TPS54561-Q1 [TI]

具有软启动和 Eco-Mode™ 的汽车类 4.5V 至 60V 输入 5A 降压直流/直流转换器;
TPS54561-Q1
型号: TPS54561-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有软启动和 Eco-Mode™ 的汽车类 4.5V 至 60V 输入 5A 降压直流/直流转换器

软启动 转换器
文件: 总53页 (文件大小:1763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
TPS54561-Q1 支持 Eco-mode™ 4.5V 60V 输入,5A,降压 DC-DC  
转换器  
1 特性  
2 应用范围  
1
汽车电子 应用认证  
具有符合 AEC-Q100 的下列结果:  
车辆附件:全球卫星定位 (GPS)(请参见  
SLVA412),娱乐系统  
USB 专用充电端口和电池充电器(请参见  
SLVA464)  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
12V 24V 车载电源系统  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
H1C  
3 说明  
器件组件充电模式 (CDM) ESD 分类 C5  
TPS54561-Q1 器件是一款 60V5A 降压稳压器,具  
有一个集成的高侧 MOSFET。根据 ISO 7637 标准,  
该器件可承受高达 65V 的负载突降脉冲。电流模式控  
制提供了简单的外部补偿和灵活的组件选择。其低纹波  
脉冲跳跃模式和 152µA 电源电流可在轻负载条件下实  
现高效率。将使能引脚下拉为低电平可将关断电源电流  
降至 2µA。  
在具有脉冲跳跃的轻负载下实现高效率 Eco-mode  
控制  
87mΩ 高侧金属氧化物半导体场效应晶体管  
(MOSFET)  
152µA 静态工作电流和  
2µA 关断电流  
100kHz 2.5MHz 开关频率  
同步至外部时钟  
欠压锁定的内部设定为 4.3V。使能 (EN) 引脚使用外  
部电阻分压器时可增大该设置。软启动引脚控制输出电  
压启动斜升,还可配置排序或跟踪。一个开漏电源正常  
信号表示输出处于其标称电压值的 93% 106% 之  
内。  
轻负载条件下使用集成型引导 (BOOT) 再充电场效  
应晶体管 (FET) 可实现低压降操作  
可调 UVLO 电压和滞后  
针对欠压及过压的电源正常状态输出监控  
可调软启动和定序  
0.8V 1% 内部电压基准  
宽范围可调开关频率允许针对效率或者外部组件尺寸进  
行优化。逐周期电流限制、频率折返和热关断功能可在  
过载情况下保护器件。  
带散热焊盘的 10 引脚晶圆级小外形无引线  
(WSON) 封装  
TJ 运行范围为 -40°C 150°C  
TPS54561-Q1 采用 10 引脚 4mm x 4mm WSON 封  
装。  
使用 TPS54561-Q1 并借助 WEBENCH Power  
Designer 创建定制设计方案  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
TPS54561-Q1  
WSON (10)  
4.00mm x 4.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
空白  
简化电路原理图  
效率与负载电流间的关系  
100  
VI  
36 V to 12 V  
VDD  
PWRGD  
95  
TPS54561-Q1  
90  
85  
BOOT  
SW  
EN  
VO  
RT/CLK  
SS/TR  
12 V to 3.3 V  
80  
12 V to 5 V  
75  
70  
COMP  
FB  
VO = 12 V, f(SW) = 620 kHz  
VO = 5 V and 3.3 V, f(SW) = 400 kHz  
65  
60  
GND  
0
1
2
3
4
5
C024  
IO - Output Current (A)  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSC60  
 
 
 
 
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 27  
Application and Implementation ........................ 28  
8.1 Application Information............................................ 28  
8.2 Typical Application .................................................. 28  
Power Supply Recommendations...................... 42  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics.......................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 43  
10.1 Layout Guidelines ................................................. 43  
10.2 Layout Example .................................................... 43  
11 器件和文档支持 ..................................................... 44  
11.1 器件支持................................................................ 44  
11.2 文档支持 ............................................................... 44  
11.3 接收文档更新通知 ................................................. 44  
11.4 社区资源................................................................ 44  
11.5 ....................................................................... 44  
11.6 静电放电警告......................................................... 45  
11.7 Glossary................................................................ 45  
12 机械、封装和可订购信息....................................... 45  
7
4 修订历史记录  
Changes from Original (September 2014) to Revision A  
Page  
已将封装由“SON”更改至“WSON”(位于 特性 和通篇数据表中) .......................................................................................... 1  
WEBENCH 信息至特性详细设计流程器件支持........................................................................................................ 1  
Added SW, 5-ns transient to the Absolute Maximum Ratings ............................................................................................... 4  
Moved Storage temperature range to the Absolute Maximum Ratings ................................................................................. 4  
Changed the Handling Ratings table to the ESD Ratings ..................................................................................................... 4  
Changed Equation 10 and Equation 11 .............................................................................................................................. 19  
Changed Equation 30 .......................................................................................................................................................... 30  
Changed Equation 33 .......................................................................................................................................................... 30  
Moved Power Dissipation Estimate to the Detailed Design Procedure section ................................................................... 35  
Moved the location of the Safe Operating Area ................................................................................................................... 37  
Moved Inverting Power Supply and Split-Rail Power Supply to the Application Information section................................... 41  
2
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
5 Pin Configuration and Functions  
DPR Package  
10-Pin WSON  
(Top View)  
1
10  
9
BOOT  
VDD  
PWRGD  
SW  
2
3
4
5
Thermal  
Pad  
8
EN  
GND  
COMP  
FB  
7
SS/TR  
RT/CLK  
6
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
The device requires a bootstrap capacitor between BOOT and SW. If the voltage on this capacitor is below  
the minimum required voltage to operate the high-side MOSFET, the gate driver switches off until the  
bootstrap capacitor recharges.  
BOOT  
1
O
Error amplifier output, and input to the output switch-current comparator (PWM comparator). Connect  
frequency compensation components to this pin.  
COMP  
EN  
7
3
O
I
Enable pin, with internal pullup current source. Pull below 1.2 V to disable. Float to enable. Adjust the input  
undervoltage lockout with two resistors. See the Enable and Adjust Undervoltage Lockout section.  
FB  
6
8
I
Inverting input of the transconductance (gm) error amplifier.  
Ground  
GND  
Power-good is an open-drain output that asserts if the output voltage is low because of thermal shutdown,  
dropout, overvoltage, or EN shutdown.  
PWRGD  
RT/CLK  
SS/TR  
10  
O
I
Resistor timing and external clock. An internal amplifier holds this pin at a fixed voltage when using an  
external resistor to ground to set the switching frequency. When pulled above the PLL upper threshold, a  
mode change occurs, and the pin becomes a synchronization input. This change disables the internal  
amplifier, and the pin is a high-impedance clock input to the internal PLL. Stopping the clocking edges re-  
enables the internal amplifier, and the operating mode returns to resistor programmed mode.  
5
Soft-start and tracking input pin. An external capacitor connected to this pin sets the output rise time. A  
voltage on this pin overrides the internal reference, which allows use of the pin for tracking and sequencing.  
4
I
SW  
VDD  
9
2
I
I
The source of the internal high-side power MOSFET, and switching node of the converter.  
Input supply pin with 4.5-V to 60-V operating range.  
To ensure proper operation, electrically connect the GND pin to the copper pad under the IC on the printed  
circuit board.  
Thermal pad  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.6  
–7  
MAX  
65  
8.4  
3
VDD  
EN  
FB  
Input voltage  
COMP  
3
V
PWRGD  
6
SS/TR  
3
RT/CLK  
3.6  
8
BOOT-SW  
SW  
65  
65  
65  
150  
150  
Output voltage  
V
SW, 5-ns transient  
SW, 10-ns transient  
–2  
Operating junction temperature  
Storage temperature range, Tstg  
-40  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Rec–65ommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC-Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
60  
UNIT  
VDD  
VO  
IO  
Supply input voltage  
Output voltage  
4.5  
0.8  
0
V
V
58.8  
5
Output current  
A
TJ  
Junction temperature  
–40  
150  
°C  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
6.4 Thermal Information  
TPS54561-Q1  
THERMAL METRIC(1)(2)  
DPR  
10 PINS  
35.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (standard board)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
34.1  
12.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
12.5  
RθJCbot  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Determination of the power rating at a specific ambient temperature must be at the maximum junction temperature of 150°C. This is the  
point where distortion starts to increase substantially. See the power dissipation estimate in the Power Dissipation Estimate section of  
this data sheet for more information.  
6.5 Electrical Characteristics  
TJ = –40°C to 150°C, VDD = 4.5 to 60 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE (VDD PIN)  
Operating input voltage  
4.5  
4.1  
60  
V
V
Internal undervoltage lockout threshold  
VDD rising  
4.3  
4.48  
Internal undervoltage lockout threshold  
hysteresis  
325  
mV  
µA  
Shutdown supply current  
V(EN) = 0 V, TA = 25°C, 4.5 V VDD 60 V  
2.25  
152  
4.5  
Operating: nonswitching supply current  
V(FB) = 0.9 V, TA = 25°C  
200  
ENABLE AND UVLO (EN PIN)  
V(EN)th  
Enable threshold voltage  
No voltage hysteresis, rising and falling  
Enable threshold + 50 mV  
1.1  
1.2  
–4.6  
–1.2  
–3.4  
1.3  
V
Input current  
µA  
µA  
Enable threshold – 50 mV  
–0.58  
–2.2  
-1.8  
-4.5  
I(HYS)  
Hysteresis current  
VOLTAGE REFERENCE  
Vref  
Voltage reference  
0.792  
0.8  
87  
0.808  
185  
V
HIGH-SIDE MOSFET  
On-resistance  
ERROR AMPLIFIER  
Input current  
VDD = 12 V, V(BOOT-SW) = 6 V  
mΩ  
50  
nA  
µS  
gm(ea)  
Error-amplifier transconductance  
–2 µA < I(COMP) < 2 µA, V(COMP) = 1 V  
350  
Error-amplifier transconductance (gm) during  
soft-start  
–2 µA < I(COMP) < 2 µA, V(COMP) = 1 V, V(FB)  
0.4 V  
=
78  
µS  
A(OL)  
Error-amplifier open-loop dc gain  
Minnimum unity-gain bandwidth  
Error-amplifier source and sink  
COMP to SW current transconductance  
V(FB) = 0.8 V  
10 000  
2500  
±30  
V/V  
kHz  
µA  
S
V(COMP) = 1 V, 100 mV overdrive  
gm(ps)  
17  
CURRENT LIMIT  
All VDD and temperatures, open loop(1)  
All temperatures, VDD = 12 V, open loop(1)  
VDD = 12 V, TA = 25°C, open loop(1)  
6.3  
6.3  
7.1  
7.5  
7.5  
7.5  
8.8  
8.3  
7.9  
Current limit threshold  
A
THERMAL SHUTDOWN  
Thermal shutdown  
Thermal shutdown hysteresis  
176  
12  
°C  
°C  
(1) Measure open-loop current limit directly at the SW pin. The current is independent of the inductor value and slope compensation.  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = –40°C to 150°C, VDD = 4.5 to 60 V (unless otherwise noted)  
PARAMETER  
EXTERNAL CLOCK (RT/CLK PIN)  
RT/CLK high threshold  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.55  
1.2  
2
V
V
RT/CLK low threshold  
0.5  
SOFT-START AND TRACKING (SS/TR PIN)  
I(SS)  
Charge current  
V(SS/TR) = 0.4 V  
1.7  
42  
µA  
mV  
V
SS/TR-to-FB matching  
V(SS/TR) = 0.4 V  
SS/TR-to-reference crossover  
SS/TR discharge current (overload)  
SS/TR discharge voltage  
98% of nominal FB voltage  
V(FB) = 0 V, V(SS/TR) = 0.4 V  
V(FB) = 0 V  
1.16  
354  
54  
µA  
mV  
POWER GOOD (PWRGD PIN)  
FB threshold for PWRGD low  
FB falling  
91%  
93%  
108%  
106%  
2%  
FB threshold for PWRGD high  
FB threshold for PWRGD low  
FB threshold for PWRGD high  
Hysteresis  
FB rising  
FB rising  
FB falling  
FB falling  
Output-high leakage  
V(PWRGD) = 5.5 V, TA = 25°C  
I(PWRGD) = 3 mA, V(FB) < 0.79 V  
10  
nA  
On-resistance  
45  
Ω
Minimum input voltage for defined output  
voltage  
V(PWRGD) < 0.5 V, I(PWRGD) = 100 µA  
0.9  
2
V
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
RT/CLK  
Minimum CLK input pulse duration  
15  
ns  
6.7 Switching Characteristics  
TJ = –40°C to 150°C, VDD = 4.5 V to 60 V (unless otherwise noted)  
PARAMETER  
ENABLE AND UVLO (EN PIN)  
Enable to COMP active  
TEST CONDITIONS  
MIN  
TYP  
540  
60  
MAX  
UNIT  
µs  
VDD = 12 V, TA = 25°C  
CURRENT-LIMIT  
td(CL)  
Current limit threshold delay  
ns  
SW  
VDD = 23.7 V, VO = 5 V, IO = 3.5 A, R(RT)  
= 39.6 kΩ, TA = 25°C  
t(ON)  
Minimum controllable on-time  
100  
ns  
RT/CLK  
Switching frequency range using RT  
mode  
100  
450  
160  
2500  
550  
kHz  
kHz  
kHz  
f(SW)  
Switching frequency  
R(RT) = 200 kΩ  
500  
Switching frequency range using CLK  
mode  
2300  
TIMING RESISTOR AND EXTERNAL CLOCK (RT/CLK PIN)  
RT/CLK falling edge to SW rising edge  
delay  
Measured at 500 kHz with an RT resistor  
(R(RT)) in series  
55  
78  
ns  
µs  
PLL lock-in time  
Measured at 500 kHz  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
6.8 Typical Characteristics  
0.25  
0.814  
0.809  
0.804  
0.799  
0.794  
0.789  
0.784  
0.2  
0.15  
0.1  
0.05  
BOOT-SW = 3 V  
BOOT-SW = 6 V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D004  
D028  
VDD = 12 V  
Figure 1. On-Resistance vs Junction Temperature  
Figure 2. Voltage Reference vs Junction Temperature  
6.5  
9
8.5  
8
-40è  
25è  
6.3  
6.1  
5.9  
5.7  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
150è  
7.5  
7
6.5  
6
0
10  
20  
30  
40  
50  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Junction Temperature (èC)  
D026  
D027  
VDD = 12 V  
Figure 4. Switch-Current Limit vs Input Voltage  
Figure 3. Switch-Current Limit vs Junction Temperature  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
540  
530  
520  
510  
500  
490  
480  
470  
460  
450  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Junction Temperature (èC)  
Resistance at RT/CLK (kW)  
D025  
D024  
R(RT) = 200 kΩ  
VDD = 12 V  
Figure 5. Switching Frequency vs Junction Temperature  
Figure 6. Switching Frequency vs RT/CLK Resistance,  
Low-Frequency Range  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
2500  
500  
450  
400  
350  
300  
250  
200  
2000  
1500  
1000  
500  
0
0
50  
100  
150  
200  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Resistance at RT/CLK (kW)  
Junction Temperature (ºC)  
D023  
D022  
VDD = 12 V  
Figure 7. Switching Frequency vs RT/CLK Resistance,  
High-Frequency Range  
Figure 8. EA Transconductance vs Junction Temperature  
1.33  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1.3  
1.27  
1.24  
1.21  
1.18  
1.15  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D020  
D021  
VDD = 12 V  
VDD = 12 V  
Figure 10. EN Pin Threshold Voltage vs Junction  
Temperature  
Figure 9. EA Transconductance During Soft-Start vs  
Junction Temperature  
-3.5  
-3.7  
-3.9  
-4.1  
-4.3  
-4.5  
-4.7  
-4.9  
-5.1  
-5.3  
-5.5  
-0.5  
-0.7  
-0.9  
-1.1  
-1.3  
-1.5  
-1.7  
-1.9  
-2.1  
-2.3  
-2.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D019  
D018  
VDD = 12 V  
V(EN) = Threshold + 50 mV  
VDD = 12 V  
V(EN) = Threshold – 50 mV  
Figure 11. EN Pin Current vs Junction Temperature  
Figure 12. EN Pin Current vs Junction Temperature  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Typical Characteristics (continued)  
-2.5  
-2.7  
-2.9  
-3.1  
-3.3  
-3.5  
-3.7  
-3.9  
-4.1  
-4.3  
-4.5  
100  
75  
50  
25  
0
V (FB) Falling  
V (FB) Rising  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
Junction Temperature (èC)  
Voltage at FB (V)  
D017  
D016  
VDD = 12 V  
Figure 13. EN Pin Current Hysteresis vs Junction  
Temperature  
Figure 14. Switching Frequency vs FB  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
Junction Temperature (èC)  
Input Voltage (V)  
D015  
D014  
VDD = 12 V  
TJ = 25ºC  
Figure 15. Shutdown Supply Current vs Junction  
Temperature  
Figure 16. Shutdown Supply Current vs Input Voltage  
210  
190  
170  
150  
130  
110  
90  
210  
190  
170  
150  
130  
110  
90  
70  
70  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
Junction Temperature (èC)  
Input Voltage (V)  
D013  
D012  
VDD = 12 V  
TJ = 25ºC  
Figure 17. I(VDD) Supply Current vs Junction Temperature  
Figure 18. I(VDD) Supply Current vs Input Voltage  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
2.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
BOOT-SW UVLO Falling  
BOOT-SW UVLO Rising  
2.5  
2.4  
2.3  
2.2  
2.1  
2
3.9  
3.8  
3.7  
1.9  
1.8  
UVLO Start Switching  
UVLO Stop Switching  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D011  
D010  
Figure 19. BOOT-SW UVLO vs Junction Temperature  
Figure 20. Input Voltage UVLO vs Junction Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
108  
106  
104  
102  
100  
98  
FB Rising  
FB Falling  
FB Rising  
FB Falling  
96  
94  
92  
90  
88  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D008  
VDD = 12 V  
VDD = 12 V  
Figure 21. PWRGD On-Resistance vs Junction Temperature  
Figure 22. PWRGD Threshold vs Junction Temperature  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
0
100  
200  
300  
400  
500  
600  
700  
800  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
FB Pin Voltage (mV)  
Junction Temperature (èC)  
D007  
D006  
VDD = 12 V  
TJ = 25ºC  
VDD = 12 V  
V(FB) = 0.4 V  
Figure 23. SS/TR to FB Offset vs FB  
Figure 24. SS/TR to FB Offset vs Temperature  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Typical Characteristics (continued)  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
Start  
Stop  
Dropout  
Voltage  
4.9  
4.8  
4.7  
4.6  
Dropout  
Voltage  
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Output Current (A)  
D005  
Figure 25. 5-V Start and Stop Voltage (see Low-Dropout Operation and Bootstrap Voltage (BOOT))  
7 Detailed Description  
7.1 Overview  
The TPS54561-Q1 device is a 60-V, 5-A, step-down (buck) regulator with an integrated high-side n-channel  
MOSFET. The device implements constant-frequency current-mode control, which reduces output capacitance  
and simplifies external frequency compensation. The wide switching frequency range of 100 kHz to 2500 kHz  
allows either efficiency or size optimization when selecting the output filter components. The use of a resistor  
connected to ground from the RT/CLK pin adjusts the switching frequency. The device has an internal phase-  
locked loop (PLL) connected to the RT/CLK pin that synchronizes the power-switch turnon to the falling edge of  
an external clock signal.  
The TPS54561-Q1 device has a default input start-up voltage of approximately 4.3 V. The EN pin adjusts the  
input-voltage undervoltage-lockout (UVLO) threshold with two external resistors. An internal pullup current source  
enables operation when the EN pin is floating. The operating current is 152 µA under no-load conditions when  
not switching. With the device disabled, the supply current is 2 µA.  
The integrated 87-mΩ high-side MOSFET supports high-efficiency power supply designs capable of delivering  
5 A of continuous current to a load. A bootstrap capacitor connected from the BOOT pin to the SW pin supplies  
the gate-drive bias voltage for the integrated high-side MOSFET. The TPS54561-Q1 device reduces the external  
component count by integrating the bootstrap recharge diode. A BOOT UVLO circuit monitors the BOOT pin  
capacitor voltage, and turns off the high-side MOSFET when the BOOT to SW voltage falls below a preset  
threshold. An automatic BOOT capacitor recharge circuit allows the TPS54561-Q1 to operate at high duty cycles  
approaching 100%. Therefore, the maximum output voltage is near the minimum input supply voltage of the  
application. The minimum output voltage is 0.8 V, which equals the internal feedback reference.  
An overvoltage protection (OVP) comparator minimizes output overvoltage transients. On activation of the OVP  
comparator, the high-side MOSFET turns off and remains off until the output voltage is less than 106% of the  
desired output voltage.  
Using the SS/TR (soft-start and tracking) pin minimizes inrush currents or provides power supply sequencing  
during power-up. Couple a small-value capacitor from the SS/TR pin to the GND pin to adjust the soft-start time.  
Couple a resistor divider from SS/TR pin to GND pin for critical power-supply sequencing requirements. The  
device discharges the SS/TR pin before the output powers up. This discharging ensures a repeatable restart  
after an overtemperature fault, UVLO fault, or a disabled condition. When the overload condition goes away, the  
soft-start circuit controls the recovery from the fault output level to the nominal regulation voltage. A frequency  
foldback circuit reduces the switching frequency during start-up or overcurrent fault conditions to help maintain  
control of the inductor current.  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.2 Functional Block Diagram  
PWRGD  
EN  
VDD  
Shutdown  
Thermal  
Shutdown  
UVLO  
Enable  
Comparator  
UV  
OV  
Logic  
Shutdown  
Shutdown  
Logic  
Enable  
Threshold  
Boot  
Charge  
Voltage  
Reference  
Minimum  
Clamp  
Pulse  
Boot  
UVLO  
Current  
Sense  
Skip  
Error  
Amplifier  
PWM  
Comparator  
FB  
BOOT  
SS/TR  
Logic  
Shutdown  
Slope  
Compensation  
S
SW  
COMP  
Frequency  
Shift  
Overload  
Recovery  
Maximum  
Clamp  
Oscillator  
With PLL  
RT/CLK  
GND  
Thermal Pad  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Fixed-Frequency PWM Control  
The TPS54561-Q1 device uses fixed-frequency, peak-current-mode control with adjustable switching frequency.  
An error amplifier compares the output voltage to an internal voltage reference through an external resistor  
divider connected to the FB pin. An internal oscillator initiates the turnon of the high-side MOSFET. The error  
amplifier output at the COMP pin controls the high-side MOSFET current. When the high-side MOSFET switch  
current reaches the threshold level set by the COMP voltage, the power switch turns off. The COMP pin voltage  
increases and decreases as the output current increases and decreases. The device implements current limiting  
by clamping the COMP pin voltage to a maximum level. Implementation of the pulse-skipping Eco-mode control  
scheme is through a minimum voltage clamp on the COMP pin.  
7.3.2 Slope Compensation Output Current  
The TPS54561-Q1 adds a compensating ramp to the MOSFET switch-current sense signal. This slope  
compensation prevents sub-harmonic oscillations at duty cycles greater than 50%. The slope compensation does  
not affect the peak current limit of the high-side switch, which remains constant over the full duty cycle range.  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
7.3.3 Pulse-Skipping Eco-mode Control Scheme  
The TPS54561-Q1 device operates in a pulse-skipping Eco-mode control scheme at light load currents to  
improve efficiency by reducing switching and gate-drive losses. If the output voltage is within regulation and the  
peak switch current of any switching cycle is below the pulse-skipping current threshold, the device enters pulse-  
skipping mode. The pulse-skipping current threshold is the peak switch-current level corresponding to a nominal  
COMP voltage of 600 mV.  
When in pulse-skipping mode, the TPS54561-Q1 device clamps the COMP pin voltage to 600 mV and inhibits  
the high-side MOSFET. Because the device is not switching, the output voltage begins to decay. The voltage  
control loop responds to the falling output voltage by increasing the COMP pin voltage. The high-side MOSFET  
enables and switching resumes when the error amplifier lifts COMP above the pulse-skipping threshold. The  
output voltage recovers to the regulated value, and COMP eventually falls below the pulse-skipping threshold, at  
which time the device again enters pulse-skipping mode. The internal PLL remains operational when in pulse-  
skipping mode. When operating at light load currents in pulse-skipping mode, the switching transitions occur  
synchronously with the external clock signal.  
During pulse-skipping operation, the TPS54561-Q1 device senses and controls the peak switch current, not the  
average load current. Therefore, the load current at which the device enters pulse-skipping mode depends on the  
output inductor value. The circuit in Figure 46 enters pulse-skipping mode at about 25.3 mA output current. As  
the load current approaches zero, the device enters the pulse-skipping mode. During the time period when there  
is no switching the input current falls to the 152-µA quiescent current.  
7.3.4 Low-Dropout Operation and Bootstrap Voltage (BOOT)  
The TPS54561-Q1 device provides an integrated bootstrap voltage regulator. A small capacitor between the  
BOOT and SW pins provides the gate-drive voltage for the high-side MOSFET. The BOOT capacitor recharges  
when the high-side MOSFET is off and the external low-side diode conducts. The recommended value of the  
BOOT capacitor is 0.1 µF. For stable performance over temperature and voltage, TI recommends a ceramic  
capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or higher.  
When operating with a low voltage difference from input to output, the high-side MOSFET of the TPS54561-Q1  
operates at 100% duty cycle as long as the BOOT-to-SW pin voltage is greater than 2.1 V. When the voltage  
from BOOT to SW drops below 2.1 V, the high-side MOSFET turns off and an integrated low-side MOSFET pulls  
SW low to recharge the BOOT capacitor. To reduce the losses of the small low-side MOSFET at high output  
voltages, the device disables this small low-side MOSFET at 24-V output and re-enables it when the output  
reaches 21.5 V.  
Because the gate-drive current sourced from the BOOT capacitor is small, the high-side MOSFET can remain on  
for many switching cycles before the MOSFET turns off to refresh the capacitor. Thus the effective duty cycle of  
the switching regulator can be high, approaching 100%. The main influences on the effective duty cycle of the  
converter during dropout are the voltage drops across the power MOSFET, the inductor resistance, the low-side  
diode voltage, and the printed-circuit-board (PCB) resistance.  
Figure 25 shows the start and stop voltages for a typical 5-V output application, and plots the input voltage  
versus load current. The definition of start voltage is the input voltage required to regulate the output within 1% of  
nominal voltage. The definition of stop voltage is the input voltage at which the output drops by 5% or where  
switching stops.  
During high-duty-cycle (low dropout) conditions, inductor current ripple increases while the BOOT capacitor  
recharges, resulting in an increase in output-voltage ripple. Increased ripple occurs when the off-time required to  
recharge the BOOT capacitor is longer than the high-side off-time associated with cycle-by-cycle PWM control.  
At heavy loads, increase the minimum input voltage to ensure a monotonic start-up. For this condition, use  
Equation 1 to calculate the maximum output voltage for a given minimum input voltage.  
VO max = Dmax ´(VI min - IOmax ´rDS(on) + V(d) ) - V(d) + IOmax ´R(DC)  
where  
Dmax = 0.9  
V(d) = Forward drop of the catch diode  
R(DC) = DC resistance of output inductor  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
rDS(on) = 1 / (–0.3 × V(BOOT_SW)2 + 3.577 × V(BOOT_SW) – 4.246)  
V(BOOT_SW) = V(BOOT) + V(d)  
V(BOOT) = (1.41 × VImin – 0.554 – V(d) x f(SW) – 1.847 × 103 × I(BOOT_SW)) / (1.41 + f(SW)  
)
I(BOOT_SW) = 100 × 10-6  
A
f(SW) = Operating frequency in MHz  
(1)  
7.3.5 Error Amplifier  
A transconductance error amplifier controls the TPS54561-Q1 voltage regulation loop. The error amplifier  
compares the FB pin voltage to the lower of the internal soft-start voltage or the internal 0.8-V voltage reference.  
The transconductance (gm(ea)) of the error amplifier is 350 µS during normal operation. During soft-start  
operation, the device reduces the transconductance to 78 µS and references the error amplifier to the internal  
soft-start voltage.  
The frequency compensation components (capacitor, series resistor, and capacitor) connect the error-amplifier  
output COMP pin to the GND pin.  
7.3.6 Adjusting the Output Voltage  
The internal voltage reference produces a precise 0.8-V ±1% voltage reference over the operating temperature  
and voltage range by scaling the output of a bandgap reference circuit. A resistor divider from the output node to  
the FB pin sets the output voltage. Divider resistors with a 1% tolerance or better are recommended. Select the  
low-side resistor, R(LS), for the desired divider current, and use Equation 2 to calculate R(HS). To improve  
efficiency at light loads, consider using larger-value resistors. However, if the values are too high, the regulator is  
more susceptible to noise and voltage errors because of the FB input current may become noticeable.  
æ VO - 0.8 V ö  
R(HS) = R(LS)  
´
ç
÷
0.8 V  
è
ø
(2)  
7.3.7 Enable and Adjust Undervoltage Lockout  
The VDD pin voltage rising above 4.3 V when the EN pin voltage exceeds the enable threshold of 1.2 V enables  
the TPS54561-Q1 device. The VDD pin voltage falling below 4 V or the EN pin voltage dropping below 1.2 V  
disables the TPS54561-Q1 device. The EN pin has an internal pullup current source, I(1), of 1.2 µA that enables  
operation of the TPS54561-Q1 device when the EN pin floats.  
If an application requires a higher undervoltage lockout (UVLO) threshold, use the circuit shown in Figure 26 to  
adjust the input voltage UVLO with two external resistors. When the EN pin voltage exceeds 1.2 V, the EN pin  
sources an additional 3.4 µA of hysteresis current, I(HYS). This additional current facilitates adjustable input  
voltage UVLO hysteresis. Pulling the EN pin below 1.2 V removes the 3.4-µA I(HYS) current. Use Equation 3 to  
calculate R(UVLO1) for the desired UVLO hysteresis voltage. Use Equation 4 to calculate R(UVLO2) for the desired  
VDD start voltage.  
In applications designed to start at relatively low input voltages (for example, from 4.5 V to 9 V) and withstand  
high input voltages (for example, from 40 V to 60 V), the EN pin may experience a voltage greater than the  
absolute maximum voltage of 8.4 V during the high-input-voltage condition. To avoid exceeding this voltage  
when using the EN resistors, a 5.8-V Zener diode that is capable of sinking up to 150 µA internally clamps the  
EN pin.  
æ
ö
÷
÷
ø
V(START) - V(STOP)  
R(UVLO1) = ç  
ç
è
I(HYS)  
(3)  
(4)  
V
(EN)th  
R(UVLO2)  
=
V
- V  
(EN)th  
(START)  
+ I(1)  
R(UVLO1)  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
VI  
VDD  
VI  
TPS54561-Q1  
I(1) I(HYS)  
R(UVLO1)  
R(UVLO1)  
EN  
10 kW  
EN  
Node  
5.8 V  
V(EN)th  
R(UVLO2)  
R(UVLO2)  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
Figure 26. Adjustable Undervoltage Lockout  
(UVLO)  
Figure 27. Internal Clamp On EN Pin  
7.3.8 Soft-Start and Tracking Pin (SS/TR)  
The TPS54561-Q1 device effectively uses the lower voltage of the internal voltage reference or the SS/TR pin  
voltage as the power-supply reference voltage and regulates the output accordingly. A capacitor on the SS/TR  
pin to ground implements a soft-start time. The TPS54561-Q1 device has an internal pullup current source of 1.7  
µA that charges the external soft-start capacitor. Equation 5 shows the calculation for the soft-start time (10% to  
90%). The voltage reference (Vref) is 0.8 V and the soft-start current (I(SS)) is 1.7 µA. The soft-start capacitor  
should remain lower than 0.47 µF and greater than 0.47 nF.  
t(SS) (ms)´ I(SS) (μA)  
C(SS) (nF) =  
V
ref ´ 0.8  
(5)  
At power up, the TPS54561-Q1 device does not start switching until the voltage in the soft-start pin is less than  
54 mV to ensure a proper power up (see Figure 28).  
Also, during normal operation, the TPS54561-Q1 stops switching and the SS/TR pin must discharge to 54 mV  
when one of the following occurs: the VDD pin voltage exceeds the UVLO threshold, the EN pin drops below  
1.2 V, or a thermal shutdown event occurs.  
The FB voltage follows the SS/TR pin voltage with a 42-mV offset up to 85% of the internal voltage reference.  
When the SS/TR voltage is greater than 85% of the internal reference voltage, the offset increases as the  
effective system reference transitions from the SS/TR voltage to the internal voltage reference (see Figure 23).  
The SS/TR voltage ramps linearly until clamped at 2.7 V typical, as shown in Figure 28.  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
V
(EN)  
V
(SS/TR)  
V
(FB)  
V
O
Figure 28. Operation of SS/TR Pin When Starting  
7.3.9 Sequencing  
A designer can implement many of the common power-supply sequencing methods using the SS/TR, EN, and  
PWRGD pins. Implementation of the sequential method can be by using an open-drain output of the power-on-  
reset pin of another device. Figure 29 illustrates the sequential method using two TPS54561-Q1 devices.  
Connecting the power-good signal of the first TPS54561-Q1 device to the EN pin on the second TPS54561-Q1  
device enables the second power supply once the primary supply reaches regulation. If needed, a 1-nF ceramic  
capacitor on the EN pin of the second power supply provides a 1-ms start-up delay. Figure 30 shows the results  
of Figure 29.  
TPS54561-Q1  
TPS54561-Q1  
PWRGD  
EN  
V(EN)(1)  
EN  
V(PWRGD)(1)  
SS/TR  
SS/TR  
PWRGD  
Copyright © 2016, Texas Instruments Incorporated  
VO(1)  
VO(2)  
Figure 29. Schematic for Sequential Start-Up  
Sequence  
Figure 30. Sequential Start-Up Using EN and  
PWRGD  
White space  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
TPS54561-Q1  
3
4
6
EN  
V
, V  
(EN)(1) (EN)(2)  
SS/TR  
PWRGD  
V
O(1)  
TPS54561-Q1  
V
O(2)  
3
4
6
EN  
SS/TR  
PWRGD  
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. Schematic for Ratiometric Start-Up  
Sequence  
Figure 32. Ratiometric Start-Up Using Coupled  
SS/TR Pins  
Figure 31 shows a method for a ratiometric start-up sequence by connecting the SS/TR pins together. The  
regulator outputs ramp up and reach regulation at the same time. When calculating the soft-start capacitor by  
using Equation 5, double the pullup current source (I(SS)). Figure 32 shows the results of Figure 31.  
TPS54561-Q1  
BOOT  
EN  
SW  
VO(1)  
SS/TR  
PWRGD  
TPS54561-Q1  
BOOT  
R1  
R2  
EN  
VO(2)  
SW  
SS/TR  
FB  
R3  
PWRGD  
R4  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. Schematic for Ratiometric and Simultaneous Start-Up Sequence  
One can implement ratiometric and simultaneous power-supply sequencing by connecting the resistor network of  
R1 and R2 shown in Figure 33 to the output of a power supply that must be tracked, or to another voltage  
reference source. Using Equation 7 and Equation 8, one can calculate values for the tracking resistors to initiate  
VO(2) slightly before, after, or at the same time as VO(1). Equation 6 is the voltage difference between VO(1) and  
VO(2) at 95% of nominal output regulation.  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
The ΔV variable is zero volts for simultaneous sequencing. To minimize the effect of the inherent SS/TR-to-FB  
offset (V(SSoffset)) in the soft-start circuit and the offset created by the pullup current source (I(SS)) and tracking  
resistors, the equations include V(SSoffset) and I(SS) as variables.  
To design a ratiometric start-up in which the VO(2) voltage is slightly greater than the VO(1) voltage when VO(2)  
reaches regulation, use a negative number in Equation 6 through Equation 8 for ΔV. Equation 6 results in a  
positive number for applications in which VO(2) is slightly lower than VO(1) when VO(2) reaches its regulation.  
Because of the requirement for pulling the SS/TR pin below 54 mV before starting after an EN, UVLO, or thermal  
shutdown fault, careful selection of the tracking resistors ensures that the device restarts after a fault. Make sure  
the calculated R1 value from Equation 7 is greater than the value calculated in Equation 9 to ensure the device  
can recover from a fault.  
As the SS/TR voltage becomes more than 85% of the nominal reference voltage, V(SSoffset) becomes larger as the  
soft-start circuits gradually hand off the regulation reference to the internal voltage reference. The SS/TR pin  
voltage must be greater than 1.5 V for a complete handoff to the internal voltage reference as shown in  
Figure 23.  
DV = VO(1) - VO(2)  
(6)  
at 95% of nominal output regulation.  
V
O(2) + DV V(SSoffset)  
´
R1= VO(1)  
-
Vref  
ref ´R1  
I(SS)  
(7)  
V
R2 =  
V
O(2) + DV - Vref  
(8)  
(9)  
R1 > 2800´ VO(1) - 180´ DV  
V
(EN)  
V
(EN)  
V
V
O(1)  
O(1)  
V
V
O(2)  
O(2)  
Figure 34. Ratiometric Start-Up With Tracking Resistors –  
VO(2) Before VO(1)  
Figure 35. Ratiometric Start-Up With Tracking Resistors –  
VO(2) After VO(1)  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
V
(EN)  
V
O(1)  
V
O(2)  
Figure 36. Simultaneous Start-Up With Tracking Resistors  
7.3.10 Constant Switching Frequency and Timing Resistor (RT/CLK Pin)  
The switching frequency of the TPS54561-Q1 device is adjustable over a wide range, from 100 kHz to 2500 kHz,  
by placing a resistor between the RT/CLK pin and GND pin. The RT/CLK pin voltage is typically 0.5 V and must  
have a resistor to ground to set the switching frequency. To determine the timing resistance for a given switching  
frequency, use Equation 10 or Equation 11 or the curves in Figure 6 and Figure 7. To reduce the solution size,  
one would typically set the switching frequency as high as possible, but consider tradeoffs of the conversion  
efficiency, maximum input voltage, and minimum controllable on-time. The minimum controllable on-time is  
typically 100 ns, which limits the maximum operating frequency in applications with high input-to-output step-  
down ratios. The frequency foldback circuit also limits the maximum switching frequency. The next section talks  
about the maximum switching frequency in detail.  
101756  
f sw (kHz)1.008  
RT (kW) =  
(10)  
92417  
RT (kW)0.991  
f sw (kHz) =  
(11)  
7.3.11 Accurate Current-Limit Operation and Maximum Switching Frequency  
The TPS54561-Q1 device implements peak-current-mode control, in which the COMP pin voltage controls the  
peak current of the high-side MOSFET. A signal proportional to the high-side switch current and the COMP pin  
voltage are compared each cycle. When the peak switch current intersects the COMP control voltage, the high-  
side switch turns off. During overcurrent conditions that pull the output voltage low, the error amplifier increases  
switch current by driving the COMP pin high. The device clamps the error-amplifier output internally at a level  
which sets the switch-current limit. The TPS54561-Q1 device provides an accurate current-limit threshold with a  
typical current-limit delay of 60 ns. With smaller inductor values, the delay results in a higher peak inductor  
current. Figure 37 shows the relationship between the inductor value and the peak inductor current.  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
Peak Inductor Current  
ΔCLpk  
Open-Loop Current Limit  
td(CL)  
ΔCLpk= (V / L(O)) ´ td(CL)  
I
t(ON)  
Figure 37. Current Limit Delay  
To protect the converter in overload conditions at higher switching frequencies and input voltages, the  
TPS54561-Q1 device implements frequency foldback. The divisor of the oscillator frequency changes from 1 to  
2, 4, and 8 as the FB pin voltage falls from 0.8 V to 0 V. The TPS54561-Q1 device uses digital frequency  
foldback to enable synchronization to an external clock during normal start-up and fault conditions. During short-  
circuit events, the inductor current may exceed the peak current limit because of the high input voltage and the  
minimum controllable on-time. When the shorted load forces the output voltage low, the inductor current  
decreases slowly during the switch off-time. The frequency foldback effectively increases the off-time by  
increasing the period of the switching cycle, providing more time for the inductor current to ramp down.  
With a maximum frequency foldback ratio of 8, there is a maximum frequency at which frequency foldback  
protection can still control the inductor current. Equation 12 calculates the maximum switching frequency at  
which the inductor current remains under control with VO forced to VO(SC). The selected operating frequency  
should not exceed the calculated value.  
Equation 13 calculates the maximum switching frequency limitation set by the minimum controllable on-time and  
the input-to-output step-down ratio. Setting the switching frequency above this value causes the regulator to skip  
switching pulses to achieve the low duty cycle required to regulate the output at maximum input voltage.  
æ
ö
÷
÷
ø
f(DIV)  
I(CL) ´R(dc) + VO(SC) + V(d)  
VI -I(CL) ´rDS(on) + V(d)  
f(SW_ shift)  
=
´ ç  
ç
t(ON)  
è
(12)  
(13)  
æ
ö
÷
÷
ø
IO´ R(dc) + VO + V  
1
(d)  
f(SW_skip) max =  
´ ç  
ç
t(ON)  
VI - IO ´ rDS(on) + V  
(d)  
è
where  
f(DIV) is the frequency divisor, which equals (1, 2, 4, or 8)  
t(ON) is the minimum controllable on-time  
I(CL) is the switch current limit  
R(dc) is the inductor resistance  
VO(SC) is the output voltage during output short  
V(d) is the forward voltage drop of the catch diode  
VI is the maximum input voltage  
rDS(on) is the high-side MOSFET on-resistance  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
IO is the output current  
VO is the output voltage  
7.3.12 Synchronization to RT/CLK Pin  
The RT/CLK pin can receive a frequency synchronization signal from an external system clock. To implement  
this synchronization feature, connect a square wave to the RT/CLK pin through either circuit network shown in  
Figure 38. The square wave applied to the RT/CLK pin must switch lower than 0.5 V, and higher than 2 V, and  
have a pulse duration greater than 15 ns. The synchronization frequency range is 160 kHz to 2300 kHz. The  
rising edge of SW synchronizes to the falling edge of the RT/CLK pin signal. The design of the external  
synchronization circuit should be such that the default frequency-set resistor connects from the RT/CLK pin to  
GND pin when the synchronization signal is off. When using a low-impedance signal source, the connection of  
the frequency-set resistor is in parallel with an ac-coupling capacitor to a termination resistor (for example, 300  
Ω) as shown in Figure 38. The two resistors in series provide the default frequency-setting resistance when the  
signal source turns off. The sum of the resistance should set the switching frequency close to the external CLK  
frequency. TI recommends ac-coupling the synchronization signal through a 10-pF ceramic capacitor to the  
RT/CLK pin.  
The first time the input pulls the RT/CLK pin above the PLL high threshold, which has a 2-V maximum value, the  
TPS54561-Q1 switches from the RT resistor free-running frequency mode to the PLL synchronized mode.  
Removal of the internal 0.5-V voltage source results, and the RT/CLK pin becomes high-impedance as the PLL  
starts to lock onto the external signal. The switching frequency can be higher or lower than the frequency set with  
the RT/CLK resistor. The device transitions from the resistor-programmed mode to the PLL mode and locks onto  
the external clock frequency within 78 µs. During the transition from the PLL mode to the resistor-programmed  
mode, the switching frequency falls to 150 kHz and then increases or decreases to the resistor-programmed  
frequency on re-application of the 0.5-V bias voltage to the RT/CLK resistor.  
The switching frequency divisor goes from 8 to 4, 2, and 1 as the FB pin voltage ramps from 0 V to 0.8 V. The  
device implements a digital-frequency foldback to enable synchronization to an external clock during normal  
start-up and fault conditions. Figure 39, Figure 40, and Figure 41 show the device synchronized to an external  
system clock in continuous-conduction mode (CCM), discontinuous-conduction (DCM) and pulse-skipping mode.  
SPACER  
TPS54561-Q1  
PLL  
TPS54561-Q1  
PLL  
RT/CLK  
RT  
RT  
RT/CLK  
Hi-Z  
Clock  
Source  
Clock  
Source  
Copyright © 2017, Texas Instruments Incorporated  
Figure 38. Synchronizing to a System Clock  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
V(SW)  
V(SW)  
External  
Clock  
External  
Clock  
I(L)  
I(L)  
Figure 39. Plot of Synchronizing in CCM  
Figure 40. Plot of Synchronizing in DCM  
V(SW)  
External  
Clock  
I(L)  
Figure 41. Plot of Synchronizing in Pulse-Skipping Mode  
7.3.13 Power Good (PWRGD Pin)  
The PWRGD pin is an open-drain output. When the FB pin is between 93% and 106% of the internal voltage  
reference, TPS54561-Q1 device de-asserts the PWRGD pin and this pin floats. TI recommends a pullup resistor  
of 1 kΩ to a voltage source that is 5.5 V or less. A higher pullup resistance reduces the amount of current drawn  
from the pullup voltage source when the PWRGD pin is low. A lower pullup resistance reduces the switching  
noise seen on the PWRGD signal. PWRGD is in a defined state once the VDD pin voltage is greater than 2 V, but  
with reduced current sinking capability. PWRGD achieves full current-sinking capability as the VDD pin voltage  
approaches 3 V.  
TPS54561-Q1 device pulls the PWRGD pin low when the FB pin voltage is lower than 90% or greater than 108%  
of the nominal internal reference voltage. Also, the TPS54561-Q1 device pulls the PWRGD pin low after an EN,  
UVLO, or thermal shutdown fault.  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
7.3.14 Overvoltage Protection  
The TPS54561-Q1 incorporates an output overvoltage-protection (OVP) circuit to minimize voltage overshoot  
when recovering from output fault conditions or strong unload transients in designs with low output capacitance.  
For example, on an overload event of the power-supply output, the error amplifier compares the actual output  
voltage to the internal reference voltage. If the FB pin voltage is lower than the internal reference voltage for a  
considerable time, the output of the error amplifier increases to a maximum voltage corresponding to the peak  
current-limit threshold. On removal of the overload condition, the regulator output rises and the error amplifier  
output transitions to the normal operating level. In some applications, the power-supply output voltage can  
increase faster than the response of the error amplifier output, resulting in an output overshoot.  
The OVP feature minimizes output overshoot when using a low-value output capacitor by comparing the FB pin  
voltage to the rising OVP threshold, which is nominally 108% of the internal voltage reference. If the FB pin  
voltage is greater than the rising OVP threshold, immediately disabling the high-side MOSFET minimizes output  
overshoot. When the FB voltage drops below the falling OVP threshold, which is nominally 106% of the internal  
voltage reference, the high-side MOSFET resumes normal operation.  
7.3.15 Thermal Shutdown  
The TPS54561-Q1 provides an internal thermal shutdown to protect the device when the junction temperature  
exceeds 176°C. The high-side MOSFET stops switching when the junction temperature exceeds the thermal trip  
threshold. Once the silicon temperature falls below 164°C, the device reinitiates the power-up sequence  
controlled by the SS/TR pin.  
7.3.16 Small-Signal Model for Loop Response  
Figure 42 shows a simplified model for the TPS54561-Q1 control loop, with which the designer can simulate to  
check the frequency response and dynamic load response. The error amplifier is a transconductance amplifier  
with a gm(ea) of 350 µS. A user can model the error amplifier using an ideal voltage controlled current source. The  
resistor, R(OEA), and capacitor, C(OEA), model the open-loop gain and frequency response of the amplifier. The  
1-mV ac voltage source between nodes a and b effectively breaks the control loop for the frequency-response  
measurements. Plotting c/b provides the small-signal response of the frequency compensation. Plotting a/b  
provides the small-signal response of the overall loop. To evaluate the dynamic loop response, replace the load  
resistor, R(L), with a current source that has the appropriate load-step amplitude and step rate in a time-domain  
analysis. This equivalent model is only valid for continuous-conduction-mode (CCM) operation.  
SW  
V
O
Power Stage  
gm(ps) 17 S  
a
b
R(ESR)  
R(HS)  
R(L)  
COMP  
c
FB  
0.8 V  
C(O)  
gm(ea)  
R(COMP)  
350 µS  
C(OEA)  
R(OEA)  
R(LS)  
C(POLE)  
C(ZERO)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 42. Small-Signal Model for Loop Response  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.17 Simplified Small-Signal Model for Peak-Current-Mode Control  
Figure 43 describes a simple small-signal model for use in design of the frequency compensation. A voltage-  
controlled current source (duty-cycle modulator) supplying current to the output capacitor and load resistor can  
approximate the TPS54561-Q1 power stage. Equation 14 shows the control-to-output transfer function, which  
consists of a dc gain, one dominant pole, and one ESR zero. The quotient of the change in switch current and  
the change in COMP pin voltage (node c in Figure 42) is the power stage transconductance, gm(ps). The gm(ps) for  
the TPS54561-Q1 device is 17 S. The low-frequency gain of the power stage is the product of the  
transconductance and the load resistance as shown in Equation 15.  
As the load current increases or decreases, the low-frequency gain decreases or increases, respectively. This  
variation with the load may seem problematic at first glance, but fortunately the dominant pole moves with the  
load current (see Equation 16). The dashed line in the right half of Figure 43 highlights the combined effect. As  
the load current decreases, the gain increases and the pole frequency lowers, keeping the 0-dB crossover  
frequency the same with varying load conditions. The type of output capacitor chosen determines whether the  
ESR zero has a profound effect on the frequency compensation design. Using high-ESR aluminum electrolytic  
capacitors may reduce the number of frequency compensation components needed to stabilize the overall loop,  
because the phase margin increases by the ESR zero of the output capacitor (see Equation 17).  
VO  
A(dc)  
V(c)  
R(ESR)  
f(P)  
R(L)  
gm(ea)  
C(O)  
f(Z)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 43. Simplified Small-Signal Model and Frequency Response for Peak-Current-Mode Control  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
æ
ç
ç
è
ö
÷
÷
ø
s
1+  
1+  
2p´ f(Z)  
VO  
= A(dc)  
´
V(C)  
æ
ç
ç
è
ö
÷
÷
ø
s
2p´ f(P)  
(14)  
(15)  
A(dc) = gm(ps) ´R(L)  
1
f(P)  
=
C
(O) ´ R(L) ´ 2p  
(16)  
(17)  
1
f(Z)  
=
C
(O) ´ R(ESR) ´ 2p  
7.3.18 Small-Signal Model for Frequency Compensation  
The TPS54561-Q1 uses a transconductance amplifier for the error amplifier and supports three of the commonly-  
used frequency-compensation circuits. Figure 44 shows compensation circuits of Type 2A, Type 2B, and Type 1.  
Implementation of Type 2 circuits is typically in high-bandwidth power-supply designs using low-ESR output  
capacitors. The Type 1 circuit is good for the power-supply designs using high-ESR aluminum electrolytic or  
tantalum capacitors. Equation 18 and Equation 19 relate the frequency response of the amplifier to the small-  
signal model in Figure 44. Modeling of the open-loop gain and bandwidth uses R(OEA) and C(OEA), as shown in  
Figure 44. See the application section for a design example using a Type 2A network with a low-ESR output  
capacitor.  
This data sheet includes Equation 18 through Equation 27 as a reference. An alternative is to use WEBENCH  
software tools to create a design based on the power-supply requirements.  
V
O
a
b
R(HS)  
FB  
Type 1  
Type 2B  
Type 2A  
gm(ea)  
COMP  
c
Vref  
R(COMP)  
R(COMP)  
R(LS)  
C(POLE)  
R(OEA)  
C(POLE)  
C(OEA)  
C(ZERO)  
C(ZERO)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 44. Types of Frequency Compensation  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
A(OL)  
P1  
A0  
Z1  
P2  
A1  
BW  
Figure 45. Frequency Response of the Type 2A and Type 2B Frequency Compensation  
A(OL)  
R(OEA)  
=
gm(ea)  
gm(ea)  
(18)  
(19)  
C(OEA)  
=
2p´ BW (Hz)  
æ
ç
ç
è
ö
÷
÷
ø
s
1+  
2p´ f(Z1)  
V
(c)  
= A0´  
V
æ
ç
ç
è
ö æ  
ö
÷
÷
ø
(b)  
s
s
1+  
´ 1+  
÷ ç  
÷ ç  
2p´ f(P1)  
2p´ f(P2)  
ø è  
R(LS)  
R(HS) + R(LS)  
(20)  
(21)  
A0= gm(ea) ´ R(OEA)  
´
R(LS)  
R(HS) + R(LS)  
A1= gm(ea) ´ R(OEA) P R(COMP)  
´
(22)  
(23)  
(24)  
1
P1=  
2R(OEA) ´ C(ZERO)  
1
Z1=  
2p´ R(COMP) ´ C(ZERO)  
1
P2 =  
Type 2A  
2R(OEA) P R(COMP) ´ C(POLE) + C(OEA)  
(
)
(25)  
(26)  
1
P2 =  
P2 =  
Type 2B  
2R(OEA) P R(COMP) ´ C(OEA)  
1
Type 1  
2p´ R(OEA) ´ C(POLE) + C(OEA)  
(
)
(27)  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
7.4 Device Functional Modes  
7.4.1 Operation With VI = < 4.5 V (Minimum VDD  
)
TI recommends operating the TPS54561-Q1 device with input voltages above 4.5 V. The typical VDD UVLO  
threshold is 4.3 V, and the device may operate at input voltages down to the UVLO voltage. At input voltages  
below the actual UVLO voltage, the device does not switch. If an external resistor divider pulls the EN pin up to  
VDD or EN pin is floating, when VDD passes the UVLO threshold the device becomes active. Switching begins,  
and the soft-start sequence initiates. The TPS54561-Q1 device starts at the soft-start time determined by the  
external capacitance on the SS/TR pin.  
7.4.2 Operation With EN Control  
The enable threshold voltage is 1.2 V typical. With EN held below that voltage, the device shuts down and  
switching stops even if VDD is above its UVLO threshold. The IC quiescent current decreases in this state. After  
increasing the EN pin voltage above the threshold while VDD is above its UVLO threshold, the device becomes  
active. Switching resumes and the soft-start sequence begins. The TPS54561-Q1 device starts at the soft-start  
time determined by the external capacitance at the SS/TR pin.  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS54561-Q1 device is a 60-V, 5-A, step-down regulator with an integrated high-side MOSFET. This device  
typically converts a higher dc voltage to a lower dc voltage with a maximum available output current of 5 A.  
Example applications are: 12-V, 24-V and 48-V industrial, automotive and communication power systems. Use  
the following design procedure to select component values for the TPS54561-Q1 device. This procedure  
illustrates the design of a high-frequency switching regulator using ceramic output capacitors. The Excel™  
spreadsheet (SLVC452) located on the product page can help on all calculations. Alternatively, use the  
WEBENCH software to generate a complete design. The WEBENCH software uses an iterative design  
procedure and accesses a comprehensive database of components when generating a design. This section  
presents a simplified discussion of the design process.  
8.2 Typical Application  
7 V to 60 V  
2
VI  
TP1  
C11  
1
GND  
+
C10  
2.2µF  
C3  
2.2µF  
C1  
2.2µF  
C2  
2.2µF  
DNP  
J2  
PWRGD  
TP10  
PWRGD PULLUP  
TP9  
R8  
U1  
PWRGD  
1.00k  
TP2  
2
3
5
4
7
10  
VDD  
C4  
GND  
1
9
6
8
EN  
BOOT  
SW  
R1  
442k  
0.1µF  
RT/CLK  
SS/TR  
COMP  
2
1
SS/TR  
GND  
FB  
FB  
R3  
243k  
GND  
PAD  
J4  
R4  
16.9k  
C13  
0.01µF  
TPS54561-Q1  
GND  
C8  
47pF  
GND  
C5  
4700pF  
L1  
R2  
90.9k  
2
1
5 V @ 5 A  
EN  
GND  
1
2
VO  
7447798720  
7.2µH  
TP6  
TP4  
TP7  
TP8  
TP5  
J3  
GND  
R7  
49.9  
J1  
TP3  
D1  
PDS760-13  
+
C12  
C9 DNP  
47µF  
C6  
47µF  
C7  
47µF  
GND  
SS/TR  
GND  
2
1
GND  
SS/TR  
GND  
R5  
53.6k  
J5  
FB  
GND  
R6  
10.2k  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 46. 5-V Output TPS54561-Q1 Design Example  
8.2.1 Design Requirements  
This guide illustrates the design of a high-frequency switching regulator using ceramic output capacitors. The  
designer must know a few parameters in order to start the design process. Determination of these requirements  
is typically at the system level. This example design uses the following known parameters:  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Typical Application (continued)  
DESIGN PARAMETER  
Output voltage (VO)  
EXAMPLE VALUE  
5 V  
Transient response, 1.25-A to 3.75-A load step  
Maximum output current (IO)  
Input voltage (VI)  
ΔVO = ±4 %  
5 A  
12 V nominal, 7 V to 60 V  
Output voltage ripple (VO(RIPPLE)  
Start input voltage (rising VI)  
Stop input voltage (falling VI)  
)
0.5% of VO  
6.5 V  
5 V  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the TPS54561-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT, and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. The WEBENCH Power Designer provides you with a customized schematic along with a list of materials with  
real time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand the thermal performance of your board  
Export your customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share your design with colleagues  
5. Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Selecting the Switching Frequency  
The first step is to choose a switching frequency for the regulator. Typically, the designer uses the highest  
switching frequency possible because this produces the smallest solution size. High switching frequency allows  
for lower-value inductors and smaller output capacitors compared to a power supply that switches at a lower  
frequency. Several factors including the minimum controllable on-time of the internal power switch, the input  
voltage, the output voltage, and the frequency-foldback protection limit the switching frequency that the designer  
can select.  
Use Equation 12 and Equation 13 to calculate the upper limit of the switching frequency for the regulator.  
Choose the lower-value result from the two equations. Switching frequencies higher than these values result in  
pulse-skipping or the lack of overcurrent protection during a short circuit.  
The typical minimum controllable on-time, t(ON), is 100 ns for the TPS54561-Q1 device. For this example, the  
output voltage is 5 V and the maximum input voltage is 60 V, which allows for a maximum switch frequency up to  
955 kHz to avoid pulse skipping from Equation 28. To ensure overcurrent runaway is not a concern during short  
circuits, use Equation 29 to determine the maximum switching frequency for frequency foldback protection. With  
a maximum input voltage of 60 V, assuming a diode voltage of 0.7 V, inductor resistance of 11 mΩ, switch  
resistance of 87 mΩ, a current limit value of 6 A, and short-circuit output voltage of 0.1 V, the maximum switching  
frequency is 1151 kHz.  
For this design, choose a lower switching frequency of 400 kHz to operate comfortably below the calculated  
maximums. To determine the timing resistance for a given switching frequency, use Equation 10, or the curve in  
Figure 6, or the curve in Figure 7. Resistor R3 sets the switching frequency shown in Figure 46. For 400-kHz  
operation, the closest standard value resistor is 243 kΩ.  
æ
ç
è
ö
÷
ø
1
5 A´ 11 mW + 5 V + 0.7 V  
60 V - 5 A´ 87 mW + 0.7 V  
f(SW_skip)max =  
´
= 955 kHz  
100 ns  
(28)  
29  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
æ
ç
è
ö
÷
ø
8
6 A´ 11 mW + 0.1 V + 0.7 V  
60 V - 6 A´87 mW + 0.7 V  
f(SW_shift)  
=
´
= 1151 kHz  
100 ns  
(29)  
(30)  
101756  
400 (kHz)1.008  
RT (kW) =  
= 242 kW  
8.2.2.3 Output Inductor Selection (L(O)  
)
To calculate the minimum value of the output inductor, use Equation 31.  
k(IND) is a ratio that represents the amount of inductor ripple current relative to the maximum output current. The  
output capacitor filters the inductor ripple current. Therefore, choosing high inductor ripple currents impacts the  
selection of the output capacitor, because the output capacitor must have a ripple current rating equal to or  
greater than the inductor ripple current. In general, the inductor ripple value is at the discretion of the designer.  
However, the designer may use the following guidelines.  
For designs using low-ESR output capacitors such as ceramics, a value as high as k(IND) = 0.3 may be desirable.  
When using higher-ESR output capacitors, k(IND) = 0.2 yields better results. Because the inductor ripple current is  
part of the current-mode PWM control system, the inductor ripple current should always be greater than 150 mA  
for stable PWM operation. In a wide-input voltage regulator, choosing a relatively large inductor ripple current is  
best to provide sufficient ripple current with the input voltage at the minimum.  
For this design example, k(IND) = 0.3 and the calculated inductor value is 7.6 µH. The nearest standard value is  
7.2 µH. It is important not to exceed both the rms current and saturation-current ratings of the inductor.  
Equation 33 and Equation 34 calculate the rms and peak inductor current. For this design, the rms inductor  
current is 5.021 A and the peak inductor current is 5.817 A. The chosen inductor has an rms current rating of 6 A  
and a saturation current rating of 7.9 A.  
As the equation set demonstrates, lowering ripple currents reduces the output voltage ripple of the regulator but  
requires a larger value of inductance. Selecting higher ripple currents increases the output-voltage ripple of the  
regulator but allows for a lower inductance value.  
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults, or transient load conditions, the inductor current can increase above the peak inductor current level  
calculated previously. In transient conditions, the inductor current can increase up to the switch-current limit of  
the device. For this reason, the most-conservative design approach is to choose an inductor with a saturation  
current rating equal to or greater than the switch-current limit of the TPS54561-Q1 device, which is nominally 7.5  
A.  
æ
ö
æ
ö
VI max - VO  
IO´ K(IND)  
VO  
æ
ç
è
ö
÷
ø
æ
ç
è
ö
÷
ø
60 V - 5 V  
5 A ´ 0.3  
5 V  
L(O)min = ç  
÷´ ç  
÷ =  
´
= 7.6 mH  
ç
è
÷ ç  
VI max ´ f(SW)  
÷
60 V´ 400 kHz  
ø
è
ø
(31)  
(32)  
spacer  
I(RIPPLE)  
spacer  
V ´ V max - V  
O
(
)
VI max ´ L(O) ´ f(SW) 60 V´ 7.2 mH ´400 kHz  
5 V´ 60 V - 5 V  
(
)
O
I
=
=
= 1.591 A  
ö2  
÷
÷
ø
æ
ç
ç
è
ö2  
÷
V ´ V max - V  
O
æ
ç
ç
è
(
)
5 V ´ 60 V - 5 V  
2
(
)
O
I
1
1
2
I(L)RMS =  
I
+
´
=
5 A  
+
´
= 5.021 A  
( )  
(O )  
÷
12  
VI max ´ L(O) ´ f(SW)  
12  
60 V´ 7.2 mH´ 400 kHz  
ø
(33)  
(34)  
spacer  
I(L)peak = IO +  
I(RIPPLE)  
1.591 A  
= 5.021 A +  
= 5.817 A  
2
2
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
8.2.2.4 Output Capacitor  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
determines the modulator pole, the output voltage ripple, and the regulator response to a large change in load  
current. It is necessary to select the output capacitance based on the most-stringent of these three criteria.  
The desired response to a large change in the load current is the first criterion. The output capacitor must supply  
the increased load current until the regulator responds to the load step. The regulator does not respond  
immediately to a large, fast increase in the load current such as transitioning from no load to a full load. The  
regulator usually needs two or more clock cycles for the control loop to sense the change in output voltage and  
adjust the peak switch current in response to the higher load. The output capacitance must be large enough to  
supply the difference in current for two clock cycles to maintain the output voltage within the specified range.  
Equation 35 shows the minimum output capacitance necessary, where ΔIO is the change in output current, f(sw) is  
the regulator switching frequency, and ΔVO is the allowable change in the output voltage. For this example, the  
transient load response specification is 4% change in VO for a load step from 1.25 A to 3.75 A. Therefore, ΔIO is  
3.75 A – 1.25 A = 2.5 A, and ΔVO = 4% × 5 V = 0.2 V. Using these numbers gives a minimum capacitance of  
62.5 µF. This value does not take the ESR of the output capacitor into account in the output voltage change. For  
ceramic capacitors, the ESR is usually small enough to ignore. Aluminum electrolytic and tantalum capacitors  
have higher ESR, and load-step calculations must include the ESR term.  
Sizing of the output capacitor must be such as to absorb energy stored in the inductor when transitioning from a  
high to low load current. The catch diode of the regulator cannot sink current, so energy stored in the inductor  
can produce an output voltage overshoot when the load current rapidly decreases. Figure 51 shows a typical  
load-step response. The excess energy absorbed in the output capacitor increases the voltage on the capacitor.  
Sizing of the capacitor must be such as to maintain the desired output voltage during these transient periods.  
Equation 36 calculates the minimum capacitance required to keep the output voltage overshoot to a desired  
value, where L(O) is the value of the inductor, IOH is the output current under heavy load, IOL is the output under  
light load, VP is the peak output voltage, and V(int) is the initial voltage. For this example, the worst-case load step  
is from 3.75 A to 1.25 A. The output voltage increases during this load transition, and the stated maximum in our  
specification is 4% of the output voltage. This makes V(P) = 1.04 × 5 V = 5.2 V. V(int) is the initial capacitor voltage  
which is the nominal output voltage of 5 V. Using these numbers in Equation 36 yields a minimum capacitance of  
44.1 µF.  
Equation 37 calculates the minimum output capacitance needed to meet the output-voltage ripple specification,  
where f(SW) is the switching frequency, VO(RIPPLE) is the maximum allowable output voltage ripple, and IO(RIPPLE) is  
the inductor ripple current. Equation 37 yields 19.9 µF.  
Equation 38 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification. Equation 38 indicates the ESR should be less than 15.7 mΩ.  
The most stringent criterion for the output capacitor is 62.5 µF, required to maintain the output voltage within  
regulation tolerance during a load transient.  
Capacitance de-ratings for aging, temperature, and dc bias increase this minimum value. For this example, the  
selection is three 47-µF, 10-V ceramic capacitors with 5 mΩ of ESR. The derated capacitance is 87.4 µF, well  
above the minimum required capacitance of 62.5 µF.  
Capacitors generally have a maximum ripple-current rating. Filtering a ripple current equal to or below that  
maximum ripple current does not degrade capacitor reliability. Some capacitor data sheets specify the root-  
mean-square (rms) value of the maximum ripple current. Use Equation 39 to calculate the rms ripple current that  
the output capacitor must support. For this example, Equation 39 yields 459 mA.  
2´ DIO  
(SW) ´ DVO 400 kHz ´ 0.2 V  
2 ö  
2´ 2.5 A  
C(O)  
>
=
= 62.5 μF  
f
(35)  
æ
3.75 A2 - 1.25 A2  
I
2 - I  
èç(OH ) (OL ) ø÷  
(
)
= 44.1mF  
C(O) > L(O)  
´
= 7.2 mH´  
2 - V  
2 ö  
5.2 V2 - 5 V2  
æ
(
)
V
èç( (P) ) ( (int) ) ÷ø  
(36)  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
 
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
1
1
1
1
C(O)  
>
´
=
´
= 19.9 mF  
8´ f(SW)  
8´ 400 kHz  
æ
ç
ç
è
ö
÷
÷
ø
æ
ç
è
ö
÷
ø
25 mV  
1.591 A  
VO(RIPPLE)  
IO(RIPPLE)  
(37)  
(38)  
VO(RIPPLE)  
25 mV  
R(ESR)  
<
=
= 15.7 mW  
IO(RIPPLE)  
1.591 A  
V ´ V min - V  
O
(
12 ´ VI min ´ L(O)´ f(SW)  
)
5 V´ 60 V - 5 V  
(
)
12 ´ 60 V´ 7.2 mH´ 400 kHz  
O
I
I(CO)RMS =  
=
= 459 mA  
(39)  
8.2.2.5 Catch Diode  
The TPS54561-Q1 device requires an external catch diode between the SW pin and GND. The selected diode  
must have a reverse voltage rating equal to or greater than maximum input voltage. The peak current rating of  
the diode must be greater than the maximum inductor current. Schottky diodes are typically a good choice for the  
catch diode because of the low forward voltage of these diodes. The lower the forward voltage of the diode, the  
higher the efficiency of the regulator.  
Typically, diodes with higher voltage and current ratings have higher forward voltages. A diode with a minimum of  
60-V reverse voltage is preferable, to allow input voltage transients up to the rated voltage of the TPS54561-Q1  
device.  
For the example design, select the Schottky diode for its lower forward voltage and good thermal characteristics  
compared to smaller devices. The typical forward voltage of the diode is 0.52 V at 5 A.  
One must select the diode with an appropriate power rating. The diode conducts the output current during the  
off-time of the internal power switch. The off-time of the internal switch is a function of the maximum input  
voltage, the output voltage, and the switching frequency. Multiplying the output current during the off-time with  
the forward voltage of the diode can calculate the instantaneous conduction losses of the diode. At higher  
switching frequencies, take the ac losses of the diode into account. The ac losses of the diode are because of  
the charging and discharging of the junction capacitance, and also of reverse-recovery charge. Use Equation 40  
to calculate the total power dissipation, including conduction losses and ac losses of the diode.  
The selected diode has a junction capacitance of 180 pF. Using Equation 40 with the nominal input voltage of  
12 V, the total loss in the diode is 1.65 W.  
If the power supply spends a significant amount of time at light load currents or in sleep mode, consider using a  
diode which has a low leakage current and slightly higher forward voltage drop.  
2
V - V ´ I ´ V  
)
C(j) ´ f(SW) ´ V + V  
I (d)  
(
(
)
I
O
O
(d)  
P(D)  
=
+
=
VI  
2
2
)
12 V - 5 V ´ 5 A ´ 0.52 V 180 pF´ 400 kHz ´ 12 V + 0.52 V  
(
(
)
12 V  
+
= 1.65 W  
2
(40)  
8.2.2.6 Input Capacitor  
The TPS54561-Q1 device requires a high-quality ceramic type X5R or X7R input decoupling capacitor with at  
least 3 µF of effective capacitance. Some applications benefit from additional bulk capacitance. The effective  
capacitance includes any loss of capacitance because of dc bias effects. The voltage rating of the input capacitor  
must be greater than the maximum input voltage. The capacitor must also have a ripple-current rating greater  
than the maximum input current ripple of the TPS54561-Q1 device. Use Equation 41 to calculate the input ripple  
current.  
The value of a ceramic capacitor varies significantly with temperature and the dc bias applied to the capacitor.  
Selecting a dielectric material that is more stable over temperature can minimize the capacitance variations  
because of temperature. The usual selection for capacitors in a switching regulator is X5R or X7R ceramic  
dielectric, because they have a high capacitance-to-volume ratio and are fairly stable over temperature. The  
input capacitor selection must also consider the dc bias. The effective value of a capacitor decreases as the dc  
bias across a capacitor increases.  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
This example design requires a ceramic capacitor with at least a 60-V voltage rating to support the maximum  
input voltage. Common standard ceramic capacitor voltage ratings include 4 V, 6.3 V, 10 V, 16 V, 25 V, 50 V or  
100 V. For this example, use four 2.2-µF, 100-V capacitors in parallel.  
The input capacitance value determines the input ripple voltage of the regulator. Use Equation 42 to calculate the  
input voltage ripple. Using the design example values, IO = 5 A, C(I) = 8.8 µF, f(sw) = 400 kHz, yields an input  
voltage ripple of 355 mV and an rms input ripple current of 2.26 A.  
æ
ö
VI min - VO  
VO  
æ
ç
è
ö
÷
ø
5 V  
7 V  
7 V - 5 V  
I(CI)RMS = IO ´  
´ ç  
÷ = 5 A ´  
´
= 2.26 A  
ç
÷
ø
VI min  
VI min  
7 V  
è
(41)  
(42)  
IO´ 0.25  
DVI =  
5 A´ 0.25  
=
C(I)´ f(SW) 8.8 mF´ 400 kHz  
= 355 mV  
8.2.2.7 Soft-Start Capacitor  
The soft-start capacitor determines the minimum amount of time for the output voltage to reach its nominal  
programmed value during power up. This is useful if a load requires a controlled voltage slew rate. Adjustable  
soft-start is also useful if the output capacitance is large and would require large amounts of current to charge  
the capacitor quickly to the output-voltage level. The large currents necessary to charge the output capacitor may  
make the TPS54561-Q1 device reach the current limit, or the excessive current draw from the input power supply  
may cause the input voltage rail to sag. Limiting the output-voltage slew rate solves both of these problems.  
The soft-start time must be long enough to allow the regulator to charge the output capacitor up to the output  
voltage without drawing excessive current. Use Equation 43 to find the minimum soft-start time, t(SS), necessary  
to charge the output capacitor, C(O), from 10% to 90% of the output voltage, VO, with an typical soft-start current  
of I(SS). In the example, to charge the effective output capacitance of 87.4 µF up to 5 V with an average current of  
1 A requires a 0.3-ms soft-start time.  
After selecting the soft-start time, calculate the soft-start capacitor value by using Equation 5. For the example  
circuit, the soft-start time is not too critical, because the output capacitor value is 3 × 47 µF, which does not  
require much current to charge to 5 V. The example circuit has the soft-start time set to an arbitrary value of  
3.5 ms, which requires a 9.3-nF soft-start capacitor, as calculated by Equation 44. For this design, use the next-  
larger standard value of 10 nF.  
C
(O) ´ VO ´ 0.8  
t(SS)  
>
I(SS)  
(43)  
(44)  
t(SS) (ms) ´ I(SS) (mA)  
3.5 ms´ 1.7 mA  
0.8 V´ 0.8  
C13 =  
=
= 9.3 nF  
V
(V)´ 0.8  
ref  
8.2.2.8 Bootstrap Capacitor Selection  
The TPS54561-Q1 device requires a 0.1-µF ceramic capacitor connected between the BOOT and SW pins for  
proper operation. The recommendation is a ceramic capacitor with X5R or better grade dielectric. The capacitor  
should have a 10-V or higher voltage rating.  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
 
 
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.2.2.9 Undervoltage Lockout Set Point  
Using an external voltage divider on the EN pin of the TPS54561-Q1 device can adjust the undervoltage lockout  
(UVLO). The UVLO has two thresholds, one for power up when the input voltage is rising and the other for power  
down when the input voltage is falling. For the example design, the TPS54561-Q1 device should turn on and  
start switching once the input voltage increases above 6.5 V (UVLO start). After the regulator starts switching, it  
should continue to do so until the input voltage falls below 5 V (UVLO stop).  
A resistor divider consisting of R(UVLO1) and R(UVLO2) between VI and ground, and connected to the EN pin, can  
set programmable UVLO threshold voltage. Equation 3 and Equation 4 calculate the resistance values  
necessary. For the example application, a 442-kΩ resistor between VI and EN (R1) and a 90.9-kΩ resistor  
between EN and ground (R2) are required to produce the 6.5-V start and 5-V stop voltages.  
V
(START) - V  
6.5 V - 5 V  
3.4 mA  
(STOP)  
R1=  
=
= 441.18 kW  
I(HYS)  
(45)  
(46)  
V
1.2 V  
(EN)th  
R2 =  
=
= 90.97 kW  
V
(START) - V  
6.5 V - 1.2 V  
(EN)th  
+1.2 mA  
+ I(1)  
442 kW  
R(UVLO1)  
8.2.2.10 Output Voltage and Feedback Resistor Selection  
The voltage divider of R5 and R6 sets the output voltage. For the example design, select 10.2 kΩ for R6. Use  
Equation 2 to calculate R5 as 53.55 kΩ. The nearest standard 1% resistor is 53.6 kΩ. Because of the input  
current of the FB pin, the current flowing through the feedback network should be greater than 1 µA to maintain  
the output voltage accuracy. A value for R6 of less than 800 kΩ satisfies this requirement. Choosing higher  
resistor values decreases quiescent current and improves efficiency at low output currents but may also  
introduce noise immunity problems.  
æ VO - 0.8 V ö  
æ
ç
è
ö
÷
ø
5 V - 0.8 V  
R5 = R6´  
= 10.2 kW´  
÷
= 53.55 kW  
ç
0.8 V  
0.8 V  
è
ø
(47)  
8.2.2.11 Compensation  
There are several methods to design compensation for dc-dc regulators. The method presented here is easy to  
calculate and ignores the effects of the slope compensation that is internal to the device. Ignoring the slope  
compensation causes the actual crossover frequency to be lower than the crossover frequency used in the  
calculations. This method assumes the crossover frequency is between the modulator pole and the ESR zero  
and the ESR zero is at least 10 times greater the modulator pole.  
To get started, calculate the modulator pole, f(P,mod), and the ESR zero, f(Z,mod) using Equation 48 and  
Equation 49. For output capacitance C(O), use a derated value of 87.4 µF. Use equations Equation 50 and  
Equation 51 to estimate a starting point for the crossover frequency, f(CO). For the example design, f(P,mod) is 1821  
Hz and f(Z,mod) is 1090 kHz. Equation 50 is the geometric mean of the modulator pole and the ESR zero, and  
Equation 51 is the geometric mean of modulator pole and half of the switching frequency. Equation 50 yields  
44.6 kHz and Equation 51 gives 19.1 kHz. Use the geometric mean value of Equation 50 and Equation 51 for an  
initial crossover frequency which is 29.2 kHz. For this example, the target crossover frequency is 30 kHz for an  
improved transient response.  
Next, calculate the compensation components. Use of a resistor in series with a capacitor creates a  
compensating zero. A capacitor in parallel with these two components forms the compensating pole.  
IO max  
5 A  
f(P,mod)  
=
=
= 1821Hz  
2p´ VO ´ C(O) 2p´ 5 V´ 87.4 mF  
(48)  
1
1
f(Z,mod)  
=
=
2p´R(ESR) ´ C(O) 2p´1.67 mW ´ 87.4 mF  
= 1090 kHz  
(49)  
(50)  
f(CO1)  
=
f
(P,mod) ´ f(Z,mod)  
=
1821Hz ´1090 kHz = 44.6 kHz  
f(SW)  
400 kHz  
f(CO2)  
=
f(P,mod)  
´
=
1821Hz ´  
= 19.1kHz  
2
2
(51)  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
To determine the compensation resistor, R4, use Equation 52. Assume the power stage transconductance,  
gm(ps), is 17 S. The output voltage VO, reference voltage Vref, and amplifier transconductance gm(ea), are 5 V,  
0.8 V and 350 µS, respectively. Calculated the value for R4 as 16.84 kΩ, and then select a standard value of  
16.9 kΩ. Use Equation 53 to set the compensation zero to the modulator pole frequency. Equation 53 yields  
5172 pF for compensating capacitor C5. The selection for this design is 4700 pF.  
æ
ö
æ
ö
2p´ f(CO) ´ C(O)  
VO  
æ
ç
è
ö
÷
ø
æ
ç
è
ö
÷
ø
2p´ 29.2 kHz ´ 87.4 mF  
17 S  
5 V  
R4 = ç  
÷´ ç  
÷ =  
´
= 16.84 kW  
ç
è
÷
ø
ç
Vref ´ gm(ea)  
÷
gm(ps)  
0.8 V´ 350 mS  
è
ø
(52)  
(53)  
1
1
C5 =  
=
2p ´ R4´ f(P,mod) 2p ´ 16.9 kW ´1821Hz  
= 5172 pF  
If desired, implement a compensation pole by adding capacitor C8 in parallel with the series combination of R4  
and C5. Use the larger value calculated from Equation 54 and Equation 55 for C8 to set the compensation pole.  
The selected value of C8 is 47 pF for this example design.  
C
(O) ´ R(ESR)  
87.4 mF ´ 1.67 mW  
C8 =  
=
= 8.64 pF  
R4  
16.9 kW  
(54)  
(55)  
1
1
C8 =  
=
R4´ f(SW) 16.9 kW ´ 400kHz  
= 47.1pF  
8.2.2.12 Discontinuous Conduction Mode and Eco-mode Boundary  
With an input voltage of 12 V, the example design enters discontinuous-conduction mode when the output  
current is less than 408 mA. The power supply enters Eco-mode when the output current is lower than 25.3 mA.  
The input current draw is 257 µA with no load.  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
 
 
 
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.2.2.13 Power Dissipation Estimate  
The following formulas show how to estimate the TPS54561-Q1 device power dissipation under continuous  
conduction mode (CCM) operation. These equations are not suitable if the device operates in discontinuous  
conduction mode (DCM).  
The power dissipation of the IC includes conduction loss (P(COND)), switching loss (P(SW)), gate drive loss (P(G)  
)
and supply current loss (P(Q)). Example calculations are shown with the 12-V nominal input voltage of the  
example design.  
1. Conduction loss  
æ
ö
P(COND) = I 2 ´ rDS(on) ´ ç  
÷ = 5 A2 ´ 87 mW ´  
= 0.906 W  
VO  
VI  
æ
ç
è
ö
÷
ø
5 V  
(O )  
ç
è
÷
ø
12 V  
where  
IO is the output current (A)  
rDS(on) is the on-resistance of the high-side MOSFET (Ω)  
VO is the output voltage (V)  
VI is the input voltage (V)  
(56)  
2. Switching loss  
P(SW) = VI ´ f(SW) ´ IO ´ tr = 12 V´ 400 kHz ´ 5 A´ 4.9 ns = 0.118 W  
where  
f(SW) is the switching frequency (Hz)  
tr is the SW pin voltage rise time, estimated by tr = VDD (V) × 0.16 (ns/V) + 3 (ns)  
(57)  
(58)  
3. Gate drive loss  
P
(G) = VI ´ Qg ´ f(SW) = 12 V´ 3 nC ´ 400 kHz = 0.014 W  
where  
Qg is the total gate charge of the internal MOSFET  
4. Quiescent current loss  
(Q) = VI ´ IQ = 12 V´152 mA = 0.0018 W  
P
where  
IQ is the operating nonswitching supply current  
(59)  
(60)  
Therefore,  
P(tot) = P(COND) + P(SW) + P(G) + P(Q) = 0.906 W + 0.118 W + 0.014 W + 0.0018 W = 1.040 W  
For given TA,  
TJ = TA + RqJA ´ P(tot)  
where  
TJ is the junction temperature (°C)  
TA is the ambient temperature (°C)  
RθJA is the thermal resistance of the package (°C/W)  
P(tot) is the total device power dissipation (W)  
(61)  
(62)  
For given TJmax = 150°C  
TA max = TJ max - RqJA ´ P(tot)  
where  
TAmax is maximum ambient temperature (°C)  
TJmax is maximum junction temperature (°C)  
Additional power losses occur in the regulator circuit because of the inductor ac and dc losses, the catch diode  
and PCB trace resistance. All of these losses impact the overall efficiency of the regulator.  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
8.2.3 Safe Operating Area  
Figure 47 through Figure 50 show the safe operating area (SOA) of the device for 3.3-V, 5-V, and 12-V outputs  
and varying amounts of forced air flow applications. The temperature derating curves represent the conditions at  
which the TPS54561-Q1 device, PCB and the output Inductor are at or below the manufacturer’s maximum  
operating temperatures. Figure 47, through Figure 50 doesn't consider the impact from the catch diode thermal  
performance. For higher reliability, TI uses 125 °C as the temperature limit for TPS54561-Q1 device on  
Figure 47, through Figure 50. Derating limits apply to devices soldered directly to a double-sided PCB with 2 oz.  
copper, similar to the board on TPS54561EVM-555 evaluation module.  
Pay careful attention to the other components chosen for the design, especially the catch diode. In most  
applications, the catch diode limits the thermal performance. When operating at high duty cycles or at a higher  
switching frequency, the thermal performance of the TPS54561-Q1 device can become the limiting factor.  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
8 V  
8 V  
12 V  
24 V  
36 V  
48 V  
60 V  
12 V  
24 V  
36 V  
48 V  
60 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Output Current (A)  
Output Current (A)  
D047  
D048  
VO = 3.3 V  
Natural Convection  
f(SW) = 400 kHz  
VO = 5 V  
Natural Convection  
f(SW) = 400 kHz  
Figure 47. 3.3-V Outputs  
Figure 48. 5-V Outputs  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
18 V  
24 V  
36 V  
48 V  
60 V  
400 LFM  
200 LFM  
100 LFM  
Nat. Conv.  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Output Current (A)  
Output Current (A)  
D049  
D050  
VO = 12 V  
Natural Convection  
f(SW) = 600 kHz  
VI = 48 V  
VO = 12 V  
Air flow direction: L1 to output terminal  
f(SW) = 600 kHz  
Figure 49. 12-V Outputs  
Figure 50. Air Flow Conditions  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
 
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.2.4 Application Curves  
Acquisition of measurements uses a 12-V input, 5-V output, and 5-A load unless otherwise noted.  
IO  
VI  
Vo, DC-Coupled With –5-V Offset  
Vo, DC-Coupled With –5-V Offset  
Time = 100 µs/div  
Time = 4 ms/div  
Figure 51. Load Transient Response (1.25-A to 3.75-A  
Load Step)  
Figure 52. Line Transient (8 V to 40 V)  
VI  
VI  
V(EN)  
V(EN)  
VO  
VO  
Time = 2 ms/div  
IO = 5 A  
IO = 5 A  
Figure 53. Start-Up With Input Voltage  
Figure 54. Start-Up With EN  
V(SW)  
V(SW)  
I(L)  
I(L)  
VO, AC-Coupled  
VO, AC-Coupled  
Time = 4 µs/div  
Time = 4 µs/div  
IO = 100 mA  
IO = 5 A  
Figure 56. Output Ripple, DCM  
Figure 55. Output Ripple, CCM  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Acquisition of measurements uses a 12-V input, 5-V output, and 5-A load unless otherwise noted.  
V(SW)  
V(SW)  
I(L)  
I(L)  
VO, AC-Coupled  
VI, AC-Coupled  
Time = 4 µs/div  
Time = 1 ms/div  
No load  
IO = 5 A  
Figure 57. Output Ripple, Eco-mode  
Figure 58. Input Ripple, CCM  
V(SW)  
I(L)  
V(SW)  
I(L)  
VO  
VI, AC-Coupled  
Time = 40 µs/div  
No load  
Time = 4 µs/div  
VI = 5.5 V  
VO = 5.0 V  
IO = 100 mA  
100 mA  
EN floating  
Figure 60. Low-Dropout Operation, Steady State  
Figure 59. Input Ripple, DCM  
VI  
VI  
VO  
VO  
Time = 40 ms/div  
Time = 40 ms/div  
IO = 100 mA  
EN floating  
IO = 1 A  
EN floating  
Figure 61. Low-Dropout Operation  
Figure 62. Low-Dropout Operation  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Acquisition of measurements uses a 12-V input, 5-V output, and 5-A load unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD  
7 V  
VDD  
7 V  
12 V  
24 V  
36 V  
48 V  
60 V  
12 V  
24 V  
36 V  
48 V  
60 V  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D029  
D030  
f(SW) = 400 kHz  
VO = 5 V  
f(SW) = 400 kHz  
VO = 5 V  
Figure 63. Efficiency vs Load Current  
Figure 64. Light-Load Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD  
6 V  
12 V  
24 V  
36 V  
48 V  
60 V  
VDD  
6 V  
12 V  
24 V  
36 V  
48 V  
60 V  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D031  
D032  
f(SW) = 400 kHz  
VO = 3.3 V  
f(SW) = 400 kHz  
VO = 3.3 V  
Figure 65. Efficiency vs Load Current  
Figure 66. Light-Load Efficiency  
60  
40  
180  
0.1  
0.08  
0.06  
0.04  
0.02  
0
120  
60  
20  
0
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-20  
-40  
-60  
-60  
-120  
-180  
Gain  
Phase  
10  
100  
1000  
10000  
100000  
0
1
2
3
4
5
Frequency (Hz)  
Output Current (A)  
D033  
D034  
f(SW) = 400 kHz  
IO = 5 A  
VI = 12 V  
VO = 5 V  
f(SW) = 400 kHz  
VI = 12 V  
VO = 5 V  
Figure 68. Regulation vs Load Current  
Figure 67. Overall Loop Frequency Response  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
Acquisition of measurements uses a 12-V input, 5-V output, and 5-A load unless otherwise noted.  
0.1  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
D035  
f(SW) = 400 kHz  
IO = 2.5 A  
VO = 5 V  
Figure 69. Regulation vs Input Voltage  
8.2.5 Inverting Power Supply  
One use of the TPS54561-Q1 is to convert a positive input voltage to a negative output voltage. Ideal  
applications are amplifiers requiring a negative power supply. For a more-detailed example, see Create an  
Inverting Power Supply From a Step-Down Regulator, application report SLVA317.  
VI  
+
C(I)  
C(BOOT)  
L(O)  
VDD BOOT SW  
GND  
C(O)  
C(VDD)  
R(HS)  
R(LS)  
+
GND  
TPS54561-Q1  
VO  
EN  
FB  
PWRGD  
SS/TR  
COMP  
C(SS)  
R(COMP)  
RT/CLK  
R(RT)  
C(ZERO)  
C(POLE)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 70. TPS54561-Q1 Inverting Power Supply Based on Application Report SLVA317  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Acquisition of measurements uses a 12-V input, 5-V output, and 5-A load unless otherwise noted.  
8.2.6 Split-Rail Power Supply  
Another use of the TPS54561-Q1 device is to convert a positive input voltage to a split-rail positive- and  
negative-output voltage by using a coupled inductor. Ideal applications are amplifiers requiring a split-rail  
positive- and negative-voltage power supply. For a more-detailed example, see Creating a Split-Rail Power  
Supply With a Wide Input Voltage Buck Regulator, application report SLVA369.  
VO+  
+
VI  
C(O)+  
+
T(O)  
C(I)  
C(BOOT)  
VDD BOOT SW  
GND  
R(HS)  
R(LS)  
C(VDD)  
+
GND  
C(O)–  
VO–  
TPS54561-Q1  
EN  
FB  
PWRGD  
COMP  
SS/TR  
C(SS)  
R(COMP)  
C(POLE)  
RT/CLK  
C(ZERO)  
R(RT)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 71. TPS54561-Q1 Split-Rail Power Supply Based on Application Report SLVA369  
9 Power Supply Recommendations  
The design of the device is for operation from an input voltage supply range between 4.5 V and 60 V. Good  
regulation of this input supply is essential. If the input supply is more distant than a few inches from the  
TPS54561-Q1 converter, the circuit may require additional bulk capacitance besides the ceramic bypass  
capacitors. An electrolytic capacitor with a value of 100 µF is a typical choice.  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
10 Layout  
10.1 Layout Guidelines  
Layout is a critical portion of good power-supply design. There are several signal paths that conduct fast-  
changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise  
or degrade performance. See Figure 72 for a PCB layout example.  
To reduce parasitic effects, bypass the VDD pin to ground with a low-ESR ceramic bypass capacitor with X5R  
or X7R dielectric.  
Take care to minimize the loop area formed by the bypass capacitor connections, the VDD pin, and the anode  
of the catch diode. Route the SW pin to the cathode of the catch diode and to the output inductor. Because  
the SW connection is the switching node, locate the catch diode and output inductor close to the SW pins,  
and minimize the area of the PCB conductor to prevent excessive capacitive coupling.  
Tie the GND pin directly to the copper pad under the IC for the exposed thermal pad. Connect this copper  
pad to internal PCB ground planes using multiple vias directly under the IC.  
For operation at full-rated load, the top-side ground area must provide adequate heat dissipating area.  
The RT/CLK pin is sensitive to noise, so locate the RT resistor as close as possible to the IC and route  
conductors with minimal lengths of trace.  
Figure 72 shows the approximate placement for the additional external components.  
It may be possible to obtain acceptable performance with alternate PCB layouts. However, this layout, meant  
as a guideline, demonstrably produces good results.  
Boxing in the components in the design of Figure 46, the estimated printed-circuit board area is 1.025 in2  
(661 mm2). This area does not include test points or connectors. To further reduce the area, use a two-sided  
assembly and replace the 0603-sized passives with a smaller-sized equivalent.  
10.2 Layout Example  
VO  
Output  
Capacitor  
Output  
Inductor  
Top-Side  
Ground  
Route boot-capacitor  
Catch  
Area  
trace on another layer to  
provide a wide path for  
the top-side ground.  
Diode  
Input  
Bypass  
Capacitor  
PWRGD  
BOOT  
VDD  
SW  
VI  
GND  
EN  
UVLO  
Adjust  
COMP  
FB  
SS/TR  
Resistors  
RT/CLK  
Compensation Resistor  
Network  
Divider  
Thermal Via  
Signal Via  
Soft-Start  
Capacitor  
Frequency  
Set Resistor  
Figure 72. PCB Layout Example  
版权 © 2014–2017, Texas Instruments Incorporated  
43  
 
TPS54561-Q1  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
有关 TPS54560TPS54561 TPS54561-Q1 系列 Excel 设计工具的信息,请参见 SLVC452。  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
《使用降压稳压器创建反向电源》SLVA317  
《使用宽范围输入电压降压稳压器创建分离轨电源》SLVA369  
《针对 TPS54561 降压转换器的评估模块》SLVU993  
《利用 TPS54240 TPS2511 制作供 USB 设备使用的通用车载充电器》SLVA464  
11.2.2 使用 WEBENCH® 工具定制设计方案  
请单击此处,借助 WEBENCH®Power Designer 并使用 TPS54561-Q1 器件定制设计方案  
1. 首先输入您的 VINVOUT IOUT 要求。  
2. 使用优化器拨盘可优化效率、封装和成本等关键设计参数并将您的设计与德州仪器 (TI) 的其他可行解决方案进  
行比较。  
3. WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
4. 在多数情况下,您还可以:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
5. 有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
Excel is a trademark of Microsoft Corporation.  
44  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS54561-Q1  
www.ti.com.cn  
ZHCSCT5A SEPTEMBER 2014REVISED JANUARY 2017  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。本数据随时可能发生变更并  
且不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54561QDPRRQ1  
TPS54561QDPRTQ1  
ACTIVE  
WSON  
WSON  
DPR  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS  
54561Q  
ACTIVE  
DPR  
NIPDAU  
TPS  
54561Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS54561QDPRRQ1  
TPS54561QDPRTQ1  
WSON  
WSON  
DPR  
DPR  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS54561QDPRRQ1  
TPS54561QDPRTQ1  
WSON  
WSON  
DPR  
DPR  
10  
10  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DPR0010A  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
A
B
(0.2)  
4.1  
3.9  
PIN 1 INDEX AREA  
FULL R  
BOTTOM VIEW  
SIDE VIEW  
20.000  
ALTERNATIVE LEAD  
DETAIL  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
2.6 0.1  
(0.1) TYP  
SEE ALTERNATIVE  
LEAD DETAIL  
5
6
2X  
3.2  
11  
3
0.1  
8X 0.8  
1
10  
0.35  
0.25  
0.1  
10X  
0.5  
0.3  
PIN 1 ID  
10X  
C A B  
C
0.05  
4218856/B 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPR0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.6)  
10X (0.6)  
SYMM  
10  
1
10X (0.3)  
(1.25)  
SYMM  
11  
(3)  
8X (0.8)  
6
5
(
0.2) VIA  
TYP  
(1.05)  
(R0.05) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EDGE  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218856/B 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPR0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
10X (0.6)  
METAL  
TYP  
(0.68)  
10  
1
10X (0.3)  
(0.76)  
11  
SYMM  
8X (0.8)  
4X  
(1.31)  
5
6
(R0.05) TYP  
4X (1.15)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
77% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4218856/B 01/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54561DPRR

具有软启动和 Eco-mode™ 的 4.5V 至 60V 输入 5A 降压直流/直流转换器 | DPR | 10 | -40 to 125
TI

TPS54561DPRT

具有软启动和 Eco-mode™ 的 4.5V 至 60V 输入 5A 降压直流/直流转换器 | DPR | 10 | -40 to 125
TI

TPS54561QDPRRQ1

具有软启动和 Eco-Mode™ 的汽车类 4.5V 至 60V 输入 5A 降压直流/直流转换器 | DPR | 10 | -40 to 125
TI

TPS54561QDPRTQ1

具有软启动和 Eco-Mode™ 的汽车类 4.5V 至 60V 输入 5A 降压直流/直流转换器 | DPR | 10 | -40 to 125
TI

TPS54610

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs
TI

TPS54610-EP

3 V TO 6 V INPUT, 6 A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)
TI

TPS54610-Q1

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)
TI

TPS54610MPWPREP

3 V TO 6 V INPUT, 6 A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)
TI

TPS54610MPWPREPG4

3 V TO 6 V INPUT, 6 A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™)
TI

TPS54610PWP

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs
TI

TPS54610PWPG4

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK SWITCHER WITH INTEGRATED FETs (SWIFT)
TI

TPS54610PWPR

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK SWITCHER WITH INTEGRATED FETs (SWIFT)
TI