TPS542A52 [TI]

具有遥感功能的 4V 至 18V 输入、电压模式、15A 同步 SWIFT™ 降压转换器;
TPS542A52
型号: TPS542A52
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有遥感功能的 4V 至 18V 输入、电压模式、15A 同步 SWIFT™ 降压转换器

转换器
文件: 总37页 (文件大小:3313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS542A52  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
具有差分遥感功能的 TPS542A52 4V 18V 入、15A  
同步降压转换器  
1 特性  
2 应用  
集成的 9.1mΩ 2.6mΩ MOSFET 可支持高达 15A  
无线通信  
的输出电流  
模拟前端电源  
测试和测量设备  
医疗成像  
0.5V 5.5V 输出电压范围  
具有可选内部补偿的固定频率电压控制模式  
7 种频率设置可选(400kHz 2.2MHz)  
与外部时钟同步  
3 说明  
全差分遥感  
TPS542A52 是一款具有差分遥感功能的高效同步降  
压转换器。该器件提供具有引脚搭接、可选内部补偿的  
固定频率电压控制模式,可降低系统成本和复杂性。  
PWM 可通过 SYNC 引脚与外部时钟保持同步。其他  
关键特性包括 PFM(可提高轻负载效率)、低关断静  
态电流消耗、可调 UVLO(通过 EN 引脚实现)以及单  
调启动至预偏置状态。TPS542A52 是一款无铅器件,  
完全符合 RoHS 标准,无需豁免。  
6 个可选过流限值、4 个软启动压摆率  
单调启动至预偏置输出  
EN 引脚,支持可调节的输入 UVLO  
电源正常状态指示器  
17µA 典型关断静态电流消耗  
可选 FCCM PFM,可实现出色轻负载效率  
工作结温范围:–40°C +150°C  
4mm × 4.5mm VQFN 封装  
器件信息  
使用 TPS542A52 并借助 WEBENCH® Power  
Designer 创建定制设计方案  
器件型号  
TPS542A52  
封装(1)  
封装尺寸(标称值)  
VQFN (33)  
4.50mm × 4.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
100%  
95%  
90%  
85%  
80%  
PVIN  
VIN  
BOOT  
AVIN  
SW  
VOUT  
VREG  
RSP  
RSN  
FSEL  
COMP  
SS/PFM  
ILIM  
PGD  
EN  
SYNC  
SREF  
VSET  
1.2MHz_12VIN  
1.0MHz_12VIN  
0.8MHz_12VIN  
0.6MHz_12VIN  
1.2MHz_5VIN  
1.0MHz_5VIN  
0.8MHz_5VIN  
0.6MHz_5VIN  
75%  
70%  
AGND  
PGND  
0
1
2
3
4
5
6
7
Output Current (A)  
8
9
10 11 12 13 14 15  
简化版原理图  
1VOUT 条件下的典型效率  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBU2  
 
 
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................5  
6.6 Typical Characteristics................................................8  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................20  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 21  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 28  
11 Device and Documentation Support..........................29  
11.1 Device Support........................................................29  
11.2 接收文档更新通知................................................... 29  
11.3 支持资源..................................................................29  
11.4 Trademarks............................................................. 29  
11.5 Electrostatic Discharge Caution..............................29  
11.6 术语表..................................................................... 29  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 30  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2020) to Revision B (October 2021)  
Page  
Changed "VVRSF" to "VRSP" for IQ – PFM Mode current test condition in the Electrical Characteristics ............ 5  
Changed RFSEL test condition values under Switching Frequency in the Electrical Characteristics ................. 5  
Changed "K" to "k" under Switching Frequency in the Electrical Characteristics .............................................. 5  
Changed RILIM test condition values under Current Sense and Protection in the Electrical Characteristics .....5  
Changed RFSEL values in 7-1 ......................................................................................................................15  
Changed RCOMP values in 7-2 .....................................................................................................................15  
Changed RSS/PFM values in 7-5 ...................................................................................................................17  
Changed RILIM values in 7-7 ....................................................................................................................... 18  
Updated all figures in 8.2.1.4 to demonstrate new RFSEL, RCOMP, RSS/PFM and RILIM values......................25  
Changes from Revision * (September 2020) to Revision A (October 2020)  
Page  
更新了3-1 ...................................................................................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
5 Pin Configuration and Functions  
24  
23  
22  
21  
20  
19  
18  
1
17  
ILIM  
SS/PFM  
NC  
2
3
4
5
6
7
26  
27  
28 SW  
NC  
25  
AGND  
29  
30  
31  
SYNC  
RSN  
PGND  
32  
33  
RSP  
AGND  
8
16  
9
10  
11  
12  
13  
14  
15  
5-1. RJM Package 33-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
AGND  
8, 25  
G
P
Ground of the internal analog and digital circuitry  
Power input to the controller. Tie this pin to PVIN. It is best to use an RC filter from PVIN  
such as 10-Ω and 100 nF to 1 μF.  
AVIN  
BOOT  
COMP  
EN  
21  
17  
24  
22  
23  
Gate drive voltage for high-side FET. Connect a bootstrap capacitor between this pin and  
SW.  
P
I
A resistor to ground sets the compensation network. This pin can be grounded to select the  
default compensation and reduce BOM count.  
Enable pin. Float to enable, enable/disable with an external signal, or adjust the input  
undervoltage lockout with a resistor divider.  
I
A resistor to ground sets the switching frequency of the converter. This pin can be grounded  
to select the default switching frequency to reduce BOM count.  
FSEL  
ILIM  
I
A resistor to ground sets the overcurrent protection limit. This pin can be grounded to select  
default settings and reduce BOM count.  
1
I
PGD  
11  
O
G
Open-drain power good status  
PGND  
13-16, 29-33  
18-20  
Power ground. These pins are internally connected to the return of the internal low-side FET.  
Power inputs to the power stage. Low impedance bypassing of these pins to PGND is  
critical. At least 10 nF to 100 nF capacitor from PVIN to PGND is required.  
PVIN  
P
RSN  
RSP  
NC  
6
7
I
Remote sense ground return  
Remote sense connection to VOUT  
No connect  
I
3
N/A  
N/A  
O
NC  
4
No connect  
SREF  
10  
1.2-V nominal system reference  
A resistor to ground sets the soft-start slew rate and PFM mode. To reduce BOM count, this  
pin can be grounded to use the default soft-start rate and enable PFM mode.  
SS/PFM  
2
I
SYNC  
SW  
5
I
This pin is a clock input for synchronizing the oscillator.  
26-28  
O
Switch node output of the converter. Connect this pin to the output inductor to ground.  
Bypass pin for the internal power stage LDO. It is recommended to use a 4.7-μF ceramic  
capacitor.  
VREG  
VSET  
12  
9
I/O  
I
Output voltage reference for the control loop. This must be the mid-point of a resistive  
divider from SREF to AGND. Set this voltage to be 1/5 of the desired VOUT  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
20  
UNIT  
PVIN, AVIN  
PVIN - SW  
BOOT  
24  
27.5  
5.5  
6
BOOT-SW  
Input  
V
EN, SYNC  
FS, COMP, ILIM, SS/PFM, SREF, VSET  
1.98  
6
RSP  
PGD  
SW  
6
22  
Output  
SW transient (<10 ns)  
VREG  
22  
V
–0.3  
–40  
6
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TJ = -40to 150(unless otherwise noted)  
MIN  
4
NOM  
MAX  
18  
UNIT  
PVIN, AVIN  
VOUT  
IOUT  
Input voltage  
Output voltage  
Output current  
12  
V
V
A
V
V
0.5  
0
5.5  
15  
EN  
0
5.5  
3.3  
SYNC  
0
FS, COMP, ILIM, SS/  
PFM,SREF, VSET  
0
1.8  
V
TJ  
Junction temperature  
–40  
150  
°C  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
 
 
 
 
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
6.4 Thermal Information  
TPS542A52  
THERMAL METRIC(1)  
RJM (VQFN)  
33 PINS  
54.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance EVM PCB Layout  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
22.3  
RθJC(top)  
RθJB  
23.3  
17.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.7  
ΨJB  
17.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = -40to 150(unless otherwise noted)  
PARAMETER (1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT SUPPLY (PVIN, AVIN PINS)  
VIN  
PVIN and AVIN supply range  
4
12  
17  
18  
V
Shutdown current  
PFM Mode current  
EN < 0.4 V  
IQ  
µA  
VIN = 12 V, VOUT = 1 V, EN > 1.2 V, no  
switching, VRSP > 5*VVSET  
1800  
ENABLE and UVLO (EN PIN)  
VEN Enable threshold: ON/OFF  
Rising and falling  
1.2  
–0.6  
–5  
V
Enable threshold – 50 mV  
Enable threshold + 50 mV  
IEN  
Enable input current  
µA  
UVLO (AVIN, PVIN PINS)  
UVLO rising threshold  
3.75  
3.50  
3.85  
3.6  
4
AVIN, PVIN UVLO falling threshold  
Hysteresis  
3.7  
V
0.25  
INTERNAL REGULATOR, POWER STAGE (VREG PIN)  
VVREG  
VVREG  
LDO output voltage  
LDO output voltage  
Output current limit  
LDO output current = 0A  
LDO output current = 30mA  
VVREG = 4.7V  
4.3  
4.7  
4.7  
4.96  
220  
V
V
120  
170  
mA  
fsw = 2.2 MHz, output current = 15 A,  
VVREG = 4.7V  
Nominal output current  
30  
mA  
UVLO rising yhreshold  
UVLO falling threshold  
UVLO hysteresis  
2.8  
2.6  
0.2  
VREG(UVLO)  
V
CONTROL REFERENCE VOLTAGE (SREF PIN)  
Tolerance included in RSP/RSN  
accuracy  
VSREF  
SREF output voltage  
1.2  
V
ISREF  
SREF current sourcing capability  
Resistance > 6 kΩ  
200  
µA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS542A52  
 
 
 
TPS542A52  
www.ti.com.cn  
MAX UNIT  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
TJ = -40to 150(unless otherwise noted)  
PARAMETER (1)  
TEST CONDITIONS  
MIN  
TYP  
OUTPUT VOLTAGE REGULATION ACCURACY  
Total internal accuracy, measured at the  
RSP and RSN pins = 5*VSET, VSET =  
0.2V, 40 to 150°C  
Output Voltage Accuracy; Vout = 1V  
-15  
-13  
15  
13  
9.0  
15  
15  
30  
mV  
mV  
mV  
mV  
mV  
mV  
Total internal accuracy, measured at the  
RSP and RSN pins = 5*VSET, VSET =  
0.2V, 40 to 125°C  
Output Voltage Accuracy; Vout =1V  
Output Voltage Accuracy; Vout = 1V  
Output Voltage Accuracy; Vout = 0.8V  
Output Voltage Accuracy; Vout = 1.2V  
Total internal accuracy, measured at the  
RSP and RSN pins = 5*VSET, VSET =  
0.2V, 0 to 105°C  
-11.0  
-15  
Total internal accuracy, measured at the  
RSP and RSN pins = 5*VSET, VSET =  
0.16V, 40 to 150°C  
Total internal accuracy, measured at the  
RSP and RSN pins = 5*VSET, VSET =  
0.24V, 40 to 150°C  
-15  
Total internal accuracy, measured at the  
Output Voltage Accuracy; Vout = 5.5V (1) RSP and RSN pins = 5*VSET, VSET =  
1.1V, 40 to 150°C  
-30  
REMOTE SENSE AMPLIFIER  
Unity gain bandwidth (1)  
Open loop gain (1)  
7
83  
MHz  
dB  
Slew rate (1)  
2.5  
V/us  
V
Input common mode range (1)  
-0.05  
1.1  
Input offset voltage (RSA and EA  
combined offset trim)  
Vos  
0.25  
mV  
(1)  
SWITCHING FREQUENCY  
FSW_1MHz Switching frequency 1MHz  
RFSEL = 35.7 kΩ or Short  
RFSEL = 7.5 kΩ  
900  
-10  
1000  
1100  
15  
kHz  
%
FSW_400kH  
Switching frequency 400 kHz  
z
FSW_600kH  
Switching frequency 600 kHz  
z
RFSEL = 18.2 kΩ  
RFSEL = 26.1 kΩ  
-10  
-10  
15  
15  
%
%
FSW_800kH  
Switching frequency 800 kHz  
z
FSW_1.2MH  
Switching frequency 1.2 MHz  
z
RFSEL = 47.5 kΩ  
RFSEL = 61.9 kΩ  
RFSEL = 78.7 kΩ  
-9  
-10  
-10  
11  
15  
15  
%
%
%
FSW_2MHz Switching frequency 2 MHz  
FSW_2.2MH  
Switching frequency 2.2 MHz  
z
Minimum On-Time  
Minimum Off-Time  
SYNC  
12  
85  
ns  
ns  
VIH(SYNC)  
VIL(SYNC)  
High-level input voltage  
EN = High  
EN = Low  
1.35  
V
V
Low-level input voltage  
0.8  
50  
Sync input minimum pulse width  
SYNC pin frequency range from fSW  
ns  
ΔfSYNC  
–10%  
1.35  
15%  
VIH(SYNC)-  
High-level input voltage to enter  
programming mode when EN = 0V  
V
PROG  
POWER STAGE  
Rds(on)1  
Rds(on)2  
Main high-side MOSFET on-resistance VVREG = 4.7 V, TJ = 25°C  
Main Low-side MOSFET on-resistance VVREG = 4.7 V, TJ = 25°C  
9.1  
2.6  
mΩ  
mΩ  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS542A52  
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
TJ = -40to 150(unless otherwise noted)  
PARAMETER (1)  
TEST CONDITIONS  
VREG = 4.7V, TJ = 25°C  
MIN  
TYP  
MAX UNIT  
Dead-time between low-side off and  
high-side on transition  
Tdt(L-H)  
10  
ns  
Dead-time between high-side off and  
low-side on transition  
Tdt(H-L)  
VREG = 4.7V, TJ = 25°C  
10  
ns  
CURRENT SENSE AND PROTECTION  
IS1  
OC limit HS FET  
20  
20  
A
OC limit LS FET 6  
OC limit LS FET 5  
OC limit LS FET 4  
OC limit LS FET 3  
OC limit LS FET 2  
OC limit LS FET 1  
Negative OC limit LS FET  
RILIM = 61.9 kΩ  
RILIM = 47.5 kΩ  
RILIM = 35.7 kΩ  
RILIM = 26.1 kΩ  
RILIM = 18.2 kΩ  
RILIM = 7.5 kΩ  
17.60  
14.78  
11.56  
9.26  
22  
16.5  
13  
18.48  
15.62  
A
IS2  
10.5  
8
13.56  
6.96  
11.60  
9.60  
A
4.66  
5.5  
-8.5  
IS2  
IS2  
Zero-cross detection comparator trip  
point  
135  
mA  
SOFT-START COUNTER  
SS setting 1: 2.0MHz CLK  
VVSET = 0.1 V to 0.28 V  
VVSET = 0.1 V to 0.28 V  
VVSET = 0.1 V to 0.28 V  
VVSET = 0.1 V to 0.28 V  
0.45  
0.9  
1.8  
3.6  
SS setting 2: 1.0MHz CLK  
SS setting 3: 0.5MHz CLK  
SS setting 4: 0.25MHz CLK  
tSS  
ms  
INTERNAL BOOTSTRAP SWITCH  
Forward voltage  
VVREG(BOOT), IF = 10 mA, TA = 25°C  
0.16  
500  
0.3  
V
OUTPUT VOLTAGE OVERSHOOT REDUCTION  
POWER-ON DELAY  
Power-on delay time  
From EN to SS; VIN > 4 V  
us  
POWER GOOD and OV/UV WARNING  
OV warning level  
RSP rising (fault)  
105  
100  
87  
110  
105  
90  
115  
109  
93.5  
99  
OV warning level  
VRSP  
RSP falling (reset)  
%
5*VVSET  
UV warning level  
RSP falling (fault)  
UV warning level  
PGD delay time  
RSP rising (reset)  
91  
95  
Delay from SS finish to PGD high  
PGD FET On Resistance, IPGOOD =5mA  
500  
5.8  
µs  
Rds(on)PGDFET  
4.1  
9.1  
OUTPUT OVERVOLTAGE PROTECTION (OVP)  
OVP trip level  
VRSP  
RSP rising (fault), VVSET ≤ 1.04 V  
RSP falling  
110  
76  
115  
80  
120  
84  
%
5*VVSET  
OVP reset level  
OVP delay  
100  
ns  
OUPUT UNDERVOLTAGE PROTECTION (UVP)  
%
5*VSET  
VRSP  
UVP detect voltage  
UV delay  
76  
80  
84  
100  
ns  
THERMAL SHUTDOWN  
TSDN  
Shutdown temperature(1)  
Hysteresis(1)  
155  
165  
15  
0C  
0C  
(1) Specified by design. Not production tested.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
6.6 Typical Characteristics  
Measured at 25°C unless otherwise specified  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
3
2.8  
2.6  
2.4  
2.2  
2
5VIN  
9VIN  
12VIN  
14VIN  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
5VIN  
9VIN  
12VIN  
14VIN  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
VOUT = 1 V  
fSW = 1 MHz, FCCM  
VOUT = 1 V  
fSW = 1 MHz, FCCM  
6-1. Efficiency vs Output Current  
6-2. Power Loss vs Output Current  
100%  
3
5VIN FCCM  
5VIN DCM  
12VIN FCCM  
12VIN DCM  
2.8  
2.6  
2.4  
2.2  
2
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
5VIN FCCM  
5VIN DCM  
12VIN FCCM  
12VIN DCM  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
VOUT = 1 V  
fSW = 1 MHz, DCM versus FCCM  
VOUT = 1 V  
fSW = 1 MHz, DCM versus  
FCCM  
6-3. Efficiency vs Output Current  
6-4. Power Loss vs Output Current  
100%  
5
9VIN  
12VIN  
14VIN  
4.5  
95%  
90%  
85%  
80%  
75%  
70%  
4
3.5  
3
2.5  
2
1.5  
1
9VIN  
12VIN  
14VIN  
0.5  
0
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
VOUT = 5 V  
fSW = 400 kHz, FCCM  
VOUT = 5 V  
fSW = 400 kHz, FCCM  
6-5. Efficiency vs Output Current  
6-6. Power Loss vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
1.015  
1.012  
1.009  
1.006  
1.003  
1
1.015  
1.012  
1.009  
1.006  
1.003  
1
5VIN 25C  
5VIN -40C  
5VIN 85C  
5VIN 105C  
12VIN 25C  
12VIN -40C  
12VIN 85C  
12VIN 105C  
5VIN 25C  
5VIN -40C  
5VIN 85C  
5VIN 105C  
12VIN 25C  
12VIN -40C  
12VIN 85C  
12VIN 105C  
0.997  
0.994  
0.991  
0.988  
0.997  
0.994  
0.991  
0.988  
0.985  
0.985  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
VOUT = 1 V  
fSW = 1 MHz, FCCM  
VOUT = 1 V  
fSW = 1 MHz, DCM  
6-7. Load Regulation  
6-8. Line Regulation  
5.05  
5.04  
5.03  
5.02  
5.01  
5
110  
105  
100  
95  
4.99  
4.98  
4.97  
4.96  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
9VIN 25C  
9VIN -40C  
9VIN 85C  
12VIN 25C  
12VIN -40C  
12VIN 85C  
4.95  
0
90  
1
2
3
4
5
6
7
Output Current (A)  
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
Output Current (A)  
8
9
10 11 12 13 14 15  
VIN = 12 V  
VOUT = 5 V  
fSW = 400 KHz,  
FCCM  
VIN = 12 V  
VOUT = 1 V  
fSW = 1 MHz  
6-10. Ambient Temperature vs Output Current  
6-9. Line Regulation  
110  
105  
100  
95  
110  
105  
100  
95  
90  
90  
85  
85  
80  
80  
Nat conv  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
75  
100 LFM  
200 LFM  
400 LFM  
75  
70  
70  
65  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
10 11 12 13 14 15  
VIN = 12 V  
VOUT = 5 V  
fSW = 600 kHz  
VIN = 5.5 V  
VOUT = 1 V  
fSW = 2.2 MHz  
6-11. Ambient Temperature vs Output Current  
6-12. Ambient Temperature vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS542A52  
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
VIN = 5.5 V  
VOUT = 1 V  
fSW = 2.2 MHz  
VIN = 12 V  
VOUT = 1 V  
fSW = 1 MHz  
6-14. Thermal Image at 14-A Output Current  
6-13. Thermal Image at 15-A Output Current  
VIN = 12 V  
VOUT = 5 V  
fSW = 0.6 MHz  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
6-15. Thermal Image at 12-A Output Current  
6-16. 100% Pre-biased Start-up by EN at 0-A  
Output Current  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
6-17. 90% Pre-biased Start-up by EN at 0-A  
6-18. 50% Pre-biased Start-up by EN at 0-A  
Output Current  
Output Current  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS542A52  
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
6-19. Start-up and Shutdown by EN at 0-A  
6-20. Steady State at 0-A Output Current  
Output Current  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
6-21. Steady State at 10-A Output Current  
6-22. Switch Node Ringing and Dead-Time at  
10-A Output Current  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
6-23. 20-A Overcurrent Protection by Chroma  
6-24. Short Overcurrent Protection Hiccup by  
Electronic Load  
Chroma Electronic Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS542A52  
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.2 MHz BOM  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
6-25. Overvoltage Protection, Negative OCP,  
then Undervoltage Protection by Load Step Down  
6-26. Load Transient 2 A to 12 A to 2 A at 20 A/  
μs  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.0 MHz BOM  
6-27. Load Transient in DCM to FCM 0.5 A to 10.5 A to 0.5 A at 1 A/μs  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS542A52  
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
7 Detailed Description  
7.1 Overview  
The TPS542A52 is a high-efficiency, single-channel, synchronous buck converter with integrated n-channel  
MOSFETs. The device suits low-output voltage point-of-load applications with 15-A or lower current. The  
TPS542A52 has a maximum operating junction temperature of 150°C making it suitable for high-ambient  
temperature applications such as wireless infrastructure. The input voltage range is 4 V to 18 V, and the output  
voltage range is 0.5 V to 5.5 V. The device features a fixed-frequency, voltage-control mode with a switching  
frequency range of 400 kHz to 2.2 MHz allowing for efficiency and size optimization when selecting output filter  
components. The controller features selectable internal compensation that makes the device easy to use with  
low external component count. The internal compensation networks support a wide range of output inductance  
and capacitance, supporting all types of capacitors. The controller uses a digital PWM modulator that allows for  
very narrow on-times with low jitter, making it ideal for high-frequency and high-step down ratio applications. The  
switching frequency of the device can be synchronized to an external clock applied to the SYNC pin.  
7.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS542A52  
 
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
7.3 Feature Description  
7.3.1 Enable and Adjustable Undervoltage Lockout  
The EN pin provides electrical on/off control of the device. Once the EN pin voltage exceeds the threshold  
voltage (typically 1.2 V), the device starts operation. If the EN pin voltage is pulled below the threshold voltage,  
the regulator stops switching and enters low power shutdown.  
The EN pin has an internal pullup current source, allowing the user to float the EN pin for enabling the device.  
The EN pin can also be externally driven high or low.  
For adjustable input undervoltage lockout (UVLO), connect the EN pin to the middle point of an external resistor  
divider. Once the EN pin voltage exceeds the threshold, an additional 5 µA of hystersis current is added to  
facilitate UVLO hysteresis. 方程式 1 shows the calculation of resistor divider network.  
VIN  
IH  
IP  
RHS  
+
RLS  
EN  
-
VEN  
7-1. EN UVLO  
VSTART - VSTOP  
RHS =  
RLS =  
IH  
RHS VEN  
VSTOP - VEN + RHS I +I  
(
)
P
H
VEN = 1.2V; IP = 0.6mA; IH = 5mA  
(1)  
7.3.2 Input and VREG Undervoltage Lockout Protection  
The TPS542A52 provides fixed VIN and VREG UVLO thresholds and hysteresis. The typical VIN turnon  
threshold is 3.85 V and hystersis is 0.25 V. The typical VREG turnon threshold is 2.8 and hysteresis is 0.2  
V. There is no power-up sequence. Once all of the UVLO requirements have been met and the EN pin voltage  
exceeds the enable threshold, the converter begins operation.  
7.3.3 Voltage Reference and Setting the Output Voltage  
The device has a 1.2-V reference that comes out on the SREF pin. To set the reference voltage of the converter,  
connect the VSET pin to the mid-point of a resistor divider between SREF and AGND. TI recommends that the  
total impedance of this divider network be > 6 kΩ. Do not connect anything other than a resistor divider network  
to SREF.  
There is an internal 5:1 resistor divider between the RSP and RSN feedback pins, so the VSET voltage must be  
set to 1/5 of the desired output voltage. VSET can be programmed to any value between 0.1 and 1.1 V.  
7.3.4 Remote Sense Function  
RSP and RSN pins are used for remote sensing purposes. Always connect RSP to the positive sensing point of  
the load, and always connect the RSN pin to the load return. There is an internal 5:1 divider in the device, so do  
not connect an external feedback resistor divider. The converter loop gain measurement can tolerate 10 Ω to 50  
Ω in series with RSP and output voltage.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
7.3.5 Switching Frequency  
The internal oscillator of the device can be set to one of seven switching frequencies by a resistor to ground  
on the FSEL pin. The FSEL pin can be shorted to ground to reduce BOM component count. When shorted to  
ground, the default converter switching frequency is used.  
7-1. Frequency  
Resistor Selection  
RFSEL (kΩ)  
Short  
7.5  
fSW (kHz)  
1000  
400  
18.2  
600  
26.1  
800  
35.7  
1000  
1200  
2000  
2200  
47.5  
61.9  
78.7  
The oscillator can also be synchronized to an external clock on the SYNC pin. The external clock frequency  
must be within -10% and +15% of the programmed frequency of the converter. The SYNC pin has an internal  
pulldown so it can be left floating externally.  
When the converter operates at 2 MHz or 2.2 MHz, it is recommended to set the OCP at 13 A or lower and  
without a snubber circuit. For operation with OCP at 16.5 A, a snubber circuit is required. The snubber circuit  
components can start with a 470-pF cap and 2-Ω resistor. The component values will need to be tuned to  
achieve optimal results.  
7.3.6 Voltage Control Mode Internal Compensation  
The TPS542A52 has 15 unique internal compensation settings to cover a wide range of output inductors and  
capacitors. For each switching frequency option, there are four compensation options that can be chosen using  
a single resistor to ground on the COMP pin.  
7-2. Compensation Resistor Selection  
RCOMP (kΩ)++  
Short  
7.5  
COMPENSATION SETTING  
COMP 2  
COMP 1  
18.2  
COMP 2  
26.1  
COMP 3  
35.7  
COMP 4  
47.5  
COMP 1  
61.9  
COMP 2  
78.7  
COMP 3  
102  
COMP 4  
Each compensation network consists of two zeros and one high frequency pole. 7-3 maps the compensation  
settings to the first zero frequency at different output voltage range, second zero frequency, and high frequency  
pole.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS542A52  
 
 
 
 
TPS542A52  
www.ti.com.cn  
POLE (kHz)  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
7-3. Compensation Settings  
ZERO 1  
(kHz) for  
VOUT = 0.5  
V-1.1 V  
COMPENS  
ATION  
SETTING  
ZERO 1 (kHz) ZERO 1 (kHz) ZERO 1 (kHz)  
for VOUT =  
1.2 V-1.5 V  
ZERO 1 (kHz)  
for VOUT = for VOUT = 2.9 for VOUT = 4.1  
FREQUEN  
CY (kHz)  
ZERO 2  
(kHz)  
1.6 V-2.8 V  
V-4.0 V  
V-5.5 V  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
2.2  
2.2  
3.6  
7.2  
2.2  
2.7  
4.5  
10.5  
2.2  
3.6  
7.2  
13.5  
2.2  
4.5  
9.0  
18.8  
2.7  
4.5  
10.5  
23.5  
4.5  
9
2.1  
2.1  
1.8  
1.8  
1.6  
1.6  
1.2  
1.2  
2.0  
4.1  
1.2  
1.5  
2.5  
5.9  
1.2  
2.0  
4.1  
7.6  
1.2  
2.5  
5.1  
10.6  
1.5  
2.5  
5.9  
13.3  
2.5  
5.1  
10.6  
21.2  
2.5  
5.1  
10.6  
21.2  
5.5  
7.3  
60  
80  
400  
600  
3.4  
3.0  
2.7  
14.5  
28.4  
5.5  
159  
312  
60  
7.0  
6.1  
5.4  
2.1  
1.8  
1.6  
2.6  
2.3  
2.0  
11.0  
18.1  
45.2  
7.3  
121  
199  
497  
80  
4.3  
3.8  
3.4  
10.1  
2.1  
8.8  
7.9  
1.8  
1.6  
3.4  
3.0  
2.7  
14.5  
28.4  
55.6  
9.0  
159  
312  
612  
99  
800  
7.0  
6.0  
5.4  
13  
11.4  
1.9  
10.1  
1.7  
2.1  
4.3  
3.8  
3.4  
18.1  
37.1  
72.3  
11.0  
18.1  
45.2  
90.4  
18.1  
37.1  
72.3  
144.7  
18.1  
37.1  
72.3  
144.7  
199  
408  
796  
121  
199  
497  
995  
199  
408  
796  
1592  
199  
408  
796  
1592  
1000  
1200  
2000  
2200  
8.7  
7.6  
6.7  
18.2  
2.6  
15.9  
2.3  
14.1  
2.0  
4.3  
3.8  
3.4  
10.1  
22.7  
4.3  
8.8  
7.9  
19.9  
3.8  
17.7  
3.4  
8.7  
7.6  
6.7  
18.8  
37.7  
4.5  
9
18.2  
36.4  
4.3  
15.9  
31.8  
3.8  
14.1  
28.3  
3.4  
8.7  
7.6  
6.7  
18.8  
37.7  
18.2  
36.4  
15.9  
31.8  
14.1  
28.3  
7-4 shows the second zero frequency placement about two times based on a ratio (fO/fSW) of the LC  
frequency (fO) to the switching frequency and lists the values in 7-3. The second zero frequency does not  
change with the output voltage. The high frequency pole is about 10 times of the second zero frequency to  
attenuate the switching frequency noise and to have a safe gain margin.  
The output filter LC frequency should be designed between the first and second zero frequencies. The ratio of  
the LC frequency to the switching frequency in 7-4 is a guide to select the LC frequency fO. For example, the  
LC frequency for 1-MHz switching frequency is 10 kHz at 1% ratio. Given 1-V output voltage, COMP2 has the  
first zero at 4.5 kHz to compensate the LC filter double poles. For the same LC filter and switching frequencies  
of 3.3-V output voltage, COMP3 has the first zero at 6.7 kHz to compensate the LC filter double poles. The  
compensation setting needs to consider for the output capacitor derating, especially ceramic capacitor and  
inductor tolerance. It is recommended to verify the load transient and bode plot based upon the compensation  
selection.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
7-4. Second Zero Frequency  
COMPENSATION  
SETTING  
SECOND ZERO  
FREQUENCY  
fO/fSW  
0.5%  
1%  
COMP 1  
COMP 2  
COMP 3  
COMP 4  
~2X of 0.5% fO/fSW  
~2X of 1% fO/fSW  
~2X of 2% fO/fSW  
~2X of 4% fO/fSW  
2%  
4%  
7.3.7 Soft Start and Prebiased Output Start-up  
The TPS542A52 uses a programmable soft-start rate to gradually ramp the output voltage reference to reduce  
inrush currents. The device prevents current from being discharged from the output during start-up when a  
pre-biased condition exists. No switching pulses occur until the internal soft-start reference exceeds the voltage  
on the error amplifier input voltage (RSP and RSN pins). The TPS542A52 supports the output voltage with  
pre-biasd up to 100%.  
The soft-start clock in 7-5 can be programmed on the SS/PFM pin along with enabling/disabling PFM and  
hiccup time. The soft-start timing in 7-6 can be programmed based upon the output voltage and soft-start  
clock. There are four choices of soft-start time to select at different soft-start clock. For example of 1-V output  
voltage, the soft-start time equals to 1.8 ms at 0.5-MHz SS CLK and 0.45 ms at 2.0-MHz SS CLK.  
7-5. Soft-Start CLK and PFM Resistor Selection  
and Hiccup Time  
RSS/PFM (kΩ)+  
+
SS CLK  
(MHz)  
HICCUP  
DURATION (ms)  
PFM  
Short  
7.5  
Disable  
1.0  
2.0  
25.2  
12.6  
25.2  
50.4  
100.8  
12.6  
25.2  
50.4  
100.8  
18.2  
26.1  
35.7  
47.5  
61.9  
78.7  
102  
1.0  
Enable  
Disable  
0.50  
0.25  
2.0  
1.0  
0.50  
0.25  
7-6. Soft-Start Timing versus Output Voltage  
SS TIMING (ms) AT SS TIMING (ms) AT CLK:  
SS TIMING (ms) AT  
SS TIMING (ms) AT  
CLK: 0.25 MHz  
VSET (V)  
VOUT (V)  
LSB SIZE (mV)  
CLK: 2.0 MHz  
1.0 MHz  
CLK: 0.5 MHz  
0.1  
0.2  
0.28  
0.3  
0.4  
0.5  
0.56  
0.6  
0.7  
0.8  
0.9  
1
0.5  
1
0.112  
0.223  
0.313  
0.167  
0.223  
0.279  
0.313  
0.167  
0.195  
0.223  
0.251  
0.279  
0.45  
0.45  
0.45  
0.9  
0.9  
0.9  
0.9  
1.8  
1.8  
1.8  
1.8  
1.8  
0.9  
1.8  
1.8  
1.8  
3.6  
3.6  
3.6  
3.6  
7.2  
7.2  
7.2  
7.2  
7.2  
3.6  
3.6  
0.9  
1.4  
1.5  
2.0  
2.5  
2.8  
3.0  
3.5  
4
0.9  
3.6  
1.8  
7.2  
1.8  
7.2  
1.8  
7.2  
1.8  
7.2  
3.6  
14.4  
14.4  
14.4  
14.4  
14.4  
3.6  
3.6  
4.5  
5.0  
3.6  
3.6  
7.3.8 Power Good  
The power good pin is an open-drain output and needs to pull up to a voltage supply if a designer uses this  
feature. During normal converter operation, the device leaves this pin floating. Power good warnings occur if the  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS542A52  
 
 
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
output voltage is not within the OV or UV warning levels. Power Good (PGD) is forced low when a fault occurs,  
when the converter is in soft start, and when the converter is in shutdown or programming mode. The PGD pin is  
released to floating after the PGD delay time when all of the above conditions are met.  
TI recommends connecting a pullup resistor to a voltage source that is 5.5 V or less, such as to the device  
VREG pin.  
7.3.9 Overvoltage and Undervoltage Protection  
An output overvoltage (OV) fault is triggered if the output voltage, sensed by RSP/RSN, is greater than the OVP  
trip level. When this condition is detected, the converter terminates the switching cycle and turns on the low-side  
FET to discharge the output voltage. The low-side FET remains on until the low-side FET current reaches the  
negative overcurrent limit. When the negative overcurrent limit is reached, the low set FET turns off for 2000  
ns. After the 2000 ns delay, the low-side FET turns back on until the negative over-current limit is reached. This  
process repeats until the output voltage is discharged below the undervoltage fault threshold (typically 80% set  
VOUT). The converter then enters hiccup for seven cycles of soft-start CLK frequency due to the output voltage  
being below the UV threshold.  
An output undervoltage fault is triggered if the output voltage, sensed by RSP/RSN, is less than UVP threshold.  
When this condition is detected, power conversion is disabled, and the converter enters hiccup for seven cycles  
of soft-start CLK frequency.  
7.3.10 Overcurrent Protection  
The device senses overcurrent (OC) in both the high-side and low-side power MOSFETs using cycle by cycle  
detection. OC is detected in the low-side FET by sensing the voltage across the FET while it is on. After the  
low-side FET turns on, there is a blanking time of approximately 70 ns to allow noise to settle before the OC  
comparator begins sensing. Once an OC fault condition is detected, the device stops switching and enters  
hiccup for seven cycles of soft-start CLK frequency. The overcurrent limit is set through a single resistor to  
ground on the ILIM pin. The ILIM pin can be shorted to ground to reduce BOM component count. When shorted  
to ground the default current limit is used. Current limits shown in 7-7 can be programmed on the ILIM pin.  
7-7. Current Limit Resistor Selection  
RILIM (kΩ)  
Short  
7.5  
TYPICAL LIMIT (A)  
20  
5.5  
8
18.2  
26.1  
10.5  
13  
35.7  
47.5  
16.5  
20  
61.9  
The device also senses negative overcurrent in the low-side FET by sensing the voltage across the FET while it  
is on. After the low-side FET turns on, there is a blanking time to allow noise to settle before the OC comparator  
begins sensing. Once a negative OC fault condition is detected the device stops switching and enters hiccup for  
seven cycles of soft-start CLK frequency. The negative overcurrent threshold is fixed to a single value.  
Overcurrent is detected in the high-side FET by sensing the voltage across the FET while it is on. After the  
high-side FET turns on, there is a blanking time to allow noise to settle before the OC comparator begins  
sensing. Once an OC fault condition is detected, the device stops switching and enters hiccup for seven cycles  
of soft-start CLK frequency. The high-side overcurrent threshold is fixed to a single value. For an application with  
on-time less than 70 ns, the high-side FET over-current is not guaranteed to enable. In this case, the low-side  
OC will dominate and protect the load while the output current ramps up gradually. With on-times less than 70 ns  
and a hard short at the load, the controller loop will extend the on-time to respond to the output voltage drooping,  
and as a result, both high-side and low-side OC protections will engage to protect the load.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
7.3.11 High-Side FET Throttling  
When the high-side FET turns on or off, the ringing voltage across the FET depends on the output current,  
loop inductance, and PCB parasitic inductance. To diminish the ringing voltage during turning on or off, the  
TPS542A52 reduces the gate driver strength when TPS542A52 detects PVIN higher than 14 V with 0.5-V  
hysteresis.  
7.3.12 Overtemperature Protection  
When the device senses a temperature above the thermal shutdown limit (typically 165°C), power conversion is  
disabled. The converter remains disabled until the temperature cools down to the thermal recovery limit (typically  
150°C). At this point the converter enters hiccup for seven cycles of soft-start CLK frequency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS542A52  
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
7.4 Device Functional Modes  
7.4.1 Pulse-Frequency Modulation Eco-modeLight Load Operation  
When the SS/PFM pin is terminated with a 35.7-kΩ or lower resistance, the TPS542A52 operates in pulse-  
frequency modulation (PFM) for light load conditions to maintain high efficiency.  
As the output current decreases from heavy-load conditions, the inductor current also decreases until the valley  
of the inductor current reaches zero amps, which is the boundary between continuous-conduction mode (CCM)  
and discontinuous-conduction mode (DCM). The synchronous MOSFET turns off when this zero inductor current  
is detected. As the load current decreases further, the converter runs in DCM. In DCM operation, the on-time is  
maintained to a level approximately the same as during CCM and the converter off-time is modulated to maintain  
the proper output voltage. For the application of 5-V input voltage, it is not recommend to operate in PFM due to  
the accuracy of the zero comparator which will be reduced because of the low input voltage.  
7.4.2 Forced Continuous-Conduction Mode  
When the SS/PFM pin is terminated with a 47.5-kΩ or higher resistance, the TPS542A52 operates in forced  
continuous conduction mode (FCCM) for all load currents. During FCCM, the switching frequency is set by an  
internal oscillator for which the frequency can either be selected by the FSEL pin or an external clock on the  
SYNC pin.  
7.4.3 Soft Start  
The TPS542A52 operates in FCCM during soft start regardless of the setting selected by the SS/PFM pin. If  
PFM is enabled by the SS/PFM pin, the PFM operation begins after PGD is asserted. The delay between soft  
start finishing and PGD being asserted is typically 500 µs. During the start-up, the TPS542A52 has the low-side  
current limit at 16.5 A when the OCP configures 20 A. However, if the OCP configures below 16.5 A such as 13  
A, then the current limit during soft start sets to be at 13 A.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
8 Application and Implementation  
Note  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The TPS542A52 is a high-efficiency, single-channel, synchronous buck converter with integrated n-channel  
MOSFETs. The device suits low-output voltage point-of-load applications with 15-A or lower current. The  
TPS542A52 has a maximum operating junction temperature of 150°C, which makes it suitable for high-ambient  
temperature applications such as wireless infrastructure. The input voltage range is 4 V to 18 V, and the output  
voltage range is 0.5 V to 5.5 V. The device features a fixed-frequency voltage-control mode with a switching  
frequency range of 400 kHz to 2.2 MHz, allowing for efficiency and size optimization when selecting output filter  
components. The controller features selectable internal compensation making the device easy to use with a  
low external-component count. The internal compensation networks are able to support a wide range of output  
inductance and capacitance, supporting all types of capacitors. The controller utilizes a digital PWM modulator  
that allows for very narrow on-times making it ideal for high-frequency and high-step down ratio applications. The  
switching frequency of the device can be synchronized to an external clock applied to the SYNC pin.  
8.2 Typical Application  
8.2.1 Full Analog Configuration  
A resistor to ground on the FSEL, COMP, SS/PFM, and ILIM pins configure the device. Any of these pins can be  
grounded to use the default values and reduce component count.  
PVIN  
AVIN  
VIN  
CBST  
BOOT  
SW  
L
VREG  
PGD  
EN  
VOUT  
RENH  
RPGD  
CIN  
RSP  
RSN  
COUT  
CVREG  
RENL  
NC  
NC  
FSEL  
COMP  
SS/PFM  
ILIM  
SYNC  
SREF  
VSET  
R1  
RSS/PFM RCOMP  
RILIM  
RFSET  
AGND  
PGND  
R2  
8-1. Full Analog Configuration  
8.2.1.1 Design Requirements  
For this design example, use the input parameters shown in 8-1.  
8-1. Design Example Specifications  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
V
VIN, Input Voltage  
9
12  
14  
VIN(ripple), Input Ripple Voltage  
VOUT, Output Voltage  
0.2  
V
1
V
VPP, Ouput Ripple Voltage  
15  
mV  
VOVER, Transient Response  
Overshoot  
ISTEP = 5 A at 1 A/μs  
ISTEP = 5 A at 1 A/μs  
30  
30  
mV  
mV  
VUNDER, Transient Response  
Undershoot  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS542A52  
 
 
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
8-1. Design Example Specifications (continued)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
A
IOUT, Output Current  
10  
IOC, Over-Current Trip Point  
FSW, Switching Frequency  
tSS, Soft-start time  
16  
A
1.2  
0.5  
MHz  
ms  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS542A52 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Output Voltage Calculation  
The output voltage equals five times of VSET. To set VSET voltage, a resistor divider network is required from  
SREF (1.2 V). 方程式 2 shows the output voltage calculation. It is recommended to use R1 and R2 in the range  
of 1 kΩ to 100 kΩ. For example, R1 equals 50 kΩ and R2 equals 10 kΩ for 1-V output voltage.  
VOUT = 5ì VSET  
R2  
VSET =  
ì1.2  
R1+ R2  
R2  
VOUT = 5ì  
ì1.2  
R1+ R2  
8.2.1.2.3 Switching Frequency Selection  
(2)  
There is a trade off between higher and lower switching frequencies. Higher switching frequencies can produce  
a smaller solution size using lower valued inductors and smaller output capacitors compared to a power supply  
that switches at a lower frequency. However, the higher switching frequency causes extra switching losses,  
which decrease efficiency and impacts thermal performance. In this design, a moderate switching frequency of  
1.2 MHz achieves both a small solution size and a high efficiency operation is selected. The TPS542A52 offers  
seven choices of switching frequency in 7-1. RFSET equals to 47.5 kΩ for 1.2-MHz switching frequency.  
8.2.1.2.4 Inductor Selection  
The inductor value is a compromise between having a good load step transient response, output ripple voltage,  
and efficiency. A good practice is to select the inductor ripple current value between 15% to 50% of the  
maximum output current. The output capacitor absorbs the inductor-ripple current. Therefore, selecting a high  
inductor-ripple current impacts the selection of the output capacitor because the output capacitor must have  
a ripple-current rating equal to or greater than the inductor-ripple current. Using 35% target ripple current, the  
required inductor size can be calculated as shown in 方程式 3.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
VOUT ì VIN - VOUT  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
1.0 V× 12 V-1.0 V  
(
(
)
)
L =  
=
= 218 nH  
VINì fSW ìIOUT ì0.35 12 V×1.2 MHzì10 A ì0.35  
(3)  
A standard inductor value of 220 nH is selected.  
8.2.1.2.5 Input Capacitor Selection  
The TPS542A52 requires a high-quality, ceramic, type X5R or X7R, input decoupling capacitor with a value of  
at least 1 μF of effective capacitance on the PVIN pin, relative to PGND. The power stage input decoupling  
capacitance (effective capacitance at the PVIN and PGND pins) must be sufficient to supply the high switching  
currents demanded when the high-side MOSFET switches on, while providing minimal input voltage ripple as a  
result. This effective capacitance includes any DC bias effects. The voltage rating of the input capacitor must be  
greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the  
maximum input current ripple to the device during full load. The input ripple current can be calculated by 方程式  
4.  
(VIN - VOUT)  
ICIN(rms) = IOUT(max) ì VOUT ì  
= 2.8 Amps  
VIN  
VIN  
(4)  
The minimum input capacitance and ESR values for a given input voltage ripple specification, VIN(ripple), are  
shown in 方程式 5. The input ripple is composed of a capacitive portion, VIN(RIPPLE_CAP), and a resistive portion,  
VIN(RIPPLE_ESR)  
.
IOUT(max) ì 1-D ìD  
(
)
CIN(min) =  
= 6.4 mF  
VIN(RIPPLE _ CAP) ì fSW  
VIN(RIPPLE _ ESR)  
ESRCIN(max) =  
= 8.5 mW  
IOUT(max) + IRIPPLE  
2
where  
ñ D is the duty cycle  
(5)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to  
the capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material  
that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator  
capacitors because they have a high capacitance-to-volume ratio and are fairly stable over temperature.  
The input capacitor must also be selected with the DC bias taken into account. For this example design, a  
ceramic capacitor with at least a 25-V voltage rating is required to support the maximum input voltage. For this  
design, allow 0.1-V input ripple for VIN(RIPPLE_CAP), and 0.1-V input ripple for VIN(RIPPLE_ESR). Using 方程式 5, the  
minimum input capacitance for this design is 6.4 µF, and the maximum ESR is 8.5 mΩ. In a real application, it is  
recommended to use a combination of small capacitors such as 0.1-μF and larger value 10-μF or 22-μF ceramic  
capacitors in parallel for the power stage.  
8.2.1.2.6 Bootstrap Capacitor Selection  
A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper  
operation. It is recommended to use a ceramic capacitor with X5R or better grade dielectric. Use a capacitor with  
a voltage rating of 25 V or higher.  
8.2.1.2.7 R-C Snubber and VIN Pin High-Frequency Bypass  
Though it is possible to operate the TPS542A52 within absolute maximum ratings without voltage ringing  
reduction techniques, some designs can require external components to further reduce ringing levels. This  
example uses two approaches: a high frequency power stage bypass capacitor on the VIN pins, and an R-C  
snubber between the SW area and GND.  
The high-frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimize the  
outboard parasitic inductances in the power stage, which store energy during the high-side MOSFET on-time,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS542A52  
 
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
and discharge once the high-side MOSFET is turned off. For this example two of 0.1-μF to 1-μF, 25-V, 0402-  
sized high-frequency capacitors are used. The placement of these capacitors is critical to its effectiveness.  
Additionally, an optional R-C snubber circuit is added to this example. To balance efficiency and spike levels,  
a 220-pF capacitor and a 2-Ω resistor are chosen. In this example, a 0805-sized resistor is chosen, which is  
rated for 0.125 W, nearly twice the estimated power dissipation. See the Seminar 900 Topic 2 - Snubber Circuits:  
Theory, Design and Application application note for more information about snubber circuits.  
8.2.1.2.8 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
affects three criteria:  
Stability  
Regulator response to a change in load current or load transient  
Output voltage ripple  
These three considerations are important when designing regulators that must operate where the electrical  
conditions are unpredictable. The output capacitance needs to be selected based on the most stringent of these  
three criteria.  
8.2.1.2.9 Response to a Load Transient  
The output capacitance must supply the load with the required current when current is not immediately provided  
by the regulator. When the output capacitor supplies load current, the impedance of the capacitor greatly affects  
the magnitude of voltage deviation (such as undershoot and overshoot) during the transient.  
Use 方程式 6 and 方程式 7 to calculate the minimum output capacitance to meet the undershoot and overshoot  
requirements. For this example, COUT(min_under) is 136-μF and 92-μF for COUT(min_over). In a real application, the  
value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. It is recommended to check the capacitor datasheet and account for the capacitance derating.  
2
L ´ DILOAD(max)  
DILOAD(max) ´ 1- D ´ t  
SW  
(
)
DVLOAD(INSERT)  
COUT(min_under)  
=
+
2 ´ DVLOAD(INSERT) ´ (V -VVOUT  
)
IN  
(6)  
(7)  
2
LOUT  
´
DI  
LOAD(max)  
(
)
2 ´ DVLOAD(release) × VOUT  
COUT(min_over)  
=
where  
COUT(min_under) is the minimum output capacitance to meet the undershoot requirement  
COUT(min_over) is the minimum output capacitance to meet the overshoot requirement  
D is the duty cycle  
L is the output inductance value (0.22 µH)  
∆ILOAD(max) is the maximum transient step (5 A)  
VOUT is the output voltage value (1 V)  
tSW is the switching period (0.833 µs)  
VIN is the minimum input voltage for the design (12 V)  
∆VLOAD(insert) is the undershoot requirement (30 mV)  
∆VLOAD(release) is the overshoot requirement (30 mV)  
8.2.1.2.10 Pin-Strap Setting  
For overcurrent protection at 16.5 A, 47.5 kΩ is chosen from 7-7. For 0.5-ms soft start and FCCM operation,  
47.5 kΩ is chosen from 7-5 and 7-6.  
For converter stability and selecting the compensation network, 7-3 provides four compensation choices.  
First, the power stage double pole filter frequency needs to be known. For this example, the output capacitor  
bank selects as 4x100-μF ceramic capacitors in 0805 size to account the capacitor derating factors. Next, the LC  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
filter frequency is calculated to 17 kHz. Finally, COMP3 becomes the best choice to select by using a 26.1-kΩ or  
78.7-kΩ resistor on the COMP pin to GND.  
8.2.1.3 Application Curves  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.2 MHz  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.2 MHz  
8-3. Load Transient 5 A to 10 A to 5 A at 1 A/μs  
8-2. 450 μs Start-up by EN at 0-A Output Current  
VIN = 12 V  
VOUT = 1 V  
fSW = 1.2 MHz  
8-4. Bode Plot at 10-A Output Current  
8.2.1.4 Typical Application Circuits  
VIN  
PVIN  
AVIN  
10  
0.1 µF  
BOOT  
SW  
0.68 µH  
0.1 µF  
VREG  
PGD  
EN  
VOUT  
3 x 10 µF  
10 k  
4.7 µF  
RSP  
RSN  
5 x 100 µF  
0.47 µF  
2 x 22 µF  
SYNC  
NC  
FSEL  
COMP  
NC  
46.4 k  
SS/PFM  
ILIM  
SREF  
VSET  
61.9 k  
AGND  
PGND  
61.9 k  
18.2 k  
35.7 k  
20 k  
8-5. Typical Application Circuit for 1.8-V Output at 1.0 MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
VIN  
PVIN  
AVIN  
10  
0.1 µF  
BOOT  
SW  
1.5 µH  
0.1 µF  
VREG  
PGD  
EN  
VOUT  
220 µF  
4 x 10 µF  
10 k  
4.7 µF  
RSP  
RSN  
0.47 µF  
2 x 22 µF  
Optional: 4 x 100 µF  
SYNC  
NC  
FSEL  
COMP  
NC  
28 k  
SS/PFM  
ILIM  
SREF  
VSET  
61.9 k  
AGND  
PGND  
61.9 k  
26.1 k  
26.1 k  
20 k  
8-6. Typical Application Circuit for 2.5-V Output at 0.8 MHz  
VIN  
PVIN  
10  
0.1 µF  
AVIN  
VREG  
PGD  
EN  
BOOT  
SW  
1.5 µH  
0.1 µF  
VOUT  
220 µF  
4 x 10 µF  
10 k  
4.7 µF  
RSP  
RSN  
0.47 µF  
2 x 22 µF  
Optional: 4 x 100 µF  
SYNC  
SCL  
FSEL  
COMP  
SDA  
16.5 k  
SS/PFM  
ILIM  
SREF  
VSET  
61.9 k  
AGND  
PGND  
61.9 k  
26.1 k  
26.1 k  
20 k  
8-7. Typical Application Circuit for 3.3-V Output at 0.8 MHz  
VIN  
PVIN  
10  
0.1 µF  
AVIN  
VREG  
PGD  
EN  
BOOT  
SW  
2.2 µH  
0.1 µF  
VOUT  
330 µF  
4 x 10 µF  
10 k  
4.7 µF  
RSP  
RSN  
0.47 µF  
2 x 22 µF  
SYNC  
NC  
FSEL  
COMP  
NC  
10 k  
SS/PFM  
ILIM  
SREF  
VSET  
47.5 k  
AGND  
PGND  
61.9 k  
26.1 k  
18.2 k  
49.9 k  
8-8. Typical Application Circuit for 5-V Output at 0.6 MHz  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 4 V and 18 V. This input supply  
must be well regulated. Proper bypassing of input supplies (AVIN and PVIN) is critical for noise performance, as  
is the PCB layout and grounding scheme. See the recommendations in 10.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
10 Layout  
10.1 Layout Guidelines  
1. The PVIN pins are the power inputs to the main half bridge and AVIN is the power input to the controller.  
2. Connect AVIN and PVIN together on the PCB. It is important that these pins are at the same voltage  
potential because the controller feedforward block uses this voltage information in the modulator to increase  
transient performance. For AVIN, it is best to use RC filter from PVIN such as 10 Ω and 100 nF.  
3. To minimize the power loop inductance for the half bridge, place the bypassing capacitors as close as  
possible to the PVIN pins on the converter. When using a multilayer PCB (more than two layers), the power  
loop inductance is minimized by having the return path to the input capacitor small and directly underneath  
the first layer as shown below. Loop inductance is reduced due to flux cancellation as the return current is  
directly underneath and flowing in the opposite direction.  
4. Place the bias capacitor for VREG pin as close as possible to the pin as shown below.  
5. The resistor divider network for SREF and VSET needs to placed as close as possible to the pins. Limit the  
high frequency noise source coupling onto these components.  
6. RSP and RSN signals are best to route parallel to the load sense location. It is recommended to limit high  
frequency noise source coupling onto these traces.  
7. PGND thermal vias: It is recommended to add vias under and outside the IC of PGND plane as shown  
below.  
8. AGND thermal vias: It is recommended to add at least 2 vias under the IC of AGND plane as shown below.  
9. AGND plane can be routed as separate island in an internal layer. AGND can connect as a net tied to PGND  
between the two thermal grounds under the IC as shown below.  
10. Total PCB area can be routed in 17 mm by 14 mm as shown below. See the EVM userguide for more details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS542A52  
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
10.2 Layout Example  
Total Area:  
17mm x 14mm  
PGND  
PVIN  
PGND  
0402  
0402  
0402  
AGND  
0805  
0805  
PVIN  
0402  
ILIM  
SS/PFM  
NC  
SW  
7mm x 7mm  
VOUT  
NC  
AGND  
SYNC  
RSN  
RSP  
PGND  
AGND  
0402  
0402  
0402  
AGND  
0402  
VREG  
AGND  
PGND  
10-1. Example PCB Layout  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS542A52 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.4 Trademarks  
Eco-modeand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS542A52  
 
 
 
 
 
 
 
TPS542A52  
www.ti.com.cn  
ZHCSM63B – SEPTEMBER 2020 – REVISED OCTOBER 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS542A52  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS542A52RJMR  
ACTIVE  
VQFN-HR  
RJM  
33  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 150  
542A52  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Aug-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS542A52RJMR  
VQFN-  
HR  
RJM  
33  
3000  
330.0  
12.4  
4.25  
4.75  
1.2  
8.0  
12.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Aug-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN-HR RJM 33  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
TPS542A52RJMR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RJM0033A  
VQFN-HR - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.6  
4.4  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
7X 0.175 0.05  
PKG  
0.95 0.1  
(2X 0.375)  
(0.127) TYP  
9
21X 0.5  
8
16  
4X (0.2)  
33  
32  
29  
0.388 0.1  
5X 1  
PKG  
31  
25  
30  
2.05 0.1  
3.5  
27  
28  
26  
8X 0.7 0.1  
PIN 1 ID  
17  
1
24  
0.3  
0.2  
0.1  
(2X 0.375)  
0.4  
24X  
C A B  
24X  
0.3  
0.05  
4223732/C 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RJM0033A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.55)  
4X (0.2)  
20X (0.55)  
7X (0.175)  
24  
17  
(1.925)  
4X (0.575)  
1
(0.95)  
24X (0.25)  
27  
28  
26  
8X (0.7)  
21X  
(0.5)  
PKG  
25  
29  
30  
31  
(2.05)  
0.000  
0.2) VIA  
(
(0.388)  
5X (1)  
33  
32  
(R0.05) TYP  
8
(1.925)  
9
16  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223732/C 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RJM0033A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.55)  
4X (0.2)  
20X (0.55)  
24  
17  
(1.925)  
4X (0.575)  
4X (0.237)  
2X (1.75)  
1
7X (0.175)  
2X (0.94)  
7X  
(0.56)  
EXPOSED METAL  
TYP  
28  
27  
26  
2X (0.83)  
0.000  
PKG  
31  
25  
29  
30  
(0.62)  
EXPOSED  
METAL  
2X (0.515)  
(0.35)  
17X  
(0.5)  
5X (1)  
33  
32  
2X (1.744)  
8
(1.925)  
9
16  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8, 16, 17: 95%; PADS 25-33: 80%  
SCALE:25X  
4223732/C 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TPS542A52RJMR

具有遥感功能的 4V 至 18V 输入、电压模式、15A 同步 SWIFT™ 降压转换器 | RJM | 33 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5430

1.6 MHz, 3-V TO 6-V INPUT, 3-A SYNCHRONOUS STEP-DOWN SWIFT⑩ CONVERTER WITH DISABLED SINKING DURING START-UP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5430-EP

3-A WIDE-INPUT-RANGE STEP-DOWN SWIFT™ CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5430-Q1

3-A WIDE-INPUT-RANGE STEP-DOWN SWIFT CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54302

4.5V 至 28V 输入电压、3A 输出电流、EMI 友好型同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54302DDCR

4.5V 至 28V 输入电压、3A 输出电流、EMI 友好型同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54302DDCT

4.5V 至 28V 输入电压、3A 输出电流、EMI 友好型同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54308

4.5V 至 28V 输入、3A 输出、同步 350kHz FCCM 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54308DDCR

4.5V 至 28V 输入、3A 输出、同步 350kHz FCCM 降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54308DDCT

4.5V 至 28V 输入、3A 输出、同步 350kHz FCCM 降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5430DDA

5.5-V to 36-V, 3-A STEP-DOWN SWIFT CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5430DDAG4

5.5-V to 36-V, 3-A STEP-DOWN SWIFT CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI