TPS55165QPWPTQ1 [TI]

2V 至 36V、1A 输出、2MHz、5V 或 12V 固定输出电压、升压和降压转换器 | PWP | 20 | -40 to 125;
TPS55165QPWPTQ1
型号: TPS55165QPWPTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2V 至 36V、1A 输出、2MHz、5V 或 12V 固定输出电压、升压和降压转换器 | PWP | 20 | -40 to 125

开关 光电二极管 转换器
文件: 总48页 (文件大小:2585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
TPS5516x-Q1 36V1A 输出、2MHz、单电感器、同步升压  
和降压稳压器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性:  
– 器件温度等140°C +125°C 的工作环  
境温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
提供功能安全  
TPS5516x-Q1 系列器件是一款高电压同步降压/升压直  
/直流转换器。该器件通过多种不同的输入电源如  
汽车电池提供稳定的电源输出。降压/升压重叠控制  
可确保以最佳的效率在降压和升压模式之间自动转换。  
TPS55165-Q1 输出电压可以设置为 5V 12V 固定电  
平。TPS55160-Q1 TPS55162-Q1 器件具有通过外  
部电阻分压器设置5.7V 9V 可配置输出电压。  
可帮助进行功能安全系统设计的文档  
VOUT = 5V 时的输入电压范围2V 36V  
5V 12V 固定输出电(TPS55165-Q1)  
5.7V 9V 可调输出电压选项  
TPS55160-Q1 TPS55162-Q1)  
• 效率高85%  
VOUT = 5V VIN 5.3V 时的输出电流1A  
VOUT = 5V VIN 3.8V 时的输出  
电流0.8A  
VOUT = 5V VIN 2.3V 时的输出  
电流0.4A  
• 在降压和升压模式之间自动转换  
• 低功耗模式可在轻负载情况下提高效率  
(TPS55160-Q1/TPS55165-Q1)  
对于常规汽车电池电压输出电流可高至 1A并且能  
够针对更低的输入电压如用于实现常见电池启动曲线  
的电压保持在 0.4A。该降压/升压转换器基于一个使  
用同步整流的固定频率、脉宽调制 (PWM) 控制电路来  
获得最高效率。开关频率设置2MHz典型值),从  
而允许使用小型电感器布板空间更少。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS55160-Q1  
TPS55162-Q1  
TPS55165-Q1  
HTSSOP (20)  
6.50mm x 4.40mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 在低功耗模式下器件静态电流小15μA  
(TPS55160-Q1/TPS55165-Q1)  
简化版原理图  
• 器件关断电流小3μA  
VOUT = 5 V  
4.7 µF  
2MHz 强制固定运行频率  
0.1 µF  
BST1 L1  
0.1 µF  
1 A at VIN  
5.3 V  
0.8 A at VIN  
0.4 A at VIN  
3.8 V  
2.3 V  
• 可选展频TPS55160-Q1 TPS55165-Q1)  
• 通过具有电源锁存功能IGN 唤醒  
• 具有可配置延迟时间的智能电源正常输出  
• 过热保护和输出过压保护  
2VVIN36V  
L2 BST2  
VINP  
VOUT  
10 µF  
VINL  
100 k  
22 µF  
PG  
VOUT_SENSE  
Power  
Latch  
ON  
IGN_PWRL  
IGN  
SS_EN  
100 nF  
• 采用易于使用20 HTSSOP PowerPAD封  
VOS_FB  
OFF  
VREG  
VREG_Q  
PG_DLY  
Low-  
Power  
Mode  
PS  
2 应用  
PGND  
GND  
RDLY  
4.7 µF  
TPS5516x-Q1  
• 启停敏感型汽车电源应用  
信息娱乐系统与仪表组  
车身电子装置和网关模块  
• 具有波动输入电压的工业应用  
– 太阳能和电池充电  
– 锂离子电池组  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD46  
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics External Components.... 6  
7.6 Electrical Characteristics Supply Voltage  
7.17 Switching Characteristics IGN Wakeup..............11  
7.18 Switching Characteristics Logic Pins PS,  
IGN_PWRL, SS_EN....................................................11  
7.19 Switching Characteristics Power Good.............. 12  
7.20 Typical Characteristics............................................13  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................19  
9 Application and Implementation..................................28  
9.1 Application Information............................................. 28  
9.2 Typical Application.................................................... 32  
10 Power Supply Recommendations..............................36  
11 Layout...........................................................................37  
11.1 Layout Guidelines................................................... 37  
11.2 Layout Example...................................................... 38  
12 Device and Documentation Support..........................39  
12.1 Device Support....................................................... 39  
12.2 Documentation Support.......................................... 39  
12.3 接收文档更新通知................................................... 39  
12.4 支持资源..................................................................39  
12.5 Trademarks.............................................................39  
12.6 Electrostatic Discharge Caution..............................39  
12.7 术语表..................................................................... 39  
13 Mechanical, Packaging, and Orderable  
(VINP, VINL pins).......................................................... 6  
7.7 Electrical Characteristics Reference Voltage  
(VOS_FB Pin) and Output Voltage (VOUT Pin)............ 7  
7.8 Electrical Characteristics Buck-Boost.....................8  
7.9 Electrical Characteristics Undervoltage and  
Overvoltage Lockout..................................................... 9  
7.10 Electrical Characteristics IGN Wakeup.................9  
7.11 Electrical Characteristics Logic Pins PS,  
IGN_PWRL, SS_EN......................................................9  
7.12 Electrical Characteristics Overtemperature  
Protection.................................................................... 10  
7.13 Electrical Characteristics Power Good...............10  
7.14 Switching Characteristics Reference Voltage  
(VOS_FB Pin) and Output Voltage (VOUT Pin).......... 10  
7.15 Switching Characteristics Buck-Boost................11  
7.16 Switching Characteristics Undervoltage and  
Overvoltage Lockout....................................................11  
Information.................................................................... 39  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2017) to Revision A (December 2021)  
Page  
• 添加了功能安全项目符号.................................................................................................................................... 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更改了原理图以显示与器件引脚正确对应的关-开波形........................................................................................1  
• 删除了预发布说明...............................................................................................................................................1  
Updated Overcurrent Protection section...........................................................................................................18  
Changed 方程5 solution from "0.458 A" to "0.229 A"...................................................................................33  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
5 说明)  
可选的扩频选项TPS55160-Q1 TPS55165-Q1有助于降低辐射电磁干扰 (EMI)。利用内部环路补偿无需  
使用外部补偿组件。在低功耗模式TPS55160-Q1 TPS55165-Q1该器件可实现小于 15µA 的静态电  
从而使汽车电子控制单(ECU) 能够保持在待机模式例如侦CAN 模式),同时可满OEM 静态电流要  
求。可以禁用低功耗模式从而强制转换器针对整个负载电流范围以 2MHz典型值的固定开关频率在完全连  
续模式下运行。电感器中的最大平均电流被限制2A 的典型值。  
可以通过禁用转换器来最大限度地减少电池消耗。此外该器件还提供电源正(PG) 引脚以指示输出轨何时低  
于指定的容差。该器件还具有电源锁存功能以允许外部微控制器单元 (MCU) 使输出电压在所需的时长内保持可  
用。  
该器件采20 HTSSOP PowerPAD 封装。  
6 Pin Configuration and Functions  
PGND  
L1  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
L2  
BST2  
BST1  
GND  
VINP  
VOUT  
VOUT_SENSE  
PG  
VINL  
Thermal  
Pad  
IGN  
PS  
VOS_FB  
GND  
IGN_PWRL  
SS_EN  
PG_DLY  
VREG  
VREG_Q  
Not to scale  
6-1. PWP PowerPAD™ Package 20-Pin HTSSOP With Exposed Thermal Pad Top View  
6-1. Pin Functions  
PIN  
I/O(1) TYPE(2)  
DESCRIPTION  
NAME  
NO.  
PGND  
1
G
A
Power-ground pin  
Buck power-stage switch node. Connect an inductor with a nominal value of 4.7 µH between the  
L1 and L2 pins.  
L1  
2
3
I
Bootstrap node for the buck power stage. Connect a 100-nF capacitor between this pin and the L1  
pin.  
BST1  
I
A
VINP  
VINL  
4
5
P
P
Supply-power input voltage. Connect this pin to the input supply line.  
Supply-input voltage for internal biasing. Connect this pin to the input supply line.  
Ignition-enable input signal. The ignition is enabled when this pin is high (1) and is disabled when  
this pin is low (0).  
IGN  
PS  
6
7
8
9
I
I
I
I
D
D
D
D
Logic-level input signal to enable and disable low-power mode. The power mode is low-power  
mode when this pin is high (1) and is normal mode when this pin is low (1).  
Logic-level IGN power-latch signal. The IGN pin is latched when this pin is high (1) and is not  
latched when this pin is low (0).  
IGN_PWRL  
SS_EN  
Configuration pin to enable and disable the spread-Spectrum. The spread-spectrum feature is  
enabled when this pin is open and disabled when this pin is low.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
I/O(1) TYPE(2)  
DESCRIPTION  
NAME  
NO.  
Configuration pin for power-good delay time. Connect this pin to a resistor with a value from 10kΩ  
to 100kΩto configure the PG delay time from 0.5 ms to 40 ms. Connect this pin to ground for the  
default PG delay time which is 2 ms (typical).  
PG_DLY  
10  
I
I
A
A
Quiet feedback pin for the gate-drive supply of the buck-boost power stages. This pin must be  
connected close to the top side of the 4.7-µF (typical) decoupling capacitor at the VREG output  
pin.  
VREG_Q(3)  
11  
Gate-drive supply for the buck-boost power stages. Apply a 4.7-µF (typical) decoupling capacitor  
at this pin to the power ground. The VREG pin cannot drive external loads in the application.  
VREG  
GND  
12  
13  
O
A
G
Analog ground  
For the TPS55160-Q1 and TPS55162-Q1 devices, this pin is used to adjust the VOUT  
configuration. Connect this pin to a resistive feedback network with less than 1-MΩtotal  
resistance between the VOUT pin, FB pin, and GND pin (analog ground).  
For the TPS55165-Q1 device, this pin is used to select the output voltage. The output voltage is  
set to 5 V when this pin is connected to the GND pin. The output voltage is 12 V when this pin is  
connected to the VREG pin.  
VOS_FB  
PG  
14  
I
A
Output power good pin. This pin is an open-drain pin. The status of the power-good output is good  
when this pin is high (1) and has a failure when this pin is low (0)  
15  
16  
O
I
D
A
VOUT_SEN  
SE  
Sense pin for the buck-boost converter output voltage. This pin must be connected to the VOUT  
pin.  
VOUT  
GND  
17  
18  
O
A
Buck-boost converter output voltage  
Analog ground  
G
Bootstrap node for the boost power-stage. Connect a typical 100-nF capacitor between this pin  
and the L2 pin.  
BST2  
19  
20  
I
I
A
A
Boost power-stage switch node. Connect an inductor with a nominal value of 4.7 µH between the  
L1 and L2 pins.  
L2  
The thermal pad must be soldered to the power ground to achieve the appropriate power  
dissipation through the analog ground plane.  
PowerPAD  
(1) I = Input Pin, O = Output Pin  
(2) A = Analog Pin, D = Digital Pin, G = Ground Pin, P = Power Pin  
(3) The VREG_Q pin must be connected to the VREG pin at all times while the device is in operation to prevent possible electrostatic  
overstress (EOS) damage to the device.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
POS  
MIN  
0.3  
0.3  
-0.3  
MAX  
40  
UNIT  
V
M1.1  
M1.2  
M1.3  
M1.4  
M1.5  
M1.6  
M1.7  
M1.8  
M1.9  
Protected battery voltage  
Feedback voltage  
VINP, VINL  
VOS_FB  
5.5  
40  
V
Low-power mode input  
Low-voltage inputs  
PS  
V
IGN_PWRL, SS_EN, PG_DLY  
5.5  
40  
V
0.3  
7  
Ignition enable input  
IGN  
V
Buck-boost output voltage  
Gate-driver supply  
VOUT, VOUT_SENSE  
20  
V
0.3  
0.3  
0.3  
0.3  
0.3  
-0.3  
VREG, VREG_Q  
5.5  
40  
V
Buck switching node voltage  
Boost switching node voltage  
L1  
V
L2  
20  
V
M1.10 Boot-strap overdrive voltage  
M1.11 Power-good output voltage  
M1.12 Ground  
BST1-L1, BST2-L2  
PG  
5.5  
15  
V
V
PGND, GND  
0.3  
150  
175  
V
0.3  
40  
65  
M2  
M3  
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
M4  
Human-body model (HBM), per AEC Q100-002(1)  
Electrostatic  
discharge  
M5.1  
M5.2  
V(ESD)  
All pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 10, 11, and 20)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
POS  
R1.1a  
R1.1b  
MIN  
2
MAX UNIT  
TPS55165-Q1 with VOS_FB pin connected to  
GND  
36  
36  
V
V
Supply voltage at VINP and VINL pins (after wake-  
up)  
TPS55165-Q1 with VOS_FB pin connected to  
VREG  
4
R1.1c  
R1.2a  
R1.2b  
R1.3  
TPS55160-Q1 and TPS55162-Q1  
3.6  
36  
12  
5
V
V
V
V
V
V
V
Output voltage at VOUT and VOUT_SENSE pins  
Output voltage at PG pin  
0
0
0
Input voltage on IGN pin  
36  
5
R1.4  
Input voltage on logic pins IGN_PWRL, PS and SS_EN  
0
R1.5a  
R1.5b  
R2.1  
TPS55165-Q1  
TPS55160/2-Q1  
0
5
Input voltage on VOS_FB pin  
0
0.8  
125  
150  
Operating free air temperature, TA  
40  
40  
R2.2  
Operating virtual junction temperature, TJ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7.4 Thermal Information  
TPS5516x-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
20 PINS  
35.4  
19.8  
16.8  
0.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
16.5  
0.9  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics External Components  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AN.1 COUT  
Value of output ceramic capacitor Connect between VOUT and PGND  
18  
22  
47  
µF  
Value of ESR of output capacitor,  
COUT  
AN.1a ESR COUT  
AN.2 CBST  
0
100  
mΩ  
Value of bootstrap ceramic  
capacitor  
ESR < 10 mΩ. Connect between BST1 and  
L1 with respect to BST2 and L2  
100  
nF  
Value of ESR of bootstrap ceramic  
capacitor, CBST  
AN.2a ESR CBST  
0
10  
mΩ  
AN3  
L
Value of inductor  
3.3  
0
4.7  
10  
6.2  
40  
µH  
Saturation current > 2.5 A, ESR < 30 mΩ  
AN.3a DCR L  
AN.4 CIN  
Value of DCR of inductor  
mΩ  
Value of supply input ceramic  
capacitor  
40-V compliant. Connect between VIN and  
PGND  
8.2  
0
µF  
mΩ  
µF  
Value of ESR of input capacitor,  
CIN  
AN.4a ESR CIN  
AN.5 CVREG  
100  
5.6  
10  
Decoupling capacitor on VREG  
pin to ground  
Connect between VREG and PGND  
3.9  
0
4.7  
Value of ESR of input capacitor,  
CVREG  
AN.5a ESR CVREG  
mΩ  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.6 Electrical Characteristics Supply Voltage (VINP, VINL pins)  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
TPS55165-Q1 with  
1.1a  
VOS_FB pin connected to  
GND  
2
14  
36  
V
Operating supply input Applied at VINP and VINL  
1.1b  
VIN  
TPS55165-Q1 with  
VOS_FB pin connected to  
VREG  
voltage  
pins, after device startup  
4
3.6  
5.3  
14  
14  
36  
1.1c  
1.2  
TPS55160/2-Q1  
36  
V
V
Applied at VINP and VINL pins; TJ = 25°C. This minimum  
voltage is required until VOUT > PGTH_UV  
IVOUT < 400 mA, CVOUT = 22 µF  
Minimum input voltage  
for startup  
VIN_startup  
;
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
µA  
VIN Shutdown supply  
current  
1.3  
ISD  
VIN = 12 V, VIGN= 0 V, VPS= 0 V, VIGN_PWRL = 0 V, TJ = 25°C  
3
TPS55165-Q1:  
VIN Quiescent supply  
current  
VIN = VIGN = 12 V, VOUT = 5 V, IOUT = 0 mA, TJ = 25°C  
Device in low-power mode, Non-switching  
VOS_FB pin connected to GND  
1.4  
IQ  
0
15 µA  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.7 Electrical Characteristics Reference Voltage (VOS_FB Pin) and Output Voltage (VOUT  
Pin)  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
TPS55160/2-Q1:  
Measured at VOS_FB pin  
Feedback voltage in normal mode  
for adjustable VOUT setting(2)  
Resistive divider with total resistance < 1  
MΩconnected between VOUT, VOS_FB,  
and GND pins  
2.1a  
VFB_NM_adj  
0.784  
0.8 0.816  
V
TPS55165-Q1:  
Feedback voltage in normal mode Measured at VOUT_SENSE pin  
2.1b  
2.1c  
VFB_NM_5V  
4.9  
5
5.1  
V
V
for VOUT in fixed 5-V setting(2)  
VOS_FB pin connected to GND; VOUT pin  
connected to VOUT_SENSE  
TPS55165-Q1:  
Feedback voltage in normal mode Measured at VOUT_SENSE pin  
VFB_NM_12V  
11.76  
0.776  
12 12.24  
0.8 0.824  
for VOUT in fixed 12-V setting(2)  
VOS_FB pin connected to VREG; VOUT  
pin connected to VOUT_SENSE  
TPS55160/2-Q1:  
Measured at VOS_FB pin  
Resistive divider with total resistance < 1  
MΩconnected between VOUT, VOS_FB,  
and GND pins  
Feedback voltage in low-power  
2.2a  
VFB_PS_adj  
V
mode for adjustable VOUT setting(3)  
TPS55165-Q1:  
Feedback voltage in low-power  
mode for VOUT in 5-V setting(3)  
Measured at VOUT_SENSE pin  
VOS_FB pin connected to GND; VOUT pin  
connected to VOUT_SENSE  
2.2b  
2.2c  
VFB_PS_5V  
4.85  
5
5.15  
V
V
TPS55165-Q1:  
Feedback voltage in low-power  
mode for VOUT in 12-V setting(3)  
Measured at VOUT_SENSE pin  
VOS_FB pin connected to VREG; VOUT  
pin connected to VOUT_SENSE  
VFB_PS_12V  
11.64  
12 12.36  
TPS55160/2-Q1:  
Measured at VOUT_SENSE pin  
2.3  
2.6  
VOUT_OL  
Adjustable output voltage range  
5.7  
9
V
Device in OFF state, INIT state, or  
PRE_RAMP state; VIGN = 0 V, VPS = 0 V,  
VIGN_PWRL = 0 V  
Pulldown discharge resistance at  
VOUT  
RpdVOUT  
250  
365  
850  
Ω
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
(2) VPS= 0 V; Average DC value excluding ripple and load transients for VIN and load current ranges as specified in IVOUT. Inclusive DC  
line and load regulation, temperature drift, and long term drift.  
(3) VPS= 5 V; Average DC value excluding ripple and load transients for VIN and load current ranges as specified in IVOUT. Inclusive DC  
line and load regulation, temperature drift, and long term drift.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7.8 Electrical Characteristics Buck-Boost  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
3.1a  
1
A
6 V VIN; DCR 40 mΩ  
3.8 V VIN 6 V; DCR 40 mΩ  
TPS55165-Q1 with  
3.1b  
800  
Max output current in  
normal operation for  
VOUT in 5-V setting  
IOUT_5V  
VOS_FB pin  
2.3 V VIN < 3.8 V; DCR 40  
mΩ  
3.1c  
400  
mA  
connected to GND  
3.1d  
3.1e  
200  
800  
2 V VIN < 2.3 V; DCR 40 mΩ  
14 V VIN; DCR 40 mΩ  
9.2 VVIN 14 V; DCR 40  
mΩ  
TPS55165-Q1 with  
VOS_FB pin  
connected to  
VREG  
3.1f  
600  
Max output current in  
normal operation for  
VOUT in 12-V setting  
IOUT_12V  
5.6 VVIN < 9.2 V; DCR 40  
mΩ  
3.1g  
3.1h  
3.2a  
300  
150  
800  
mA  
4 V VIN < 5.6 V; DCR 40 mΩ  
(VOUT + 2V) VIN; DCR 40  
mΩ  
Max output current in  
normal operation for  
adjustable  
0.76 * VOUT VIN (VOUT + 2V);  
DCR 40 mΩ  
3.2b  
3.2c  
3.2d  
3.2e  
3.2f  
600  
300  
150  
800  
600  
300  
50  
mA  
mA  
mA  
TPS55160-Q1 and  
TPS55162-Q1,  
8V < VOUT 9V  
IOUT_adj_VoutH  
0.46 * VOUT VIN < 0.76 * VOUT  
DCR 40 mΩ  
;
configuration, 8V <  
V
OUT 9V  
3.6 V VIN < 0.46 * VOUT; DCR ≤  
40 mΩ  
(VOUT + 1V) VIN; DCR 40  
mΩ  
Max output current in  
normal operation for  
adjustable  
TPS55160-Q1 and  
TPS55162-Q1,  
0.76 * VOUT VIN < (VOUT + 1V);  
DCR 40 mΩ  
IOUT_adj_VoutL  
5.7V VOUT  
configuration, 5.7V ≤  
mA  
8V  
V
OUT 8V  
3.6 V VIN < 0.76 * VOUT; DCR ≤  
40 mΩ  
3.2g  
3.11  
Max output current in  
low-power mode  
IOUT_PS  
On-resistance buck-  
3.3  
3.4  
Rdson_ BUCK_HS stage high-side (HS)  
FET  
150  
150  
300  
300  
mΩ  
mΩ  
On-resistance buck-  
Rdson_ BUCK_LS stage low-side (LS)  
FET  
Rdson_  
On-resistance boost-  
stage HS FET  
3.5  
3.6  
150  
150  
300  
300  
mΩ  
mΩ  
BOOST_HS  
Rdson_  
On-resistance boost-  
stage LS FET  
BOOST_LS  
Peak current limit for  
3.7  
3.9  
ISW_limit  
HS buck, LS buck, and Device in normal operating mode  
LS boost  
2
3.5  
2
4.5  
2.8  
A
A
Average coil current  
ICoilAvglimit  
Device in normal operating mode; L = 4.7 µH  
limit  
Transient load step  
3.20a VTLDSR_5V_100 response for VOUT in  
5-V setting  
TPS55165-Q1: Measured at VOUT_SENSE pin;  
VOS_FB pin connected to GND; VIN = 12 V, IOUT = 0.1 A  
to 0.5 A, TR = TF = 1 µs, COUT = 47 µF  
5
Transient load step  
3.20b VTLDSR_5V_500 response for VOUT in  
5-V setting  
TPS55165-Q1: Measured at VOUT_SENSE pin;  
VOS_FB pin connected to GND; VIN = 12 V, IOUT = 0.5 A  
to 1 A, TR = TF = 1 µs, COUT = 47 µF  
5
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
TPS55165-Q1: Measured at VOUT_SENSE pin;  
VOS_FB pin connected to GND; VIN = 12V, IOUT = 1 A,  
SS_EN = low  
Output ripple for VOUT  
in 5-V setting  
3.21a VRIPPLE_5V  
5.5  
mVpp  
TPS55165-Q1: Measured at VOUT_SENSE pin;  
VOS_FB pin connected to VREG; VIN = 14V, IOUT = 0.8  
A, SS_EN = low  
Output ripple for VOUT  
in 12-V setting  
3.21b VRIPPLE_12V  
5
mVpp  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.9 Electrical Characteristics Undervoltage and Overvoltage Lockout  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
TPS55165-Q1 with  
VOS_FB pin connected to  
GND  
VIN voltage decreasing;  
Device turned-off when VIN  
< UVLO  
Device is in normal  
operating mode  
4.1a  
1.8  
2
4
V
V
VIN Undervoltage (UV)  
lockout threshold  
UVLO  
TPS55165-Q1 with  
VOS_FB pin connected to  
VREG  
4.1b  
4.1c  
3.6  
1.8  
36  
VIN voltage decreasing;  
Device turned-off when VIN TPS55162-Q1  
< UVLO  
Device is in normal  
operating mode  
TPS55160-Q1 and  
VIN Undervoltage (UV)  
lockout threshold  
UVLO  
OVLO  
2
V
V
VIN voltage increasing; Device stops switching when VIN  
> OVLO, and recovers when VIN < OVLO and IGN = 1  
Device is in normal operating mode  
VIN Overvoltage (OV)  
lockout threshold  
4.2  
4.9  
40  
VOUT_PROT_OV VOUT OV protection  
Device is in normal operating mode  
110%  
125%  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.10 Electrical Characteristics IGN Wakeup  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
5.1a  
IGNWAKE  
IGNPD  
IGN wake-up threshold  
VIGN voltage increasing to wake-up device  
2.5  
3.1  
3.7  
2.7  
V
V
VIGN voltage decreasing to power-down  
device  
5.1b  
5.2  
IGN power-down threshold  
IGN wake-up hysteresis  
1.5  
0.76  
11  
2.1  
1
IGNHYST  
I_IGN36V  
1.35  
30  
V
IGN pin forward input current  
at 36 V  
5.3a  
VIGN = 36 V  
17  
µA  
IGN pin forward input current  
at 12 V  
5.3b  
5.5  
I_IGN12V  
I_IGNrev  
VIGN = 12 V  
2.3  
3.7  
7.1  
µA  
µA  
IGN pin reverse current  
370  
650  
VIGN = 7 V  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.11 Electrical Characteristics Logic Pins PS, IGN_PWRL, SS_EN  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Logic input low-to-high  
6.1  
VLOGIC_IN_HIGH  
threshold for pins  
Device in power-up condition  
2
V
IGN_PWRL PS, and SS_EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Logic Input high-to-low  
6.2  
VLOGIC_IN_LOW  
threshold for pins  
IGN_PWRL, PS, and SS_EN  
Device in power-up condition  
0.74  
0.39  
V
V
Logic input hysteresis for  
pins IGN_PWRL, PS, and  
SS_EN  
6.3  
VLOGIC_IN_HYST  
Device in power-up condition  
0.15  
Pulldown resistance on PS  
pin to GND  
6.4  
6.5  
6.6  
RLOGIC_IN_PD  
Ipull-up_SS_EN  
35  
85  
1
70  
111  
266  
8
kΩ  
µA  
µA  
Pullup current on SS_EN pin  
Pullup current on  
IGN_PWRL pin  
Ipull-up_IGN_PWRL  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.12 Electrical Characteristics Overtemperature Protection  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
7.1  
7.2  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
210  
Overtemperature shutdown  
protection threshold  
TPROT  
THYS  
175  
Overtemperature shutdown  
hysteresis  
30  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.13 Electrical Characteristics Power Good  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Deviation from nominal VOUT to assert PG  
low, in normal mode  
10%  
5%  
Deviation from nominal VOUT to assert PG  
low, during low power mode to normal mode  
transition  
8.1  
PGTH_UV  
PG threshold undervoltage  
-12%  
Deviation from nominal VOUT to assert PG  
low, in low power mode  
-20%  
-5%  
8.2  
VPG_LOW  
PG output-low voltage  
0.4  
V
IPGL 1mA  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.14 Switching Characteristics Reference Voltage (VOS_FB Pin) and Output Voltage (VOUT  
Pin)  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
L = 4.7 µH, COUT = 22 µF; VOUT rising from 10%  
to 90% of final value  
2.5  
tstart_VOUT  
VOUT startup time  
1.5  
ms  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7.15 Switching Characteristics Buck-Boost  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
70 ns  
Time until peak current limit is  
active  
3.8  
tblank_Iswlim  
ƒSW  
VIN = 14 V  
VIN_max = 27 V  
40  
Switching frequency without  
Spread-Spectrum  
3.11  
3.12  
3.14  
3.15  
3.16  
1860 2000  
1800 2100  
55  
2140 kHz  
2400 kHz  
Switching frequency with Spread- VIN_max = 27 V; SS_EN pin not connected to  
Spectrum Enabled  
ƒSW_SS  
GND; Device in buck operation  
Minimum on time in buck  
operation  
ton_Min_Buck  
ton_Max_Boost  
Device in normal operation mode  
65  
ns  
ns  
µs  
Maximum on time in boost  
operation  
Device in normal operation mode  
350  
400  
4
450  
ton_Max_Bst_LP Maximum boost on time in power  
save mode  
M
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.16 Switching Characteristics Undervoltage and Overvoltage Lockout  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
4.3  
4.8  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
tdegl_VINUVOV  
VIN UV and OV deglitch time  
40  
50  
10  
60  
µs  
µs  
tdegl_VREGUVOV VREG UV and OV deglitch time  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.17 Switching Characteristics IGN Wakeup  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
5.6  
IGN_deg  
IGN deglitch filter time  
7.5  
22  
25  
ms  
ms  
Time from IGN high till VOUT  
crossing 95% of the end-value  
5.7  
IGNstartup_time  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
7.18 Switching Characteristics Logic Pins PS, IGN_PWRL, SS_EN  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Delay time betweein the toggling of the  
IGN_PWRL pin and the state change of the  
signal inside the device  
Input Delay time for IGN_PWRL  
pin  
6.7  
tDelay_IGN_PWRL  
tDelay_PS_L2H  
tDelay_PS_H2L  
213  
256  
272  
136  
510  
µs  
µs  
µs  
Input Delay time for PS pin  
pulling high  
Delay time between pullping the PS high  
and the device enters low-power mode  
6.8a  
6.8b  
59  
Delay time between releasing the PS pin  
and the device enters normal mode from  
low-power mode  
Input Delay time for PS pin going  
low  
262  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7.19 Switching Characteristics Power Good  
Over operating free air temperature range 40°C TA 125°C and maximum junction temperature TJ = 150°C and  
recommended operating input supply range (unless otherwise noted)(1)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
40  
30  
4
MAX UNIT  
8.3  
PGDeglitch  
PG deglitch filter time  
45  
55  
µs  
8.4a  
8.4b  
8.4c  
8.4d  
PG_DLY Shorted to VREG  
ms  
100 kΩbetween PG_DLY and GND  
10 kΩbetween PG_DLY and GND  
PG_DLY grounded  
PG extension time (rising edge  
only)  
PGexttime  
ms  
ms  
0.7  
(1) The term VIN refers to the voltage on all supply pins VINP and VINL (unless otherwise noted).  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7.20 Typical Characteristics  
3.5  
2.2  
2.15  
2.1  
3
2.5  
2
2.05  
2
1.5  
1
1.95  
1.9  
0.5  
0
1.85  
1.8  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Dt0p0s52  
Temperature (èC)  
D001  
VIN = 12 V  
7-1. Shutdown IQ vs Temperature  
7-2. Switching Frequency vs Temperature  
5.08  
5.08  
5.06  
5.04  
5.02  
5
5.06  
5.04  
5.02  
5
VIN = 3.8 V  
VIN = 6 V  
VIN = 12 V  
VIN = 36 V  
IOUT = 0 A  
IOUT = 0.3 A  
IOUT = 0.5 A  
IOUT = 1 A  
4.98  
4.96  
4.98  
4.96  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0
5
10  
15  
Input Voltage (V)  
20  
25  
30  
35  
40  
D003  
D004  
7-3. 5-V Output Regulation vs Load Current  
7-4. 5-V Output Regulation vs Input Voltage  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
11.9  
11.8  
11.7  
11.6  
11.5  
11.9  
11.8  
11.7  
11.6  
11.5  
VIN = 4 V  
IOUT = 0 A  
VIN = 5.6 V  
VIN = 14 V  
VIN = 36 V  
IOUT = 0.3 A  
IOUT = 0.5 A  
IOUT = 0.8 A  
0
0.2  
0.4  
Output Current (A)  
0.6  
0.8  
0
5
10  
15  
20  
Input Voltage (V)  
25  
30  
35  
40  
D005  
D006  
7-5. 12-V Output Regulation vs Load Current  
7-6. 12-V Output Regulation vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7.20 Typical Characteristics (continued)  
L1  
L1  
VOUT  
VOUT  
PG_DLY  
PG_DLY  
VIN = 12 V  
VOUT = 5 V  
VIN = 12 V  
VOUT = 5 V  
7-7. Power-Good Delay When PGDLY Is Grounded  
7-8. Power-Good Delay When PGDLY Connects to 100-kΩ  
Resistor  
L1  
VOUT  
L1  
VOUT  
PG_DLY  
IGN  
VIN = 12 V  
VOUT = 5 V  
VIN = 14 V  
VOUT = 5 V  
IOUT = 0 A  
7-9. Power-Good Delay When PGDLY Connects to VREG  
7-10. Ignition Shutdown Sequence  
VOUT  
VIN  
VOUT  
PS  
L1  
L1  
L2  
L2  
VIN = 12 V  
VOUT = 5 V  
IOUT = 50 mA  
VOUT = 5 V  
IOUT = 0.5 A  
4 V VIN 12 V  
7-11. Low-Power Mode Enabling  
7-12. Step-Up to Step-Down Mode Transition  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
7.20 Typical Characteristics (continued)  
1.2  
1
VIN  
VOUT  
L1  
0.8  
0.6  
0.4  
0.2  
0
L2  
IOUT = 5 V  
IOUT = 12 V  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
D007  
A.  
VOUT = 5 V  
IOUT = 0.5 A  
4 V VIN 8 V  
7-14. Load Current Derating vs Input Voltage  
7-13. Step-Down to Step-Up Mode Transition  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The control circuit of the TPS5516x-Q1 buck-boost converter is based on an average current-mode topology.  
The control circuit also uses input and output voltage feedforward. Changes of input and output voltage are  
monitored and the duty cycle in the modulator is immediately adapted to achieve a fast response to those  
changes. The voltage error amplifier gets its feedback input from the VOS_FB pin. The feedback voltage is  
compared with the internal reference voltage to generate a stable and accurate output voltage.  
The buck-boost converter uses four internal N-channel MOSFETs to maintain synchronous power conversion at  
all possible operating conditions. This feature enables the device to keep high efficiency over a wide input  
voltage and output power range. To avoid ground shift problems caused by the high currents in the switches,  
separate ground pins (GND and PGND) are used. The reference for all control functions are the GND pins. The  
power switches are connected to the PGND pins. Both grounds must be connected on the PCB at only one point  
which is ideally close to the GND pin. Because of the 4-switch topology, the load is always disconnected from  
the input during shutdown of the converter.  
To drive the high-side switches of the buck and the boost power stages, the buck-boost converter requires  
external boot-strapping ceramic capacitors with low ESR. These bootstrap capacitors are charged by the VREG  
supply. The VREG supply requires a low-ESR ceramic capacitor for loop stabilization, and must not be loaded by  
the external application. The VREG supply is also used to drive the low-side switches of the buck and boost  
power stages. At device start-up, the VREG pin is supplied by the input voltage. When the buck-boost output  
voltage is greater than its power-good threshold (the PG pin is high), the VREG pin is supplied by the output  
voltage to reduce power dissipation.  
The device can be enabled with the IGN pin, and, when enabled, the device has a power-latch function which  
can be selected with the IGN_PWRL pin. This function allows an external MCU to keep TPS5516x-Q1 device on  
even after the IGN pin goes low.  
For the TPS55160-Q1 and TPS55165-Q1 devices, the operation mode of the buck-boost converter can be  
selected through the PS pin. When the PS pin is low, the buck-boost operates in normal mode with a constant  
fixed switching frequency. When the PS pin is high, the buck-boost operates in low-power mode with pulse-  
frequency modulation.  
The TPS55160-Q1 and TPS55165-Q1 devices also have a frequency spread-spectrum option that can be  
enabled or disabled through the SS_EN pin.  
The output voltage of the TPS55165-Q1 device is selected as a fixed 5 V or fixed 12 V through the VOS_FB pin.  
The TPS55160-Q1 and TPS55162-Q1 devices have an adjustable output voltage from 5.7 V to 9 V through an  
external feedback network.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8.2 Functional Block Diagram  
VIN  
VINP  
VINL  
VOUT  
BST2  
VOUT  
Current  
Sense  
BST1  
VVREG  
VVREG  
L2  
L1  
Buck-Boost  
Overlap Control  
VVREG  
VVREG  
PGND  
VINL  
UVLO and  
VOUT  
OVLO  
Device Type?  
VREG  
IGN  
VOUT_SENSE  
Power Up and  
IGN_PWRL  
Shutdown Logic  
VOS_FB  
Device Type?  
Thermal  
Shutdown  
FBint  
œ
Vref  
PS  
+
Low-Power  
Mode select  
Output  
Voltage  
Select  
SS_EN  
Spread-  
GND  
Spectrum Select  
VOUT_SENSE  
VINL  
Power-Good  
Comparator  
Vref  
Power  
Select  
Internal  
Reference  
FBint  
PG  
VREG  
Gate-Driver  
Supply  
Delay  
Filter  
VREG_Q  
TPS55160-Q1  
TPS55162-Q1  
TPS55165-Q1  
GND  
PG_DLY  
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Spread-Spectrum Feature  
The TPS55160-Q1 and TPS55165-Q1 devices have a spread-spectrum feature to modulate the switching  
frequency through a pseudo-random algorithm.  
This spread-spectrum feature is enabled and disabled through the SS_EN pin. When the SS_EN pin is  
unconnected, the spread-spectrum feature is enabled. The SS_EN pin is internally pulled up with a pullup  
current between 100 µA and 200 µA. When the SS_EN pin is connected to ground, the spread-spectrum feature  
is disabled.  
This feature can only be enabled when the device is in normal mode with step-down operation. This feature  
cannot be enabled in low-power mode.  
8.3.2 Overcurrent Protection  
The buck-boost regulator has two ways of protecting against overcurrent conditions. When the buck-boost is in  
regulation (essentially the output voltage is at the target voltage), the average current limit provides the  
protection against overcurrent conditions. When the average current limit is activated (essentially the maximum  
inductor average current is reached), the output voltage gradually decreases, but the control loop tries to  
maintain the target output voltage. So when the overcurrent condition clears before the buck-boost control circuit  
gets too far out of regulation, the output voltage gradually reaches its target voltage level again.  
The buck-boost regulator limits the peak-overcurrent in the power MOSFETs. When such a peak-overcurrent  
event occurs, the device goes into the PRE_RAMP state and a 12-ms time-out is started. The device restarts  
and goes from the PRE_RAMP state to the RAMP state after this 12-ms time-out expires and the IGN pin is  
high.  
When the device operates in low-power mode, both the average current limit and the peak-current limit  
protection functions are disabled.  
8.3.3 Overtemperature Protection  
The internal power MOSFETs are protected against excess power dissipation with junction overtemperature  
protection. In case of a detected overtemperature condition, the TPS55165-Q1 device goes to the PRE_RAMP  
state (the buck-boost regulator is switched off and the VREG supply is enabled) and a 12-ms time-out is started  
when the overtemperature condition is cleared. The device restarts in the PRE_RAMP state after this 12-ms  
time-out expires, the overtemperature condition disappeared, and the IGN pin is high.  
When the device operates in low-power mode, this overtemperature protection function is disabled.  
8.3.4 Undervoltage Lockout and Minimum Start-Up Voltage  
The TPS55165-Q1 device has an undervoltage lockout (UVLO) function. When the device operates in normal  
mode (the PS pin is low), this UVLO function puts the device in the OFF state when the input voltage is less than  
the UVLO threshold. The device restarts when the IGN pin is high and the input voltage is greater than or equal  
to the minimum input voltage for start-up, which must be maintained until the output voltage is greater than the  
PG undervoltage threshold.  
When the device operates in low-power mode, this UVLO function is disabled.  
8.3.5 Overvoltage Lockout  
The TPS55165-Q1 device has an overvoltage lockout (OVLO) function. When the input voltage is greater than  
the OVLO threshold while the device operates in normal mode (the PS pin is low), this OVLO function puts the  
device in the PRE_RAMP state (the buck-boost regulator is switched off and the VREG supply is enabled), and  
a 12-ms time-out starts. The device restarts in the PRE_RAMP state after this 12-ms time-out expires, the input  
voltage is less than the OVLO threshold, and the IGN pin is high.  
When the device operates in low-power mode, this OVLO function is disabled.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.6 VOUT Overvoltage Protection  
When the device operates in normal mode (the PS pin is low) and the output voltage is greater than or equal to  
the VOUT overvoltage protection, the device goes to the PRE_RAMP state (the buck-boost regulator is  
switched-off and the VREG supply is enabled) and a 12-ms time-out starts when the output voltage is less than  
the VOUT overvoltage protection. The device restarts in the PRE_RAMP state after this 12-ms time-out expires,  
the output voltage is less than the VOUT overvoltage protection, and the IGN pin is high.  
When the device operates in low-power mode, this VOUT overvoltage protection function is disabled.  
8.3.7 Power-Good Pin  
The power-good (PG) pin is a low-side FET open-drain output which is released as soon as the output voltage is  
greater than the PG undervoltage threshold (essentially the output voltage is rising) and the extension time  
(PGexttime) is expired. The intended usage of this pin is to release the reset of an external MCU. Therefore, the  
logic-input signals (IGN_PWRL and PS) are considered to be valid only when the PG pin reaches the high level.  
When the output voltage is less than the PG undervoltage threshold (essentially the output voltage is falling) for  
a time longer than the PG deglitch filter time, the PG pin is pulled low. When the PG pin is low, the level of the  
PS and IGN_PWRL pins is interpreted as low, regardless of the actual level. The device goes to the OFF state if  
the IGN pin is low under this condition. For more information on the behavior of the PG pin for rising and falling  
output voltage, see 8-2 through 8-6.  
The PG pin is operational in low-power mode. The PG extension time can be configured by connecting the  
PG_DLY pin to the VREG pin, the GND pin, or through an external resistor with a value from 10 kΩ to 100 kΩ  
to the GND pin. The extension time is as follows for the listed configurations:  
When the PG_DLY pin is shorted to the VREG pin, the typical PG extension time is 40 ms.  
When the PG_DLY pin is connected to the GND pin, the typical PG extension time is 0.6 ms.  
When the external resistor between the PG_DLY and GND pins has a value of 10 kΩ, the typical PG  
extension time is 3 ms.  
When the external resistor between pin the PG_DLY and GND pins has a value of 100 kΩ, the typical PG  
extension time is 30 ms.  
8.4 Device Functional Modes  
8.4.1 State Diagram  
8-1 shows the state diagram.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
PRE_RAMP  
• VREG enabled  
• Buck-boost disabled  
• Keeps count of RAMP to  
PRE_RAMP  
VOUT (normal mode) > VOUT_ABSMAX  
RAMP  
• VREG enabled  
• VOS pin state sampled and  
latched  
• SS_EN pin state sampled  
and latched  
• Buck-Boost ramping up  
INIT  
NORMAL MODE  
OFF  
NPOR  
• Loading EEPROM  
• Buck-boost disabled  
• VREG enabled  
• VREG enabled  
• Buck-boost enabled in  
normal mode  
Not Pre-Power-Good  
Off Condition AND  
Not Pre-Ramp  
Condition AND  
PG = High  
Not Pre-Power-Good  
Off condition AND  
VREG > VREG_UV  
AND  
EEPROM Load  
Complete  
• Device disabled  
Not Pre-Power-Good  
off condition  
IGN_CLR  
• Clears IGN signal  
LOW-POWER MODE  
Pre-Power-Good Off Condition: IGN = Low OR VINL < VIN_startup OR VREG > VREG_OV  
Normal Off Condition: (IGN = Low AND IGN_PWRL= Low) OR VINL < UVLO OR VREG > VREG_OV  
Low-Power Off Condition: IGN = Low AND IGN_PWRL = Low AND PS = Low  
• VREG enabled  
• Buck-boost enabled in low-  
power mode  
Pre-Ramp Condition: VREG < VREG_UV OR Overtemperature Shutdown OR IOUT > ISW_limit OR VINL > OVLO OR VOUT (normal mode) > VOUT_PROT_OV  
Valid IGN_PWRL: IGN_PWRL= High AND PG = High AND PG pin is not pulled down  
Valid PS: PS = High AND PG = High AND PG pin is not pulled down  
The 12-ms time-out from the PRE_RAMP state to the RAMP state starts only when all conditions for going to the RAMP state are  
satisfied. As soon as one of these conditions is violated, the 12-ms time-out is reset.  
The oscillator is turned off in low-power mode. The oscillator is turned back on upon detecting a negative edge on the PS pin, or a  
negative edge on the PG pin which requires the device to go out of low-power mode and enter normal mode again.  
8-1. State Diagram  
8.4.2 Modes of Operation  
The operational mode of the buck-boost converter is selected through the PS pin. When the PS pin is low, the  
buck-boost operates in normal mode with a constant fixed switching frequency. When the PS pin is high, the  
buck-boost operates in low-power mode with pulse-frequency modulation.  
8.4.2.1 Normal Mode  
To regulate the output voltage at all possible input voltage conditions, the buck-boost converter automatically  
switches from step-down operation to boost operation and back as required by the configuration. The regulator  
always uses one active switch, one rectifying switch, one always-on switch, and one always-off switch.  
Therefore, the regulator operates as a step-down converter (buck) when the input voltage is higher than the  
output voltage, and as a boost converter when the input voltage is lower than the output voltage. In normal  
mode, no mode of operation is available in which all four switches are permanently switching. Controlling the  
switches in this way allows the converter to maintain high efficiency at the most important point of operation;  
when the input voltage is close to the output voltage. The RMS current through the switches and the inductor is  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
kept at a minimum to minimize switching and conduction losses. For the remaining two switches, one is kept  
permanently on and the other is kept permanently off which causes no switching losses.  
In normal mode, the converter operates in full continuous mode at a fixed switching frequency of 2 MHz (typical)  
for the entire load-current range, even with no load at the output. No pulse-skipping should occur for supply  
voltages from 2 V to 27 V.  
8.4.2.2 Low-Power Mode  
When the buck-boost converter is in low-power mode, the output voltage is monitored with a comparator with its  
threshold at the regulation target voltage. When the buck-boost regulator goes to low-power mode, the converter  
temporary stops operating and the output voltage drops. The slope of the output voltage depends on the load  
and output capacitance. As the output voltage decreases to less than the regulation target voltage, the device  
ramps up the output voltage again by giving one or several pulses until the output voltage exceeds the regulation  
target voltage. In low-power mode, the buck-boost operates in 4-switch mode, which allows regulation at the  
target output voltage regardless of whether the input voltage is greater than or less than the target output voltage  
value.  
After the device enters low-power mode, the internal oscillator is turned off. As a result of the oscillator being  
turned off, all signal deglitching functions are disabled while the device is in low-power mode. These functions  
include the VIN and VREG OV and UV signal deglitch functions, and the IGN input signal deglitch function.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4.3 Power-Up and Power-Down Sequences  
8-2 shows the power-up and power-down sequence without the usage of the IGN_PWRL pin.  
IGN  
Deglitch time  
7.5 ms (min) to 22 ms (max)  
Deglitch time  
7.5 ms (min) to 22 ms (max)  
IGN_PWRL  
PS  
tDelay_PS_L2H  
tDelay_PS_H2L  
VREG  
VREG = 4.5 V (typ)  
VREG_UV level  
(minimum 3.7 V)  
VOUT  
5 V  
VOUT_PG level  
(4.55 to 4.75 V)  
See Note A  
PGexttime  
2 ms (typ)  
VOUTTstart  
2 ms (typ)  
PGdeglitch  
PG  
PGdeglitch  
Load  
EEPROM  
Operation Mode  
NORMAL  
MODE  
LOW-POWER  
MODE  
OFF  
INIT  
NORMAL MODE  
OFF  
RAMP  
A. The actual ramp-down time of the output voltage depends on external load conditions.  
8-2. Power-Up and Power-Down Sequence With Normal Mode and Low-Power Mode, Without Usage of  
IGN_PWRL  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8-3 shows the power-up and power-down sequence with usage of the IGN_PWRL pin.  
Deglitch time  
7.5 ms (min) to 22 ms (max)  
IGN  
tDelay_IGN_PWRL  
tDelay_IGN_PWRL  
IGN_PWRL  
tDelay_PS_L2H  
tDelay_PS_H2L  
PS  
VREG  
VREG = 4.5 V (typ)  
VREG_UV level  
(minimum 3.7 V)  
VOUT  
5 V  
VOUT_PG level  
(4.55 to 4.75 V)  
See Note A  
PGexttime  
2 ms (typ)  
VOUTTstart  
2 ms (typ)  
PG  
PGdeglitch  
PGdeglitch  
Load  
EEPROM  
Operation Mode  
LOW-POWER  
MODE  
OFF  
INIT  
RAMP  
NORMAL MODE  
NORMAL MODE  
OFF  
A. The actual ramp-down time of the output voltage depends on external load conditions.  
8-3. Power-Up and Power-Down Sequence With Normal Mode and Low-Power Mode, With Usage of  
IGN_PWRL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8-4 shows a power-up and power-down sequence in low-Power mode with the IGN pin low. 8-4 shows that  
after the device is powered on in the OFF state, the device is in low-power mode when the PS pin is high  
regardless of what was applied on the IGN and IGN_PWRL input pins.  
Deglitch time  
IGN  
7.5 ms (min) to 22 ms (max)  
tDelay_IGN_PWRL  
tDelay_IGN_PWRL  
IGN_PWRL  
tDelay_PS_H2L  
tDelay_PS_L2H  
PS  
VREG  
VREG = 4.5 V (typ)  
VREG_UV level  
(minimum 3.7 V)  
VOUT  
5 V  
VOUT_PG level  
(4.55 to 4.75 V)  
See Note A  
PGexttime  
2 ms (typ)  
VOUTTstart  
2 ms (typ)  
PG  
PGdeglitch  
PGdeglitch  
Load  
EEPROM  
Operation Mode  
LOW-POWER  
MODE  
OFF  
OFF  
INIT  
RAMP  
NORMAL MODE  
A. The actual ramp-down time of the output voltage depends on external load conditions.  
8-4. Power-Up and Power-Down Sequence With Low-Power Mode When IGN and IGN_PWRL are Low  
(Essentially When the ECU is in Sleep or Standby Mode)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8-5 shows that when the device starts in the OFF state, the buck-boost converter always enters normal mode  
first, even when the PS pin was previously set high. The device can only enter low-power mode when the PG  
output pin is set high. 8-5 also shows that the device does not start-up as long as the IGN pin is low.  
IGN  
Deglitch time  
7.5 ms (min) to 22 ms (max)  
tDelay_IGN_PWRL  
tDelay_IGN_PWRL  
IGN_PWRL  
tDelay_PS_L2H  
tDelay_PS_H2L  
PS  
VREG  
VREG = 4.5 V (typ)  
VREG_UV level  
(minimum 3.7 V)  
VOUT  
5 V  
VOUT_PG level  
(4.55 to 4.75 V)  
See Note A  
PGexttime  
VOUTTstart 2 ms (typ)  
2 ms (typ)  
PG  
PGdeglitch  
PGdeglitch  
Operation Mode  
Load  
EEPROM  
NORMAL  
MODE  
OFF  
INIT  
RAMP  
LOW-POWER MODE  
OFF  
A. The actual ramp-down time of the output voltage depends on external load conditions.  
The buck-boost converter always enters normal mode first after ramp up before it can enter low-power mode.  
8-5. Power-Up Behavior With PS Pin Previously Set High  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8-6 shows that the device only can start-up in the OFF state when the IGN pin is high. Setting the IGN_PWRL  
pin before the IGN pin is high does not start-up the device. 8-6 also shows that the IGN_PWRL signal is only  
valid after the PG pin is high and the PGDeglitch time has elapsed.  
Deglitch time  
IGN  
7.5 ms (min) to 22 ms (max)  
tDelay_IGN_PWRL  
tDelay_IGN_PWRL  
IGN_PWRL  
PS  
VREG  
VREG = 4.5 V (typ)  
VREG_UV level  
(minimum 3.7 V)  
VOUT  
5 V  
VOUT_PG level  
(4.55 to 4.75 V)  
See Note A  
PGexttime  
2 ms (typ)  
VOUTTstart  
2 ms (typ)  
PG  
PGdeglitch  
PGdeglitch  
Operation Mode  
Load  
EEPROM  
NORMAL MODE  
OFF  
INIT  
RAMP  
OFF  
A. The actual ramp-down time of the output voltage depends on external load conditions.  
The device does not start-up until the IGN pin is high. The IGN power-latch is only be set after the PG pin is high.  
8-6. Power-Up Behavior With IGN_PWRL Set High Prior to High IGN  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4.4 Soft-Start Feature  
On power up, the device has a soft-start feature which ramps the output of the regulator at a steady slew rate.  
The soft-start ramp time is 0.5 ms by default. When the device pulls the PG pin low because of a VOUT  
undervoltage condition while the device is in normal mode, the device stays in normal mode and tries to get to  
the VOUT level again without soft-start slew-ramp control.  
8.4.5 Pulldown Resistor on VOUT  
When the buck-boost regulator is disabled (in the OFF state, INIT state, and PRE_RAMP state), an internal  
active pulldown circuit (specified as RpdVOUT in 7.7) pulls down the VOUT pin.  
8.4.6 Output Voltage Selection  
The configuration of the output voltage is selectable through the VOS_FB pin.  
The fixed output voltage of the TPS55165-Q1 device is 5 V when the VOS_FB pin is connected to ground and is  
12 V when the VOS_FB pin is connected to the VREG pin. For the TPS55165-Q1 device in the 5-V configuration  
(VOS_FB pin connected to ground), the UVLO threshold is set to less than 2 V. When the TPS55165-Q1 device  
is in the 12-V configuration (VOS_FB pin connected to the VREG pin), the UVLO threshold is set to less than 3.6  
V. For the TPS55162-Q1 device, the UVLO threshold is also set to less than 3.6 V.  
For the adjustable output voltage of the TPS55160-Q1 and TPS55162-Q1 devices, connect the VOS_FB pin to  
the external feedback network. The total resistance of this external feedback network must be less than 1 MΩ  
(essentially, this value must be similar to or less than the implemented total resistance of the implemented  
internal feedback network for the 12 V setting).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS5516x-Q1 family of devices is a high-voltage synchronous buck-boost DC-DC converter with all four  
power MOSFETs integrated. Each device in the device family can produce a well-regulated output voltage from a  
widely-varying input voltage source such as an automotive car battery. If the input voltage is higher than the  
output voltage, the TPS5516x-Q1 device operates in step-down mode. If the input voltage is lower than the  
output, the device operates in step-up mode. If the input voltage is equal or close to the output voltage, the  
device operates between the step-down and step-up mode. The buck-boost overlap control ensures automatic  
and smooth transition between step-down and step-up (this is okay. Step-up and step-down modes were  
mentioned in the first page of the spec) modes with optimal efficiency. The output voltage of the TPS55165-Q1  
device can be set to a fixed level of 5 V or 12 V. The output voltage of the TPS55160-Q1 and TPS55162-Q1  
devices is programmable from 5.7 V to 9 V.  
9.1.1 Application Circuits for Output Voltage Configurations  
9-1 and 9-2 show the application diagrams for the adjustable output configuration.  
4.7 µH  
0.1 µF  
0.1 µF  
2V VIN 36V  
10 µF  
BST1 L1  
L2 BST2  
5.7V VOUT 9V  
VINP  
VOUT  
VOUT_SENSE  
22 µF  
VINL  
100 k  
R1  
R2  
100 nF  
Power  
Latch  
PG  
IGN_PWRL  
VOS_FB  
ON  
IGN  
PS  
ON  
OFF  
OFF  
Low-  
SS_EN  
Power  
Mode  
VREG  
PGND  
GND  
VREG_Q  
PG_DLY  
4.7 µF  
TPS55160-Q1  
RDLY  
9-1. TPS55160-Q1 Application Diagram for Adjustable Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
4.7 µH  
0.1 µF  
0.1 µF  
BST1 L1  
L2 BST2  
VOUT  
2V VIN 36V  
10 µF  
5.7V VOUT 9V  
VINP  
VOUT_SENSE  
22 µF  
VINL  
100 k  
R1  
R2  
100 nF  
Power  
Latch  
PG  
IGN_PWRL  
IGN  
VOS_FB  
ON  
OFF  
VREG  
PGND  
GND  
VREG_Q  
PG_DLY  
4.7 µF  
TPS55162-Q1  
RDLY  
9-2. TPS55162-Q1 Application Diagram for Adjustable Output Voltage  
Use 方程1 to calculate the output voltage.  
R1+ R2  
R2  
VOUT  
=
ì VFB  
(1)  
where  
VFB is 0.8 V (see 7.7).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
9-3 shows the TPS55165-Q1 device in the 5-V configuration.  
4.7 µH  
0.1 µF  
0.1 µF  
V
OUT = 5 V  
1 A at VIN 5.3 V  
0.8 A at VIN 3.8 V  
0.4 A at VIN 2.3 V  
BST1 L1  
L2 BST2  
2V VIN 36V  
10 µF  
VINP  
VOUT  
22 µF  
VINL  
100 k  
PG  
VOUT_SENSE  
Power  
Latch  
IGN_PWRL  
100 nF  
ON  
ON  
SS_EN  
IGN  
PS  
OFF  
OFF  
VOS_FB  
Low-  
Power  
Mode  
VREG  
PGND  
GND  
VREG_Q  
PG_DLY  
4.7 µF  
TPS55165-Q1  
RDLY  
9-3. TPS55165-Q1 Application Diagram for 5-V Voltage  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
9-4 shows the TPS55165-Q1 device in the 12-V configuration.  
4.7 µH  
0.1 µF  
0.1 µF  
5-V Supply  
100 k  
BST1 L1  
L2 BST2  
2V VIN 36V  
10 µF  
VINP  
PG  
VINL  
VOUT = 12 V  
22 µF  
VOUT  
VOUT_SENSE  
SS_EN  
Power  
Latch  
ON  
IGN_PWRL  
100 nF  
ON  
IGN  
PS  
OFF  
OFF  
Low-  
Power  
Mode  
VOS_FB  
VREG  
PGND  
GND  
VREG_Q  
PG_DLY  
4.7 µF  
TPS55165-Q1  
RDLY  
9-4. TPS55165-Q1 Application Diagram for 12-V Voltage  
CAUTION  
For TPS55165-Q1 in 12-V configuration (VOS_FB is shorted to VREG), the PG pin must be tied to  
an external 5-V supply through a pullup resistor. Tying the PG pin to a supply greater than 5.5 V  
could damage the device in the unlikely event of a shortage between the PG pin and the adjacent  
VOS_FB pin, which is tied to the VREG pin in the 12-V output configuration. The absolute-maximum  
voltage rating of the VREG pin is 5.5 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2 Typical Application  
The TPS5516x-Q1 family of devices requires a minimum number of external components to implement a buck-  
boost converter. 9-5 shows the typical schematic for the TPS55165-Q1 device in the 5-V configuration.  
L
2VVIN36V  
CBST2  
CBST1  
VOUT = 5 V  
0.1 µF  
0.1 µF  
1 A at VIN ³ 5.3 V  
0.8 A at VIN ³ 3.8 V  
0.4 A at VIN ³ 2.3 V  
CIN  
CINP  
BST1 L1  
L2 BST2  
20 µF  
0.1 µF  
VINP  
VOUT  
COUT  
22 µF  
RPG  
100 kΩ  
VINL  
CINL  
0.47 µF  
PG  
VOUT_SENSE  
CVOSN  
0.1 µF  
Power  
Latch  
IGN_PWRL  
ON  
ON  
SS_EN  
IGN  
PS  
OFF  
OFF  
VOS_FB  
Low  
Power  
Mode  
VREG  
VREG_Q  
PGND  
GND  
PG_DLY  
CVREG  
4.7 µF  
TPS55165-Q1  
RDLY  
9-5. TPS55165-Q1 Buck-Boost Converter for Fixed 5-V Output  
9.2.1 Design Requirements  
9-1 lists the design requirements for 9-5.  
9-1. Design Requirements  
PARAMETER  
VALUE  
The least input voltage after start-up.  
VIN_MIN  
2 V  
The IOUT_MAX load current deratings listed in this table apply for VIN < 5.3 V.  
The minimum input voltage required for start-up  
The greatest input voltage after start-up  
VIN_startup  
VIN_MAX  
VOUT  
> 5.3 V  
36 V  
5 V  
The output voltage  
1 A  
The maximum output current at VIN 5.3 V  
The maximum output current at 3.8 V VIN < 5.3 V  
The maximum output current at 2.3 V VIN < 3.8 V  
IOUT_MAX  
0.8 A  
0.4 A  
9.2.2 Detailed Design Procedure  
9.2.2.1 Power-Circuit Selections: CIN, L, COUT  
The TPS5516x-Q1 family of devices integrates not only the power switches but also the loop compensation  
network as well as many other control circuits which reduces the number of required external components. For  
the internal loop compensation to be effective, the selection of the external power circuits (power inductor and  
capacitor) must be confined. TI strongly recommends users selecting the component values as follows: 3.3-µH  
to 6.2-µH power inductor, 18-µF to 47-µF output capacitor, and 8.2-µF or greater input capacitor. Because the  
TPS5516x-Q1 device switches at about 2 MHz, a shielded inductor and X5R-type or X7R-type ceramic  
capacitors should be used for the power circuit.  
Considering the component tolerance, the following power component values were selected for this design  
example:  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
CIN = 20 µF  
COUT = 22 µF  
L = 4.7 µH  
For the input capacitor (CIN), the voltage rating should be greater than the maximum input voltage (VIN_MAX).  
Therefore, two, 10-µF X7R capacitors rated for 50 V were selected for this design example. Adding a small,  
high-frequency decoupling ceramic capacitor (CVINP with a value of 100 nF typical) in parallel with the input  
capacitor is recommended to better filter out the switching noises at the VINP pin. Adding another decoupling  
ceramic capacitor (CVINL with a value of 470 nF typical) is also recommended for the VINL pin.  
The output capacitor (COUT), receives a voltage of 5 V. Considering some voltage-rating margin, two 10-µF X7R  
capacitors rater for 10 V or greater and one, 2.2-µF X7R-type capacitor rated for 10 V or greater in parallel were  
selected for the output capacitor. Adding a small, high-frequency decoupling ceramic capacitor (CVOSN with a  
value of 100 nF typical) in parallel with the output capacitor is recommended to better filter out the switching  
noises at the VOUT_SENSE pin.  
The power inductor (L) should be a shielded type, and it should not saturate during operation. The inductor  
should also be able to support the power dissipation under the maximum load. Use the calculations in the  
following sections to find the required current capabilities for the inductor.  
9.2.2.1.1 Inductor Current in Step-Down Mode  
Use 方程2 to calculate inductor peak-ripple current in the step-down, or buck, mode (Ipk_buck).  
VOUT 1-Dbuck  
1
2
Ipk _buck  
=
ì
ì
L
fS  
(2)  
where  
VOUT is the output voltage.  
L is the value of the inductor.  
Dbuck is the duty cycle (refer to 方程3).  
fS is the switching frequency.  
VOUT  
Dbuck  
=
V
IN  
(3)  
The maximum peak-ripple current of the inductor (Ipk) occurs when the duty cycle is at the minimum value,  
specifically when the input voltage (VIN) is at the maximum value which yields the value shown in 方程4.  
5 V  
Dbuck  
=
= 0.139  
36 V  
(4)  
Substitute the values for fS, L, and Dbuck, in 方程2 to find the peak-ripple current as shown in 方程5.  
1
2
5 V  
1- 0.139  
Ipk _buck  
=
ì
ì
= 0.229 A  
4.7 mH 2 MHz  
(5)  
The power dissipations can be determined by the RMS current of the inductor. Use 方程式 6 to calculate the  
RMS current of the inductor in buck mode (Irms_buck).  
1
3
1
2
I
= IO2 UT  
+
ìIpk _buck = 1A2 + ì0.458 A2 = 1.1A  
rms _buck  
3
(6)  
Use 方程7 to calculate the approximate power dissipation of the inductor in buck-mode (Ploss_L_buck).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
P
= Ir2ms _ buck ìRdc  
loss _L _ buck  
(7)  
9.2.2.1.2 Inductor Current in Step-Up Mode  
Use 方程8 to calculate the inductor peak-ripple current in the step-up, or boost, mode (Ipk_boost).  
V
Dboost  
fsw  
1
2
IN  
Ipk _ boost  
=
ì
ì
L
(8)  
where  
Dboost is the duty cycle in boost mode (refer to 方程9).  
VOUT - V  
VVOUT  
IN  
Dboost  
=
(9)  
In general, the maximum peak-ripple current occurs at 50% duty cycle. In this example, because of the power  
derating versus the input voltage, a few calculations can find that the maximum RMS current occurs when the  
input voltage is approximately 3.8 V, of which the load current is 0.8 A, according to 9-1. 方程式 10 and 方程  
11 show the peak-ripple current under this condition.  
5 V - 3.8 V  
5 V  
Dboost  
=
= 0.240  
(10)  
1
2
3.8 V 0.240  
ì = 0.049 A  
Ipk _ boost  
=
ì
4.7 mH 2 MHz  
(11)  
The power dissipations can be determined by the RMS current of the inductor. Use 方程式 12 to calculate the  
RMS current of the inductor in buck mode (Irms_boost).  
2
2
«
÷
IOUT  
1
3
0.8 A  
1
3
2
Irms _ boost  
=
+
ìIpk _ boost  
=
+
ì0.049 A2 = 1.053 A  
«
÷
1- Dboost ◊  
1- 0.24  
(12)  
Use 方程13 to calculate the approximate power dissipation of the inductor in boost-mode (Ploss_L_boost).  
= Ir2ms _ boost ìRdc  
P
loss _L _ boost  
(13)  
9.2.2.1.3 Inductor Current in Buck-Boost Overlap Mode  
When input voltage is very close to the output voltage, the device operates in buck-boost overlap mode, and the  
L1 and L2 pins are switched alternatively in consecutive cycles. The small voltage difference between the input  
and output voltage leads to a small amount of ripple current through the inductor. Therefore, the total inductor  
current is essentially the load current with small ripples superimposed onto it, and the RMS current is  
approximately the same as the load current, which is 1 A.  
P
= Io2 ìRdc  
loss _L _ buckboost  
(14)  
9.2.2.1.4 Inductor Peak Current  
Because the TPS5516x-Q1 device has internal peak current limit (ISW_limit) of 4.5 A (maximum), this current  
should be considered when selecting the power inductor. Select the inductor of the saturation current (ISAT) with  
a minimum value of 4.5 A so that the inductor never gets saturated. TI recommends using a shielded inductor.  
For this design example, select an AEC-Q200 Grade 0, shielded inductor with the following characteristics:  
Is a surface-mount device (SMD)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
Has an inductance of 4.7 µH  
Supports a saturation current (ISAT) of 4.8 A  
Is rated for an RMS current (Irms) of 1.5 A or larger  
Is rated for a DC load (Rdc) of 0.04 Ωor smaller  
9.2.2.2 Control-Circuit Selections  
9.2.2.2.1 Bootstrap Capacitors  
The bootstrap capacitors (CBST1 and CBST2) supply the internal high-side MOSFET driver. TI recommends using  
a 0.1-µF, X7R-type ceramic capacitor rated for 15 V or larger for the bootstrap capacitors.  
9.2.2.2.2 VOUT-Sense Bypass Capacitor  
To improve noise immunity, connect a 0.1-µF, X7R-type ceramic capacitor rated for 25 V or greater to the VOUT  
pin.  
9.2.2.2.3 VREG Bypass Capacitor  
The VREG supplies the internal control circuit as well as the drivers for the integrated low-side driver. To improve  
noise immunity and stabilize the internal VREG regulator, TI recommends connecting a 4.7-µF, X7R-type  
ceramic capacitor rated for 25 V or greater between the VREG and GND pins.  
9.2.2.2.4 PG Pullup Resistor and Delay Time  
The power-good indicator pin (PG) is an open-drain output pin. The PG pin requires an external pullup resistor to  
flag the power-good status. For this design example, select a 100-kresistor to pull up the PG pin from the  
output rail.  
The PG_DLY pin sets the delay time for the PG status to flip. Follow the instructions listed in the 8.3.7 to  
program the delay.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.3 Application Curves  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
36-V Supply Voltage  
18-V Supply Voltage  
12-V Supply Voltage  
5-V Supply Voltage  
3-V Supply Voltage  
20%  
10%  
0%  
VIN = 12 V  
IOUT = 1 A  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load Current (A)  
1
9-7. Start-Up Procedure  
9-6. Efficiency vs Load  
VIN = 12 V IOUT step change from 0.25 A to 0.75 A  
IOUT = 0.5 A  
VIN transient rom 12 V to 4 V  
9-8. Step Load Response  
9-9. Battery-Voltage Cranking Response  
10 Power Supply Recommendations  
The TPS5516x-Q1 family of devices is a power-management device. The power supply for the device is any DC-  
voltage source within the specified input range. The supply should also be capable of supplying sufficient current  
based on the maximum inductor current in boost-mode operation. When connecting to the power supply and  
load, try to use short and solid wires. Twisting the pair of wires for the input and output helps minimize the line  
impedance and avoid adversary interference with the circuit operation.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The layout of the printed-circuit board (PCB) is critical to achieve low EMI and stable power-supply operation as  
well as optimal efficiency. Make the high frequency current loops as small as possible, and follow these  
guidelines of good layout practices;  
The TPS5516x-Q1 family of devices is a high-frequency switching converter. Because the four switch  
MOSFETs are integrated, the device should be located at the center of the DC-DC power stage. Separate the  
power ground and analog ground such that the control circuit can be connected to the relatively quieter  
analog ground without being contaminated by the noisy power ground. Use the PGND pin, GND pin, and the  
device PowerPAD as the single-point connection between the analog and power grounds.  
Identify the high-frequency switched AC-current loops. In step-down mode, the AC current loop is along the  
path of the input capacitor (CIN), L1 pin, internal buck-switch leg, and PGND pin, and closes at the input  
capacitor. In step-up mode, the AC current loop is along the path of the output capacitor (COUT), L2 pin,  
internal boost-switch leg, and PGND pin, and closes at the output capacitor. These two AC-current loops are  
both involved in buck-boost overlap mode.  
Optimize component placement and orientation before routing any traces. Place the input and output filter  
capacitors, the device, and the power inductor close together such that the AC-current loops are short, direct,  
and the spatial areas enclosed by the loops are minimized. Make the power flow in a straight path rather than  
a zigzag path on the board.  
Place the high frequency decoupling ceramic capacitors for the input and output as close as possible to the  
device with the main input and output ceramic capacitors placed next to the high-frequency capacitors. This  
placement helps confine the high switching noises within a very small area around the device.  
Place the VREG decoupling capacitor close to the VREG pin because it serves as the supply to the internal  
low-side MOSFETs drivers. Because the VREG pin receives power from the output rail, the ground lead of  
the VREG decoupling capacitor should connect directly to the COUT ground to improve device noise immunity.  
备注  
The VREG_Q pin must always connect to the VREG pin. Both pins should have a Kelvin  
connection to the decoupling capacitor.  
Place the bootstrap capacitors (CBST1 and CBST2) close to the device with short and direct traces to connect  
to the corresponding device pins becuase these capacitors serve as the supplies to the internal high-side  
MOSFETs drivers  
Place the VOUT_SENSE decoupling capacitor (CVOSN) close to the device. Give the placement of this  
capacitor priority over the main output capacitors.  
For TPS55160-Q1 or TPS55162-Q1, place the sense-resistor divider for the output voltage close to the  
device.  
Use eight to nine via holes with a 0.3 mm diameter in the device PowerPAD to help dissipate heat through  
the layers of the ground plane. Additional vias holes around the device PowerPAD can further enhance heat  
dissipation.  
Use at least ten via holes with a 0.3 mm diameter around the input and output capacitors that are connected  
to ground-plane layers to minimize the PCB impedance for power current flows.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
11.2 Layout Example  
11-1. Example Circuit Layout  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
TPS55160-Q1, TPS55162-Q1, TPS55165-Q1  
ZHCSH41A NOVEMBER 2017 REVISED DECEMBER 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
For development support, refer to:  
TPS55160-Q1 PSpice Transient Model  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS5516xQ1-EVM Evaluation Module for 1-A Single- Inductor Buck-Boost-Converter user's  
guide  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
PowerPADis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS55160-Q1 TPS55162-Q1 TPS55165-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS55160QPWPRQ1  
TPS55160QPWPTQ1  
TPS55162QPWPRQ1  
TPS55162QPWPTQ1  
TPS55165QPWPRQ1  
TPS55165QPWPTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
20  
20  
20  
20  
20  
20  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TPS55160  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TPS55160  
TPS55162  
TPS55162  
TPS55165  
TPS55165  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jan-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS55160QPWPRQ1 HTSSOP PWP  
TPS55162QPWPRQ1 HTSSOP PWP  
TPS55165QPWPRQ1 HTSSOP PWP  
20  
20  
20  
2000  
2000  
2000  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
6.95  
6.95  
6.95  
7.1  
7.1  
7.1  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS55160QPWPRQ1  
TPS55162QPWPRQ1  
TPS55165QPWPRQ1  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
20  
20  
20  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0020U  
PowerPAD TM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
PIN 1 ID  
SEATING PLANE  
A
0.1 C  
AREA  
18X 0.65  
20  
1
2X  
6.6  
6.4  
NOTE 3  
5.85  
10  
11  
0.30  
0.19  
0.1  
20X  
4.5  
4.3  
B
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.23 MAX  
NOTE 5  
2X 0.95 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
21  
3.43  
2.65  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
2.75  
1.98  
4224609/A 09/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PWP0020U  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.75)  
20X (1.5)  
SYMM  
SEE DETAILS  
1
20  
20X (0.45)  
(1.3)  
TYP  
(6.5)  
NOTE 9  
21  
SYMM  
(3.43)  
18X (0.65)  
(
0.2) TYP  
VIA  
10  
11  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSE METAL  
EXPOSED METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-20  
4224609/A 09/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0020U  
PowerPAD TM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(2.75)  
BASED ON  
0.125 THICK  
STENCIL  
20X (1.5)  
(R0.05) TYP  
1
20  
20X (0.45)  
(3.43)  
21  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
18X (0.65)  
11  
10  
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.07 X 3.83  
2.75 X 3.43 (SHOWN)  
2.51 X 3.13  
0.125  
0.15  
0.175  
2.32 X 2.90  
4224609/A 09/2018  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS55288

具有 PPS 控制的 36V、16A 降压/升压转换器
TI

TPS55288-Q1

TPS55288-Q1 36-V, 16-A Buck-boost Converter with I2C Interface
TI

TPS55288-Q1_V01

TPS55288-Q1 36-V, 16-A Buck-boost Converter with I2C Interface
TI

TPS552882

TPS552882-Q1 36-V, 16-A Buck-boost Converter
TI

TPS552882-Q1

TPS552882-Q1 36-V, 16-A Buck-boost Converter
TI

TPS552882-Q1_V01

TPS552882-Q1 36-V, 16-A Buck-boost Converter
TI

TPS552882QRPMRQ1

TPS552882-Q1 36-V, 16-A Buck-boost Converter
TI

TPS552882QWRPMRQ1

TPS552882-Q1 36-V, 16-A Buck-boost Converter
TI

TPS552882RPMR

TPS552882 36-V, 16-A Buck-boost Converter
TI

TPS55288QRPMRQ1

TPS55288-Q1 36-V, 16-A Buck-boost Converter with I2C Interface
TI

TPS55288QWRPMRQ1

TPS55288-Q1 36-V, 16-A Buck-boost Converter with I2C Interface
TI

TPS55288RPMR

具有 PPS 控制的 36V、16A 降压/升压转换器 | RPM | 26 | -40 to 150
TI