TPS54424 [TI]

4.5V 至 17V 输入、电流模式、4A SWIFT™ 同步降压转换器;
TPS54424
型号: TPS54424
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 17V 输入、电流模式、4A SWIFT™ 同步降压转换器

转换器
文件: 总41页 (文件大小:2102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS54424  
ZHCSGK1 JULY 2017  
具有电流模式控制的 TPS54424 4.5V 17V 输入、4A 同步 SWIFT™ 降  
压转换器  
1 特性  
3 说明  
1
小型 3.5mm x 3.5mm HotRod™四方扁平无引线  
(QFN) 封装  
TPS54424 是一款全功能 17V4A 同步降压直流/直流  
转换器,采用了 3.5mm x 3.5mm HotRod™QFN 封  
装。  
集成的 14.1m6.1mMOSFET  
峰值电流模式控制,提供快速瞬态响应  
200kHz 1.6MHz 的固定开关频率  
与外部时钟同步  
该器件专门进行了优化,具有高效率并集成了高侧和低  
MOSFET,适用于小型解决方案。它还通过使用峰  
值电流模式控制(可减少组件数量)并选择高开关频率  
(缩小电感器尺寸)进一步节省了空间。  
0.6V 电压基准,在广泛的温度范围内提供 ±0.85%  
的精度  
输出电压范围:0.6V 12V  
断续电流限制  
峰值电流模式控制简化了环路补偿并可提供快速瞬态响  
应。在器件过载的情况下,针对高侧和低侧拉电流限制  
的逐周期峰值电流限制功能可保护器件。断续模式可在  
短路或者过载故障持续存在的情况下限制 MOSFET 功  
率损耗。  
安全启动至预偏置输出电压  
可调软启动和电源排序  
可调节输入欠压锁定  
3µA 关断电流  
电源正常监控电路会对稳压器输出进行监控。PGOOD  
引脚是一个开漏输出,会在输出电压调节过程中进入高  
阻抗。除非出现故障,否则内部抗尖峰脉冲时间会阻止  
拉低 PGOOD 引脚。  
针对欠压及过压的电源良好输出监控  
输出过压保护  
非锁存热关断保护  
运行结温范围:-40°C 150°C  
使用 TPS54424 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
专用 EN 引脚可以用于控制稳压器开/关,并且调整输  
入欠压锁定。输出电压启动斜坡由 SS/TRK 引脚控  
制,该引脚既支持独立电源运行,又支持跟踪模式。  
2 应用  
器件信息(1)  
电信和无线基础设施  
器件型号  
TPS54424  
封装  
RNV (18)  
封装尺寸(标称值)  
测试和测量  
医疗成像设备  
企业交换  
3.50mm x 3.50mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
服务器  
简化电路原理图  
效率  
TPS54424  
BOOT  
CBT  
100  
95  
90  
85  
80  
75  
70  
65  
LO  
VOUT  
VIN  
VIN  
SW  
CI  
EN  
CO  
RFBT  
PGOOD  
SS/TRK  
RT/CLK  
COMP  
FB  
RFBB  
CSS  
AGND  
RC  
CZ  
RT  
60  
PGND  
5 V to 1.8 V, 700 kHz, 1.8 µH, 18 mW  
CP  
9 V to 1.8 V, 700 kHz, 1.8 µH, 18 mW  
55  
12 V to 1.8 V, 700 kHz, 1.8 µH, 18 mW  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Copyright © 2017, Texas Instruments Incorporated  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDV8  
 
 
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 23  
8.1 Application Information............................................ 23  
8.2 Typical Application ................................................. 23  
Power Supply Recommendations...................... 32  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Timing Requirements................................................ 7  
6.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
10 Layout................................................................... 32  
10.1 Layout Guidelines ................................................. 32  
10.2 Layout Example .................................................... 32  
10.3 Alternate Layout Example..................................... 34  
11 器件和文档支持 ..................................................... 35  
11.1 文档支持................................................................ 35  
11.2 接收文档更新通知 ................................................. 35  
11.3 社区资源................................................................ 35  
11.4 ....................................................................... 35  
11.5 静电放电警告......................................................... 35  
11.6 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 35  
7
4 修订历史记录  
日期  
修订版本  
注意  
2017 7 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
5 Pin Configuration and Functions  
RNV Package  
18-Pin VQFN-HR  
Top View  
Bottom View  
BOOT 1  
VIN 2  
12 AGND  
AGND 12  
1 BOOT  
2 VIN  
11 VIN  
VIN 11  
PGND 3  
PGND 4  
PGND 5  
10 PGND  
9 PGND  
8 PGND  
PGND 10  
PGND 9  
PGND 8  
3 PGND  
4 PGND  
5 PGND  
6
7
SW  
SW  
7
6
SW  
SW  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Floating supply voltage for high-side MOSFET gate drive circuit. Connect a 0.1-µF ceramic  
capacitor between BOOT and SW pins.  
BOOT  
1
I
I
Input voltage supply pin. Power for the internal circuit and the connection to drain of high-  
side MOSFET. Connect both pins to the input power source with a low impedance  
connection. Connect both pins and their neighboring PGND pins.  
VIN  
2, 11  
3, 4, 5, 8, 9,  
10  
PGND  
Ground return for low-side power MOSFET and its drivers.  
Switching node. Connected to the source of the high-side MOSFET and drain of the low-side  
MOSFET.  
SW  
6, 7  
12  
O
I
AGND  
RT/CLK  
FB  
Ground of internal analog circuitry. AGND must be connected to the PGND plane.  
Switching frequency setting pin. In RT mode, an external timing resistor adjusts the switching  
frequency. In CLK mode, the device synchronizes to an external clock input to this pin.  
13  
14  
I
Converter feedback input. Connect to the output voltage with a resistor divider.  
Error amplifier output and input to the PWM modulator. Connect loop compensation to this  
pin.  
COMP  
15  
I
Soft-start and tracking pin. Connecting an external capacitor sets the soft-start time. This pin  
can also be used for tracking and sequencing.  
SS/TRK  
EN  
16  
17  
18  
I
I
Enable pin. Float or pull high to enable the device. Connect a resistor divider to this pin to  
implement adjustable under voltage lockout and hysteresis.  
Open-drain power good indicator. It is asserted low if output voltage is outside if the PGOOD  
thresholds, VIN is low, EN is low, device is in thermal shutdown or device is in soft-start.  
PGOOD  
O
Copyright © 2017, Texas Instruments Incorporated  
3
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VIN  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
19  
27  
BOOT  
BOOT (10 ns transient)  
30  
Voltage  
BOOT (vs SW)  
7
V
SW  
20  
SW (10 ns transient)  
–3  
23  
EN, SS/TRK, PGOOD, RT/CLK, FB, COMP  
–0.3  
-40  
6.5  
150  
150  
Operating Junction Temperature Range, TJ  
Storage Temperature Range, TSTG  
°C  
°C  
-55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
Parameter  
MIN  
4.5  
NOM  
MAX  
17  
UNIT  
V
VIN  
Input voltage range  
Output Voltage  
VOUT  
IOUT  
TJ  
0.6  
12  
V
Output current  
4
A
Operating junction temperature  
-40  
150  
1600  
°C  
kHz  
fSW  
Switching Frequency (RT mode and PLL  
mode)  
200  
6.4 Thermal Information  
TPS54424  
THERMAL METRIC(1)  
RNV  
18 PINS  
57.1  
34  
UNIT  
ThetaJA  
ThetaJA  
ThetaJCtop  
ThetaJB  
PsiJT  
Junction-to-ambient thermal resistance JEDEC  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-ambient thermal resistance EVM  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.3  
18.8  
0.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
PsiJB  
18.8  
1.2  
ThetaJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = -40°C to 150°C, VIN = 4.5 V to 17 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE  
UVLO_rise  
UVLO_fall  
UVLO_hys  
Ivin  
V(VIN) rising  
V(VIN) falling  
4.1  
3.9  
0.2  
580  
3
4.3  
V
V
VIN under-voltage lockout  
3.7  
Hysteresis VIN voltage  
V(EN) = 5 V, V(FB) = 1.5 V  
V(EN) = 0 V  
V
Operating non-switching supply current  
Shutdown supply current  
800  
11  
µA  
µA  
Ivin_sdn  
ENABLE  
Ven_rise  
Ven_fall  
Ven_hys  
Ip  
V(EN) rising  
V(EN) falling  
1.20  
1.15  
50  
1.26  
V
V
EN threshold  
1.1  
EN pin threshold voltage hysteresis  
EN pin sourcing current  
mV  
µA  
µA  
µA  
V(EN) = 1.1V  
V(EN) = 1.3V  
1.2  
Iph  
EN pin sourcing current  
4.8  
Ih  
EN pin hysteresis current  
3.6  
FB  
TJ = 25°C  
596  
595  
600  
600  
604  
605  
mV  
mV  
VFB  
Regulated FB voltage  
ERROR AMPLIFIER  
gmea  
Error Amplifier Transconductance (gm)  
–2 µA < I(COMP) < 2 µA, V(COMP) = 1 V  
1100  
80  
µA/V  
dB  
Error Amplifier DC gain  
Icomp_src  
Icomp_snk  
gmps  
Error Amplifier source current  
Error Amplifier sink current  
Power Stage Transconductance  
V(FB) = 0 V  
V(FB) = 2 V  
100  
-100  
17  
µA  
µA  
A/V  
SOFT-START  
Iss  
Soft-start current  
5
µA  
V(SS/TRK) to V(FB) matching  
V(SS/TRK) = 0.4 V  
25  
mV  
Copyright © 2017, Texas Instruments Incorporated  
5
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = -40°C to 150°C, VIN = 4.5 V to 17 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MOSFET  
TA = 25°C, V(VIN) = 12 V  
14.1  
15.9  
6.1  
mΩ  
mΩ  
mΩ  
mΩ  
V
Rds(on)_h  
High-side switch resistance  
TA = 25°C, V(VIN) = 4.5 V, V(BOOT-SW) = 4.5 V  
TA = 25°C, V(VIN) = 12 V  
Rds(on)_l  
Low-side switch resistance  
BOOT UVLO Falling  
TA = 25°C, V(VIN) = 4.5 V  
6.9  
2.2  
2.6  
8.5  
7.3  
CURRENT LIMIT  
Ioc_HS_pk  
Ioc_LS_snk  
Ioc_LS_src  
RT/CLK  
High-side peak current limit  
Low-side sinking current limit  
Low-side sourcing current limit  
V(VIN) = 12 V  
V(VIN) = 12 V  
V(VIN) = 12 V  
5.6  
4.8  
2
6.8  
-3.4  
6.2  
A
A
A
VIH  
Logic high input voltage  
Logic low input voltage  
V
V
VIL  
0.8  
PGOOD  
V(FB) rising (fault)  
V(FB) falling (good)  
V(FB) rising (good)  
V(FB) falling (fault)  
108  
106  
91  
%
%
%
%
Power good threshold  
89  
Leakage current into PGOOD pin when  
pulled high  
Ipg_lkg  
V(PGOOD) = 5 V  
5
nA  
Vpg_low  
PGOOD voltage when pulled low  
Minimum VIN for valid output  
I(PGOOD) = 2 mA  
0.3  
1
V
V
V(PGOOD) < 0.5 V, I(PGOOD) = 4 mA  
0.7  
Thermal protection  
TTRIP  
Thermal protection trip point  
Thermal protection hysteresis  
Temperature Rising  
170  
15  
°C  
°C  
THYST  
6
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
6.6 Switching Characteristics  
TJ = -40°C to 150°C, V(VIN) = 4.5 V to 17 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN  
EN to start of switching  
135  
µs  
PGOOD  
Deglitch time PGOOD going high  
Deglitch time PGOOD going low  
272  
16  
Cycles  
Cycles  
SW  
Measured at 50% to 50% of VIN, L = 1.5 µH,  
IOUT = 0 A  
(1)  
ton_min  
Minimum on time  
90  
130  
0
ns  
ns  
(2)  
toff_min  
RT/CLK  
fsw_min  
Minimum off time  
V(BOOT-SW) 2.6 V  
Minimum switching frequency (RT mode)  
Switching frequency (RT mode)  
R(RT/CLK) = 250 kΩ  
R(RT/CLK) = 100 kΩ  
R(RT/CLK) = 30.1 kΩ  
200  
500  
1.6  
kHz  
kHz  
MHz  
450  
200  
550  
fsw_max  
fsw_clk  
Maximum switching frequency (RT mode)  
Switching frequency synchronization range  
(PLL mode)  
1600  
kHz  
ns  
RT/CLK falling edge to SW rising edge  
delay (PLL mode)  
Measure at 500kHz with RT resistor in  
series with RT/CLK  
70  
HICCUP  
Wait time before hiccup  
Hiccup time before restart  
512  
Cycles  
Cycles  
16384  
(1) Characterized. Not production tested.  
(2) Specified by design.  
6.7 Timing Requirements  
TJ = -40°C to 150°C, V(VIN) = 4.5 V to 17 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Minimum synchronization signal pulse width  
(PLL mode)  
35  
ns  
版权 © 2017, Texas Instruments Incorporated  
7
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
6.8 Typical Characteristics  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 9 V  
VIN = 12 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
fSW = 800 kHz  
L = 2.2 µH  
Output Current (A)  
fSW = 700 kHz  
L = 2.2 µH  
D002  
D003  
VOUT = 5 V  
TA = 25 °C  
VOUT = 3.3 V  
TA = 25 °C  
WE 744311220  
DCR = 11.4 mΩ  
WE 744311220  
DCR = 11.4 mΩ  
1. Efficiency for 5 V Output  
2. Efficiency for 3.3 V Output  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
fSW = 700 kHz  
L = 2.2 µH  
Output Current (A)  
fSW = 700 kHz  
L = 1.8 µH  
D004  
D006  
VOUT = 2.5 V  
TA = 25 °C  
VOUT = 1.5 V  
TA = 25 °C  
WE 744311220  
DCR = 11.4 mΩ  
WE 74438357018  
DCR = 18 mΩ  
3. Efficiency for 2.5 V Output  
4. Efficiency for 1.5 V Output  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 5 V, fSW = 600 kHz  
VIN = 9 V, fSW = 600 kHz  
VIN = 12 V, fSW = 500 kHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
fSW = 600 kHz  
L = 1.2 µH  
Output Current (A)  
D007  
D008  
VOUT = 1.2 V  
TA = 25 °C  
VOUT = 1.0 V  
TA = 25 °C  
TA = 25 °C  
WE 74438357012  
DCR = 13.4 mΩ  
WE 74438357012  
L = 1.2 µH  
DCR = 13.4 mΩ  
5. Efficiency for 1.2 V Output  
6. Efficiency for 1.0 V Output  
8
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
Typical Characteristics (接下页)  
620  
10  
9
8
7
6
5
4
3
2
1
0
VIN = 4.5 V  
VIN = 12 V  
VIN = 17 V  
VIN = 4.5 V  
VIN = 12 V  
VIN = 17 V  
610  
600  
590  
580  
570  
560  
550  
540  
530  
520  
510  
500  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (  
èC)  
Junction Temperature (èC)  
D005  
D006  
V(EN) = 5 V  
V(FB) = 0.8 V  
V(EN) = 0.4 V  
7. VIN Pin Nonswitching Supply Current vs Junction  
8. VIN Pin Shutdown Current vs Junction Temperature  
Temperature  
1.22  
6
5.5  
5
1.21  
1.2  
4.5  
4
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
3.5  
3
2.5  
2
V(EN) = 1.1 V  
V(EN) = 1.3 V  
1.5  
1
EN Rising  
EN Falling  
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D007  
D0087  
9. EN Pin Voltage Threshold vs Junction Temperature  
10. EN Pin Current vs Junction Temperature  
0.605  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
High-side, V(BOOT-SW) = 4.5 V  
High-side, V(VIN) = 12 V  
Low-side, V(VIN) = 4.5 V  
Low-side, V(VIN) = 12 V  
0.604  
0.603  
0.602  
0.601  
0.6  
0.599  
0.598  
0.597  
0.596  
0.595  
6
4
2
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (  
è
C)  
Junction Temperature (èC)  
D009  
D010  
11. Regulated FB Voltage vs Junction Temperature  
12. MOSFET Rds(on) vs Junction Temperature  
版权 © 2017, Texas Instruments Incorporated  
9
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
950  
19  
18  
17  
16  
15  
14  
13  
12  
900  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Ambient Temperature (èC)  
D011  
D009  
13. Error Amplifier Transconductance vs Junction  
14. COMP to SW Transconductance vs Junction  
Temperature  
Temperature  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
5.3  
5.25  
5.2  
5.15  
5.1  
5.05  
5
4.95  
4.9  
4.85  
4.8  
4.75  
4.7  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D013  
D014  
V(SS/TRK) = 0.4 V  
15. SS/TRK Current vs Junction Temperature  
16. SS/TRK to FB Offset vs Junction Temperature  
8
0.7  
0.65  
0.6  
VIN = 4.5 V  
VIN = 12 V  
VIN = 17 V  
7.75  
7.5  
7.25  
7
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
6.75  
6.5  
6.25  
6
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
V(SS/TRK) (V)  
Junction Temperature (èC)  
D022  
D010  
17. FB voltage vs SS/TRK Voltage  
18. High-side Peak Current Limit vs Junction  
Temperature  
10  
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
Typical Characteristics (接下页)  
110  
108  
106  
104  
102  
100  
98  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V(FB) falling (fault)  
V(FB) rising (good)  
V(FB) rising (fault)  
V(FB) falling (good)  
96  
94  
92  
90  
88  
86  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D016  
D017  
V(FB) = 0.6 V  
V(PGOOD) = 5 V  
19. PGOOD Thresholds vs Junction Temperature  
20. PGOOD Leakage Current vs Junction Temperature  
110  
105  
100  
95  
520  
515  
510  
505  
500  
495  
490  
485  
480  
90  
85  
80  
75  
70  
IOUT = 0 A  
IOUT = 0.1 A  
IOUT = 0.5 A  
65  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
Junction Temperature (èC)  
D020  
D011  
R(RT/CLK) = 100 kΩ  
VIN = 12 V  
L = 1.5 µH  
22. Switching Frequency vs Junction Temperature (500  
21. Minimum on-time vs Ambient Temperature  
kHz)  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
1660  
1650  
1640  
1630  
1620  
1610  
1600  
1590  
1580  
1570  
1560  
1550  
1540  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
80  
100 120 140 160 180 200 220 240 260  
Junction Temperature (èC)  
R(RT/CLK) (kW)  
D021  
D023  
R(RT/CLK) = 30.1 kΩ  
23. Switching Frequency vs Junction Temperature (1600  
24. Switching Frequency vs RT/CLK Resistor (Low  
kHz)  
Range)  
版权 © 2017, Texas Instruments Incorporated  
11  
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
25 30 35 40 45 50 55 60 65 70 75 80 85  
R(RT/CLK) (kW)  
D024  
25. Switching Frequency vs RT/CLK Resistor (High Range)  
12  
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
7 Detailed Description  
7.1 Overview  
The TPS54424 is a 17-V, 4-A, synchronous step-down (buck) converter with two integrated n-channel  
MOSFETs. To improve performance during line and load transients the device implements a constant frequency,  
peak current mode control which also simplifies external frequency compensation. The wide switching frequency  
of 200 kHz to 1600 kHz allows for efficiency and size optimization when selecting the output filter components.  
The switching frequency is adjusted using a resistor to ground on the RT/CLK pin. The TPS54424 also has an  
internal phase lock loop (PLL) connected to the RT/CLK pin that can be used to synchronize the switching cycle  
to the falling edge of an external system clock.  
The integrated MOSFETs allow for high efficiency power supply designs with continuous output currents up to 4  
amperes. The MOSFETs have been sized to optimize efficiency for lower duty cycle applications. The device  
reduces the external component count by integrating a bootstrap recharge circuit. The bias voltage for the  
integrated high-side MOSFET is supplied by a capacitor between the BOOT and SW pins. The BOOT capacitor  
voltage is monitored by a BOOT to SW UVLO (BOOT-SW UVLO) circuit allowing SW pin to be pulled low to  
recharge the BOOT capacitor. The device can operate at 100% duty cycle as long as the BOOT capacitor  
voltage is higher than the preset BOOT-SW UVLO threshold which is typically 2.2 V.  
The TPS54424 has been designed for safe monotonic startup into pre-biased loads. The default start up is when  
VIN is typically 4.1 V. The EN pin has an internal pull-up current source that can be used to adjust the input  
voltage under voltage lockout (UVLO) with two external resistors. In addition, the internal pull-up current of the  
EN pin allows the device to operate with the EN pin floating. The operating current for the TPS54424 is typically  
580 μA when not switching and under no load. When the device is disabled, the supply current is typically 3 μA.  
The SS/TRK (soft start/tracking) pin is used to minimize inrush currents or provide power supply sequencing  
during power up. A small value capacitor or resistor divider should be coupled to the pin for soft start or critical  
power supply sequencing requirements. The output voltage can be stepped down to as low as the 0.6 V voltage  
reference (VREF). The device has a power good comparator (PGOOD) with hysteresis which monitors the output  
voltage through the FB pin. The PGOOD pin is an open drain MOSFET which is pulled low when the FB pin  
voltage is less than 89% or greater than 108% of the reference voltage VREF and asserts high when the FB pin  
voltage is 91% to 106% of VREF  
.
The device is protected from output overvoltage, overload and thermal fault conditions. The device minimizes  
excessive output overvoltage transients by taking advantage of the overvoltage circuit power good comparator.  
When the overvoltage comparator is activated, the high-side MOSFET is turned off and prevented from turning  
on until the FB pin voltage is lower than 106% of the VREF. The device implements both high-side MOSFET over  
current protection and bidirectional low-side MOSFET over current protections which help control the inductor  
current and avoid current runaway. The device also shuts down if the junction temperature is higher than thermal  
shutdown trip point. The device is restarted under control of the soft start circuit automatically when the junction  
temperature drops 15°C typically below the thermal shutdown trip point.  
版权 © 2017, Texas Instruments Incorporated  
13  
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
7.2 Functional Block Diagram  
PGOOD  
EN  
VIN  
Thermal  
Shutdown  
UVLO  
Shutdown  
Enable  
Comparator  
Ip  
Ih  
Shutdown  
Shutdown  
Logic  
UV  
Logic  
Hiccup  
Shutdown  
Enable  
Threshold  
OV  
BOOT  
Charge  
Minimum  
Clamp  
Pulse Skip  
Current  
Sense  
ERROR  
AMPLIFIER  
FB  
BOOT  
Boot  
UVLO  
SS/TRK  
HS MOSFET  
Current  
Comparator  
Voltage  
Reference  
Power Stage  
& Deadtime  
Control  
SW  
Logic  
Slope  
Compensation  
VIN  
Regulator  
Hiccup  
Shutdown  
LS  
Oscillator  
with PLL  
Maximum  
Clamp  
Overload  
Recovery  
MOSFET  
Current  
Limit  
Current  
Sense  
PGND  
COMP  
RT/CLK  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Fixed Frequency PWM Control  
The device uses an adjustable fixed frequency, peak current mode control. The output voltage is compared  
through external resistors on the FB pin to an internal voltage reference by an error amplifier which drives the  
COMP pin. An internal oscillator initiates the turn on of the high-side power switch. The error amplifier output is  
converted into a current reference which compares to the high-side power switch current. When the power switch  
current reaches current reference generated by the COMP voltage level the high-side power switch is turned off  
and the low-side power switch is turned on.  
The device adds an internal slope compensation ramp to prevent subharmonic oscillations. The peak inductor  
current limit remains constant over the full duty cycle range.  
7.3.2 Continuous Conduction Mode Operation (CCM)  
As a synchronous buck converter, the device works in CCM (Continuous Conduction Mode) under all load  
conditions.  
14  
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
Feature Description (接下页)  
7.3.3 VIN Pins and VIN UVLO  
The VIN pin voltage supplies the internal control circuits of the device and provides the input voltage to the power  
converter system. The input voltage for VIN can range from 4.5 V to 17 V. The device implements internal UVLO  
circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO  
threshold. The internal VIN UVLO threshold has a hysteresis of 200 mV. A voltage divider connected to the EN  
pin can adjust the input voltage UVLO appropriately. See Enable and Adjustable UVLO for more details.  
7.3.4 Voltage Reference and Adjusting the Output Voltage  
The voltage reference system produces a precise ±0.85%, 0.6 V voltage reference over temperature by scaling  
the output of a temperature stable band gap circuit. The output voltage is set with a resistor divider from the  
output (VOUT) to the FB pin shown in 26. It is recommended to use 1% tolerance or better divider resistors.  
Start with a fixed value for the bottom resistor in the divider, typically 10 kΩ, then use 公式 1 to calculate the top  
resistor in the divider. To improve efficiency at light loads consider using larger value resistors. If the values are  
too high the regulator is more susceptible to noise and voltage errors from the FB input current are noticeable.  
The minimum output voltage and maximum output voltage can be limited by the minimum on time of the high  
side MOSFET and bootstrap voltage (BOOT-SW voltage) respectively.  
VOUT  
TPS54424  
RFBT  
FB  
+
0.6 V  
RFBB  
Copyright © 2017, Texas Instruments Incorporated  
26. FB Resistor Divider  
«
VOUT  
VREF  
RFBT = RFBB  
ì
-1  
÷
(1)  
7.3.5 Error Amplifier  
The device uses a transconductance error amplifier. The error amplifier compares the FB pin voltage to the lower  
of the SS/TRK pin voltage or the internal 0.6-V voltage reference. The transconductance of the error amplifier is  
1100 μA/V. The frequency compensation network is connected between the COMP pin and ground.  
When operating at current limit the COMP pin voltage is clamped to a maximum level to improve response when  
the load current decreases. When FB is greater than the internal voltage reference or SS/TRK the COMP pin  
voltage is clamped to a minimum level and the devices enters a high-side skip mode.  
7.3.6 Enable and Adjustable UVLO  
The EN pin provides on/off control of the device. Once the EN pin voltage exceeds its threshold voltage, the  
device starts operation. If the EN pin voltage is pulled below the threshold voltage, the regulator stops switching  
and enters low operating current state. The EN pin has an internal pull-up current source, Ip, allowing the user to  
float the EN pin for enabling the device. If an application requires controlling the EN pin, an open drain or open  
collector output logic can be interfaced with the pin.  
版权 © 2017, Texas Instruments Incorporated  
15  
 
 
 
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
Feature Description (接下页)  
An external resistor divider can be added from VIN to the EN pin for adjustable UVLO and hysteresis as shown  
in 27. The EN pin has a small pull-up current Ip which sets the default state of the pin to enable when no  
external components are connected. The pull-up current is also used to control the voltage hysteresis for the  
UVLO function since it increases by Ih once the EN pin crosses the enable threshold. The UVLO thresholds can  
be calculated using 公式 2 and 公式 3. When using the adjustable UVLO function, 500 mV or greater hysteresis  
is recommended. For applications with very slow input voltage slew rate, a capacitor can be placed from the EN  
pin to ground to filter any glitches on the input voltage.  
TPS54424  
VIN  
EN  
Ip  
Ih  
RENT  
+
RENB  
Copyright © 2017, Texas Instruments Incorporated  
27. Adjustable UVLO Using EN  
«
÷
VENFALLING  
VSTART  
ì
- V  
STOP  
VENRISING ◊  
RENT  
=
VENFALLING  
I ì 1-  
+I  
h
÷
p
VENRISING ◊  
«
(2)  
(3)  
vertical spacer  
RENT ì VENFALLING  
RENB  
=
VSTOP - VENFALLING + RENT ì I +I  
(
)
p
h
7.3.7 Soft Start and Tracking  
The TPS54424 regulates to the SS/TRK pin while its voltage is lower than the internal reference to implement  
soft start. A capacitor on the SS/TRK pin to ground sets the soft start time. The SS/TRK pin has an internal pull-  
up current source of 5 μA that charges the external soft start capacitor. 公式 4 calculates the required soft start  
capacitor value. The FB voltage will follow the SS/TRK pin voltage with a 25 mV offset up to 90% of the internal  
voltage reference. When the SS/TRK voltage is greater than 90% of the internal reference voltage the offset  
increases as the effective system reference transitions from the SS/TRK voltage to the internal voltage reference.  
ISS µA ì t  
ms  
(
)
(
)
= 8.3ì tSS ms  
SS  
CSS nF =  
(
)
(
)
VREF  
V
(
)
(4)  
If during normal operation, VIN goes below the UVLO, EN pin pulled below 1.15 V, or a thermal shutdown event  
occurs, the TPS54424 stops switching and the SS/TRK pin floats. When the VIN goes above UVLO, EN goes  
above 1.20 V, or a thermal shutdown is exited, the SS/TRK pin is discharged to near ground before reinitiating a  
powering up sequence.  
16  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
Feature Description (接下页)  
When the COMP pin voltage is clamped by the maximum COMP clamp in an overload condition the SS/TRK pin  
is discharged to near the FB voltage. When the overload condition is removed, the soft-start circuit controls the  
recovery from the fault output level to the nominal output regulation voltage. At the beginning of recovery a spike  
in the output voltage may occur while the COMP voltage transitions from the maximum clamp to the value  
determined by the loop.  
7.3.8 Safe Start-up into Pre-Biased Outputs  
The device has been designed to prevent the low-side MOSFET from discharging a pre-biased output. During  
monotonic pre-biased startup, the low-side MOSFET is not allowed to sink current until the SS/TRK pin voltage is  
higher than the FB pin voltage and the high-side MOSFET begins to switch. The one exception is if the BOOT-  
SW voltage is below the UVLO threshold. While in BOOT-SW UVLO, the low-side MOSFET is allowed to turn on  
to charge the BOOT capacitor. The low-side MOSFET reverse current protection provides another layer of  
protection for the device after the high-side MOSFET begins to switch.  
7.3.9 Power Good  
The PGOOD pin is an open-drain output requiring an external pull-up resistor to output a high signal. Once the  
FB pin is between 91% and 106% of the internal voltage reference and SS/TRK is greater than 0.75 V, after a  
272 cycle deglitch time the PGOOD pin is de-asserted and the pin floats. A pull-up resistor between the values of  
10 kand 100 kto a voltage source that is 6.5 V or less is recommended. PGOOD is in a defined state once  
the VIN input voltage is greater than 1 V but with reduced current sinking capability.  
When the FB is lower than 89% or greater than 108% of the nominal internal reference voltage, after a 16 cycle  
deglitch time the PGOOD pin is pulled low. PGOOD is immediately pulled low if VIN falls below its UVLO, EN pin  
is pulled low or the TPS54424 enters thermal shutdown.  
版权 © 2017, Texas Instruments Incorporated  
17  
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.10 Sequencing (SS/TRK)  
Many of the common power supply sequencing methods can be implemented using the SS/TRK, EN and  
PGOOD pins.  
The sequential method is illustrated in 28 using two TPS54424 or similar devices. The power good of the first  
device is coupled to the EN pin of the second device which enables the second power supply once the primary  
supply reaches regulation.  
29 shows the method implementing ratiometric sequencing by connecting the SS/TRK pins of two devices  
together. The regulator outputs ramp up and reach regulation at the same time. When calculating the soft-start  
time the current source must be doubled in 公式 4.  
TPS54424  
PGOOD  
TPS54424  
TPS54424  
EN  
EN  
EN  
SS/TRK  
PGOOD  
SS/TRK  
SS/TRK  
PGOOD  
Copyright © 2017, Texas Instruments Incorporated  
TPS54424  
EN  
SS/TRK  
PGOOD  
Copyright © 2017, Texas Instruments Incorporated  
28. Sequential Start-Up Sequence  
29. Ratiometric Start-Up Sequence  
18  
版权 © 2017, Texas Instruments Incorporated  
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
Feature Description (接下页)  
Ratiometric and simultaneous power supply sequencing can be implemented by connecting the resistor network  
of RTRT and RTRB shown in 30 to the output of the power supply that needs to be tracked or another voltage  
reference source. Using 公式 6 and 公式 7, the tracking resistors can be calculated to initiate the VOUT2 slightly  
before, after or at the same time as VOUT1. 公式 5 is the voltage difference between VOUT1 and VOUT2  
.
To design a ratiometric start-up in which the VOUT2 voltage is slightly greater than the VOUT1 voltage when VOUT2  
reaches regulation, use a negative number in 公式 6 and 公式 7 for deltaV. 公式 5 results in a positive number  
for applications where the VOUT2 is slightly lower than VOUT1 when VOUT2 regulation is achieved.  
The deltaV variable is zero volts for simultaneous sequencing. To minimize the effect of the inherent SS/TRK to  
FB offset (Vssoffset = 25 mV) in the soft-start circuit and the offset created by the pull-up current source (Iss = 5  
μA) and tracking resistors, the Vssoffset and Iss are included as variables in the equations.  
To ensure proper operation of the device, the calculated RTRT value from 公式 6 must be greater than the value  
calculated in 公式 8.  
DV = VOUT1 - VOUT2  
(5)  
vertical spacer  
VOUT2 + DV  
Vssoffset  
Iss  
RTRT  
vertical spacer  
RTRB  
=
ì
VREF  
(6)  
VREF ìRTRT  
VOUT2 + DV - VREF  
=
(7)  
(8)  
vertical spacer  
RTRT > 2800ì VOUT1 -180ì DV  
TPS54424  
VOUT1  
EN  
SS/TRK  
PGOOD  
TPS54424  
VOUT2  
EN  
RTRT  
SS/TRK  
PGOOD  
RFBT  
RFBB  
RTRB  
Copyright © 2017, Texas Instruments Incorporated  
30. Ratiometric and Simultaneous Start-Up Sequence  
版权 © 2017, Texas Instruments Incorporated  
19  
 
 
 
 
 
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.11 Adjustable Switching Frequency (RT Mode)  
In RT mode, a resistor (RT resistor) is connected between the RT/CLK pin and AGND. The switching frequency  
of the device is adjustable from 200 kHz to 1600 kHz by placing a maximum of 250 kΩ and minimum of 30.1 kΩ  
respectively. To determine the RT resistance for a given switching frequency, use 公式 9. To reduce the solution  
size one would set the switching frequency as high as possible, but tradeoffs of the supply efficiency and  
minimum controllable on-time should be considered. 公式 10 can be used to calculate the switching frequency for  
a given RT resistance.  
-1.028  
RT kW = 58650 ì f  
kHz  
(
)
(
)
SW  
(9)  
vertical spacer  
fSW kHz = 43660 ìRT kW  
-0.973  
(
)
(
)
(10)  
7.3.12 Synchronization (CLK Mode)  
An internal Phase Locked Loop (PLL) has been implemented to allow synchronization from 200 kHz to 1600 kHz,  
and to easily switch from RT mode to CLK mode. To implement the synchronization feature, connect a square  
wave clock signal to the RT/CLK pin with a duty cycle from 20% to 80%. If the clock signals rising edge occurs  
near the falling edge of SW, increased SW jitter may occur. Use 公式 11 to calculate the maximum clock pulse  
width to minimize jitter in CLK mode. The clock signal amplitude must transition lower than 0.8 V and higher than  
2 V. The start of the switching cycle is synchronized to the falling edge of the RT/CLK pin.  
æ
ö
÷
V
OUT  
ç
0.75´ 1-  
ç
è
V
÷
IN min  
(
)
ø
CLK _PW  
=
MAX  
f
SW  
(11)  
In applications where both RT mode and CLK mode are needed, the device can be configured as shown in 图  
31. Before the external clock is present, the device works in RT mode and the switching frequency is set by RT  
resistor. When the external clock is present, the CLK mode overrides the RT mode. The first time the SYNC pin  
is pulled above the RT/CLK high threshold (2 V), the device switches from the RT mode to the CLK mode and  
the RT/CLK pin becomes high impedance as the PLL starts to lock onto the frequency of the external clock.  
If the input clock goes away the internal clock frequency begins to drop and after 10 µs without a clock the  
device returns to RT mode. Output undershoot while the switching frequency drops can occur. Output overshoot  
can also occur when the switching frequency steps back up to the RT mode frequency. A high impedance tri-  
state buffer as shown in 33 is recommended for best performance during the transition from CLK mode to RT  
mode because it minimizes the loading on the RT/CLK pin allowing faster transition back to RT mode. 34  
shows the typical performance for the transition from RT mode to CLK mode then back to RT mode.  
A series RC circuit as shown in 32 can also be used to interface the RT/CLK pin but the capacitive load slows  
down the transition back to RT mode. The series RC circuit is not recommended if the transition from CLK mode  
to RT mode is important. A capacitor in the range of 47 pF to 470 pF is recommended. When using the series  
RC circuit verify the amplitude of the signal at the RT/CLK pin goes above the high threshold.  
20  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
Feature Description (接下页)  
RT/CLK Mode Select  
TPS54424  
TPS54424  
RT/CLK  
RT/CLK  
2 k  
47 pF  
RT  
RT  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
31. Simplified Circuit When Using Both RT Mode 32. Interfacing to the RT/CLK Pin with Series RC  
and CLK Mode  
TPS54424  
RT/CLK  
CH2: VOUT DC OFFSET  
OE  
RT  
CH3: RT/CLK  
CH1: SW  
Copyright © 2017, Texas Instruments Incorporated  
VIN = 12 V, IOUT = 4 A,  
VOUT = 3.3 V, fsw = 1.2 MHz  
33. Interfacing to the RT/CLK Pin with Buffer  
34. RT to CLK to RT Transition with Buffer  
7.3.13 Bootstrap Voltage and 100% Duty Cycle Operation (BOOT)  
The device provides an integrated bootstrap voltage regulator. A small capacitor between the BOOT and SW  
pins provides the gate drive voltage for the high side MOSFET. The BOOT capacitor is refreshed when the low-  
side MOSFET is on. The recommended value of the BOOT capacitor is 0.1 μF. A ceramic capacitor with an X7R  
or X5R grade dielectric with a voltage rating of 10 V or higher is recommended for stable performance over  
temperature and voltage.  
When operating with a low voltage difference from input to output, the high side MOSFET of the device will  
operate at 100% duty cycle as long as the BOOT to SW pin voltage is greater than 2.2 V. The device will begin  
to transition to 100% duty cycle operation when the high-side MOSFET off-time is less than 200 ns typical. When  
the voltage from BOOT to SW drops below 2.2 V, the high-side MOSFET is turned off due to BOOT UVLO and  
the low side MOSFET pulls SW low to recharge the BOOT capacitor. When operating at 100% duty cycle the  
high-side MOSFET can remain on for many switching cycles before the MOSFET is turned off to refresh the  
capacitor because the gate drive current sourced by the BOOT capacitor is small. The effective switching  
frequency reduced and the effective maximum duty cycle of the switching regulator is near 100%. The output  
voltage of the converter during dropout is mainly influenced by the voltage drops across the power MOSFET, the  
inductor resistance, and the printed circuit board resistance.  
版权 © 2017, Texas Instruments Incorporated  
21  
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.14 Output Overvoltage Protection (OVP)  
The TPS54424 incorporates an output overvoltage protection (OVP) circuit to minimize output voltage overshoot.  
The OVP feature minimizes the overshoot by comparing the FB pin voltage to the OVP threshold. The OVP  
threshold is the same as the 108% PGOOD threshold. If the FB pin voltage is greater than the OVP threshold  
the high-side MOSFET is turned off preventing current from flowing to the output and minimizing output  
overshoot. When the high-side MOSFET turns off, the low-side MOSFET turns on and the current in the inductor  
discharges. The output voltage can overshoot the OVP threshold as the current in the inductor discharges to 0 A.  
When the FB voltage drops lower than the 106% PGOOD threshold, the high-side MOSFET is allowed to turn on  
at the next clock cycle.  
7.3.15 Overcurrent Protection  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and the low-side MOSFET. In an extended overcurrent condition the device will enter hiccup to reduce  
power dissipation.  
7.3.15.1 High-side MOSFET Overcurrent Protection  
The device implements current mode control which uses the COMP pin voltage to control the turnoff of the high-  
side MOSFET and the turnon of the low-side MOSFET on a cycle-by-cycle basis. Each cycle the switch current  
and the current reference generated by the COMP pin voltage are compared, when the peak switch current  
intersects the current reference the high-side switch is turned off. The maximum peak switch current through the  
high-side MOSFET for overcurrent protection is done by limiting the current reference internally. If the peak  
current required to regulate the output is greater than the internal limit, the output voltage is pulled low and the  
error amplifier responds by driving the COMP pin high. The maximum COMP voltage is then clamped by an  
internal COMP clamp circuit. If the COMP voltage is clamped high for more than the hiccup wait time of 512  
switching cycles, the device will shut down itself and restart after the hiccup time of 16384 cycles.  
7.3.15.2 Low-side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on the current through it is monitored. During normal operation the low-  
side MOSFET sources current to the load. At the end of every clock cycle, the low-side MOSFET sourcing  
current is compared to the internally set low-side sourcing current limit. If the low-side sourcing current is  
exceeded the high-side MOSFET is not turned on and the low-side MOSFET stays on for the next cycle. The  
high-side MOSFET is turned on again when the low-side current is below the low-side sourcing current limit at  
the start of a cycle. The low-side sourcing current limit prevents current runaway.  
The low-side MOSFET may also sink current from the load. If the low-side sinking current limit is exceeded the  
low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario both MOSFETs are  
off until the start of the next cycle. If the low-side MOSFET turns off due to sinking current limit protection, the  
low-side MOSFET can only turn on again after the high-side MOSFET turns on then off or if the device enters  
BOOT UVLO.  
7.4 Device Functional Modes  
The EN pin and a VIN UVLO is used to control turn on and turn off of the TPS54424. The device becomes active  
when V(VIN) exceeds the 4.1 V typical UVLO and when V(EN) exceeds 1.20 V typical. The EN pin has an internal  
current source to enable the output when the EN pin is left floating. If the EN pin is pulled low the device is put  
into a low quiescent current state.  
22  
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS54424 is a synchronous buck converter designed for 4.5 V to 17 V input and 4-A load. This procedure  
illustrates the design of a high-frequency switching regulator using ceramic output capacitors. Alternatively the  
WEBENCH® software can be used to generate a complete design. The WEBENCH® software uses an interactive  
design procedure and accesses a comprehensive database of components when generating a design. This  
section presents a simplified discussion of the design process.  
8.2 Typical Application  
35. TPS54424 4.5-V to 15-V Input, 1.8-V Output Converter Application Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters shown in 1.  
1. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
4.5 to 15 V, 12 V Nominal  
1.8 V  
Input voltage range (VIN  
)
Output voltage (VOUT  
)
Transient response  
+/- 4%, +/- 72 mV  
0.5%, 9 mV  
Output ripple voltage  
Output current rating (IOUT  
)
4 A  
Operating frequency (fSW  
)
700 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS54424 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
版权 © 2017, Texas Instruments Incorporated  
23  
 
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Switching Frequency  
The first step is to decide on a switching frequency for the converter. It is capable of running from 200 kHz to 1.6  
MHz. Typically the highest switching frequency possible is desired because it will produce the smallest solution  
size. A high switching frequency allows for lower valued inductors and smaller output capacitors compared to a  
power supply that switches at a lower frequency. The main trade off made with selecting a higher switching  
frequency is extra switching power loss, which hurt the converter’s efficiency.  
The maximum switching frequency for a given application is limited by the minimum on-time of the converter and  
is estimated with 公式 12. Using a maximum minimum on-time of 130 ns for the TPS54424 and 17 V maximum  
input voltage for this application, the maximum switching frequency is 814 kHz. Considering the 10% tolerance of  
the switching frequency, a switching frequency of 700 kHz was selected. 公式 13 calculates R7 to be 69.7 kΩ. A  
standard 1% 69.8 kΩ value was chosen in the design.  
VOUT  
max  
1
fSW max =  
ì
(
)
tonmin  
V
(
)
IN  
(12)  
(13)  
vertical spacer  
-1.028  
RT kW = 58650 ì f  
kHz  
(
)
(
)
SW  
8.2.2.3 Output Inductor Selection  
To calculate the value of the output inductor, use 公式 14. KIND is a ratio that represents the amount of inductor  
ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impacts the selection of the output capacitor since  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current.  
Additionally with current mode control the sensed inductor current ripple is used in the PWM modulator.  
Choosing small inductor ripple currents can degrade the transient response performance or introduce jitter in the  
high-side MOSFET on-time. The inductor ripple, KIND, is normally from 0.2 to 0.4 for the majority of applications  
giving a peak to peak ripple current range of 0.8 A to 1.6 A. For applications requiring operation near the  
minimum on-time, with on-times less than 200 ns, the target Iripple must be 1.2 A or larger for best performance.  
For other applications the target Iripple should be 0.8 A or larger.  
For this design example, KIND = 0.3 is used and the inductor value is calculated to be 1.92 μH. The nearest  
standard value 1.8 µH is selected. It is important that the RMS current and saturation current ratings of the  
inductor not be exceeded. The RMS and peak inductor current can be found from 公式 16 and 公式 17. For this  
design, the RMS inductor current is 4.0 A and the peak inductor current is 4.6 A. The chosen inductor is a Würth  
Elektronik 74438357018. It has a saturation current rating of 8.0 A (20% inductance loss) and a RMS current  
rating of 5.8 A (40 °C temperature rise). The DC series resistance is 18 mΩ typical.  
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated in 公式 17. In transient conditions, the inductor current can increase up to the switch current limit  
of the device. For this reason, the most conservative approach is to specify the ratings of the inductor based on  
the switch current limit rather than the steady-state peak inductor current.  
Vinmax - Vout  
Vout  
L1 =  
´
Io ´ Kind  
Vinmax ´ ¦sw  
(14)  
vertical spacer  
24  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TPS54424  
www.ti.com.cn  
Iripple =  
ZHCSGK1 JULY 2017  
Vinmax - Vout  
Vout  
´
L1  
Vinmax ´ ¦sw  
(15)  
vertical spacer  
æ
ö2  
÷
1
Vo ´ (Vinmax - Vo)  
Vinmax ´ L1 ´ ¦sw  
ILrms = Io2  
+
´
ç
12  
è
ø
(16)  
(17)  
vertical spacer  
ILpeak = Iout +  
Iripple  
2
8.2.2.4 Output Capacitor  
There are two primary considerations for selecting the value of the output capacitor. The output voltage ripple  
and how the regulator responds to a large change in load current. The output capacitance needs to be selected  
based on the more stringent of these two criteria.  
The desired response to a large change in the load current is the first criteria and is typically the most stringent.  
A regulator does not respond immediately to a large, fast increase or decrease in load current. The output  
capacitor supplies or absorbs charge until the regulator responds to the load step. The control loop needs to  
sense the change in the output voltage then adjust the peak switch current in response to the change in load.  
The minimum output capacitance is selected based on an estimate of the loop bandwidth. Typically the loop  
bandwidth is fSW/10. 公式 18 estimates the minimum output capacitance necessary, where ΔIOUT is the change in  
output current and ΔVOUT is the allowable change in the output voltage.  
For this example, the transient load response is specified as a 4% change in VOUT for a load step of 2 A.  
Therefore, ΔIOUT is 2 A and ΔVOUT is 72 mV. Using these numbers gives a minimum capacitance of 63 μF. This  
value does not take the ESR of the output capacitor into account in the output voltage change. For ceramic  
capacitors, the effect of the ESR can be small enough to be ignored. Aluminum electrolytic and tantalum  
capacitors have higher ESR that must be considered for load step response.  
公式 19 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
Where fsw is the switching frequency, Vripple is the maximum allowable output voltage ripple, and Iripple is the  
inductor ripple current. In this case, the target maximum output voltage ripple is 9 mV. Under this requirement, 公  
19 yields 25 μF.  
vertical spacer  
DIOUT  
DVOUT  
1
COUT  
>
ì
fSW  
2pì  
10  
(18)  
(19)  
vertical spacer  
1
1
Co >  
´
Voripple  
8 ´ ¦sw  
Iripple  
Where:  
ΔIOUT is the change in output current  
ΔVOUT is the allowable change in the output voltage  
fsw is the regulators switching frequency  
vertical spacer  
版权 © 2017, Texas Instruments Incorporated  
25  
 
 
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
公式 20 calculates the maximum combined ESR the output capacitors can have to meet the output voltage ripple  
specification and this shows the ESR should be less than 7 m. In this case ceramic capacitors will be used and  
the ESR of ceramic capacitors is typically much less than 7 m. Capacitors also have limits to the amount of  
ripple current they can handle without producing excess heat and failing. An output capacitor that can support  
the inductor ripple current must be specified. Capacitor datasheets specify the RMS (Root Mean Square) value  
of the maximum ripple current. 公式 21 can be used to calculate the RMS ripple current the output capacitor  
needs to support. For this application, 公式 21 yields 370 mA and the ceramic capacitors used in this design will  
have a ripple current rating much higher than this.  
Voripple  
Resr <  
Iripple  
(20)  
vertical spacer  
Vout ´ (Vinmax - Vout)  
Icorms =  
12 ´ Vinmax ´ L1 ´ ¦sw  
(21)  
X5R and X7R ceramic dielectrics or similar should be selected for power regulator capacitors because they have  
a high capacitance to volume ratio and are fairly stable over temperature. The output capacitor must also be  
selected with the DC bias and AC voltage derating taken into account. The derated capacitance value of a  
ceramic capacitor due to DC voltage bias and AC RMS voltage is usually found on the manufacturer's website.  
For this application example, one 100 μF 6.3 V 1210 X5R ceramic capacitor with 2 mof ESR is used. The  
estimated capacitance after derating using the capacitor manufacturer's website is 80 µF.  
8.2.2.5 Input Capacitor  
The TPS54424 requires input decoupling ceramic capacitors type X5R, X7R or similar from VIN to PGND placed  
as close as possible to the IC. A total of at least 4.7 μF of capacitance is required and some applications may  
require a bulk capacitance. At least 1 µF of bypass capacitance is recommended near both VIN pins to minimize  
the input voltage ripple. A 0.1 µF to 1 µF capacitor must be placed by both VIN pins 2 and 11 to provide high  
frequency bypass to reduce the high frequency overshoot and ringing on VIN and SW pins. The voltage rating of  
the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple  
current rating greater than the maximum RMS input current of the TPS54424. The RMS input current can be  
calculated using 公式 22.  
For this example design, a ceramic capacitor with at least a 25 V voltage rating is required to support the  
maximum input voltage. Two 10 µF 1206 X5R 25 V and two 0.1 μF 0603 X7R 25 V capacitors in parallel has  
been selected to be placed on both sides of the IC near both VIN pins to PGND pins. Based on the capacitor  
manufacturer's website, the total ceramic input capacitance derates to 7.6 µF at the nominal input voltage of 12  
V. A 100 µF bulk capacitance is also used in this circuit to bypass long leads when connected a lab bench top  
power supply.  
The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be  
calculated using 公式 23. The maximum input ripple occurs when operating nearest to 50% duty cycle. Using the  
nominal design example values of Ioutmax = 4 A, Cin = 7.6 μF, and fSW = 700 kHz, the input voltage ripple with  
the 12 V nominal input is 100 mV and the RMS input ripple current with the 4.5 V minimum input is 2.0 A.  
Vinmin - Vout  
(
)
Vout  
Icirms = Iout ´  
vertical spacer  
´
Vinmin  
Vinmin  
(22)  
Vout  
Vin  
Vout  
«
Ioutmaxì 1-  
ì
÷
Vin  
DVin =  
Cinì fSW  
(23)  
8.2.2.6 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider created by R8 (RFBT) and R6 (RFBB) from the output node to the  
FB pin. It is recommended to use 1% tolerance or better resistors. For this example design, 6.04 kΩ was  
selected for R8. Using 公式 24, R6 is calculated as 12.08 kΩ. The nearest standard 1% resistor is 12.1 kΩ.  
26  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
«
VOUT  
VREF  
RFBT = RFBB  
ì
-1  
÷
(24)  
8.2.2.7 Soft-start Capacitor Selection  
The soft-start capacitor determines the amount of time it takes for the output voltage to reach its nominal  
programmed value during power up. This is useful if a load requires a controlled voltage slew rate. This is also  
used if the output capacitance is very large and would require large amounts of current to quickly charge the  
capacitor to the output voltage level. The large currents necessary to charge the capacitor may make the  
TPS54424 reach its current limit or cause the input voltage rail to sag due excessive current draw from the input  
power supply. Limiting the output voltage slew rate solves both of these problems. The soft-start capacitor value  
can be calculated using 公式 25. For the example circuit, the soft-start time is not critical because the output  
capacitor value of 100 μF does not require much current to charge to 1.8 V. The example circuit has the soft-start  
time set to an arbitrary value of 1 ms which requires a 8.2-nF capacitor.  
ISS µA ì t  
ms  
(
)
(
)
= 8.3ì tSS ms  
SS  
CSS nF =  
(
)
(
)
VREF  
V
(
)
(25)  
8.2.2.8 Undervoltage Lockout Set Point  
The Undervoltage Lockout (UVLO) is adjusted using the external voltage divider network of R2 (RENT) and R9  
(RENB). The UVLO has two thresholds; one for power up when the input voltage is rising and one for power-down  
or brown outs when the input voltage is falling. For the example design, the supply should turn on and start  
switching once the input voltage increases above 4.5 V (UVLO start or enable). After the regulator starts  
switching, it should continue to do so until the input voltage falls below 4.0 V (UVLO stop or disable). 公式 2 and  
公式 3 can be used to calculate the values for the upper and lower resistor values. For the voltages specified, the  
standard resistor value used for R2 is 86.6 kand for R4 is 30.9 k.  
8.2.2.9 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the BOOT to SW pin for proper operation. A 1 Ω to 5.6  
Ω resistor can be added in series with the BOOT capacitor to slow down the turn on of the high-side MOSFET.  
This can reduce voltage spikes on the SW node with the trade off of more power loss and lower efficiency.  
8.2.2.10 PGOOD Pull-up Resistor  
A 100 kΩ resistor is used to pull-up the power good signal when FB conditions are met. The pull-up voltage  
source must be less than the 6.5 V absolute maximum of the PGOOD pin.  
8.2.2.11 Compensation  
There are several methods used to compensate DC - DC regulators. The method presented here is easy to  
calculate and ignores the effects of the slope compensation internal to the device. Because the slope  
compensation is ignored, the actual cross-over frequency will usually be lower than the cross-over frequency  
used in the calculations. This method assumes the cross-over frequency is between the modulator pole and the  
ESR zero and the ESR zero is at least 10 times greater the modulator pole. This is the case when using low  
ESR output capacitors. Use the WEBENCH® software for more accurate loop compensation. These tools include  
a more comprehensive model of the control loop.  
To get started, the modulator pole, fpmod, and the ESR zero, fz1 must be calculated using 公式 26 and 公式 27.  
For Cout, use a derated value of 80 μF and an ESR of 2 mΩ. Use equations 公式 28 and 公式 29, to estimate a  
starting point for the crossover frequency, fco, to design the compensation. For the example design, fpmod is 4.4  
kHz and fzmod is 995 kHz. 公式 28 is the geometric mean of the modulator pole and the ESR zero. 公式 29 is  
the mean of modulator pole and one half the switching frequency. 公式 28 yields 66 kHz and 公式 29 gives 39  
kHz. Use the lower value of 公式 28 or 公式 29 for an initial crossover frequency. Next, the compensation  
components are calculated. A resistor in series with a capacitor is used to create a compensating zero. A  
capacitor in parallel to these two components forms the compensating pole.  
Ioutmax  
¦p mod =  
2 × p × Vout × Cout  
(26)  
27  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
vertical spacer  
1
¦z mod =  
2 ´ p ´ Resr × Cout  
(27)  
(28)  
vertical spacer  
fco  
vertical spacer  
fco fpmod´  
=
fpmod´ fzmod  
fsw  
=
2
(29)  
To determine the compensation resistor, R5, use 公式 30. R5 is calculated to be 3.17 kand the closest  
standard value 3.16 kΩ. Use 公式 31 to set the compensation zero to the modulator pole frequency. 公式 31  
yields 11.4 nF for compensating capacitor C18 and the closest standard value is 0.012 µF.  
«
’ ≈  
÷
2ì pì fCO ìCOUT  
VOUT  
RCOMP  
=
ì
÷ ∆  
gmPS  
VREF ì gmEA ◊  
◊ «  
(30)  
Where:  
Power stage transconductance, gmPS = 17 A/V  
VOUT = 1.8 V  
VREF = 0.6 V  
Error amplifier transconductance, gmEA = 1100 µA/V  
1
CCOMP  
=
2ì pìRCOMP ì fPMOD  
(31)  
A compensation pole is implemented using an additional capacitor C17 in parallel with the series combination of  
R5 and C18. This capacitor is recommended to help filter any noise that may couple to the COMP voltage signal.  
Use the larger value of 公式 32 and 公式 33 to calculate the C17 and to set the compensation pole. C17 is  
calculated to be the largest of 41 pF and 134 pF. The closest standard value is 120 pF.  
COUT ìRESR  
CHF  
=
RCOMP  
(32)  
vertical spacer  
CHF  
1
=
RCOMP ì fSW  
(33)  
Type III compensation can be used by adding the feed forward capacitor C19 in parallel with the upper feedback  
resistor. Type III compensation adds phase boost above what is possible from type II compensation because it  
places an additional zero/pole pair. The zero/pole pair is not independent. As a result once the zero location is  
chosen, the pole is fixed as well. The zero is placed at 1/2 the fSW by calculating the value of C19 with 公式 34.  
The calculated value is 37 pF and the closest standard value is 39 pF. It is possible to use larger feedforward  
capacitors to further improve the transient response but care should be taken to ensure there is a minimum of  
-10 dB gain margin at 1/2 the fSW in all operating conditions. The feedforward capacitor injects noise on the  
output into the FB pin and this added noise can result in more jitter at the switching node. To little gain margin  
can cause a repeated wide and narrow pulse behavior. This example design does not use the optional  
feedforward capacitor.  
1
CFF  
=
RFBT ì fSW  
(34)  
The initial compensation based on these calculations is R5 = 3.16 kΩ, C18 = 0.012 µF, and C17 = 120 pF.  
These values yield a stable design but after testing the real circuit these values were changed to target a higher  
crossover frequency to improve transient response performance. The crossover frequency is increased by  
increasing the value of R5 and decreasing the value of the compensation capacitors. The final values used in  
this example are R5 = 3.48 kΩ, C18 = 8200 pF, and C17 = 68 pF.  
28  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
8.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5 V  
VIN = 12 V  
VIN = 17 V  
VIN = 5 V  
VIN = 12 V  
VIN = 17 V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Load Current (A)  
0.5  
1
2 3 4  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Load Current (A)  
D002  
D001  
TA = 25°C  
VOUT = 1.8 V  
fSW = 700 kHz  
TA = 25°C  
VOUT = 1.8 V  
fSW = 700 kHz  
37. Efficiency (Log Scale)  
36. Efficiency  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
VIN = 5 V  
VIN = 12 V  
VIN = 17 V  
IOUT = 0 A  
IOUT = 2 A  
IOUT = 4 A  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Load Current (A)  
Input Voltage (V)  
D004  
D005  
TA = 25°C  
VOUT = 1.8 V  
fSW = 700 kHz  
TA = 25°C  
VOUT = 1.8 V  
fSW = 700 kHz  
38. Load Regulation  
39. Line Regulation  
60  
180  
120  
60  
40  
20  
0
0
-20  
-40  
-60  
-60  
-120  
Gain  
Phase  
-180  
100 200 5001000  
10000  
100000  
1000000  
Frequency (Hz)  
D006  
VIN = 12 V  
VOUT = 1.8 V  
40. Loop Response  
IOUT = 2 A  
VIN = 12 V  
VOUT = 1.8 V  
41. Transient Response  
版权 © 2017, Texas Instruments Incorporated  
29  
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
VIN = 12 V  
VOUT = 1.8 V  
IOUT = 0 A  
VIN = 12 V  
VOUT = 1.8 V  
IOUT = 4 A  
42. Output Ripple, No Load  
43. Output Ripple, Full Load  
VIN = 12 V  
VOUT = 1.8 V  
IOUT = 0 A  
VIN = 12 V  
VOUT = 1.8 V  
IOUT = 4 A  
44. Input Voltage Ripple, No Load  
45. Input Voltage Ripple, Full Load  
RLOAD = 1 Ω  
RLOAD = 1 Ω  
46. VIN Startup  
47. EN Startup  
30  
版权 © 2017, Texas Instruments Incorporated  
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
RLOAD = 1 Ω  
VIN = 12 V  
RLOAD = 1 Ω  
48. VIN Shutdown  
49. EN Shutdown  
VIN = 12 V  
IOUT = short  
VIN = 12 V  
50. EN Startup with Pre-biased Output  
51. Output Short Circuit Response  
VIN = 12 V  
IOUT = short  
VIN = 12 V  
IOUT = short  
removed  
52. Hiccup Mode Current Limit  
53. Hiccup Mode Recovery  
版权 © 2017, Texas Instruments Incorporated  
31  
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS54424 is designed to be powered by a well regulated dc voltage between 4.5 and 17 V. The TPS54424  
is a buck converter so the input supply voltage must be greater than the desired output voltage to regulate the  
output voltage to the desired value. If the input supply voltage is not high enough the output voltage will begin to  
drop. Input supply current must be appropriate for the desired output current.  
10 Layout  
10.1 Layout Guidelines  
VIN and PGND traces should be as wide as possible to reduce trace impedance and improve heat  
dissipation.  
At least 1 µF of input capacitance is required on both VIN pins of the IC and must be placed as close as  
possible to the IC. The input capacitors must connect directly to the adjacent PGND pins.  
It is recommended to use a ground plane directly below the IC to connect the PGND pins on both sides of the  
IC together.  
The PGND trace between the output capacitor and the PGND pin should be as wide as possible to minimize  
its trace impedance.  
Provide sufficient vias for the input capacitor and output capacitor.  
Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
A separate VOUT path should be connected to the upper feedback resistor.  
Voltage feedback loop should be placed away from the high-voltage switching trace. It is preferable to use  
ground copper near it as a shield.  
The trace connected to the FB node should be as small as possible to avoid noise coupling.  
Place components connected to the RT/CLK, FB, COMP and SS/TRK pins as close to the IC as possible and  
minimize traces connected to these pins to avoid noise coupling.  
AGND must be connected to PGND on the PCB. Connect AGND to PGND in a region away from switching  
currents.  
10.2 Layout Example  
54 through 57 shows an example PCB layout and the following list provides a description of each layer.  
The top layer has all components and the main traces for VIN, SW, VOUT and PGND. Both VIN pins are  
bypassed with two input capacitors placed as close as possible to the IC and are connected directly to the  
adjacent PGND pins. Multiple vias are placed near the input and output capacitors. The AGND trace is  
connected to PGND with a wide trace away from the input capacitors to minimize switching noise.  
Midlayer 1 has a solid PGND plane to connect the PGND pins on both sides of the IC together with the  
shortest path possible and to aid with thermal performance.  
Midlayer 2 has a wide trace connecting both VIN pins of the IC. It is also used to route the BOOT pin to the  
BOOT-SW capacitor (CBT). It also has a parallel trace for VOUT to minimize trace resistance. The rest of this  
layer is covered with PGND.  
The bottom layer has the trace connecting the FB resistor divider to VOUT at the point of regulation. PGND is  
filled into the rest of this layer to aid with thermal performance.  
32  
版权 © 2017, Texas Instruments Incorporated  
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
Layout Example (接下页)  
54. TPS54424 Layout Top  
55. TPS54424 Layout Midlayer 1  
56. TPS54424 Layout Midlayer 2  
57. TPS54424 Layout Bottom  
版权 © 2017, Texas Instruments Incorporated  
33  
TPS54424  
ZHCSGK1 JULY 2017  
www.ti.com.cn  
10.3 Alternate Layout Example  
58 through 61 shows an alternate example PCB layout with unsymmetrical placement of the input  
capacitors and output capacitors. Both VIN pins are still bypassed to their adjacent PGND pins with an input  
capacitor placed as close as possible to the IC. When using this alternate layout, CI2 should be increased to 1  
µF.  
Solid PGND plane below the IC  
to connect PGND pins. Do not  
cut this connection with other  
traces.  
58. TPS54424 Alternate Layout Top  
59. TPS54424 Alternate Layout Midlayer 1  
60. TPS54424 Alternate Layout Midlayer 2  
61. TPS54424 Alternate Layout Bottom  
34  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS54424  
www.ti.com.cn  
ZHCSGK1 JULY 2017  
11 器件和文档支持  
11.1 文档支持  
11.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS54424 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
HotRod, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54424RNVR  
TPS54424RNVT  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RNV  
RNV  
18  
18  
3000 RoHS & Green  
250 RoHS & Green  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
54424  
54424  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS54424RNVR  
TPS54424RNVT  
VQFN-  
HR  
RNV  
RNV  
18  
18  
3000  
250  
330.0  
12.4  
3.75  
3.75  
1.15  
8.0  
12.0  
Q1  
VQFN-  
HR  
180.0  
12.4  
3.75  
3.75  
1.15  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS54424RNVR  
TPS54424RNVT  
VQFN-HR  
VQFN-HR  
RNV  
RNV  
18  
18  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54424RNVR

4.5V 至 17V 输入、电流模式、4A SWIFT™ 同步降压转换器 | RNV | 18 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54424RNVT

4.5V 至 17V 输入、电流模式、4A SWIFT™ 同步降压转换器 | RNV | 18 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54425

4-A OUTPUT SINGLE SYNCHRONOUS STEP DOWN SWITCHER WITH INTEGRATED FET ( SWIFT?)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54425PWP

4-A OUTPUT SINGLE SYNCHRONOUS STEP DOWN SWITCHER WITH INTEGRATED FET ( SWIFT?)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54425PWPR

4-A OUTPUT SINGLE SYNCHRONOUS STEP DOWN SWITCHER WITH INTEGRATED FET ( SWIFT?)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54425_10

4-A OUTPUT SINGLE SYNCHRONOUS STEP DOWN SWITCHER WITH INTEGRATED FET ( SWIFT?)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54426

4.5V to 18V Input, 4-A Synchronous Step-Down SWIFT™ Converter with Eco-Mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54426PWP

4.5V to 18V Input, 4-A Synchronous Step-Down SWIFT™ Converter with Eco-Mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54426PWPR

4.5V to 18V Input, 4-A Synchronous Step-Down SWIFT™ Converter with Eco-Mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54426RSAR

具有 Eco-Mode™ 的 4.5V 至 18V 输入、4A 同步降压转换器 | RSA | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54426RSAT

具有 Eco-Mode™ 的 4.5V 至 18V 输入、4A 同步降压转换器 | RSA | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54426_10

4.5V to 18V Input, 4-A Synchronous Step-Down SWIFT™ Converter with Eco-Mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI