTSEN  
VIN  
VIN 26  
ACSP6  
VREF  
38 IOUT  
39 REFIN  
25  
VIN  
1
VOS  
SW  
U2F  
CSD95410RRB  
BCSP2  
VREF  
38 IOUT  
39 REFIN  
19  
L1F  
150 nH  
0.2mΩ  
1
VOS  
SW  
U3B  
CSD95410RRB  
SW 18  
19  
L2B  
150 nH  
0.2mΩ  
17  
16  
15  
14  
13  
12  
11  
10  
SW  
SW  
VOUTA  
SW 18  
C20F  
470 mF  
C21F C22F C23F  
220 mF 220 mF 470 mF  
C19F  
DNP  
17  
VOUTB  
SW  
C33B  
470 mF  
C34B C35B  
C36B  
C32B  
DNP  
SW  
SW  
SW  
SW  
16  
15  
14  
13  
12  
11  
10  
220 mF 220 mF 470 mF  
6
NC  
R34F  
DNP  
SW  
SW  
SW  
31 NC  
6
NC  
R38B  
DNP  
41  
NC  
31 NC  
SW  
SW  
41  
NC  
SW  
SW  
SW  
SW  
2
40 24 23 22 21 20  
7
8
9
5
2
40 24 23 22 21 20  
7
8
9
5
Figure 8-4. Powerstages Schematic (3/3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
131  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
R40  
0 Ω DNP  
Iin_CSN  
Iin_CSP  
Iin_CSN  
C42  
1 µF  
DNP  
R41  
0 Ω DNP  
Iin_CSP  
R43  
1.40 kΩ DNP  
R47  
0 Ω  
R46  
0 Ω  
12Vin Input Shunt Current Sense  
12Vin Input DCR Current Sense  
R42  
332 Ω  
DNP  
R44  
1 kNTC  
DNP  
R45  
432 Ω  
DNP  
L3  
50 nH  
0.2 mΩ  
R48  
0.5 mΩ  
P12V  
12Vin  
C43  
22 mF  
PC2  
PC3  
C44  
22 mF  
470 mF 470 mF  
C40  
22 mF  
C41  
22 mF  
VOUTA: OUTPUT CAPACITORS 28x220uF(1206), 36x100uF(1206)  
VOUTA  
C45  
220 mF  
C46  
220 mF  
C47  
220 mF  
C48  
220 mF  
C49  
220 mF  
C50  
220 mF  
C51  
220 mF  
C52  
220 mF  
C53  
220 mF  
C54  
220 mF  
C55  
220 mF  
C56  
220 mF  
C57  
220 mF  
C58  
220 mF  
C59  
220 mF  
C60  
220 mF  
C61  
220 mF  
C62  
220 mF  
C63  
220 mF  
C64  
220 mF  
C65  
220 mF  
C66  
220 mF  
C67  
220 mF  
C68  
220 mF  
C69  
220 mF  
C70  
220 mF  
C71  
220 mF  
C72  
220 mF  
C125  
100 mF  
C126  
100 mF  
C127  
100 mF  
C128  
100 mF  
C93  
100 mF  
C94  
100 mF  
C95  
100 mF  
C96  
100 mF  
C97  
100 mF  
C98  
100 mF  
C99  
100 mF  
C100  
100 mF  
C101  
100 mF  
C102  
100 mF  
C103  
100 mF  
C104  
100 mF  
C105  
100 mF  
C106  
100 mF  
C107  
100 mF  
C108  
100 mF  
C109  
100 mF  
C110  
100 mF  
C111  
100 mF  
C112  
100 mF  
C113  
100 mF  
C114  
100 mF  
C115  
100 mF  
C116  
100 mF  
C117  
100 mF  
C118  
100 mF  
C119  
100 mF  
C120  
100 mF  
C121  
100 mF  
C122  
100 mF  
C123  
100 mF  
C124  
100 mF  
VOUTB: OUTPUT CAPACITORS 2x220uF(1206), 6X100uF(1206)  
VOUTB  
C145  
220 mF  
C146  
220 mF  
C147  
100 mF  
C148  
100 mF  
C149  
100 mF  
C150  
100 mF  
C151  
100 mF  
C152  
100 mF  
Figure 8-5. Ouptput Capacitors Schematic  
Copyright © 2021 Texas Instruments Incorporated  
132  
Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
8.1.1.2 Design Requirements  
The key requirements for this design are summarized below.  
Table 8-1. Design Parameters  
SYMBOL  
PARAMETER  
Channel A  
Channel B  
NΦ  
VIN  
Phase Number  
10  
2
Operating input voltage  
Input current  
10.8 V to 13.2 V  
0 to 80 A  
IIN  
VBOOT  
ICC(max)  
ICC(TDC)  
ICC(STEP)  
RLL  
Boot voltage  
0.88 V  
400 A  
1.00 V  
50 A  
Maximum output current  
Maximum Thermal DC current  
Step transient current  
DC Load Line  
350 A  
45 A  
225 A  
12 A  
0.0 mΩ  
1.25 ms  
1.25 ms  
100°C  
0.0 mΩ  
1.25 ms  
1.25 ms  
100°C  
5 mV/μs  
500 kHz  
TON_RISE  
TOFF_FALL  
TMAX  
Output voltage rise time  
Output voltage fall time  
Maximum temperature  
DVID slew rate  
SRFAST  
fSW  
5 mV/μs  
500 kHz  
Switching frequency  
PMBus address  
PMBADDR  
96d / C0h  
8.1.1.3 Detailed Design Procedure  
The following steps illustrate the key components selection for the 0.88V / 400A, 1V / 50A ASIC application.  
Inductor Selection  
Smaller inductance yields better transient performance, but leads to higher ripple current and lower efficiency.  
Higher inductance has the opposite effect. It is common practice to limit the ripple current to between 20%-40%  
of maximum per-phase current for balanced performance. In this design example, 30% of the maximum per-  
phase current is used for channel A.  
I
CC(MAX)  
400A  
ΔI  
=
× 30% =  
× 0.3 = 12.0 A  
10phases  
(48)  
(49)  
RIPPLE(target)  
N
Φ
V
×( V  
× ΔI  
V  
OUT  
in(max)  
OUT  
× f  
SW  
0.88V ×( 13.2V 0.88V  
L
=
=
= 0.137μH  
13.2V × 12A × 500kHz  
target  
V
in(max)  
RIPPLE(target)  
Considering the variation and derating of the inductance and a standard inductor value of 150nH with DCR 0.125  
mΩ, is selected. Then use Equation 41 to re-calculate the actual output ripple.  
V
× V  
V  
OUT  
OUT  
in(max)  
× f × L  
actual  
0.88V ×( 13.2V 0.88V  
I
=
=
= 10.9A  
13.2V × 500kHz × 0.150μH  
(50)  
RIPPLE(actual)  
V
in(max)  
SW  
With same design procedure for channel B, a standard inductor value of 150 nH with DCR 0.125 mΩ from ITG is  
chosen.  
Output Capacitor Selection  
Generally, consider output ripple and output voltage deviation during load transient when selecting output  
capacitors.  
When available, follow the output capacitance recommendation for the load ASIC reference design. With  
TPS536C7B1 device, it is possible to meet the load transient with lower output capacitance due to the  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
high-speed nature of DCAP+ control. Table 8-2 is the output capacitance recommendation for the above rail  
specification.  
Table 8-2. Output Capacitor Recommendations  
Capacitor location  
Bulk capacitors near power stages  
Top side  
Channel A  
Channel B  
24x 470 μF / 2.5V / 3mΩ ESR  
4x 470 μF / 2.5V / 3mΩ ESR  
24x 220 μF / 4V / X5R/ 1206  
18x 100 μF / 4V / X5R / 1206  
4x 220 μF / 4V / X5R / 1206  
3x 100 μF / 4V / X5R / 1206  
Bottom side  
24x 220 μF / 4V / X5R / 1206  
18x 100 μF / 4V / X5R / 1206  
4x 220 μF / 4V / X5R / 1206  
3x 100 μF / 4V / X5R / 1206  
Total output capacitance  
24.4 mF  
1874 μF  
Select Per-Phase Valley Current Limit  
Equation 42 shows the calculation of per-phase valley current limit based on maximum processor current, the  
operating phase number and per-phase current ripple ΔIRIPPLE(actual)  
.
For the channel A,  
I
ΔI  
CC(max)  
RIPPLE  
2
400A  
10phases  
10.9A  
2
I
= K  
×
margin  
= 1.25 ×  
= 44.5A  
(51)  
OCL  
N
Φ
Where Kmargin is the maximum operating margin factor. Choose 125% margin to avoid triggering current limit  
during load transient events. For this design, choose the 47A valley current limit for channel A.  
I
= I  
+ ΔI  
= 47A + 10.9A = 57.9A  
(52)  
SAT(min)  
OCL  
RIPPLE  
Equation 43 indicates the minimum saturation current for inductor. Using same design procedure, the valley  
current limit for channel B is selected to be 26 A.  
Set USR threshold to improve load transient performance  
There are two levels of undershoot reduction (USR1, USR2) options. USR1 enables up to 3, 4, 5 or all normal  
phases and USR2 enables all available phases. To select the proper value, start with each USR threshold set to  
be disabled, and then systematically lower the threshold, enabling fast-phase-addition to meet the load transient  
requirement.  
For this design, phase shedding is disabled. USR1 and USR2 are selected to be disabled for both channel A and  
channel B.  
Input Current Sensing (Shunt/ Calculated Iin/ Inductor DCR)  
TPS536C7B1 has three input current sensing options: shunt current sensing, calculated input current sensing  
and inductor DCR current sensing. Either option may be chosen for precision input current reporting.  
Shunt current sensing  
In this design, the external shunt resistor 0.5 mΩ ± 1%, 3 W, 4026 package is selected. Once properly  
calibrated, Input current reporting is within the tolerance target.  
Calculated input current sensing  
TPS536C7B1 includes an option to impute input current for situations in which the addition of a shunt or  
input inductor is prohibitive. Connect pins 46 (VIN_CSNIN) and 47 (CSPIN) together, and place a minimum  
1 μF effective capacitance bypass cap from pin 46 to GND, then connect pin 46 to input supply (12 V  
nominally) before input inductor. Configure the calculated input current option through the NVM settings in  
MFR_SPECIFIC_ED (MISC OPTIONS).  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Inductor DCR Current Sensing  
This section describes the procedure to determine an inductor DCR thermal compensation network design.  
Figure 8-6 shows a typical DCR sensing circuit. From Equation 44 and Equation 45, when the time constant of  
the RC network is equal to the L/R time constant of the inductor, the capacitor voltage VC across the CSENSE  
capacitor can be used to obtain the inductor current. However, inductor windings have a positive temperature  
coefficient of approximately 3900 ppm/°C. So an NTC thermistor is used to cancel thermal variation from the  
inductor DCR.  
The design goal is for the DCR value to be invariant with the temperature. Therefore, the voltage across sense  
capacitor would be only dependent on the inductor current over the temperature range of interest.  
L
RDCR  
Vin  
Vout  
C
R
Vc  
Figure 1  
L
IIN  
RDCR  
12Vin  
12Vin to power stage  
RNTC  
RSERIES  
RSEQU  
RP_N  
RPAR  
CSENSE  
Vc  
IIN_CSP  
IIN_CSN  
Figure 2  
Figure 8-6. Input DCR Network  
L
C
I
× R  
DCR  
=
EQ  
(53)  
(54)  
SENSE  
R
DCR  
× R  
= V  
IN  
DCR  
The equivalent resistance of the RSEQU, RNTC, RSERIES and RPAR values is given by REQ in Equation 46. Use  
Equation 46, Equation 47 and Equation 48 to derive the values of RSEQU, RNTC, RSERIES and RPAR  
.
R
P_N  
R
=
s
(55)  
(56)  
EQ  
R
+ R  
P_N  
SEQU  
R
×( R  
NTC  
+ R  
+ R  
+ R  
PAR  
SERIES  
SERIES  
R
=
P_N  
R
PAR  
NTC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
 
 
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
I
× R  
× R  
P_N  
IN  
DCR  
+ R  
V = V  
× R  
=
= β × I  
IN  
(57)  
C
DCR  
EQ  
R
P_N  
SEQU  
Finally the value of β, given in Equation 49 represents the effective current sense gain after thermal  
compensation. This value can be used as the sense element resistance to derive the PMBus settings as  
described in Input current calibration (measured).  
R
× R  
P_N  
DCR  
+ R  
β =  
(58)  
R
P_N  
SEQU  
For this design, select thermistor RNTC as 1 kΩ, 5%, 0603, B-constant is 3650k, P/N: NCP18XQ102J03B from  
Murata. Select CSENSE as 1 μF X7R or better dielectric (C0G preferred).  
In order to solve the value of RSEQU, RSERIES and RPAR, the β at three temperature points are set equal. set β =  
0.15 mΩ equally at temperature 0 °C, 25 °C and 75 °C. With the calculation, three resistors value can be found  
as RSEQU = 332 Ω, RSERIES = 432 Ω, RPAR = 1.40 kΩ.  
Figure 8-7. Inductor DCR sensing voltage over temperature  
TI offers an application note and excel spreadsheet to streamline input DCR netowrk calculations. Contact your  
local field/sales representative to get a copy of the document.  
Loop compensation design  
5 mΩ: Typical gain from power stage current sense  
ACLL: Programmable AC load line, provides direct output voltage feedback.  
DCLL: Programmable DC load line, provides adaptive voltage positioning  
KDIV : Fixed scalar with value of 0.5  
τINT : Programmable integration time constant, adjustable from 1µs to 16 µs (scale = 1 µs)  
KINT : Programmable integration gain which can be adjustable from 0.5x, 1x, 1.5x, 2x  
KAC : Programmable AC gain which is adjustable from 0.5x, 1x, 1.5x, 2x  
VRAMP : Programmable ramp voltage which is adjustable from 80 mV to 320 mV(scale = 40 mV)  
For this design, the optimal loop compensation values were derived by tuning. The final valuea are listed .  
Table 8-3.  
PARAMETER  
DCLL  
ACLL  
τINT  
Channel A  
0.0 mΩ  
0.2 mΩ  
1 µs  
Channel B  
0.0 mΩ  
0.5 mΩ  
7 µs  
KINT  
2.0  
1.0  
KAC  
1.0  
1.0  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Table 8-3. (continued)  
PARAMETER  
Channel A  
Channel B  
VRAMP  
320 mV  
200 mV  
Select ADDR_CONFIG pin resistors  
Based on the design requirements of PMBus address select the upper and lower ADDR_CONFIG pin resistors,  
RHA and RLA according to #none##none##none#.  
Table 8-4.  
Phase configuration  
PMBus address  
RHA  
RLA  
10+2  
96d / C0h  
110 kΩ  
37.4 kΩ  
Select the boot voltage VBOOT for each channel  
The boot voltage for channel A is determined by pinstrapping on the VBOOT_CHA pin. Based on  
#none##none##none##none#, select RHB = 20.0 kΩ and RLB = 59.0 kΩ to select 0.88 V as the channel A  
boot voltage.  
The boot voltage for channel B is stored in NVM. Update the NVM value for VOUT_COMMAND to 1.0 V , and  
store the value to non-volatile memory.  
8.1.1.4 Application Performance Plots  
Figure 8-9. Shutdown (immediate off) channel A  
Figure 8-8. Soft-start channel A (0 ms TON_DELAY)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Figure 8-11. Steady-state ripple channel A  
Figure 8-10. Soft-stop channel A (0 ms  
TOFF_DELAY)  
Figure 8-12. Steady-state PWM jitter channel A  
Figure 8-13. Load step response channel A  
Figure 8-15. DVID up transition channel A  
Figure 8-14. Load release response channel A  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Figure 8-17. Closed loop bode plot channel A  
Figure 8-16. DVID down transition channel A  
Figure 8-18. Soft-start Channel B (0 ms  
TON_DELAY)  
Figure 8-19. Shutdown (immediate off) channel B  
Figure 8-21. Steady-state ripple channel B  
Figure 8-20. Soft-stop channel B (0 ms  
TOFF_DELAY)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Figure 8-22. Steady-state PWM jitter channel B  
Figure 8-23. DVID transition up channel B  
Figure 8-25. Closed loop bode plot channel B  
Figure 8-24. DVID transition down channel B  
Figure 8-26. RESET# pin function  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
9 Power Supply Recommendations  
The TPS536C7B1 does not have strict power sequencing requirements. The VCC supply, power stage VDD  
5V supply, VIN_CSNIN and CSPIN supplies may be safely powered up independently of each other, even if  
the VCC supply voltage is off and low-impedance. Do not raise pull-up voltages for open-drain pins AVR_RDY,  
BVR_RDY, SMB_ALRT#, SMB_DIO, VR_FAULT# before the VCC supply, or pull them to voltages above the  
VCC voltage during operation. If system sequencing requirements mandate raising the pull-up voltages for these  
pins prior to VCC being established, limit the pin current to 1.0 mA to avoid damage to the device.  
The minimum pull-up resistor value for open drain pins AVR_RDY, BVR_RDY, SMB_ALRT#, SMB_DIO,  
VR_FAULT# is limited by the allowable sinking current for the pin. The maximum pull-up resistor value is limited  
by the off-state leakage current for the pin, and the logic level of any downstream device using the pin as an  
input. Table 9-1 summarizes the allowable sinking current and off-state leakage for open drain IO pins.  
Table 9-1. Open Drain Pin Current Capability  
Maximum Current  
Open-drain Pin  
On-state Sinking  
(mA)  
Off-state leakage1  
(μA)  
AVR_RDY  
25.0  
25.0  
20.0  
20.0  
20.0  
1.0  
1.0  
1.0  
1.0  
4.0  
BVR_RDY  
SMB_ALRT#  
SMB_DIO  
VR_FAULT#  
1. TJ = 125°C  
For input pins ACSPx, BCSPx, AVR_EN, BVR_EN, SYNC, RESET#, which exceed the VCC pin value during  
operation, during power-on or otherwise, include a series resistor of 10.0 kΩ or greater to limit the current into  
the pin.  
It is safe to power-on the VDD 5V supply to TI smart power stage devices prior to TPS536C7B1 VCC. TI smart  
power stage devices do not source any unsafe voltages or currents into TPS536C7B1 ACSPx, BCSPx, ATSEN,  
BTSEN, APWMx, BPWMx pins when the VCC pin is not powered.  
TI smart power stages (CSD95xxx) provide hysteresis current on their PWM input pins to improve noise  
immunity. This current is active when the power stage is powered by 5V VDD and enabled, regardless of the  
status of VCC. When the VCC pin of TPS536C7B1 is unpowered, this hysteresis current flows through the PWM  
pins, to ESD structures in the controller, causing the PWM pin voltage to float low, out of the tri-state window.  
This can cause the power stage device to switch its low-side power MOSFET on. As a result, in any case where  
the power stage VDD 5V power supply is enabled prior to VCC, supply, TI recommends to control the power  
stage enable pin to be low until both supply voltages are established.  
TPS536C7B1 voltage and current protections become active when the controller VCC supply is powered. TI  
recommends the VCC voltage be powered first, prior to power stage 5V, or VIN_CSNIN/CSPIN voltages. In  
general, TI recommends to assert the AVR_EN/BVR_EN pins last in the power sequence.  
Other sequences are permissible, but may not be able to make use of the controller protection features. For  
example, if a board assembly issue causes the power input supply (e.g. nominally 12V supply) to charge the  
output voltage, the TPS536C7B1 over-voltage protection can protect the load device by forcing the PWM pins  
low, causing the power stage devices to discharge the output voltage, but only if the VCC supply is established  
by the time the power input voltage rises.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
 
 
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
10 Layout  
Proper layout techniques are critical to power supply performance. The recommendations given in this document  
are meant to minimize risk and give the highest possibility of first pass success. Other layout designs are  
possible but may carry higher risk of performance issues. Contact your TI local field/sales representative for  
in-depth guidance and layout reviews.  
The driverless controller architecture makes it easy to separate noisy driver interface lines from sensitive  
controller signals. Because the power stage is external to the device, all gate drive and switch node traces must  
be local to the inductor and power stages.  
Controller Layout Guidelines  
Keep minimum 800 mil distance between the controller and the closest power stage  
Ensure the controller and all power stages must share a common ground plane  
Route CSPx /VREF differentially from controller to IOUT/REFIN pin of each power stages on a quiet inner  
layer. Alternately, create a small VREF copper plane between controller and power stages, and embed the  
CSPx traces inside VREF plane.  
PWMx must be routed on a different quiet inner layer and not on the same layer next to CSPx/VREF  
differential pairs.  
Note  
MOST IMPORTANT LAYOUT RECOMMENDATION: Must keep min 40mil clearance between 12Vin  
copper/vias/traces and sensitive analog interface lines.  
Power stage layout guidelines  
Use the recommended land and via pattern for power stage footprint  
Make layer 2 on the PCB stack a solid ground plane  
Maximize the phase pitch between adjacent phases whenever possible to prevent any cross-coupling noise  
between devices (9 mm or higher is preferred)  
In cases where the phase pitch is tighter, adjust the controller phase firing order to minimize noise coupling  
between devices.  
The input voltage bypass capacitors require a minimum two vias per pad(for both Vin and GND)  
Place additional GND vias along the sides of device as space allows  
For multi-phase systems, ensure that the GND pour connects all phases.  
Connect the VOS pin feedback point to the inner edge of the inductor output pad.  
Place VDD and PVDD bypass capacitors directly next to pins on the same layer of the device.  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Layout example  
Figure 10-1. Controller layout example  
Figure 10-2. CSP signal routing example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
Figure 10-3. Power stage placement example  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
P1 Pitch between successive cavity centers  
W
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS536C7B1RSLR  
TPS536C7B1RSLT  
VQFN  
VQFN  
RSL  
RSL  
48  
48  
3000  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
 
TPS536C7  
SLUSDI9 – SEPTEMBER 2020  
www.ti.com  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
38.0  
TPS536C7B1RSLR  
TPS536C7B1RSLT  
VQFN  
VQFN  
RSL  
RSL  
48  
48  
367.0  
210.0  
367.0  
185.0  
35.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS536C7B1RSLR  
TPS536C7B1RSLT  
ACTIVE  
VQFN  
VQFN  
RSL  
48  
48  
3000 RoHS & Green Call TI | NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
TPS  
536C7B1  
ACTIVE  
RSL  
250 RoHS & Green Call TI | NIPDAUAG  
TPS  
536C7B1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
A
6.1  
5.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.4  
13  
24  
44X 0.4  
12  
23  
SYMM  
49  
4.5  
4.3  
4.4  
1
36  
0.25  
0.15  
48X  
PIN 1 IDENTIFICATION  
(OPTIONAL)  
37  
48  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
0.05  
48X  
4219205/A 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
(
4.4)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
36  
44X (0.4)  
SYMM  
(5.8)  
10X (1.12)  
49  
6X (0.83)  
(R0.05) TYP  
12  
25  
13  
6X (0.83)  
24  
(Ø0.2) VIA  
10X (1.12)  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.05 MAX  
0.05 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219205/A 02/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
49  
36  
44X (0.4)  
16X  
(
0.92)  
SYMM  
8X (0.56)  
(5.8)  
8X (1.12)  
(R0.05) TYP  
12  
25  
13  
8X (1.12)  
24  
METAL TYP  
8X (0.56)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
70% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4219205/A 02/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TPS536C7B1RSLT

双通道 D-CAP+™、PMBus(N+M ≤ 12 相)降压多相 PWM 控制器 | RSL | 48 | -40 to 125
TI

TPS536C9

具有 VR14 SVID 和 PMBus 的双通道十二相降压数字多相 D-CAP+™ 控制器
TI

TPS536C9RSLR

具有 VR14 SVID 和 PMBus 的双通道十二相降压数字多相 D-CAP+™ 控制器 | RSL | 48 | -40 to 125
TI

TPS53819A

High-Performance, Eco-mode, Single Synchronous Step-Down Controller with PMBus
TI

TPS53819ARGTR

High-Performance, Eco-mode, Single Synchronous Step-Down Controller with PMBus
TI

TPS53819ARGTT

High-Performance, Eco-mode, Single Synchronous Step-Down Controller with PMBus
TI

TPS53820

适用于 Intel CPU 电源且带 SVID 的集成降压转换器
TI

TPS53820RWZR

适用于 Intel CPU 电源且带 SVID 的集成降压转换器 | RWZ | 35 | -40 to 125
TI

TPS53820RWZT

适用于 Intel CPU 电源且带 SVID 的集成降压转换器 | RWZ | 35 | -40 to 125
TI

TPS53830

用于 DDR5 服务器 DIMM 的高电流 PMIC
TI

TPS53830A

用于 DDR5 服务器 DIMM 的高电流 PMIC,具有日志记录自动清除功能
TI

TPS53830ARWZR

用于 DDR5 服务器 DIMM 的高电流 PMIC,具有日志记录自动清除功能 | RWZ | 35 | -40 to 105
TI