TPS543C20ARVFR [TI]

具有自适应内部补偿功能的 4V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125;
TPS543C20ARVFR
型号: TPS543C20ARVFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有自适应内部补偿功能的 4V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

转换器
文件: 总46页 (文件大小:6161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
具备自适应内部补偿功能的 TPS543C20A4 VIN 16 VIN40A 可堆叠、同  
步降压 SWIFT™ 转换器  
1 特性  
2 应用  
1
内部补偿高级电流模式控制 40A POL  
无线和有线通信基础设施设备  
输入电压范围:4V 16V  
输出电压范围:0.6V 5.5V  
企业服务器、交换机和路由器  
企业级存储、SSD  
集成 3.4/0.9mΩ 堆叠式 NexFET™功率级,带有无  
损低侧电流检测功能  
ASICSoCFPGADSP 内核和 I/O 电源轨  
3 说明  
固定频率 - 同步到外部时钟和/或同步输出  
TPS543C20A 采用内部补偿的仿真峰值电流模式控制  
方式,具有适用于 EMI 敏感型 POL 的时钟同步固定频  
率调制器。内部积分器和直接放大式斜坡跟踪环路在较  
宽频率范围内消除了对外部补偿的需求,从而使系统设  
计具有灵活、密集和简单的特点。可选的 API 和体制  
动功能有助于分别通过显著减少下冲和过冲来提高瞬态  
性能。具有低损耗开关特性的集成式  
可通过引脚搭接进行编程的开关频率  
独立模式下为 300kHz 2MHz  
堆叠模式下为 300kHz 1MHz  
通过双倍堆叠实现高达 80A 负载,并具有电流共  
享、电压共享和 CLK 同步功能  
可通过引脚搭接进行编程的基准电压介于 0.6V 至  
1.1V 之间,精度达 0.5%  
差分遥感  
NexFET™MOSFET 有助于提高效率和提供高达 40A  
的输出电流(采用 5mm × 7mm PowerStack™封  
装,带有方便布局的散热垫)。两个 TPS543C20A 器  
件可以堆叠在一起,以便提供高达 80A 的负载点。  
安全启动至预偏置输出电压  
高精度打嗝电流限制  
异步脉冲注入 (API) 和体制动  
40 引脚 5mm × 7mm LQFN 封装,具有 0.5mm 间  
距和单个散热垫  
器件信息  
使用 TPS543C20A 并借助 WEBENCH® 电源设计  
创建定制设计方案  
器件编号  
封装  
封装尺寸(标称值)  
TPS543C20A  
LQFN-CLIP (40)  
5.00mm x 7.00mm  
1. 如需了解所有可用封装,请参阅数据表末尾的可订  
购产品附录。  
简化原理图  
VIN  
VOUT  
ILIM  
RSP  
RSN  
BOOT  
SW  
RAMP  
RT  
TPS543C20A  
VSEL  
+
LOAD  
t
BP  
SS  
MODE  
AGND  
PGND  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDE0  
 
 
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information ................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics............................................ 11  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 15  
9.2 Typical Application: TPS543C20A Stand-alone  
Device ...................................................................... 24  
9.3 System Example ..................................................... 30  
10 Power Supply Recommendations ..................... 32  
11 Layout................................................................... 33  
11.1 Layout Guidelines ................................................. 33  
11.2 Layout Example .................................................... 34  
11.3 Package Size, Efficiency and Thermal  
Performance............................................................. 35  
12 器件和文档支持 ..................................................... 37  
12.1 器件支持................................................................ 37  
12.2 接收文档更新通知 ................................................. 37  
12.3 社区资源................................................................ 37  
12.4 ....................................................................... 37  
12.5 静电放电警告......................................................... 37  
12.6 术语表 ................................................................... 37  
13 机械、封装和可订购信息....................................... 38  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 11 月  
*
最初发布版本  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
5 Device Comparison Table  
DEVICE  
OUTPUT CURRENT  
TPS543B20  
TPS543C20  
TPS543C20A  
25 A  
40 A  
40 A  
6 Pin Configuration and Functions  
RVF Package  
40-Pin LQFN-CLIP With Thermal Pad  
Top View  
RSP  
RSN  
NC  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VSHARE  
ISHARE  
ILIM  
2
3
NC  
4
AGND  
BP  
NC  
5
NC  
6
GND  
Thermal  
Pad  
BOOT  
SW  
7
VDD  
8
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
SW  
9
SW  
10  
11  
12  
SW  
SW  
Not to scale  
Copyright © 2018, Texas Instruments Incorporated  
3
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
Pin Functions  
PIN  
I/O/P(1)  
DESCRIPTION  
NO.  
NAME  
The positive input of the remote sense amplifier. Connect RSP pin to the output voltage  
at the load. For multi-phase configuration, the remote sense amplifier is not needed for  
slave devices.  
1
RSP  
I
The negative input of the remote sense amplifier. Connect RSN pin to the ground at load  
side. For multi-phase configuration, the remote sense amplifier is not needed for slave  
devices.  
2
RSN  
NC  
I
3,4,5,6  
Not connected  
Bootstrap pin for the internal flying high-side driver. Connect a typical 100-nF capacitor  
from this pin to SW. To reduce the voltage spike at SW, a BOOT resistor with a value  
between 1 Ω to 10 Ω may be placed in series with the BOOT capacitor to slow down  
turnon of the high-side FET.  
7
BOOT  
I
8,9,10,11,12  
SW  
B
Output of converted power. Connect this pin to the output Inductor.  
13,14,15,16,17,18,19,  
20  
PGND  
G
These ground pins are connected to the return of the internal low-side MOSFET  
Input power to the power stage. Low impedance bypassing of these pins to PGND is  
critical. A 10-nF to 100-nF capacitor from PVIN to PGND close to IC is required.  
21,22,23,24,25  
26  
PVIN  
VDD  
I
I
Controller power supply input  
Ground return for the controller. This pin should be directly connected to the thermal pad  
on the PCB board. A 10-nF to 100-nF capacitor from PVIN to GND close to IC is  
required.  
27  
28  
GND  
BP  
G
O
Output of the 5 V on board regulator. This regulator powers the driver stage of the  
controller and must be bypassed with a minimum of 2.2 µF to the thermal pad (power  
stage ground, that is, GND). Low impedance bypassing of this pin to PGND is critical.  
29  
30  
31  
32  
33  
AGND  
ILIM  
G
O
I
GND return for internal analog circuits.  
Current protection pin; connect a resistor from this pin to AGND sets current limit level.  
Current sharing signal for multi-phase operation. Float this pin for single phase  
Voltage sharing signal for multi-phase operation. Float this pin for single phase.  
The enable pin turns on the switcher.  
ISHARE  
VSHARE  
EN  
B
I
Open-drain power-good status signal which provides start-up delay after the FB voltage  
falls within the specified limits. After the FB voltage moves outside the specified limits,  
PGOOD goes low.  
34  
PGD  
O
For frequency synchronization. This pin can be configured as sync in or sync out by  
MODE pin and RT pin for master and slave devices.  
35  
SYNC  
B
36  
37  
VSEL  
SS  
I
Connect a resistor from this pin to AGND to select internal reference voltage.  
Connect a resistor from this pin to AGND to select soft-start time.  
O
Frequency setting pin. Connect a resistor from this pin to AGND to program the  
switching frequency. This pin also selects sync point for devices in stackable  
applications  
38  
RT  
O
Enable or disable API or body brake function, choose API threshold, also selects the  
operation mode in stackable applications  
39  
40  
MODE  
RAMP  
B
B
Ramp level selection, with a resistor to AGND to adjust internal loop.  
Package thermal tab, internally connected to PGND. The thermal tab must have  
adequate solder coverage for proper operation.  
Thermal Pad  
Thermal Tab  
(1) I = Input, O = Output, B = Bidirectional, P = Supply, G = Ground  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
18  
UNIT  
VIN  
–0.3  
VIN to SW(3)  
25  
VDD  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
18  
BOOT  
34.5  
6.5  
7
DC  
BOOT to SW  
< 10 ns  
Input voltage(1)  
V
VSEL, SS, MODE, RT, SYNC, EN, ISHARE, ILIM  
7
RSP  
3.6  
0.3  
0.3  
20  
RSN  
PGND, GND  
DC  
SW to PGND(4)  
< 10 ns  
20  
BP, RAMP  
–0.3  
–0.3  
–0.3  
–55  
7
Output voltage  
PGD  
7
V
VSHARE  
3.6  
150  
150  
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
(3) VIN to SW must not exceed 25 V.  
(4) SW to PGND must not exceed 20 V.  
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
4
MAX  
UNIT  
VIN  
16  
22  
DC  
–0.1  
VIN to SW(3)  
< 10 ns  
22  
VDD  
4
–0.1  
–0.1  
–0.1  
16  
BOOT  
23.5  
5.5  
6
DC  
BOOT to SW  
< 10 ns  
Input voltage(2)  
V
VSEL, SS, MODE, RT, SYNC, EN,  
ISHARE, ILIM  
–0.1  
5.5  
RSP  
–0.1  
–0.1  
–0.1  
–0.1  
–5  
1.7  
0.1  
0.1  
18  
RSN  
PGND, GND  
DC  
SW to PGND  
< 10 ns  
18  
BP, RAMP  
PGD  
–0.3  
–0.3  
–0.3  
–40  
–55  
7
Output voltage(2)  
7
V
VSHARE  
3.6  
125  
125  
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
(3) See Layout Guidelines for VIN capacitor placement requirement to reduce MOSFET voltage stress.  
7.4 Thermal Information  
TPS543C20A  
THERMAL METRIC(1)  
RVF (LQFN)  
40 PINS  
28.9  
UNIT  
RθJA  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
Junction-to-ambient thermal resistance EVM (TPS543C20AEVM-054:6-  
layer, 2-oz Cu per layer, 2.75 inch by 3 inch)  
12  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18.9  
4.1  
1.3  
4.1  
1
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
MOSFET RDS(ON)  
RDS(on)HS  
HS FET  
LS FET  
VBST – VSW = 5 V, ID = 20 A, TJ = 25°C  
VDD = 5 V, ID = 20 A, TJ = 25°C  
3.4  
0.9  
mΩ  
mΩ  
RDS(on)LS  
Power stage driver dead-time  
from Low-side off to High-side  
on(1)  
tDEAD(LtoH)  
VDD 12 V, TJ = 25°C  
VDDN 12 V, TJ = 25°C  
12  
15  
ns  
ns  
Power stage driver dead-time  
from High-side off to Low-side  
on(1)  
tDEAD(HtoL)  
INPUT SUPPLY and CURRENT  
VVIN  
Power stage voltage  
4
4
16  
16  
VVDD  
VDD supply voltage  
TA = 25°C, no load, power conversion  
enabled (no switching)  
IVDD  
VDD bias current  
4.3  
4.3  
mA  
mA  
TA = 25°C, no load, power conversion  
disabled  
IVDDSTBY  
VDD standby current  
UNDERVOLTAGE LOCKOUT  
VVDD_UVLO  
VDD UVLO rising threshold  
3.8  
0.2  
3.2  
0.2  
1.6  
300  
0
V
v
VVDD_UVLO_HYS VDD UVLO hysteresis  
VVIN_UVLO  
VVIN_UVLO_HYS  
VEN_ON_TH  
VHYS  
VIN UVLO rising threshold  
VIN UVLO hysteresis  
EN on threshold  
V
v
1.45  
270  
–1  
1.75  
330  
1
V
EN hysteresis  
mV  
µA  
IEN_LKG  
EN input leakage current  
INTERNAL REFERENCE VOLTAGE  
VINTREF  
Internal REF voltage  
RVSEL = OPEN  
1000  
mV  
V
VINTREFTOL  
VINTREF_VSEL  
OUTPUT VOLTAGE  
Internal REF voltage tolerance  
TJ = –40°C to 125°C  
Programable by VSEL (pin 36)  
–0.5%  
0.6  
0.5%  
1.1  
Internal REF voltage range  
IRSP  
RSP input current  
VRSP = 600 mV  
–1  
1
µA  
DIFFERENTIAL REMOTE SENSE AMPLIFIER  
fUGBW  
A0  
Unity gain bandwidth(1)  
Open loop gain(1)  
5
8.5  
MHz  
dB  
75  
SR  
SLew rate(1)  
Input common mode range(1)  
±10  
V/µs  
V
VICM  
–0.2  
–1  
1.7  
1
VRSN-VGND = 0 mV  
VOFFSET  
Input offset voltage(1)  
mV  
VRSN-VGND = ±100 mV  
–1.9  
1.9  
(1) Specified by design. Not production tested.  
Copyright © 2018, Texas Instruments Incorporated  
7
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
SWITCHING FREQUENCY  
TEST CONDITIONS  
MIN  
TYP  
VIN = 12 V, VVO = 1 V, RT = 66.5 kΩ  
VIN = 12 V, VVO = 1 V, RT = 48.7 kΩ  
VIN = 12 V, VVO = 1 V, RT = 39.2 kΩ  
VIN = 12 V, VVO = 1 V, RT = 28.0 kΩ  
VIN = 12 V, VVO = 1 V, RT = 22.6 kΩ  
VIN = 12 V, VVO = 1 V, RT = 19.1 kΩ  
VIN = 12 V, VVO = 1 V, RT = 15.4 kΩ  
VIN = 12 V, VVO = 1 V, RT = 8.06 kΩ  
DRVH rising to falling  
300  
400  
500  
700  
850  
1000  
1200  
2000  
30  
VO switching frequency  
maximum frequency for multi-  
phase is 1MHz  
FSW  
kHz  
tON(min)  
Minimum on-time(1)  
Minimum off-time(1)  
ns  
ns  
tOFF(min)  
DRVH falling to rising  
250  
INTERNAL BOOTSTRAP SWITCH  
VF  
Forward voltage  
VBP-VBST, TA = 25°C, IF = 5 mA  
0.1  
0.2  
V
VSEL  
RVSEL = 0 kΩ  
0.6  
0.7  
RVSEL = 8.66 kΩ  
RVSEL = 15.4 kΩ  
RVSEL = 23.7 kΩ  
RVSEL = 34.8 kΩ  
RVSEL = 51.1 kΩ  
RVSEL = 78.7 kΩ  
RVSEL = OPEN  
RVSEL = 121 kΩ  
RVSEL = 187 kΩ  
0.75  
0.8  
0.85  
0.9  
VSEL  
Internal reference voltage  
V
0.95  
1
1.05  
1.1  
SOFT START  
RSS = 0 kΩ  
0.5  
1
RSS = 8.66 kΩ  
RSS = 15.4 kΩ  
RSS = Open  
2
4
VO rising from 0  
V to 95% of  
final set point  
RSS = 23.7 kΩ  
5
tSS  
Soft-start time  
ms  
RSS = 34.8 kΩ  
8
RSS = 51.1 kΩ  
RSS = 78.7 kΩ  
RSS = 121 kΩ  
RSS = 187 kΩ  
12  
16  
24  
32  
POWER ON DELAY  
tPODLY Power-on delay time  
Delay from enable to switching  
512  
µs  
8
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
PGOOD COMPARATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OV warning threshold on RSP  
pin, PGOOD fault threshold on  
rising  
VREF = 600 mV  
VREF = 600 mV  
VREF = 600 mV  
VREF = 600 mV  
108  
84  
112  
88  
116  
VPG(thresh)  
%VREF  
UV warning threshold on RSP  
pin, PGOOD fault threshold on  
falling  
92  
PGOOD threshold on rising and  
UV warning threshold de-  
assertion threshold at RSP pin  
VPGD(rise)  
95  
%VREF  
%VREF  
PGOOD threshold on falling and  
OV warning threshold de-  
VPGD(fall)  
105  
assertion threshold at RSP pin  
RPGD  
PGOOD pulldown resistance  
IPGOOD = 5 mA, VRSP = 0 V  
Delay for PGOOD going in  
Delay for PGOOD coming out  
30  
45  
60  
Ω
1.024  
ms  
µs  
tPGDLY  
PGOOD delay time  
2
0.8  
15  
PGOOD output low level voltage  
at no supply voltage  
VPGD(OL)  
IPGLK  
VDD=0, IPGOOD = 80 µA  
VPGOOD = 5 V  
V
PGOOD leakage current  
µA  
CURRENT SHARE ACCURACY  
Output current sharing accuracy  
I
OUT 20 A/phase  
OUT 20 A/phase  
–15%  
15%  
among stackable devices,  
defined as the ratio of the current  
difference between devices to  
total current(sensing error  
only)(1)  
ISHARE(acc)  
I
±3  
A
CURRENT DETECTION  
VILIM VTRIP voltage range  
Rdson sensing  
0.1  
1.2  
V
A
RILIM= 33.2 kΩ  
OC tolerance  
35  
±10%  
25  
Low-side FET current protection  
threshold and tolerance  
IOCP  
RILIM= 23.7 kΩ  
OC tolerance  
A
Low-Side FET current protection  
threshold and tolerance  
IOCP  
±15%  
–23  
IOCP_N  
Negative current limit threshold  
Valley-point current sense  
A
A
Clamp current at VTRIP clamp at  
lowest  
ICLMP_LO  
25°C, VTRIP = 0.1 V  
5.5  
6.5  
7.5  
Copyright © 2018, Texas Instruments Incorporated  
9
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
HIGH-SIDE SHORT-CIRCUIT PROTECTION  
High-side short circuit protection  
IHSOC  
55  
A
fault threshold(1)  
OV / UV PROTECTION  
VOVP  
OVP threshold voltage  
OVP response time(1)  
UVP threshold voltage  
UVP delay(1)  
OVP detect voltage  
113  
79  
117  
83  
121 %VREF  
tOVPDLY  
VUVP  
tUVPDLY  
tHICDLY  
OVP response time with 100-mV overdrive  
UVP detect voltage  
1
µs  
87 %VREF  
UVP delay  
1.5  
5.5  
µs  
Hiccup delay time  
Regular tSS setting  
7 × tSS  
ms  
BP LDO REGULATOR  
BP  
LDO output voltage  
VIN = 12 V, ILOAD = 0 to 10 mA  
Wakeup  
4.5  
5
3.32  
3.11  
V
V
VBPUVLO  
BP UVLO threshold voltage  
Shutdown  
VLDOBP  
ILDOMAX  
LDO low dropout voltage  
LDO overcurrent limit  
VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C  
VIN = 12 V, TA = 25°C  
365  
mV  
mA  
100  
SYNCHRONIZATION  
VIH(SYNC)  
VIL(SYNC)  
tPSW(SYNC)  
High-level input voltage  
2
V
Low-level input voltage  
Sync input minimum pulse width  
Synchronization frequency  
Dual-phase  
0.8  
100  
ns  
300  
300  
2000  
1000  
FSYNC  
kHz  
Sync to SW delay tolerance,  
percentage from phase-to-  
phase(1)  
tSYNC to SW  
FSYNC = 300 kHz to 1 MHz,  
FSYNC = 300 kHz  
10%  
5
tLose_SYNC_delay Delay when lose sync clock(1)  
µs  
°C  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
165  
30  
Built-in thermal shutdown  
TSDN  
threshold(1)  
10  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
7.6 Typical Characteristics  
VIN = VDD = 12 V, TA = 25°C, RRT = 40.2 kΩ, TA= 25°C (unless otherwise specified)  
10  
9
8
7
6
5
4
3
2
1
0
100%  
95%  
90%  
85%  
80%  
75%  
70%  
.9 Vout  
1 Vout  
1.5 Vout  
2.5 Vout  
3.3 Vout  
1 Vout  
0.9 Vout  
1.5 Vout  
2.5 Vout  
3.3 Vout  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
Output Current (A)  
D001  
D005  
VIN = 5 V  
500 kHz  
25°C  
25°C  
25°C  
VIN = 5 V  
500 kHz  
25°C  
25°C  
25°C  
Figure 2. Efficiency vs Output Current  
Figure 3. Power Loss vs Output Current  
100%  
10  
.9 Vout  
1 Vout  
1.5 Vout  
2.5 Vout  
3.3 Vout  
5 Vout  
9
95%  
90%  
85%  
80%  
75%  
70%  
8
7
6
5
4
3
2
1
0
0.9 Vout  
1 Vout  
1.5 Vout  
2.5 Vout  
3.3 Vout  
5 Vout  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
Output Current (A)  
D002  
D006  
VIN = 12 V  
500 kHz  
VIN = 12 V  
500 kHz  
Figure 4. Efficiency vs Output Current  
Figure 5. Power Loss vs Output Current  
100%  
12  
5 Vin  
9 Vin  
12 Vin  
14 Vin  
16 Vin  
5 Vin  
9 Vin  
12 Vin  
14 Vin  
16 Vin  
95%  
90%  
85%  
80%  
75%  
70%  
10  
8
6
4
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
Output Current (A)  
D003  
D007  
VOUT = 1 V  
1 MHz  
VOUT = 1 V  
1 MHz  
Figure 6. Efficiency vs Output Current  
Figure 7. Power Loss vs Output Current  
6
5
4
3
2
1
0
800  
700  
600  
500  
400  
300  
200  
0.6 VOUT  
1 VOUT  
1.5 VOUT  
2.5 VOUT  
3.3 VOUT  
5 VOUT  
0.6 VOUT  
1 VOUT  
1.5 VOUT  
2.5 VOUT  
3.3 VOUT  
5 VOUT  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
Output Current (A)  
D007  
D010  
VIN = 12 V  
500 kHz  
25°C  
VIN = 12 V  
500 kHz  
25°C  
Figure 8. Output Voltage vs Output Current  
Figure 9. Switching Frequency vs Output Current  
Copyright © 2018, Texas Instruments Incorporated  
11  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = VDD = 12 V, TA = 25°C, RRT = 40.2 kΩ, TA= 25°C (unless otherwise specified)  
1.05  
14 VIN  
12 VIN  
9 VIN  
5 VIN  
4 VIN  
1
0.95  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
D019  
VOUT = 1 V  
1 MHz  
25°C  
Figure 10. Output Voltage vs Output Current  
Figure 11. Start-Up From EN  
Figure 12. Output Voltage Start-Up and Shutdown  
Figure 13. Output Voltage Ripple at Steady State  
12  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
Typical Characteristics (continued)  
VIN = VDD = 12 V, TA = 25°C, RRT = 40.2 kΩ, TA= 25°C (unless otherwise specified)  
15 A to 25 A to 15 A, 10-A Step at 40 A/µs  
Figure 14. Output Voltage Transient Response  
Copyright © 2018, Texas Instruments Incorporated  
13  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The device is 40-A, high-performance, synchronous buck converter with two integrated N-channel NexFET™  
power MOSFETs. These devices implement the fixed frequency non-compensation mode control. Safe pre-bias  
capability eliminates concerns about damaging sensitive loads. Two devices can be paralleled together to  
provide up to -A load. Current sensing for over-current protection and current sharing between devices is done  
by sampling a small portion of the power stage current providing accurate information independent on the device  
temperature.  
Advanced Current Mode (ACM) is an emulated peak current control topology. It supports stable static and  
transient operation without complex external compensation design. This control architecture includes an internal  
ramp generation network that emulates inductor current information, enabling the use of low ESR output  
capacitors such as multi-layered ceramic capacitors (MLCC). The internal ramp also creates a high signal to  
noise ratio for good noise immunity. The has 10 ramp options (see Ramp Selections for detail) to optimize  
internal loop for various inductor and output capacitor combinations with only a simple resistor to GND. The is  
easy to use and allows low external component count with fast load transient response. Fixed-frequency  
modulation also provides ease-of-filter design to overcome EMI noise.  
8.2 Functional Block Diagram  
VDD  
PVIN  
BP  
BOOT  
BP  
Linear Regulators  
BP3  
MODE  
API  
SW  
SYNC  
RT  
Driver  
Phase Managment  
PWM  
Q
S
R
Control:  
Anti-Cross-  
Conduction,  
Prebias  
Oscillator  
BP  
Stacked NexFET  
Power Stage  
PGND  
ACM Controller  
Overcurrent  
Detection,  
Current sensing  
OC Event  
Average Iout  
GND  
VSHARE  
ISHARE  
Phase  
Balance  
AGND  
Fault  
Control  
RSP  
RSN  
Fault  
Start and Reference  
EN  
SS  
VSEL  
PGD  
ILIM  
REMOTE SENSE AMP  
RAMP  
Copyright © 2017, Texas Instruments Incorporated  
14  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
8.3 Feature Description  
The device is a high-performance, integrated FET converter supporting current rating up to 40-A thermally. It  
integrates two N-channel NexFET™ power MOSFETs, enabling high power density and small PCB layout area.  
The drain-to-source breakdown voltage for these FETs is 25-V DC and transient. Avalanche breakdown occurs if  
the absolute maximum voltage rating exceeds 25 V. In order to limit the switch node ringing of the device, TI  
recommends adding a R-C snubber from the SW node to the PGND pins. Also a 10~100nF capacitor from VIN  
(Pin 25) to GND (Pin2 7) is mandatory to reduce high side FET stress. Refer to Layout Guidelines for the  
detailed recommendations.  
The typical on-resistance (RDS(on)) for the high-side MOSFET is 3.4 mΩ and typical on-resistance for the low-  
side MOSFET is 0.9 mΩ with a nominal gate voltage (VGS) of 5 V.  
8.4 Device Functional Modes  
8.4.1 Soft-Start Operation  
In the TPS543C20A device, the soft-start time controls the inrush current required to charge the output capacitor  
bank during start-up. The device offers 10 selectable soft-start options ranging from 0.5 ms to 32 ms. When the  
device is enabled the reference voltage ramps from 0 V to the final level defined by VSEL pin strap configuration,  
in a given soft-start time, which can be selected by SS pin. See Table 1 for details.  
Table 1. SS Pin Configuration  
SS TIME (ms)  
RESISTOR VALUE (k)(1)  
0.5  
1
0
8.66  
15.4  
23.7  
OPEN  
34.8  
51.1  
78.7  
121  
2
5
4
8
12  
16  
24  
32  
187  
(1) The E48 series resistors with no more than 1% tolerance are recommended.  
8.4.2 Input and VDD Undervoltage Lockout (UVLO) Protection  
The provides fixed VIN and VDD undervoltage lockout threshold and hysteresis. The typical VIN turnon threshold  
is 3.2 V and hysteresis is 0.2 V. The typical VDD turnon threshold is 3.8 V and hysteresis is 0.2 V. No specific  
power-up sequence is required.  
8.4.3 Power Good and Enable  
The has power-good output that indicates logic high when output voltage is within the target. The power-good  
function is activated after soft-start has finished. When the soft-start ramp reaches 90% of setpoint, PGOOD  
detection function will be enabled. If the output voltage becomes within ±8% of the target value, internal  
comparators detect power-good state and the power good signal becomes high after a delay. If the output  
voltage goes outside of ±12% of the target value, the power good signal becomes low after an internal delay.  
The power-good output is an open-drain output and must be pulled up externally.  
This part has internal pull up for EN. EN is internally pulled up to BP when EN pin is floating. EN can be pulled  
low through external grounding. When EN pin voltage is below its threshold, enters into shutdown operation, and  
the minimum time for toggle EN to reset is 5 µs.  
Copyright © 2018, Texas Instruments Incorporated  
15  
 
 
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
8.4.4 Voltage Reference  
VSEL pin strap is used to program initial boot voltage value from 0.6 V to 1.1 V by the resistor connected from  
VSEL to AGND. The initial boot voltage is used to program the main loop voltage reference point. VSEL voltage  
settings provide TI designated discrete internal reference voltages. Table 2 lists internal reference voltage  
selections.  
Table 2. VSEL Pin Configuration  
DEFAULT Vref (V)  
RESISTOR VALUE (k)(1)  
0.6  
0.7  
0
8.66  
15.4  
23.7  
34.8  
51.1  
78.7  
OPEN  
121  
0.75  
0.8  
0.85  
0.9  
0.95  
1.0  
1.05  
1.1  
187  
(1) The E48 series resistors with no worse than 1% tolerance are  
recommended  
8.4.5 Prebiased Output Start-up  
The device prevent current from being discharged from the output during start-up, when a pre-biased output  
condition exists. No SW pulses occur until the internal soft-start voltage rises above the error amplifier input  
voltage, if the output is pre-biased. As soon as the soft-start voltage exceeds the error amplifier input, and SW  
pulses start, the device limits synchronous rectification after each SW pulse with a narrow on-time. The low-side  
MOSFET on-time slowly increases on a cycle-by-cycle basis until 128 pulses have been generated and the  
synchronous rectifier runs fully complementary to the high-side MOSFET. This approach prevents the sinking of  
current from a pre-biased output, and ensures the output voltage start-up and ramp-to regulation sequences are  
smooth and monotonic.  
8.4.6 Internal Ramp Generator  
Internal ramp voltage is generated from duty cycle that contains emulated inductor ripple current information and  
then feed it back for control loop regulation and optimization according to required output power stage, duty ratio  
and switching frequency. Internal ramp amplitude is set by RAMP pin by adjusting an internal ramp generation  
capacitor CRAMP, selected by the resistor connected from MODE pin to GND. For best performance, we  
recommend ramp signal to be no more than 4 times of output ripple signal for all Low ESR output capacitor  
(MLCC) applications, or no more than 2 times larger than output ripple signal for regular ESR output capacitor  
(Pos-cap) applications. For design recommendation, see the design tool at www.ti.com/WEBENCH.  
RAMP  
RRAMP  
Duty Cycle  
RAMP  
SLOPE  
Slope  
Compensation  
10 Selections  
CRAMP  
Figure 15. Internal Ramp Generator  
16  
Copyright © 2018, Texas Instruments Incorporated  
 
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
8.4.6.1 Ramp Selections  
RAMP pin sets internal ramp amplitude for the control loop. RAMP amplitude is determined by internal RC,  
selected by the resistor connected from MODE pin to GND, to optimize the control loop. See Table 3.  
Table 3. RAMP Pin-Strapping Selection  
CRAMP (pF)  
1
RESISTOR VALUE (k)(1)  
0
1.42  
1.94  
2.58  
3.43  
4.57  
6.23  
8.91  
14.1  
29.1  
8.66  
15.4  
23.7  
34.8  
51.1  
78.7  
121  
187  
Open  
(1) The E48 series resistors with tolerance of 1% or less are  
recommended.  
8.4.7 Switching Frequency  
The converter supports analog frequency selections from 300 kHz to 2 MHz, for stand alone device and sync  
frequency from 300 kHz to 1 MHz for stackable configuration. The RT pin also sets clock sync point (SP) for the  
slave device.  
Switching Frequency Configuration for Stand-alone and Master Device in Stackable Configuration  
Master  
MODE  
TPS543C20  
SYNC  
RT  
Figure 16. Standalone: RT Pin Sets the Switching Frequency  
Copyright © 2018, Texas Instruments Incorporated  
17  
 
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
Master  
Slave  
VSHARE  
ISHARE  
VSHARE  
ISHARE  
MODE  
MODE  
RT  
RT  
SYNC  
SYNC  
Figure 17. Stackable: Master (as Clock Master) RT Pin Sets Switching Frequency, and passes it to Slave  
Resistor RRT sets the continuous switching frequence selection by  
20 ´ 109  
¦
´ 2  
SW  
RRT  
=
-
¦
2000  
SW  
where  
R is the resistor from RT pin to GND, in Ω  
ƒSW is the desired switching frequency, in Hz  
(1)  
8.4.8 Clock Sync Point Selection  
The device implements an unique clock sync scheme for phase interleaving during stackable configuration. The  
device will receive the clock through sync pin and generate sync points for another device to sync to one of them  
to achieve phase interleaving. Sync point options can be selected through RT pin when 1) device is configurated  
as master sync in, 2) device is configured as slave. See Table 5 for control mode selection.  
System Clock  
or  
Master Clock  
0
1/2  
0
Slave clock  
1/2  
Figure 18. 2-Phase Stackable with 180° Clock Phase Shift  
18  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
Table 4. RT Pin Sync Point Selection  
CLOCK SYNC OPTIONS  
0 (0° Interleaving)  
RESISTOR VALUE (k)  
0
1/4 (90° Interleaving)  
1/3 (120° Interleaving)  
2/3 (240° Interleaving)  
3/4 (270° Interleaving)  
1/2 (180° Interleaving)  
8.66  
15.4  
23.7  
34.8  
OPEN  
8.4.9 Synchronization and Stackable Configuration  
The device can synchronize to an external clock which must be equal to or higher than internal frequency setting.  
For stand alone device, the external clock should be applied to the SYNC pin before VDD ramps up. A sudden  
change in synchronization clock frequency causes an associated control loop response, resulting in an overshoot  
or undershoot on the output voltage.  
In dual phase stackable configuration:  
1. when there is no external system clock applied, the master device will be configured as clock master,  
sending out pre-set switching frequency clock to slave device through SYNC pin. Slave receives this clock as  
switching clock with phase interleaving.  
2. when a system clock is applied, both master and slave devices will be configured as clock slave, they sync  
to the external system clock as switching frequency with proper phase shift  
8.4.10 Dual-Phase Stackable Configurations  
8.4.10.1 Configuration 1: Master Sync Out Clock-to-Slave  
Direct SYNC, VSHARE and ISHARE connections between master and slave.  
Switching frequency is set by RT pin of master, and pass to slave through SYNC pin. SYNC pin of master will  
be configured as sync out by it’s MODE pin.  
Slave receives clock from SYNC pin. Its RT pin determines the sync point for clock phase shift.  
Master  
Slave  
VSHARE  
ISHARE  
VSHARE  
ISHARE  
MODE  
MODE  
23.7 k  
F_SW  
51.1 k  
RT  
RT  
SYNC  
SYNC  
Open  
Sync Point  
Figure 19. 2-Phase Stackable with 180° Phase Shift: Master Sync Out Clock-to-Slave  
8.4.10.2 Configuration 2: Master and Slave Sync to External System Clock  
Direct connection between external clock and SYNC pin of master and slave.  
Direct VSHARE and ISHARE connections between master and slave.  
SYNC pin of master is configured as sync in by its MODE pin.  
Master and slave receive external system clock from SYNC pin. Their RT pin determine the sync point for  
clock phase shift.  
Copyright © 2018, Texas Instruments Incorporated  
19  
 
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
Master  
Slave  
VSHARE  
ISHARE  
VSHARE  
ISHARE  
MODE  
MODE  
34.8 k  
51.1 k  
Open  
RT  
RT  
SYNC  
SYNC  
0 k  
Sync Point  
Sync Point  
System Clock  
Figure 20. 2-Phase Stackable with 180° Phase Shift: Master and Slave Sync to External System Clock  
8.4.11 Operation Mode  
The operation mode and API/body brake feature is set by the MODE pin. They are selected by the resistor  
connected from MODE pin to GND. Mode pin sets the device to be stand-alone mode or stackable mode. In  
stand-alone mode, MODE pin sets the API on/off or trigger point sensitivity of API (1× stands for most sensitive  
and 4× stands for least sensitive). In stackable mode, the MODE pin sets the device as master or slave, as well  
as SYNC pin function (sync in or sync out) of the master device.  
Table 5. MODE Pin-Strapping Selection  
CONTROL MODE  
SELECTION  
RESISTOR VALUE (kΩ) and API/BB  
API/BODY BRAKE  
NOTE  
Threshold(1)  
API OFF  
BB OFF  
Open  
API ON  
BB OFF  
15.4, API = 35 mV  
Standalone  
API/body brake  
Sync pin to receive clock  
RT pin to set frequency  
121, API = 15 mV, BB = 30 mV  
187, API = 25 mV, BB = 30 mV  
8.66, API = 35 mV, BB = 30 mV  
78.7, API = 45 mV, BB = 30 mV  
API ON  
BB ON  
(API Threshold Setting)  
Sync pin to send out clock  
RT pin to set frequency  
(Master sync out)  
(Master sync in)  
(Slave sync In)  
23.7  
34.8  
51.1  
API OFF  
BB OFF  
Sync pin to receive clock  
RT pin to set sync point  
Sync pin to receive clock  
RT pin to set sync point  
(1) The E48 series resistors with tolerance of 1% or less are recommended.  
8.4.12 API/Body Brake  
is a true fixed frequency converter. The major limitation for any fixed frequency converter is that during transient  
load step up, the converter needs to wait for the next clock cycle to response to the load change, depending on  
loop bandwidth design and the timing of load transient, this delay time could cause additional output voltage  
drop. implements a special circuitry to improve transient performance. During load step up, the converter senses  
both the speed and the amplitude of the output voltage change, if the output voltage change is fast and big  
enough, the converter will issue an additional PWM pulse before the next available clock cycle to stop output  
voltage from further dropping, thus reducing the undershoot voltage.  
20  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
During load step-down, implements a body-brake function, that turns off both high-side and lowside FET, and  
allows power to dissipate through the low-side body diode, reducing overshoot. This approach is very effective  
while having some impact on efficiency during transient. See Figure 21 and Figure 22.  
Vout œ API enabled  
Vout œ API disabled  
Vout œ Body Brake disabled  
Vout œ Body Brake enabled  
LOAD  
LOAD  
Switch Node  
Switch Node  
Figure 21. Undershoot Comparison with API ON/OFF  
Figure 22. Overshoot Comparison with Body Brake  
ON/OFF  
8.4.13 Sense and Overcurrent Protection  
8.4.13.1 Low-Side MOSFET Overcurrent Protection  
The utilizes ILIM pin to set the OCP level. The ILIM pin must be connected to AGND through the ILIM voltage  
setting resistor, RILIM. The ILIM terminal sources IILIM current, which is around 11.2 μA typically at room  
temperature, and the ILIM level is set to the OCP ILIM voltage VILIM as shown in Equation 2. In order to provide  
both good accuracy and cost effective solution, supports temperature compensated MOSFET RDS(on) sensing.  
VILIM mV = RILIM (kW) ì IILIM (mA)  
(
)
Consider RDS(on) variation vs VDD in calculation  
(2)  
Also, performs both positive and fixed negative inductor current limiting.  
The inductor current is monitored by the voltage between GND pin and SW pin during the OFF time. ILIM has  
1200 ppm/°C temperature slope to compensate the temperature dependency of the RDS(on). The GND pin is used  
as the positive current sensing node.  
The device has cycle-by-cycle over-current limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent ILIM level. VILIM sets the peak level of the inductor current. Thus, the load current at the overcurrent  
threshold, IOCP, can be calculated as shown in .  
IOCP = V  
(16 × RDS(on)) - I  
2
ILIM  
IND(ripple)  
V
(VIN - VOUT ) × VOUT  
1
ILIM  
=
-
16 × RDS(on) 2 × L × ƒSW  
×
V
IN  
where  
RDS(on) is the on-resistance of the low-side MOSFET.  
(3)  
Equation 3 is valid for VDD 5 V. Use 0.58 mΩ for RDS(on) in calculation, which is the pure on-resistance for  
current sense.  
Copyright © 2018, Texas Instruments Incorporated  
21  
 
 
 
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
If an overcurrent event is detected in a given switching cycle, the device increments an overcurrent counter.  
When the device detects three consecutive overcurrent (either high-side or low-side) events, the converter  
responds, entering continuous restart hiccup. In continuous hiccup mode, the device implements a 7 soft-start  
cycle timeout, followed by a normal soft-start attempt. When the overcurrent fault clears, normal operation  
resumes; otherwise, the device detects overcurrent and the process repeats.  
8.4.13.2 High-Side MOSFET Overcurrent Protection  
The device also implements a fixed high-side MOSFET overcurrent protection to limit peak current, and prevent  
inductor saturation in the event of a short circuit. The device detects an overcurrent event by sensing the voltage  
drop across the high-side MOSFET during ON state. If the peak current reaches the IHOSC level on any given  
cycle, the cycle terminates to prevent the current from increasing any further. High-side MOSFET overcurrent  
events are counted. If the devices detect three consecutive overcurrent events (high-side or low-side), the  
converter responds by entering continuous restart hiccup.  
8.4.14 Output Overvoltage and Undervoltage Protection  
The device includes both output overvoltage protection and output undervoltage protection capability. The  
devices compare the RSP pin voltage to internal selectable pre-set voltages. If the RSP voltage with respect to  
RSN voltage rises above the output overvoltage protection threshold, the device terminates normal switching and  
turns on the low-side MOSFET to discharge the output capacitor and prevent further increases in the output  
voltage. Then the device enters continuous restart hiccup.  
If the RSP pin voltage falls below the undervoltage protection level, after soft-start has completed, the device  
terminates normal switching and forces both the high-side and low-side MOSFETs off, then enters hiccup time-  
out delay prior to restart.  
8.4.15 Overtemperature Protection  
An internal temperature sensor protects the devices from thermal runaway. The internal thermal shutdown  
threshold, TSD, is fixed at 165°C typical. When the devices sense a temperature above TSD, power conversion  
stops until the sensed junction temperature falls by the thermal shutdown hysteresis amount; then, the device  
starts up again.  
8.4.16 RSP/RSN Remote Sense Function  
RSP and RSN pins are used for remote sensing purpose. In the case where feedback resistors are required for  
output voltage programming, the RSP pin should be connected to the mid-point of the resistor divider and the  
RSN pin should always be connected to the load return.  
When feedback resistors are not required as when the VSEL programs the output voltage set point, connect the  
RSP pin to the positive sensing point of the load and the RSN pin should always be connected to the load return.  
RSP and RSN pins are extremely high-impedance input terminals of the true differential remote sense amplifier.  
The feedback resistor divider should use resistor values much less than 100 kΩ. A simple rule of thumb is to use  
a 10-kΩ lower divider resistor and then size the upper resistor to achieve the desired ratio.  
22  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
TPS543C20  
TPS543C20  
2
1
RSN  
RSP  
2
1
RSN  
RSP  
BOOT  
5
BOOT  
5
Load  
Load  
+
+
Copyright ©2017, Texas Instruments Incorporated  
Copyright ©2017, Texas Instruments Incorporated  
Figure 23. Remote Sensing With Feedback Resistors  
Figure 24. Remote Sensing Without Feedback Resistors  
8.4.17 Current Sharing  
When devices operate in dual-phase stackable application, a current sharing loop maintains the current balance  
between devices. Both devices share the same internal control voltage through VSHARE pin. The sensed  
current in each phase is compared first in a current share block by connecting ISHARE pin of each device, then  
the error current is added into the internal loop. The resulting voltage is compared with the PWM ramp to  
generate the PWM pulse.  
8.4.18 Loss of Synchronization  
During sync clock condition, each individual converter will continuously compare current falling edge and  
previous falling edge, if current falling edge exceeded a 1us delay versus previous pulse, converter will declare a  
lost sync fault, and response by pulling down ISHARE to shut down all phases.  
Declare fault and take action  
Sync fault delay  
Switching  
pulses  
Tp  
Tp  
Tdelay  
Tp +  
Figure 25. Switching Response When Sync Clock Lost  
Copyright © 2018, Texas Instruments Incorporated  
23  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS543C20A device is a highly-integrated synchronous step-down DC/DC converter. The device is used to  
convert a higher DC input voltage to a lower DC output voltage, with a maximum output current of 40 A. Use the  
following design procedure to select key component values for this device.  
9.2 Typical Application: TPS543C20A Stand-alone Device  
PVIN  
EN  
EN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGOOD  
PGD  
SYNC  
VSEL  
SS  
RT  
Thermal Tab  
MODE  
RAMP  
+
-
Figure 26. 4.5-V to 16-V Input, 1-V Output, 40-A Converter  
24  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
9.2.1 Design Requirements  
For this design example, use the input parameters shown in Table 6.  
Table 6. Design Example Specifications  
PARAMETER  
Input voltage  
VIN(ripple) Input ripple voltage  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN  
4
12  
V
V
V
IOUT = A  
0.4  
VOUT  
Output voltage  
0.9  
Line regulation  
5 V VIN 16 V  
0 V IOUT A  
IOUT = A  
0.5%  
0.5%  
Load regulation  
VPP  
VOVER  
VUNDER  
IOUT  
tSS  
Output ripple voltage  
Transient response overshoot  
Transient response undershoot  
Output current  
20  
50  
mV  
mV  
mV  
A
ISTEP = 10 A  
ISTEP = 10A  
50  
5 V VIN 16 V  
VIN = 12 V  
35  
40  
Soft-start time  
4
ms  
A
IOC  
Overcurrent trip point(1)  
45  
η
Peak efficiency  
IOUT = A, VIN = 12 V, VDD = 5 V  
90%  
500  
fSW  
Switching frequency  
300  
700  
kHz  
(1) DC overcurrent level  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS543C20A device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Switching Frequency Selection  
Select a switching frequency for the TPS543C20A. There is a trade off between higher and lower switching  
frequencies. Higher switching frequencies may produce smaller solution size using lower valued inductors and  
smaller output capacitors compared to a power supply that switches at a lower frequency. However, the higher  
switching frequency causes extra switching losses, which decrease efficiency and impact thermal performance.  
In this design, a moderate switching frequency of 500 kHz achieves both a small solution size and a high  
efficiency operation is selected. The device supports continuous switching frequency programming; see  
Equation 4. additional considerations (internal ramp compensation) other than switching frequency need to be  
included.  
Copyright © 2018, Texas Instruments Incorporated  
25  
 
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
20 ´ 109  
500 ´103  
RRT  
=
- 2 ´  
= 39.5 kW  
500 ´103  
(4)  
2000  
In this case, a standard resistor value of 40.2 kΩ is selected.  
9.2.2.3 Inductor Selection  
To calculate the value of the output inductor (L), use Equation 5. The coefficient KIND represents the amount of  
inductor-ripple current relative to the maximum output current. The output capacitor filters the inductor-ripple  
current. Therefore, selecting a high inductor-ripple current impacts the selection of the output capacitor because  
the output capacitor must have a ripple-current rating equal to or greater than the inductor-ripple current.  
Generally, the KIND must be kept between 0.1 and 0.3 for balanced performance. Using this target ripple current,  
the required inductor size can be calculated as shown in .  
VOUT  
IN ´ ƒSW  
V
IN - VOUT  
1 V ´ (12 V - 1V)  
L =  
-
=
= 458 nH  
V
I
OUT ´KIND  
12 V ´ 500 kHz ´ 40 A ´ 0.1  
(5)  
A standard inductor value of 470 nH is selected. For this application, Wurth 744309047 was used from the web-  
orderable EVM.  
9.2.2.4 Input Capacitor Selection  
The TPS543C20A devices require a high-quality, ceramic, type X5R or X7R, input decoupling capacitor with a  
value of at least 1 μF of effective capacitance on the VDD pin, relative to AGND. The power stage input  
decoupling capacitance (effective capacitance at the PVIN and PGND pins) must be sufficient to supply the high  
switching currents demanded when the high-side MOSFET switches on, while providing minimal input voltage  
ripple as a result. This effective capacitance includes any DC bias effects. The voltage rating of the input  
capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating  
greater than the maximum input current ripple to the device during full load. The input ripple current can be  
calculated using Equation 6.  
V -V  
VOUT  
(
)
IN OUT  
ICIN(rms) = IOUT(max)  
´
´
= 16 Arms  
V
V
IN  
IN  
(6)  
The minimum input capacitance and ESR values for a given input voltage ripple specification, VIN(ripple), are  
shown in Equation 7 and Equation 8. The input ripple is composed of a capacitive portion, VRIPPLE(cap), and a  
resistive portion, VRIPPLE(esr)  
.
IOUT (max ) × VOUT  
CIN(min )  
=
= 38.5 JF  
VRIPPLE  
× V  
× f  
;
IN max SW  
:
cap  
;
:
(7)  
(8)  
VRIPPLE(ESR)  
ESRCIN (max )  
=
= 7 m3  
IRIPPLE  
IOUT max + @  
A
:
;
2
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The input capacitor  
must also be selected with the DC bias taken into account. For this example design, a ceramic capacitor with at  
least a 25-V voltage rating is required to support the maximum input voltage. For this design, allow 0.1-V input  
ripple for VRIPPLE(cap), and 0.3-V input ripple for VRIPPLE(esr). Using Equation 7 and Equation 8, the minimum input  
capacitance for this design is 38.5 µF, and the maximum ESR is 9.4 mΩ. For this example, four 22-μF, 25-V  
ceramic capacitors and one additional 100-μF, 25-V low-ESR polymer capacitors in parallel were selected for the  
power stage.  
9.2.2.5 Bootstrap Capacitor Selection  
A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper  
operation. It is recommended to use a ceramic capacitor with X5R or better grade dielectric. Use a capacitor with  
a voltage rating of 25 V or higher.  
26  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
9.2.2.6 BP Pin  
Bypass the BP pin to GND with 4.7-µF of capacitance. In order for the regulator to function properly, it is  
important that these capacitors be localized to the TPS543C20A , with low-impedance return paths. See Power  
Good and Enable section for more information.  
9.2.2.7 R-C Snubber and VIN Pin High-Frequency Bypass  
Though it is possible to operate the TPS543C20A within absolute maximum ratings without ringing reduction  
techniques, some designs may require external components to further reduce ringing levels. This example uses  
two approaches: a high frequency power stage bypass capacitor on the VIN pins, and an R-C snubber between  
the SW area and GND.  
The high-frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimizes the  
outboard parasitic inductances in the power stage, which store energy during the low-side MOSFET on-time, and  
discharge once the high-side MOSFET is turned on. For this example twin 2.2-nF, 25-V, 0603-sized high-  
frequency capacitors are used. The placement of these capacitors is critical to its effectiveness.  
Additionally, an R-C snubber circuit is added to this example. To balance efficiency and spike levels, a 1-nF  
capacitor and a 1-Ω resistor are chosen. In this example a 0805-sized resistor is chosen, which is rated for 0.125  
W, nearly twice the estimated power dissipation. See SLUP100 for more information about snubber circuits.  
9.2.2.8 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
affects three criteria:  
Stability  
Regulator response to a change in load current or load transient  
Output voltage ripple  
These three considerations are important when designing regulators that must operate where the electrical  
conditions are unpredictable. The output capacitance needs to be selected based on the most stringent of these  
three criteria.  
9.2.2.8.1 Response to a Load Transient  
The output capacitance must supply the load with the required current when current is not immediately provided  
by the regulator. When the output capacitor supplies load current, the impedance of the capacitor greatly affects  
the magnitude of voltage deviation (such as undershoot and overshoot) during the transient.  
Use Equation 9 and Equation 10 to estimate the amount of capacitance needed for a given dynamic load step  
and release.  
NOTE  
There are other factors that can impact the amount of output capacitance for a specific  
design, such as ripple and stability.  
Copyright © 2018, Texas Instruments Incorporated  
27  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
2
L ´ DILOAD(max)  
DILOAD(max) ´ 1- D ´ t  
SW  
(
)
DVLOAD(INSERT)  
COUT(min_under)  
=
+
2 ´ DVLOAD(INSERT) ´ (V -VVOUT  
)
IN  
(9)  
2
LOUT  
´
DI  
LOAD(max)  
(
)
2 ´ DVLOAD(release) × VOUT  
COUT(min_over)  
=
where  
COUT(min_under) is the minimum output capacitance to meet the undershoot requirement  
COUT(min_over)is the minimum output capacitance to meet the overshoot requirement  
D is the duty cycle  
L is the output inductance value (0.47 µH)  
ILOAD(max) is the maximum transient step (10 A)  
VOUT is the output voltage value (900 mV)  
tSW is the switching period (2 µs)  
VIN is the minimum input voltage for the design (12 V)  
VLOAD(insert) is the undershoot requirement (50 mV)  
VLOAD(release) is the overshoot requirement (50 mV)  
(10)  
This example uses a combination of POSCAP and MLCC capacitors to meet the overshoot requirement.  
POSCAP bank #1: 2 × 330 µF, 2.5 V, 3 mΩ per capacitor  
MLCC bank #2: 3 × 100 µF, 6.3 V, 1 mΩ per capacitor  
9.2.2.8.2 Ramp Selection Design to Ensure Stability  
Certain criteria is recommended for to achieve optimized loop stability, bandwidth and switching jitter  
performance. As a rule of thumb, the internal ramp voltage should be 2~4 times bigger than the output capacitor  
ripple(capacitive ripple only). is defined to be ease-of-use, for most applications, TI recommends ramp resistor to  
be 187 kΩ to achieve the optimized jitter and loop response. For detailed design procedure, see the  
WEBENCH® Power Designer.  
28  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
9.2.3 Application Curves  
Figure 27. Transient Response of 0.9-V Output at 12-VIN  
,
Figure 28. Output Ripple and SW Node of 0.9-V Output at  
12-VIN, -A Output  
Transient is 15 A to 25 A to 15 A,  
the Step is 10 A at 40 A/μs  
Figure 30. Start up from Control, 0.9-V Output at 12-VIN  
,
Figure 29. Output Ripple and SW Node of 0.9-V Output at  
12-VIN, 0-A Output  
10-mA Output  
Figure 31. 0.5-V Prebias start up from Control, 0.9-V  
Output at 12-VIN, 20-A Output  
Figure 32. Output Voltage Start-up and Shutdown, 0.9-V  
Output at 12-VIN, 0.5-A Output  
Copyright © 2018, Texas Instruments Incorporated  
29  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
9.3 System Example  
9.3.1 Two-Phase Stackable  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
RAMP  
MODE  
RT  
SS  
Slave  
VSEL  
SYNC  
PGD  
EN  
LOAD  
PVIN  
+
œ
EN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGD  
SYNC  
VSEL  
SS  
Master  
RT  
Thermal Tab  
MODE  
RAMP  
Figure 33. 2-Phase Stackable  
See Synchronization and Stackable Configuration section.  
30  
Copyright © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
System Example (continued)  
9.3.1.1 Application Curves  
Figure 35. Transient Response of 25-A to 50-A Load  
Figure 34. Transient Response of 0.9-V Output at 12 VIN  
,
Transient is 25 A to 50 A, Step is 25 A at 30 A/μs  
at 30 A/μs Rise  
Figure 36. Transient Response of 50-A to 25-A Load  
Figure 37. Output Ripple and SW Node  
of 0.9-V Output at 12 VIN, -A Output  
at 30 A/μs Fall  
Figure 39. Start up from Enable,  
0.9-V Output at 12 VIN, 80-A Output  
Figure 38. Output Ripple and SW Node  
of 0.9-V Output at 12 VIN, 0-A Output  
Copyright © 2018, Texas Instruments Incorporated  
31  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
System Example (continued)  
Figure 40. 0.6-V Pre-Bias Start Up From Enable,  
0.9-V Output at 12 VIN, 0-A Output  
Figure 41. Output Voltage Start-up and Shutdown,  
0.9-V Output at 12 VIN, 5-A Output  
Figure 42. Master-Slave 180° Synchronization  
10 Power Supply Recommendations  
This device is designed to operate from an input voltage supply between 4 V and 16 V. Ensure the supply is well  
regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance, as is  
the quality of the PCB layout and grounding scheme. See the recommendations in Layout.  
32  
版权 © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
11 Layout  
11.1 Layout Guidelines  
It is absolutely critical that all GND pins, including AGND (pin 29), GND (pin 27), and PGND (pins 13, 14, 15,  
16, 17, 18, 19, and 20) are connected directly to the thermal pad underneath the device via traces or plane.  
The number of thermal vias needed to support 40-A thermal operation should be as many as possible; in the  
EVM design orderable on the Web, a total of 23 thermal vias are used. The TPS543C20EVM-799 is available  
for purchase at ti.com.  
Place the power components (including input/output capacitors, output inductor, and TPS543C20 device) on  
one side of the PCB (solder side). At least one or two innner layers/planes must be inserted, connecting to  
power ground, in order to shield and isolate the small signal traces from noisy power lines.  
Place the VIN decoupling capacitors as close to the PVIN and PGND as possible to minimize the input AC  
current loop. The high frequency decoupling capacitor (1 nF to 0.1 µF) should be placed next to the PVIN pin  
and PGND pin as close as the spacing rule allows. This helps surpressing the switch node ringing.  
Place a 10-nF to 100-nF capacitor close to IC from Pin 25 VIN to Pin 27 GND.  
Place VDD and BP decoupling capacitors as close to the device pins as possible. Do not use PVIN plane  
connection for VDD. VDD needs to be tapped off from PVIN with separate trace connection. Ensure to  
provide GND vias for each decoupling capacitor and make the loop as small as possible.  
The PCB trace defined as switch node, which connects the SW pins and up-stream of the output inductor  
should be as short and wide as possible. In web orderable EVM design, the SW trace width is 400 mil. Use  
separate via or trace to connect SW node to snubber and bootstrap capacitor. Do not combine these  
connections.  
All sensitive analog traces and components such as RAMP, RSP, RSN, ILIM, MODE, VSEL and RT should  
be placed away from any high voltage switch node (itself and others), such as SW and BOOT to avoid noise  
coupling. In addition, MODE, VSEL, ILIM, RAMP and RT programming resistors should be placed near the  
device/pins.  
The RSP and RSN pins operate as inputs to a differential remote sense amplifier that operates with very high  
impedance. It is essential to route the RSP and RSN pins as a pair of diff-traces in Kelvin-sense fashion.  
Route them directly to either the load sense points (+ and –) or the output bulk capacitors. The internal circuit  
uses the RSP pin for on-time adjustment. It is critical to tie the RSP pin directly tied to VOUT (load sense  
point) for accurate output voltage result.  
Use caution when routing of the SYNC, VSHARE and ISHARE traces for 2-phase configurations. The SYNC  
trace carries a rail-to-rail signal and should be routed away from sensitive analog signals, including the  
VSHARE, ISHARE, RT, and FB signals. The VSHARE and ISHARE traces should also be kept away from  
fast switching voltages or currents formed by the PVIN, AVIN, SW, BOOT, and BP pins.  
版权 © 2018, Texas Instruments Incorporated  
33  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
11.2 Layout Example  
Place PVIN bypass  
Bypass for internal regulators  
BP, VDD. Use multiple vias  
to reduce parasitic  
capacitors as close as  
possible to IC, with best  
high frequency capacitor  
closest to PVIN/PGND pins  
inductance.  
10nF to 100nF  
at pin 25 and  
27  
EN  
Signal  
PVIN  
10nF to  
100nF at  
pin 20 and  
21  
Internal AGND  
Plane to reduce  
the BP bypass  
parasitics.  
PGND  
Kelvin Connect to  
IC RSP and RSN  
pins  
EN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
Connect GND to  
Thermal Pad  
Connect AGND to  
Thermal Pad  
PGD  
SYNC  
Thermal Pad  
VSEL  
SS  
RSN  
RT  
MODE  
RAMP  
RSNSœ  
Place best high  
frequency output  
capacitor between  
AGND and GND  
are only  
connected  
together on  
Thermal Pad.  
sense point  
AGND  
RSNS+  
CBOOT  
RBOOT  
Optional RC  
Snubber, tight  
loop around  
RSP  
VOUT  
pin 12 and 13  
Sense point  
should be  
directly at the  
load  
L1  
Minimize SW  
For best efficiency, use a heavy  
weight copper and place these  
planes on multiple PCB layers  
area for least  
noise. Keep  
sensitive  
traces away  
from SW and  
BOOT on all  
layers  
43. Example Layout  
34  
版权 © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
11.3 Package Size, Efficiency and Thermal Performance  
The TPS543C20A device is available in a 5 mm × 7 mm, QFN package with 40 power and I/O pins. It employs  
TI proprietary MCM packaging technology with thermal pad. With a properly designed system layout, applications  
achieve optimized safe operating area (SOA) performance. The curves shown in and are based on the orderable  
evaluation module design.  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
40  
40  
30  
30  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
Output Current (A)  
D012  
D011  
VIN = 12 V  
VOUT = 5 V  
44. Safe Operating Area  
500 kHz  
VIN = 12 V  
VOUT = 1 V  
45. Safe Operating Area  
500 kHz  
46. Thermal Image at 1.0-V Output at 12 VIN, 40-A Output, at 25°C Ambient  
版权 © 2018, Texas Instruments Incorporated  
35  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
Package Size, Efficiency and Thermal Performance (接下页)  
tP  
TP  
TL  
TS(max)  
TS(min)  
tL  
rRAMP(up)  
rRAMP(down)  
tS  
t25P  
Time (s)  
25  
47. Recommended Reflow Oven Thermal Profile  
7. Recommended Thermal Profile Parameters  
PARAMETER  
MIN  
TYP  
MAX UNIT  
RAMP UP AND RAMP DOWN  
rRAMP(up)  
Average ramp-up rate, TS(MAX) to TP  
3
6
°C/s  
°C/s  
rRAMP(down) Average ramp-down rate, TP to TS(MAX)  
PRE-HEAT  
TS  
Pre-heat temperature  
150  
60  
200  
180  
°C  
s
tS  
Pre-heat time, TS(min) to TS(max)  
REFLOW  
TL  
TP  
tL  
Liquidus temperature  
217  
°C  
°C  
s
Peak temperature  
260  
150  
40  
Time maintained above liquidus temperature, TL  
Time maintained within 5°C of peak temperature, TP  
Total time from 25°C of peak temperature, TP  
60  
20  
tP  
s
t25P  
480  
s
36  
版权 © 2018, Texas Instruments Incorporated  
TPS543C20A  
www.ti.com.cn  
ZHCSJ36 NOVEMBER 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS543C20A 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
12.1.2 文档支持  
12.1.2.1 相关文档  
请参阅如下相关文档:  
TPS543C20A 40A 单相同步降压转换器》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
NexFET, PowerStack, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018, Texas Instruments Incorporated  
37  
TPS543C20A  
ZHCSJ36 NOVEMBER 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
38  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS543C20ARVFR  
ACTIVE  
LQFN-CLIP  
RVF  
40  
2500  
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
-40 to 125  
TPS543C20A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS543C20ARVFR  
LQFN-  
CLIP  
RVF  
40  
2500  
330.0  
16.4  
5.3  
7.3  
1.8  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
LQFN-CLIP RVF 40  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
TPS543C20ARVFR  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
7.1  
6.9  
C
1.52  
1.32  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.3 0.1  
EXPOSED  
THERMAL PAD  
36X 0.5  
13  
20  
12  
21  
41  
SYMM  
2X  
5.3 0.1  
5.5  
32  
1
0.3  
40X  
0.2  
40  
33  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
40X  
4222989/B 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.3)  
6X (1.4)  
40  
33  
40X (0.6)  
1
32  
40X (0.25)  
2X  
(1.12)  
36X (0.5)  
6X  
(1.28)  
(6.8)  
(5.3)  
41  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
12  
21  
13  
20  
SYMM  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222989/B 10/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.815) TYP  
40  
33  
40X (0.6)  
1
41  
32  
40X (0.25)  
(1.28)  
TYP  
36X (0.5)  
(0.64)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
8X  
(1.08)  
12  
21  
METAL  
TYP  
20  
13  
8X (1.43)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222989/B 10/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54418

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418A

2.95V 至 6V 输入 4A SWIFT™ 同步降压转换器
TI

TPS54418ARTER

2.95V 至 6V 输入 4A SWIFT™ 同步降压转换器 | RTE | 16 | -40 to 150
TI

TPS54418ARTET

暂无描述
TI

TPS54418RTE

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418RTER

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418RTET

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418_10

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418_101

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418_17

2.95-V to 6-V Input, 4-A Output, 2-MHz , Synchronous Step-Down Switcher With Integrated FETs (SWIFT)
TI

TPS54424

4.5V 至 17V 输入、电流模式、4A SWIFT™ 同步降压转换器
TI

TPS54424RNVR

4.5V 至 17V 输入、电流模式、4A SWIFT™ 同步降压转换器 | RNV | 18 | -40 to 150
TI