TPS55288RPMR [TI]

具有 PPS 控制的 36V、16A 降压/升压转换器 | RPM | 26 | -40 to 150;
TPS55288RPMR
型号: TPS55288RPMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 PPS 控制的 36V、16A 降压/升压转换器 | RPM | 26 | -40 to 150

升压转换器
文件: 总54页 (文件大小:3053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS55288  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
TPS55288 I2C 接口36V16A 降压/升压转换器  
1 特性  
3 说明  
• 可编程电(PPS) USB (USB PD)  
TPS55288 是一款同步四开关降压/升压转换器能够  
将输出电压稳定在等于、高于或低于输入电压的某一电  
压值上。TPS55288 2.7V 36V 的宽输入电压范围  
内工作可输0.8V 22V 电压以支持各种不同的应  
用。  
– 宽输入电压范围2.7V 36V  
– 可编程输出电压范围0.8V 22V步长为  
20mV  
±1% 基准电压精度  
– 电缆上压降的可调输出电压补偿  
– 可编程输出电流限值高6.35A阶跃50mA  
±5% 精密输出电流监测  
TPS55288 集成了两个 16A MOSFET其中的升压桥  
臂可实现解决方案尺寸和效率间的平衡。通I2C 接口  
对输出电压和输出电流限制进行编程TPS55288 完全  
符合 USB PD 规范。TPS55288 能够通过 12V 输入电  
压提100W 的功率。  
I2C 接口  
• 在整个负载范围内具有高效率  
VIN = 12VVOUT = 20V IOUT = 3A 时效率为  
97%  
– 轻负载状态下的可编PFM FPWM 模式  
• 避免频率干扰和串扰  
TPS55288 采用平均电流模式控制方案。开关频率可通  
过外部电阻在 200 kHz 2.2 MHz 之间进行编程并  
且可与外部时钟同步。TPS55288 还提供展频选项从  
而更大限度地减少峰EMI。  
– 可选的时钟同步  
– 可编程开关频率范围200 kHz 2.2 MHz  
• 降EMI  
TPS55288 提供输出过压保护、平均电感器电流限制、  
逐周期峰值电流限制和输出短路保护。TPS55288 还通  
过可选输出电流限制和断续模式保护在持续过载情况  
下确保安全运行。  
– 可选可编程扩展频谱  
– 无引线封装  
• 丰富的保护特性  
TPS55288 可在高开关频率下使用小型电感器和小型电  
容器。此器件采4.0mm × 3.5mm QFN 封装。  
– 输出过压保护  
– 利用断续模式实现输出短路保护  
– 热关断保护  
器件信息  
封装(1)  
– 可编程平均电感器电流限制高16A  
• 小解决方案尺寸  
器件型号  
TPS55288  
封装尺寸  
VQFN-HR  
4.00mm × 3.50mm  
– 开关频率高2.2 MHz最大值)  
4.0mm × 3.5mm HotRodQFN 封装  
• 固4ms 软启动时间  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
L1  
4.7µH  
• 使TPS55288 并借WEBENCH® Power  
Designer 创建定制设计  
C5  
0.1µF  
C4  
0.1µF  
2 应用  
VIN = 2.7V to 36V  
SW1  
SW2  
BOOT2  
DR1H DR1L BOOT1  
VIN  
VOUT =0.8V to 22V  
VOUT  
USB PD  
集线站  
PC  
移动电源  
显示器  
C1  
R1  
10mΩ  
C2  
C3  
4.7µF  
VCC  
PGND  
AGND  
ISP  
SCL  
SDA  
ON  
EN/UVLO  
TPS55288  
ISN  
OFF  
MODE  
FB/INT  
COMP  
CDC  
R6  
• 无线充电器  
DITH/SYNC  
FSW  
C6  
R3  
C7  
R4  
C8  
ILIM  
R5  
R2  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSF01  
 
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
Table of Contents  
7.5 I2C Serial Interface....................................................22  
7.6 Register Maps...........................................................26  
8 Application and Implementation..................................35  
8.1 Application Information............................................. 35  
8.2 Typical Application.................................................... 35  
9 Power Supply Recommendations................................43  
10 Layout...........................................................................44  
10.1 Layout Guidelines................................................... 44  
10.2 Layout Example...................................................... 45  
11 Device and Documentation Support..........................46  
11.1 Device Support........................................................46  
11.2 接收文档更新通知................................................... 46  
11.3 支持资源..................................................................46  
11.4 Trademarks............................................................. 46  
11.5 静电放电警告...........................................................46  
11.6 术语表..................................................................... 46  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 I2C Timing Characteristics.......................................... 9  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................22  
Information.................................................................... 46  
4 Revision History  
Changes from Revision A (August 2020) to Revision B (December 2020)  
Page  
Updated thermal information footnote................................................................................................................ 6  
Updated Output Current Limit section.............................................................................................................. 21  
Updated CDC Register (Address = 5h) [reset = 11100000h] section............................................................... 31  
Updated MODE Register (Address = 6h) [reset = 00100000h] section............................................................32  
Changes from Revision * (November 2018) to Revision A (August 2020)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS55288  
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
5 Pin Configuration and Functions  
1
2
19  
18  
DR1L  
DR1H  
VCC  
COMP  
ILIM  
3
4
5
6
17  
16  
15  
14  
VIN  
EN/UVLO  
CDC  
SCL  
MODE  
SDA  
FB/INT  
7
13  
DITH/SYNC  
ISN  
5-1. 26-pin VQFN-HR, RPM Package (Transparent Top View)  
5-1. Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
DR1L  
DR1H  
VIN  
O
O
Gate driver output for low-side MOSFET in buck side  
2
Gate driver output for high-side MOSFET in buck side  
Input power supply for the IC  
3
PWR  
Enable logic input and programmable input voltage undervoltage lockout (UVLO) input. Logic high  
level enables the device. Logic low level disables the device and turns it into shutdown mode. After  
the voltage at the EN/UVLO pin is above the logic high voltage of 1.15 V, this pin acts as  
programmable UVLO input with 1.23-V internal reference.  
4
EN/UVLO  
I
5
6
SCL  
SDA  
I
Clock of I2C interface  
Data of I2C interface  
I/O  
Dithering frequency setting and synchronous clock input. Use a capacitor between this pin and  
ground to set the dithering frequency. When this pin is short to ground or pulled above 1.2 V, there is  
no dithering function. An external clock can be applied at this pin to synchronize the switching  
frequency.  
7
DITH/SYNC  
I
8
FSW  
PGND  
AGND  
VOUT  
O
The switching frequency is programmed by a resistor between this pin and the AGND pin.  
Power ground of the IC. It is connected to the source of the low-side MOSFET.  
Signal ground of the IC  
9, 24  
10  
PWR  
PWR  
PWR  
11, 26  
Output of the buck-boost converter  
Positive input of the current sense amplifier. An optional current sense resistor connected between  
the ISP pin and the ISN pin can limit the output current. If the sensed voltage reaches the current  
limit setting value in the register, a slow constant current control loop becomes active and starts to  
regulate the voltage between the ISP pin and the ISN pin. Connecting the ISP pin and the ISN pin  
together with the VOUT pin can disable the output current limit function.  
12  
ISP  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS55288  
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
5-1. Pin Functions (continued)  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Negative input of the current sense amplifier. An optional current sense resistor connected between  
the ISP pin and the ISN pin can limit the output current. If the sensed voltage reaches the current  
limit setting value in the register, a slow constant current control loop becomes active and starts to  
regulate the voltage between the ISP pin and the ISN pin. Connecting the ISP pin and the ISN pin  
together with the VOUT pin can disable the output current limit function.  
13  
ISN  
I
When the device is set to use external output voltage feedback, connect to the center tap of a  
resistor divider to program the output voltage. When the device is set to use internal feedback, this  
pin is a fault indicator output. When there is an internal fault happening, this pin outputs logic low  
level.  
14  
FB/INT  
I/O  
Set the operation modes of the TPS55288 by a resistor between this pin and AGND to select PFM  
mode, or forced PWM mode in light load condition to select the internal LDO or external 5 V for VCC,  
and to select different I2C address.  
15  
16  
MODE  
CDC  
I
Voltage output proportional to the sensed voltage between the ISP pin and the ISN pin. Use a  
resistor between this pin and AGND to increase the output voltage to compensate voltage droop  
across the cable caused by the cable resistance.  
O
Average inductor current limit setting pin. Connect an external resistor between this pin and the  
AGND pin.  
17  
ILIM  
COMP  
VCC  
O
I
Output of the internal error amplifier. Connect the loop compensation network between this pin and  
the AGND pin.  
18  
Output of the internal regulator. A ceramic capacitor of more than 4.7 μF is required between this  
pin and the AGND pin.  
19  
O
O
I
Power supply for high-side MOSFET gate driver in boost side. A ceramic capacitor of 0.1 µF must be  
connected between this pin and the SW2 pin.  
20  
BOOT2  
SW2  
The switching node pin of the boost side. It is connected to the drain of the internal low-side power  
MOSFET and the source of internal high-side power MOSFET.  
21, 25  
22  
Power supply for high-side MOSFET gate driver in buck side. A ceramic capacitor of 0.1 µF must be  
connected between this pin and the SW1 pin.  
BOOT1  
SW1  
I
The switching node pin of the buck side. It is connected to the drain of the external low-side power  
MOSFET and the source of external high-side power MOSFET.  
23  
I
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
40  
UNIT  
V
VIN, SW1  
DRH1, BOOT1  
SW1+6  
V
SW10.3  
VCC, DRL1, SCL, SDA, ILIM, FSW, COMP, FB/INT, MODE,  
CDC, DITH/SYNC  
6
V
0.3  
VOUT, SW2, ISP, ISN  
Voltage range  
25  
VOUT+6  
20  
V
V
V
V
0.3  
VOUT-6  
-0.3  
at terminals(2)  
ISP, ISN  
EN  
BOOT2  
SW2+6  
SW20.3  
DRL1, SCL, SDA, ILIM, FSW, COMP, FB/INT, MODE, CDC, DITH/  
SYNC  
VCC+0.3  
V
0.3  
(3)  
TJ  
Operating Junction, TJ  
Storage temperature  
150  
150  
°C  
°C  
40  
65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) ESD stress voltage(2)  
±2000  
(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM) ESD stress  
voltage(3)  
±500  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
in to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
36  
UNIT  
V
VIN  
VOUT  
L
Input voltage range  
Output voltage range  
0.8  
22  
V
Effective inductance range  
Effective input capacitance range  
Effective output capacitance range  
Operating junction temperature  
0.7  
4.7  
22  
13  
µH  
µF  
µF  
°C  
CIN  
COUT  
TJ  
4.7  
10  
100  
1000  
125  
40  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS55288  
 
 
 
 
 
 
 
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
6.4 Thermal Information  
TPS55288  
TPS55288  
THERMAL METRIC(1)  
VQFN-HR (RPM)-26 PINS VQFN-HR (RPM)-26 PINS  
UNIT  
Standard  
47.5  
23.8  
12.8  
0.5  
EVM(2)  
25.8  
N/A  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
N/A  
0.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
11.6  
N/A  
12.7  
7.8  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Measured on TPS55288EVM-045, 4-layer, 2-oz/2-oz/2-oz/2-oz copper 112-mm×71-mm PCB.  
6.5 Electrical Characteristics  
TJ = -40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
2.7  
2.8  
2.6  
36  
3.0  
2.7  
V
V
V
VIN rising  
2.9  
VVIN_UVLO  
Under voltage lockout threshold  
VIN falling  
2.65  
IC enabled, no load, no switching. VIN  
= 3V to 24V, VOUT = 0.8V, VFB = VREF  
+ 0.1V, RFSW=100k, TJ up to 125°C  
Quiescent current into the VIN pin  
Quiescent current into the VOUT pin  
760  
860  
µA  
IQ  
IC enabled, no load, no switching, VIN  
= 2.9V, VOUT = 3V to 20V, VFB = VREF  
+ 0.1V, RFSW=100k, TJ up to 125°C  
760  
6.8  
860  
10  
µA  
µA  
IC disabled, VIN = 2.9V to 14V, TJ up  
to 125°C  
ISD  
Shutdown current into the VIN pin  
Internal regulator output  
VCC  
IVCC = 50mA, VIN = 8V, VOUT = 20V  
VIN = 5.0V, VOUT = 20V IVCC = 60mA  
VIN = 14V, VOUT = 5.0V, IVCC = 60mA  
5.0  
5.2  
200  
110  
5.4  
320  
170  
V
mV  
mV  
VCC_DO  
VCC dropout  
EN/UVLO  
VEN_H  
EN Logic high threshold  
EN Logic low threshold  
Enable threshold hysteresis  
VCC = 2.7V to 5.5V  
VCC = 2.7V to 5.5V  
VCC = 2.7V to 5.5V  
1.15  
V
V
V
VEN_L  
0.4  
VEN_HYS  
0.05  
0.12  
1.23  
UVLO rising threshold at the EN/UVLO  
pin  
VUVLO  
VCC = 3.0V to 5.5V  
VCC = 3.0V to 5.5V  
1.20  
1.26  
V
VUVLO_HYS  
IUVLO  
UVLO threshold hysteresis  
8
14  
5
20  
mV  
µA  
Sourcing current at the EN/UVLO pin VEN/UVLO = 1.3V  
4.5  
5.5  
OUTPUT  
VOUT  
Output voltage range  
0.8  
22  
V
V
Output overvoltage protection  
threshold  
VOVP  
22.5  
23.5  
1
24.5  
VOVP_HYS  
IFB_LKG  
Over voltage protection hysteresis  
V
Leakage current at the FB pin  
Leakage current into the VOUT pin  
Output discharge current  
TJ up to 125°C  
100  
20  
nA  
IC disabled, VOUT = 20V, VSW2 = 0V,  
TJ up to 125°C  
IVOUT_LKG  
IDISCHG  
1
µA  
VOUT = 20V, VCC = 5.2V  
40  
100  
170  
mA  
INTERNAL REFERENCE DAC  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
TJ = -40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bits  
Resolution of reference voltage DAC  
Integral non-linearity  
10  
INL  
4
2
LSB  
LSB  
4  
1  
DNL  
Differential non-linearity  
VOUT_FS=03h, REF=03C0h,  
VREF=1.129V  
19.7  
14.78  
9.85  
4.93  
0.74  
0.56  
0.37  
0.18  
20  
15  
10  
5
20.3  
15.22  
10.15  
5.07  
V
V
V
V
V
V
V
V
VOUT_FS=02h, REF=03C0h,  
VREF=1.129V  
Output voltage when VREF is set to  
1.129V  
VOUT_FULL  
VOUT_FS=01h, REF=03C0h,  
VREF=1.129V  
VOUT_FS=00h, REF=03C0h,  
VREF=1.129V  
VOUT_FS=03h, REF=0000h,  
VREF=45mV  
0.8  
0.6  
0.4  
0.2  
0.86  
VOUT_FS=02h, REF=0000h,  
VREF=45mV  
0.64  
Output voltage when VREF is set to  
45mV  
VOUT_ZERO  
VOUT_FS=01h, REF=0000h,  
VREF=45mV  
0.43  
VOUT_FS=00h, REF=0000h,  
VREF=45mV  
0.22  
REFERENCE VOLTAGE  
External feedback with REF=03C0h  
External feedback with REF=02C6h  
External feedback with REF=019Ah  
External feedback with REF=00D2h  
1.117  
0.837  
0.502  
0.276  
1.129  
0.846  
0.508  
0.282  
1.141  
0.855  
0.514  
0.288  
V
V
V
V
Reference voltage at the FB/INT pin  
when using external feedback  
VREF  
POWER SWITCH  
Low-side MOSFET on resistance on  
VOUT = 20V, VCC= 5.2V  
VOUT = 20V, VCC= 5.2V  
7.1  
7.6  
mΩ  
mΩ  
boost side  
RDS(on)  
High-side MOSFET on resistance on  
boost side  
INTERNAL CLOCK  
180  
200  
2200  
100  
90  
220  
2400  
145  
kHz  
kHz  
ns  
RFSW = 100kΩ  
RFSW = 9.09kΩ  
Boost mode  
fSW  
Switching frequency  
2000  
tOFF_min  
tON_min  
VFSW  
Min. off time  
Min. on time  
Buck mode  
130  
ns  
Voltage at the FSW pin  
1
V
CURRENT LIMIT  
RILIM = 20kΩ, VIN = 8V, VOUT = 20V,  
fSW = 400kHz, FPWM  
14  
14  
4
16.5  
16.5  
5.5  
19  
19  
A
A
A
A
A
RILIM = 20kΩ, VIN = 8V, VOUT = 20V,  
fSW = 400kHz, PFM  
ILIM_AVG  
Average inductor current limit  
RILIM = 60kΩ, VIN = 5V, VOUT = 14V,  
fSW = 2.2MHz, FPWM  
RILIM = 60kΩ, VIN = 5V, VOUT = 14V,  
fSW = 2.2MHz, PFM  
4
5.5  
RILIM = 20k, VIN = 8V, VOUT = 20V,  
fSW = 400kHz, FPWM  
25  
ILIM_PK  
Peak inductor current limit at high side  
Voltage at the ILIM pin  
RILIM = 20k, VIN = 8V, VOUT = 20V,  
25  
A
V
fSW = 400kHz, PFM  
VILIM  
VOUT = 3V  
0.6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
TJ = -40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VISN = 2V to 21V,IOUT_LIMIT Register  
= 11100100b  
48  
50  
52  
mV  
Current loop regulation voltage  
between the ISP and ISN pins  
VSNS  
VISN = 2V to 21V,IOUT_LIMIT Register  
= 10111100b  
28  
30  
32  
mV  
CABLE VOLTAGE DROOP COMPENSATION  
RCDC = 20kor floating, VISP VISN  
0.95  
1
40  
700  
30  
100  
20  
7.5  
0
1.05  
75  
V
= 50mV  
VCDC  
Voltage at the CDC pin  
RCDC = 20kor floating, VISP VISN  
= 2mV  
mV  
mV  
mV  
mV  
mV  
µA  
Internal output feedback,  
CDC[2:0]=111, VISP VISN = 50mV  
650  
70  
750  
60  
Internal output feedback,  
CDC[2:0]=111, VISP VISN = 2mV  
VOUT increase for cable droop  
compensation  
VOUT_CDC  
Internal output feedback,  
CDC[2:0]=001, VISP VISN = 50mV  
130  
40  
Internal output feedback,  
CDC[2:0]=001, VISP VISN = 10mV  
External output feedback, RCDC  
20k, VISP VISN = 50mV  
=
=
=
7.23  
7.87  
0.3  
0.3  
External output feedback, RCDC  
20k, VISP VISN = 0mV  
IFB_CDC  
FB/INT pin sinking current  
µA  
External output feedback, RCDC  
0
µA  
floating, VISP VISN = 50mV  
ERROR AMPLIFIER  
VFB = VREF + 400mV, VCOMP=1.5V,  
VCC=5V  
ISINK  
COMP pin sink current  
20  
60  
µA  
µA  
VFB = VREF - 400mV, VCOMP=1.5V,  
VCC=5V  
ISOURCE  
COMP pin source current  
VCCLPH  
VCCLPL  
GEA  
High clamp voltage at the COMP pin  
Low clamp voltage at the COMP pin  
Error amplifier transconductance  
1.8  
0.7  
V
V
190  
µA/V  
SOFT START  
tSS  
Soft-start time  
3
4
5
ms  
DR1H GATE DRIVER  
VDR1H_L Low-state voltage drop  
VDR1H_H High-state voltage drop  
DR1L GATE DRIVER  
VDR1L_L Low-state voltage drop  
VDR1L_H High-state voltage drop  
SPREAD SPECTRUM  
0.1  
0.2  
V
V
V
V
DR1H VSW1, 100-mA sinking  
BOOT1 VDR1H, 100-mA sourcing  
100-mA sinking  
0.1  
0.2  
V
V
VCC VDR1L, 100-mA sourcing  
VDITH/SYNC = 1.0V, RFSW=49.9kΩ,  
voltage rising from 0.85V  
IDITH_CHG  
IDITH_DIS  
Dithering charge current  
2
2
µA  
µA  
VDITH/SYNC = 1.0V, RFSW=49.9kΩ,  
voltage falling from 1.15V  
Dithering discharge current  
VDITH_H  
VDITH_L  
Dither high threshold  
Dither low threshold  
1.07  
0.93  
V
V
SYNCHRONOUS CLOCK  
VSNYC_H Sync clock high voltage threshold  
VSYNC_L Sync clock low voltage threshold  
1.2  
V
V
0.4  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
TJ = -40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tSYNC_MIN  
HICCUP  
tHICCUP  
Minimum sync clock pulse width  
50  
ns  
Hiccup off time  
76  
ms  
MODE RESISTANCE DETECTION  
IMODE  
Sourcing current from the MODE pin  
VMODE = 2.5V  
9
1.147  
0.824  
0.571  
0.321  
0.168  
0.080  
0.014  
10  
1.220  
0.88  
11  
1.293  
0.936  
0.657  
0.381  
0.210  
0.114  
0.040  
µA  
V
VMODE_DT1  
VMODE_DT2  
VMODE_DT3  
VMODE_DT4  
VMODE_DT5  
VMODE_DT6  
VMODE_DT7  
V
0.614  
0.351  
0.189  
0.097  
0.027  
V
Detection threshold voltage at the  
MODE pin  
V
V
V
V
LOGIC INTERFACE  
VI2C_IO  
VI2C_H  
VI2C_L  
IO voltage range for I2C  
1.7  
0.4  
5.5  
1.2  
V
V
V
I2C input high threshold  
I2C input low threshold  
VCC = 2.7V to 5.5V  
VCC = 2.7V to 5.5V  
Leakage current into FB/INT pin when  
outputting high impedance  
IFB/INT_H  
VFB/INT_L  
VFB/INT = 5V  
100  
0.1  
nA  
V
Output low voltage range of the FB/  
INT pin  
Sinking 4mA current  
0.03  
PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
6.6 I2C Timing Characteristics  
TJ = -40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C TIMING  
fSCL  
SCL clock frequency  
100  
0.5  
1000  
kHz  
µs  
Bus free time between a STOP and  
START condition  
tBUF  
Fast mode plus  
tHD(STA)  
tLOW  
Hold time (repeated) START condition  
Low period of the SCL clock  
260  
0.5  
ns  
µs  
ns  
tHIGH  
High period of the SCL clock  
260  
Setup time for a repeated START  
condition  
tSU(STA)  
260  
ns  
tSU(DAT)  
tHD(DAT)  
tRCL  
Data setup time  
50  
0
ns  
µs  
ns  
Data hold time  
Rise time of SCL signal  
120  
120  
Rise time of SCL signal after a  
repeated START condition and after  
an ACK bit  
tRCL1  
ns  
tFCL  
Fall time of SCL signal  
120  
120  
120  
ns  
ns  
ns  
ns  
pF  
tRDA  
tFDA  
tSU(STO)  
CB  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time of STOP condition  
Capacitive load for SDA and SCL  
260  
200  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS55288  
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
6.7 Typical Characteristics  
VIN = 12 V, TA = 25°C, fSW = 400 kHz, unless otherwise noted.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
30%  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
20%  
10%  
0
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D001  
D002  
6-1. Efficiency vs Output Current,  
6-2. Efficiency vs Output Current,  
VOUT = 5 V, FPWM  
VOUT = 5 V, PFM  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D003  
D004  
6-3. Efficiency vs Output Current,  
6-4. Efficiency vs Output Current,  
VOUT = 9 V, FPWM  
VOUT = 9 V, PFM  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D005  
D006  
6-5. Efficiency vs Output Current,  
6-6. Efficiency vs Output Current,  
VOUT = 12 V, FPWM  
VOUT = 12 V, PFM  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D007  
D008  
6-7. Efficiency vs Output Current,  
6-8. Efficiency vs Output Current,  
VOUT = 15 V, FPWM  
VOUT = 15 V, PFM  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D009  
D010  
6-9. Efficiency vs Output Current,  
6-10. Efficiency vs Output Current,  
VOUT = 20 V, FPWM  
VOUT = 20 V, PFM  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VIN = 20 V, VOUT = 5 V  
VIN = 12 V, VOUT = 12 V  
VIN = 5 V, VOUT = 20 V  
8
7
600  
6
5
400  
4
200  
3
2
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Resistance (kW)  
Resistance (kW)  
6-11. Average Inductor Current Limit vs Setting  
6-12. Switching Frequency vs Setting  
Resistance  
Resistance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
0.2865  
0.285  
0.514  
0.512  
0.51  
0.2835  
0.282  
0.508  
0.506  
0.504  
0.502  
0.2805  
0.279  
0.2775  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
6-13. Reference Voltage vs Temperature (VREF  
=
6-14. Reference Voltage vs Temperature (VREF  
0.508 V)  
=
0.282 V)  
0.855  
0.852  
0.849  
0.846  
0.843  
0.84  
1.146  
1.14  
1.134  
1.128  
1.122  
1.116  
1.11  
0.837  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D015  
D016  
6-15. Reference Voltage vs Temperature (VREF  
=
6-16. Reference Voltage vs Temperature (VREF =  
0.846 V)  
1.129 V)  
780  
775  
770  
765  
760  
755  
7.5  
7.25  
7
6.75  
6.5  
6.25  
6
750  
Into VIN, VIN = 24 V, VOUT = 3 V  
Into VOUT, VIN = 3.1 V, VIN = 20 V  
745  
-40  
5.75  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
6-17. Quiescent Current vs Temperature  
6-18. Shutdown Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
1.2355  
1.235  
2500  
2000  
1500  
1000  
500  
1.2345  
1.234  
1.2335  
1.233  
1.2325  
1.232  
fSW = 200 kHz  
fSW = 2200 kHz  
1.2315  
1.231  
1.2305  
1.23  
-40  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D019  
D020  
6-19. ENABLE/UVLO Rising Threshold vs  
6-20. Switching Frequency vs Temperature  
Temperature  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
Output Current (A)  
6
7
8
D021  
6-21. CDC Voltage vs Output Current with RSENSE = 10 mΩ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7 Detailed Description  
7.1 Overview  
The TPS55288 is a 16-A buck-boost DC-to-DC converter with the two boost MOSFETs integrated. The  
TPS55288 can operate over a wide range of 2.7-V to 36-V input voltage and an output voltage of 0.8 V to 22 V. It  
can transition among buck mode, buck-boost mode, and boost mode smoothly according to the input voltage  
and the set output voltage. The TPS55288 operates in buck mode when the input voltage is greater than the  
output voltage and in boost mode when the input voltage is less than the output voltage. When the input voltage  
is close to the output voltage, the TPS55288 operates in one-cycle buck and one-cycle boost mode alternately.  
The TPS55288 uses an average current mode control scheme. Current mode control provides simplified loop  
compensation, rapid response to the load transients, and inherent line voltage rejection. An error amplifier  
compares the feedback voltage with the internal reference voltage. The output of the error amplifier determines  
the average inductor current.  
An internal oscillator can be configured to operate over a wide range of frequency from 200 kHz to 2.2 MHz. The  
internal oscillator can also synchronize to an external clock applied to the DITH/SYNC pin. To minimize EMI, the  
TPS55288 can dither the switching frequency at ±7% of the set frequency.  
The TPS55288 works in fixed-frequency PWM mode at moderate to heavy load currents. In light load condition,  
the TPS55288 can be configured to automatically transition to PFM mode or be forced in PWM mode by either  
connecting a resistor at the MODE pin or setting the corresponding bit in an internal register.  
The output voltage of the TPS55288 is adjustable by setting the internal register through I2C interface. An  
internal 10-bit DAC adjusts the reference voltage related to the value written into the REF register. The device  
can also limit the output current by placing a current sense resistor in the output path. These two functions  
support the programmable power supply (PPS) feature of the USB PD.  
The TPS55288 provides average inductor current limit set by a resistor at the ILIM pin. In addition, it provides  
cycle-by-cycle peak inductor current limit during transient to protect the device against overcurrent condition  
beyond the capability of the device.  
A precision voltage threshold of 1.23 V with 5-µA sourcing current at the EN/UVLO pin supports programmable  
input undervoltage lockout (UVLO) with hysteresis. The output overvoltage protection (OVP) feature turns off the  
high-side FETs to prevent damage to the devices powered by the TPS55288.  
The device provides hiccup mode option to reduce the heating in the power components when output short  
circuit happens. When the hiccup mode is enabled, the TPS55288 turns off for 76 ms and restarts at soft start-  
up.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.2 Functional Block Diagram  
L1  
VIN  
C3  
C4  
C8  
SW1  
BOOT1  
BOOT2  
SW2  
R1  
VOUT  
VOUT  
C2  
VIN  
VOUT  
LDO  
Current  
Sense  
C1  
VCC  
CDC  
R7  
I-V  
C5  
DL  
I_limit  
ISP  
ISN  
Buck-Boost  
Control  
DH  
Iref  
FB/INT  
COMP  
Gm  
Gm  
MODE  
ADC  
BOOST  
BUCK  
R3  
R2  
C6  
Vref  
DAC  
DAC  
SDA  
SCL  
PGND  
AGND  
ILIM  
Logic Core  
EN/UVLO  
Iref  
Vref  
VSYNC/DITH  
1.0V  
I_limit  
VIN  
VCC  
VIN UVLO  
VOUT OVP  
Thermal  
FSW  
VOUT  
R5  
fMOD  
R4  
DITH/SYNC  
C7  
7.3 Feature Description  
7.3.1 VCC Power Supply  
An internal LDO to supply the TPS55288 outputs regulated 5.2-V voltage at the VCC pin with 60-mA output  
current capability. When VIN is less than VOUT, the internal LDO selects the power supply source by comparing  
VIN to a rising threshold of 6.2 V with 0.3-V hysteresis. When VIN is higher than 6.2 V, the supply for LDO is VIN.  
When VIN is lower than 5.9 V, the supply for LDO is VOUT. When VOUT is less than VIN, the internal LDO selects  
the power supply source by comparing VOUT to a rising threshold of 6.2 V with 0.3-V hysteresis. When VOUT is  
higher than 6.2 V, the supply for LDO is VOUT. When VOUT is lower than 5.9 V, the supply for LDO is VIN. 7-1  
shows the supply source selection for the internal LDO.  
7-1. VCC Power Supply Logic  
VIN  
VOUT  
INPUT for VCC LDO  
VIN > 6.2 V  
VIN < 5.9 V  
VIN > VOUT  
VIN > VOUT  
VOUT>VIN  
VOUT>VIN  
VOUT> 6.2 V  
VOUT< 5.9 V  
VIN  
VOUT  
VOUT  
VIN  
To minimize the power dissipation of the internal LDO when both input voltage and output voltage are high, an  
external 5-V power source can be applied at the VCC pin to supply the TPS55288. The external 5-V power  
supply must have at least 100-mA output current capability and must be within the 4.75-V to 5.5-V regulation  
range. To use an external power supply for VCC, a resistor with proper resistance must be connected to the  
MODE pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.3.2 Operation Mode Setting  
By placing different resistors between the MODE pin and AGND pin, the TPS55288 selects the internal power  
supply or external power supply for VCC, selects one of two different I2C addresses, and selects the PFM mode  
or the forced PWM mode in light load conditions. 7-2 shows the resistance values for each selection. After the  
TPS55288 is enabled, an I2C master device can control these three operating modes by writing the  
corresponding value into the internal registers regardless the resistance settings at the MODE pin. See details in  
7.6.  
7-2. VCC Source, I2C Slave Address and PFM/PWM Programming  
RESISTOR VALUE  
OPERATING MODE AT LIGHT  
LOAD  
VCC SOURCE  
I2C SLAVE ADDRESS  
(k)  
0
Internal  
Internal  
Internal  
Internal  
External  
External  
External  
External  
74h  
74h  
75h  
75h  
74h  
74h  
75h  
75h  
PWM  
PFM  
PWM  
PFM  
PWM  
PFM  
PWM  
PFM  
6.19  
14.3  
24.9  
51.1  
75.0  
105  
Open  
7.3.3 Input Undervoltage Lockout  
When the input voltage is below 2.6 V, the TPS55288 is disabled. When the input voltage is above 3 V, the  
TPS55288 can be enabled by pulling the EN pin to a high voltage above 1.3 V.  
7.3.4 Enable and Programmable UVLO  
The TPS55288 has a dual function enable and undervoltage lockout (UVLO) circuit. When the input voltage at  
the VIN pin is above the input UVLO rising threshold of 3 V and the EN/UVLO pin is pulled above 1.15 V but less  
than the enable UVLO threshold of 1.23 V, the TPS55288 is enabled but still in standby mode. The TPS55288  
starts to detect the resistance between the MODE pin and ground. After that, the TPS55288 selects the power  
supply for VCC, the I2C slave address, and the PFM or FPWM mode for light load condition accordingly.  
The EN/UVLO pin has an accurate UVLO voltage threshold to support programmable input undervoltage lockout  
with hysteresis. When the EN/UVLO pin voltage is greater than the UVLO threshold of 1.23 V, the TPS55288 is  
enabled for I2C communication and switching operation. A hysteresis current IUVLO_HYS is sourced out of the EN/  
UVLO pin to provide hysteresis that prevents on/off chattering in the presence of noise with a slowly changing  
input voltage.  
By using resistor divider as shown in 7-1, the turnon threshold is calculated using 方程1.  
R1  
8
= 8  
× (1 +  
)
+0(78.1 _10)  
78.1  
42  
(1)  
where  
VUVLO is the UVLO threshold of 1.23 V at the EN/UVLO pin  
The hysteresis between the UVLO turnon threshold and turnoff threshold is set by the upper resistor in the EN/  
UVLO resistor divider and is given by the Equation 2.  
¿8  
= +78.1_*;5 × 41  
+0(78.1)  
(2)  
where  
IUVLO_HYS is the sourcing current from the EN/UVLO pin when the voltage at the EN/UVLO pin is above  
VUVLO  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
VIN  
IUVLO_HYS  
R1  
EN/UVLO  
Enable  
R2  
C1  
UVLO Comparator  
1.23V  
7-1. Programmable UVLO With Resistor Divider at the EN/UVLO pin  
Using an NMOSFET together with a resistor divider can implement both logic enable and programmable UVLO  
as shown in 7-2. The EN logic high level must be greater than enable threshold plus the Vth of the NMOSFET  
Q1. The Q1 also eliminates the leakage current from VIN to ground through the UVLO resistor divider during  
shutdown mode.  
VIN  
R1  
IUVLO_HYS  
EN  
EN/UVLO  
Enable  
R2  
C1  
UVLO Comparator  
1.23V  
7-2. Logic Enable and Programmable UVLO  
7.3.5 Soft Start  
When the input voltage is above the UVLO threshold and the voltage at the EN/UVLO pin is above the enable  
UVLO threshold, the TPS55288 is ready to accept the command from I2C master device. An I2C master device  
can configure the internal registers of the TPS55288 before setting the OE bit of the register 06h. Once an I2C  
master device sets the OE bit to 1, the TPS55288 starts to ramp up the output voltage by ramping an internal  
reference voltage from 0 V to a voltage set in the internal registers 00h and 01h within typical 4 ms.  
7.3.6 Shutdown and Load Discharge  
When the EN/UVLO pin voltage is pulled below 0.4 V, the TPS55288 is in shutdown mode, and all functions are  
disabled. All internal registers are reset to default values.  
When the EN/UVLO pin is at high logic level and the OE bit is cleared to 0, the TPS55288 turns off the switching  
operation but keeps the I2C interface active. Simultaneously, if the DISCHG bit in the register 06h is set to 1, the  
TPS55288 discharges the output voltage below 0.8 V by an internal constant current.  
7.3.7 Switching Frequency  
The TPS55288 uses a fixed frequency average current control scheme. The switching frequency is between 200  
kHz and 2.2 MHz set by placing a resistor at the FSW pin. An internal amplifier holds this pin at a fixed voltage of  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS55288  
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
1 V. The setting resistance is between maximum of 100kand minimum of 9.09k. Use Equation 3 to calculate  
the resistance by a given switching frequency.  
1000  
B
=
(MHz)  
59  
0.05 × 4(59 + 20  
(3)  
where  
RFSW is the resistance at the FSW pin  
For noise-sensitive applications, the TPS55288 can be synchronized to an external clock signal applied to the  
DITH/SYNC pin. The duty cycle of the external clock is recommended in the range of 30% to 70%. A resistor  
also must be connected to the FSW pin when the TPS55288 is switching by the external clock. The external  
clock frequency at the DITH/SYNC pin must have lower than 0.4-V low level voltage and must be within ±30% of  
the corresponding frequency set by the resistor. 7-3 is a recommended configuration.  
External Clock  
DITH/SYNC  
FSW  
RFSW  
7-3. External Clock Configuration  
7.3.8 Switching Frequency Dithering  
The TPS55288 provides an optional switching frequency dithering that is enabled by connecting a capacitor from  
the DITH/SYNC pin to ground. 7-4 illustrates the dithering circuit. By charging and discharging the capacitor, a  
triangular waveform centered at 1 V is generated at the DITH/SYNC pin. The triangular waveform modulates the  
oscillator frequency by ±7% of the nominal frequency set by the resistance at the FSW pin. The capacitance at  
the DITH/SYNC pin sets the modulation frequency. A small capacitance modulates the oscillator frequency at a  
fast rate than a large capacitance. For the dithering circuit to effectively reduce peak EMI, the modulation rate  
normally is below 1 kHz. Equation 4 calculates the capacitance required to set the modulation frequency, FMOD  
.
1
%
=
(()  
&+6*  
2.8 × 4(59 × (/1&  
(4)  
where  
RFSW is the switching frequency setting resistance (Ω) at the FSW pin  
FMOD is the modulation frequency (Hz) of the dithering  
Connecting the DITH/SYNC pin below 0.4 V or above 1.2 V disables switching frequency dithering. The dithering  
function also is disabled when an external synchronous clock is used.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
1.07V  
1.0V  
0.93V  
DITH/SYNC  
CDITH  
FMOD  
FSW  
RFSW  
7-4. Switching Frequency Dithering  
7.3.9 Inductor Current Limit  
The TPS55288 implements both peak current and average inductor current limit by a resistor connected to the  
ILIM pin. The average current mode control loop uses the current sense information at the high-side MOSFET of  
the boost leg to clamp the maximum average inductor current to 16.5 A (typical) when the resistor is 20 k. Use  
large resistance to get smaller average inductor current limit. Use Equation 5 to calculate the resistance for a  
desired average inductor current limit.  
min(1,0.6 ×8176 )× 330000  
+
=
(#)  
#8)_.+/+6  
4+.+/  
(5)  
where  
IAVG_LIMIT is the average inductor current limit  
RILIM is the resistance () between the ILIM pin and analog ground  
Besides the average current limit, a peak current limit protection is implemented during transient to protect the  
device against over current condition beyond the capability of the device.  
7.3.10 Internal Charge Path  
Each of the two high-side MOSFET drivers is biased from its floating bootstrap capacitor, which is normally re-  
charged by VCC through both the external and internal bootstrap diodes when the low-side MOSFET is turned  
on. When the TPS55288 operates exclusively in the buck or boost regions, one of the high-side MOSFETs is  
constantly on. An internal charge path, from VOUT and BOOT2 to BOOT1 or from VIN and BOOT1 to BOOT2,  
charges the bootstrap capacitor to VCC so that the high-side MOSFET remains on.  
7.3.11 Output Voltage Setting  
There are two ways to set the output voltage: changing the feedback ratio and changing the reference voltage.  
The TPS55288 has a 10-bit DAC to program the reference voltage from 45 mV to 1.2 V. The TPS55288 also can  
select an internal feedback resistor divider or an external resistor divider by setting the FB bit in register 04h.  
When the FB bit is set to 0, the output voltage feedback ratio is set in internal register 04h. When the FB bit is  
set to 1, the output voltage feedback ratio is set by an external resistor divider.  
When using internal output voltage feedback settings, there are four feedback ratios programmable by writing  
the INTFB[1:0] bits of register 04h. With this function, the TPS55288 can limit the maximum output voltage to  
different values. In addition, the minimum step of the output voltage change is also programmed to 20 mV, 15  
mV, 10 mV, and 5 mV, accordingly.  
When using an external output voltage feedback resistor divider as shown in 7-5, use Equation 6 to calculate  
the output voltage with the reference voltage at the FB/INT pin.  
4($_72  
V176 = 8 × (1 +  
)
4'(  
4($_$6  
(6)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
RSNS  
VOUT  
VOUT  
ISP  
RFB_UP  
ISN  
FB/INT  
RFB_BT  
7-5. Output Voltage Setting by External Resistor Divider  
TI recommends using 100 kfor the up resistor RFB_UP. The reference voltage VREF at the FB/INT pin is  
programmable from 45 mV to 1.2 V by writing a 10-bit data into register 00h and 01h.  
7.3.12 Output Current Monitoring and Cable Voltage Droop Compensation  
The TPS55288 outputs a voltage at the CDC pin proportional to the sensed voltage across a output current  
sensing resistor between the ISP pin and the ISN pin. Equation 7 shows the exact voltage at the CDC pin  
related to the sensed output current.  
V%&% = 20 × (8 F 8  
)
+52  
+50  
(7)  
To compensate the voltage droop across a cable from the output of the USB port to its powered device, the  
TPS55288 can lift its output voltage in proportion to the load current. There are two methods in the TPS55288 to  
implement the compensation: by setting internal register 05h or by placing a resistor between the CDC pin and  
AGND pin.  
When using internal output voltage feedback, it is recommended to use the internal compensation setting. When  
using an external resistor divider at the FB/INT pin to set the output voltage, it is recommended to use the  
external compensation setting by placing a resistor at the CDC pin.  
By default, the internal cable voltage droop compensation function is enabled with 0 V added to the output  
voltage. Write the value into the bit CDC [2:0] in register 05h to get the desired voltage compensation.  
When using external output voltage feedback, external compensation is better than the internal register for its  
high accuracy. The output voltage rises in proportion to the current sourcing from the CDC pin through the  
resistor at the CDC pin. It is recommended to use 100-kresistance for the up resistor of the feedback resistor  
divider. Equation 8 shows the output voltage rise related to the sensed output current, the resistance at the CDC  
pin, and the up resistor of the output voltage feedback resistor divider.  
8
F 8  
+50  
+52  
V176_%&% = 3 × 4($_72 × (  
)
4%&%  
(8)  
where  
RFB_UP is the up resistor of the resistor divider between the output and the FB/INT pin  
RCDC is the resistor at the CDC pin  
When RFB_UP is 100 k, the output voltage rise versus the sensed output current and the resistor at the CDC  
pin is shown in 7-6.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
VOUT_CDC(V)  
0.8  
RCDC=20K  
0.75V  
0.5V  
0.2V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
RCDC=30K  
RCDC=75K  
RCDC=150K  
RCDC=floating  
40  
0.1V  
VISP œ VISN  
(mV)  
10  
20  
30  
50  
7-6. Output Voltage Rise vs Output Current  
7.3.13 Integrated Gate Drivers  
The TPS55288 provides two N-channel MOSFET gate drivers for buck side. Each driver is capable of sourcing  
1-A and sinking 1.8-A peak current. In buck operation, the DR1H pin and the DR1L pin are switched by the PWM  
controller. In boost mode, the DR1H pin remains at continuously high voltage to turn on the high-side MOSFET  
of the buck side, and the DR1L pin remains at continuously low voltage to turn off the low-side MOSFET of the  
buck side.  
In DCM buck mode operation, the DR1L turns off the low-side FET when the inductor current drops to zero.  
The low-side gate driver is powered from the VCC pin, and the high-side gate driver is powered from the  
bootstrap capacitor CBOOT1, which is between the BOOT1 pin and the SW1 pin.  
7.3.14 Output Current Limit  
The output current limit is programmable from 0 A to 6.35 A by placing a 10-mcurrent sensing resistor  
between the ISP pin and the ISN pin. Smaller resistance results in a higher current limit and bigger resistance  
results in a lower current limit. An internal register sets the current sense voltage across the ISP pin and the ISN  
pin. The programmable voltage step between the ISP pin and the ISN pin is 0.5 mV.  
Connecting the ISP and the ISN pin together to the VOUT pin disables the output current limit because the  
sensed voltage is always zero. The output current limit can also be disabled by reset the Current_Limit_EN bit in  
the Current_Limit register to 0.  
When the OE bit or the Current_Limit_EN bit is changed from 0 to 1, the OCP_MASK must be 0. After the OE bit  
and the Current_Limit_EN bit are set, set the OCP_MASK to 1 to enable the OCP fault indication output.  
7.3.15 Overvoltage Protection  
The TPS55288 has output overvoltage protection. When the output voltage at the VOUT pin is detected above  
23.5 V typically, the TPS55288 turns off two high-side FETs and turns on two low-side FETs until its output  
voltage drops the hysteresis value lower than the output overvoltage protection threshold. This function prevents  
overvoltage on the output and secures the circuits connected to the output from excessive overvoltage.  
7.3.16 Output Short Circuit Protection  
In addition to the average inductor current limit, the TPS55288 implements the output short-circuit protection by  
entering hiccup mode. To enable hiccup mode, the HICCUP bit in register 06h must be set. After soft start-up  
time of 4 ms, the TPS55288 monitors the average inductor current and output voltage. Whenever the output  
short circuit happens, causing the average inductor current hitting the set limit and the output voltage below 0.8  
V, the TPS55288 shuts down the switching for 76 ms (typical) and then repeats the soft start for 4 ms. The  
hiccup mode helps reduce the total power dissipation on the TPS55288 in the output short-circuit or overcurrent  
condition.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS55288  
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.3.17 Thermal Shutdown  
The TPS55288 is protected by a thermal shutdown circuit that shuts down the device when the internal junction  
temperature exceeds 175°C (typical). The internal soft-start circuit is reset but all internal registers values remain  
unchanged when thermal shutdown is triggered. The converter automatically restarts when the junction  
temperature drops below the thermal shutdown hysteresis of 20°C below the thermal shutdown threshold.  
7.4 Device Functional Modes  
In light load condition, the TPS55288 can work in PFM or forced PWM mode to meet different application  
requirements. The PFM mode decreases switching frequency to reduce the switching loss thus it gets high  
efficiency at light load condition. The FPWM mode keeps the switching frequency unchanged to avoid undesired  
low switching frequency but the efficiency becomes lower than that of PFM mode.  
7.4.1 PWM Mode  
In FPWM mode, the TPS55288 keeps the switching frequency unchanged in light load condition. When the load  
current decreases, the output of the internal error amplifier decreases as well to reduce the average inductor  
current down to deliver less power from input to output. When the output current further reduces, the current  
through the inductor decreases to zero during the switch-off time. The high-side N-MOSFET is not turned off  
even if the current through the MOSFET is zero. Thus, the inductor current changes its direction after it runs to  
zero. The power flow is from output side to input side. The efficiency is low in this condition. However, with the  
fixed switching frequency, there is no audible noise or other problems that might be caused by low switching  
frequency in light load condition.  
7.4.2 Power Save Mode  
The TPS55288 improves the efficiency at light load condition with the PFM mode. By connecting an appropriate  
resistor at the MODE pin or enabling the PFM function in the internal register, the TPS55288 can work in PFM  
mode at light load condition. When the TPS55288 operates at light load condition, the output of the internal error  
amplifier decreases to make the inductor peak current down to deliver less power to the load. When the output  
current further reduces, the current through the inductor will decrease to zero during the switch-off time. When  
the TPS55288 works in buck mode, once the inductor current becomes zero, the low-side switch of the buck  
side is turned off to prevent the reverse current from output to ground. When the TPS55288 works in boost  
mode, once the inductor current becomes zero, the high side-switch of the boost side is turned off to prevent the  
reverse current from output to input. The TPS55288 resumes switching until the output voltage drops. Thus the  
PFM mode reduces switching cycles and eliminates the power loss by the reverse inductor current to get high  
efficiency in light load condition.  
7.5 I2C Serial Interface  
The TPS55288 uses I2C interface for flexible converter parameter programming. I2C is a bi-directional 2-wire  
serial interface. Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). I2C  
devices can be considered as masters or slaves when performing data transfers. A master is the device that  
initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any  
device addressed is considered a slave.  
The TPS55288 operates as a slave device with address 74h and 75h set by a different resistor at the MODE pin.  
Receiving control inputs from the master device like a microcontroller or a digital signal processor reads and  
writes the internal registers 00h through 07h. The I2C interface of the TPS55288 supports both standard mode  
(up to 100 kbit/s) and fast mode plus (up to 1000 kbit/s). Both SDA and SCL must be connected to the positive  
supply voltage through current sources or pullup resistors. When the bus is free, both lines are in high voltage.  
7.5.1 Data Validity  
The data on the SDA line must be stable during the high level period of the clock. The high level or low level  
state of the data line can only change when the clock signal on the SCL line is low level. One clock pulse is  
generated for each data bit transferred.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
SDA  
SCL  
Data line stable  
Data valid  
Change of data  
allowed  
7-7. I2C Data Validity  
7.5.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A high level to low level transition  
on the SDA line while SCL is at high level defines a START condition. A low level to high level transition on the  
SDA line when the SCL is at high level defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
START (S)  
STOP (P)  
7-8. I2C START and STOP Conditions  
7.5.3 Byte Format  
Every byte on the SDA line must be eight bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit  
(MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some other  
function, it can hold the clock line SCL low to force the master into a wait state (clock stretching). Data transfer  
then continues when the slave is ready for another byte of data and release the clock line SCL.  
Acknowledgement signal  
from slave  
Acknowledgement signal  
from receiver  
MSB  
SDA  
SCL  
1
2
7
8
9
1
2
8
9
S or Sr  
P or Sr  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
7-9. Byte Format  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.5.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge 9th clock pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
to low level and it remains stable low level during the high level period of this clock pulse.  
The Not Acknowledge signal is when SDA remains high level during the 9th clock pulse. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
7.5.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is seven bits long followed by the eighth bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
SCL  
1 - 7  
8
9
1 - 7  
8
9
1 - 7  
8
9
S
P
START  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
7-10. Slave Address and Data Direction  
7.5.6 Single Read and Write  
7-11 and 7-12 show the single-byte write and single-byte read format of the I2C communication.  
1
7
1
1
8
1
8
1
1
S
Slave Address  
0
ACK  
Register Address  
ACK  
Data to Address  
ACK  
P
7-11. Single-byte Write  
1
7
1
0
1
8
1
1
7
1
1
1
S
Slave Address  
ACK  
Register Address  
ACK  
S
Slave Address  
ACK  
From master to slave  
From slave to master  
8
1
1
Data from Address  
NACK  
P
7-12. Single-byte Read  
If the register address is not defined, the TPS55288 sends back NACK and goes back to the idle state.  
7.5.7 Multi-Read and Multi-Write  
The TPS55288 supports multi-read and multi-write.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
1
7
1
0
1
8
1
S
Slave Address  
ACK  
Register Address  
ACK  
8
1
8
1
8
1
1
Data to Address  
ACK Data to Address + 1 ACK  
······  
Data to Address + N ACK  
P
7-13. Multi-byte Write  
1
7
1
0
1
8
1
1
7
1
1
1
S
Slave Address  
ACK  
Register Address  
ACK  
S
Slave Address  
ACK  
8
1
8
1
8
1
1
NACK  
Data from Address  
ACK Data from Address + 1 ACK  
······  
Data from Address + N  
P
7-14. Multi-byte Read  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6 Register Maps  
7-3 lists the memory-mapped registers for the device registers. All register offset addresses not listed in 表  
7-3 should be considered as reserved locations, and the register contents should not be modified.  
7-3. Device Registers  
Address  
0h, 1h  
2h  
Acronym  
REF  
Register Name  
Reference Voltage  
Current Limit Setting  
Slew Rate  
Section  
Go  
IOUT_LIMIT  
VOUT_SR  
VOUT_FS  
CDC  
Go  
3h  
Go  
4h  
Feedback Selection  
Cable Compensation  
Mode Control  
Go  
5h  
Go  
6h  
MODE  
Go  
7h  
STATUS  
Operating Status  
Go  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.1 REF Register (Address = 0h, 1h) [reset = 11010010h, 00000000h]  
REF is shown in 7-15 and 7-16 described in 7-4.  
Return to Summary Table.  
REF sets the internal reference voltage of the TPS55288. The 01h register is the high byte and the 00h register  
is the low byte. One LSB of register 00h stands for 1.129 mV of the internal reference voltage. The default  
register value is 00000000 11010010b of 282 mV. When the register value is 00000000 00000000b, the  
reference voltage is 45 mV. When the register value is 00000011 11000000b, the reference voltage is 1.129 V.  
The output voltage of the TPS55288 also depends on the output feedback ratio, which is either set in register  
04h or set by an external resistor divider.  
Writing register 01h enables the TPS55288 to load the 01h and 00h data into the internal 10-bit DAC. Writing the  
register 00h does not impact the internal reference voltage.  
7-15. REF_LSB  
7
6
5
4
3
2
1
0
VREF  
R/W-11010010b  
7-16. REF_MSB  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
VREF  
R/W-000000b  
R/W-00b  
7-4. REF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-10  
9-0  
Reserved  
VREF  
000000b  
Reserved  
00 11010010b Sets the internal reference voltage  
00 00000000b = 45-mV reference voltage  
00 00000001b = 46.129-mV reference voltage  
00 00000010b = 47.258-mV reference voltage  
...... = ......  
00 11010010b = 282-mV reference voltage (Default)  
...... = ......  
01 10011010b = 508-mV reference voltage  
...... = ......  
10 11000110b = 846-mV reference voltage  
...... = ......  
11 11000000b = 1129-mV reference voltage  
...... = ......  
11 11111111b = 1200-mV reference voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS55288  
 
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.2 IOUT_LIMIT Register (Address = 2h) [reset = 11100100h]  
IOUT_LIMIT is shown in 7-17 and described in 7-5.  
Return to Summary Table.  
IOUT_LIMIT sets the current limit target voltage between the ISP pin and the ISN pin. The default value in the  
current limit register is 11100100b standing for 50 mV. 1 LSB stands for 0.5 mV. The bit7 enables the current limit  
or disables the current limit.  
7-17. IOUT_LIMIT Register  
7
6
5
4
3
2
1
0
Current_Limit_EN  
R/W-1b  
Current_Limit_Setting  
R/W-1100100b  
7-5. IOUT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Current_Limit_EN  
R/W  
1b  
Enable or disable current limit.  
0b = Current limit disabled  
1b = Current limit enabled (Default)  
6-0  
Current_Limit_Setting  
R/W  
1100100b  
Sets the current limit target voltage between the ISP pin and the ISN  
pin  
0000000b = VISP-VISN = 0 (mV)  
0000001b = VISP-VISN = 0.5 (mV)  
0000010b = VISP-VISN = 1 (mV)  
0000011b = VISP-VISN = 1.5 (mV)  
0000100b = VISP-VISN = 2.0 (mV)  
1100100b = VISP-VISN = 50.0 (mV) (Default)  
1111111b = VISP-VISN = 63.5 (mV)  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.3 VOUT_SR Register (Address = 3h) [reset = 00000001h]  
VOUT_SR is shown in 7-18 and described in 7-6.  
Return to Summary Table.  
Register 03h sets the slew rate of the output voltage change and the response delay time after the output  
current exceeds the setting output current limit.  
The OCP_DELAY [1:0] bits set the response time of the TPS55288 when the output overcurrent limit is hit. This  
allows the TPS55288 to output high current in a relative short duration time. The default setting is 128 µs so that  
the TPS55288 immediately limits the output current.  
The SR [1:0] bits set 1.25mV/μs, 2.5mV/μs, 5mV/μs, and 10mV/μs slew rate for output voltage change.  
7-18. VOUT_SR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
OCP_DELAY  
R/W-00b  
RESERVED  
R/W-00b  
SR  
R/W-01b  
7-6. VOUT_SR Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
OCP_DELAY  
00b  
Reserved  
00b  
Sets the response time of the device when the output overcurrent  
limit is reached.  
00b = 128 µs (Default)  
01b = Delay 1.024 x 3 ms  
10b = Delay 1.024 x 6 ms  
11b = Delay 1.024 x 12 ms  
3-2  
1-0  
RESERVED  
SR  
R/W  
R/W  
00b  
01b  
Reserved  
Sets slew rate for output voltage change.  
00b = 1.25 mV/µs output change slew rate  
01b = 2.5 mV/µs output change slew rate (Default)  
10b = 5 mV/µs output change slew rate  
11b = 10 mV/µs output change slew rate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.4 VOUT_FS Register (Address = 4h) [reset = 00000011h]  
VOUT_FS is shown in 7-19 and described in 7-7.  
Return to Summary Table.  
Register 04h sets the selection for the output feedback voltage, either by an internal resistor divider or external  
resistor divider, and sets the internal feedback ratio when using internal feedback resistor divider.  
7-19. VOUT_FS Register  
7
6
5
4
3
2
1
0
FB  
RESERVED  
R/W-00000b  
INTFB  
R/W-0b  
R/W-11b  
7-7. VOUT_FS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FB  
R/W  
0b  
Output feedback voltage  
0b = Use internal output voltage feedback. The FB/INT pin is the  
indicator for output short circuit protection, overcurrent status, and  
overvoltage status (Default).  
1b = Use external output voltage feedback. The FB/INT pin is the  
feedback input of the output voltage.  
6-2  
1-0  
RESERVED  
INTFB  
R
00000b  
11b  
Reserved  
R/W  
Internal feedback ratio  
00b = Set internal feedback ratio to 0.2256  
01b = Set internal feedback ratio to 0.1128  
10b = Set internal feedback ratio to 0.0752  
11b = Set internal feedback ratio to 0.0564(Default)  
7-8. Output Voltage vs Internal Reference  
INTFB1 INTFB0  
REF=0000h  
REF=000Dh  
REF=0028h  
REF=0078h  
REF=03C0h  
5 V  
Output Voltage Step  
0
0
1
1
0
1
0
1
0.8 V  
5 mV  
10 mV  
15 mV  
20 mV  
0.8 V  
10 V  
0.8 V  
15 V  
0.8 V  
20 V  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.5 CDC Register (Address = 5h) [reset = 11100000h]  
CDC is shown in 7-20 and described in 7-9.  
Return to Summary Table.  
Register 05h sets masks for SC bit, OCP bit, and OVP bit in register 07h. In addition, register 05h sets the  
voltage rise added to the setting output voltage with respect to the sensed differential voltage between the ISP  
pin and the ISN pin.  
The OCP_MASK must be 0 when the OE bit or the Current_Limit_EN bit is changed from 0 to 1. After the OE bit  
and the Current_Limit_EN bit are set, set the OCP_MASK to 1 to enable the OCP fault indication output.  
7-20. CDC Register  
7
6
5
4
3
2
1
0
SC_MASK  
R/W-1b  
OCP_MASK  
R/W-1b  
OVP_MASK  
R/W-1b  
RESERVED  
R/W-0b  
CDC_OPTION  
R/W-0b  
CDC  
R/W-000b  
7-9. CDC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
SC_MASK  
R/W  
1b  
Short circuit mask  
0b = Disabled SC indication  
1b = Enable SC indication (Default)  
OCP_MASK  
OVP_MASK  
R/W  
R/W  
1b  
1b  
Overcurrent mask  
0b = Disabled OCP indication  
1b = Enable OCP indication (Default)  
Overvoltage mask  
0b = Disabled OVP indication  
1b = Enable OVP indication (Default)  
4
3
RESERVED  
R/W  
R/W  
0b  
0b  
Reserved  
CDC_OPTION  
Select the cable voltage droop compensation approach.  
0b = Internal CDC compensation by the register 05H (Default)  
1b = External CDC compensation by a resistor at the CDC pin  
2-0  
CDC  
R/W  
000b  
Compensation for voltage droop over the cable  
000b = 0-V output voltage rise with 50 mV at VISP - VISN (Default)  
001b = 0.1-V output voltage rise with 50 mV at VISP - VISN  
010b = 0.2-V output voltage rise with 50 mV at VISP - VISN  
011b = 0.3-V output voltage rise with 50 mV at VISP - VISN  
100b = 0.4-V output voltage rise with 50 mV at VISP - VISN  
101b = 0.5-V output voltage rise with 50 mV at VISP - VISN  
110b = 0.6-V output voltage rise with 50 mV at VISP - VISN  
111b = 0.7-V output voltage rise with 50 mV at VISP - VISN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.6 MODE Register (Address = 6h) [reset = 00100000h]  
MODE is shown in 7-21 and described in 7-10.  
Return to Summary Table.  
MODE controls the operating mode of the TPS55288.  
7-21. MODE Register  
7
6
5
4
3
2
1
0
OE  
FSWDBL  
R/W-0b  
HICCUP  
R/W-1b  
DISCHG  
R/W-0b  
VCC  
I2CADD  
R/W-0b  
PFM  
MODE  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
7-10. MODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OE  
R/W  
0b  
Output enable  
0b = Output disabled (Default)  
1b = Output enable  
6
FSWDBL  
R/W  
0b  
Switching frequency doubling in buck-boost mode  
TI does not recommend using double frequency function at switching  
frequency above 1.6 MHz.  
0b = Keep the switching frequency unchanged during buck-boost  
mode (Default)  
1b = Double the switching frequency during buck-boost mode.  
5
4
HICCUP  
DISCHG  
R/W  
R/W  
1b  
0b  
Hiccup mode  
0b = Disable the hiccup during output short circuit protection.  
1b = Enable the hiccup during output short circuit protection (Default)  
Output discharge  
0b = Disabled VOUT discharge when the device is in shutdown  
mode (Default)  
1b = Enable VOUT discharge. VOUT is discharged to ground by an  
internal 100-mA current sink  
3
2
1
0
VCC  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
VCC option  
0b = Select internal LDO for VCC (Default)  
1b = Select external 5-V power supply for VCC  
I2CADD  
PFM  
I2C address  
0b = Set I2C slave address to 74h (Default)  
1b = Set I2C slave address to 75h  
Select operating mode at light load condition  
0b = PFM operating mode at light load condition (Default)  
1b = FPWM operating mode at light load condition  
MODE  
Mode control approach  
0b = Set VCC, I2CADD, and PFM controlled by external resistor  
(Default)  
1b = Set VCC, I2CADD, and PFM controlled by internal register  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.7 STATUS Register (Address = 7h) [reset = 00000011h]  
STATUS is shown in 7-22 and described in 7-11.  
Return to Summary Table.  
The STATUS register stores the operating status of the TPS55288. When any of the SCP bit, the OCP bit, or the  
OVP bit are set, and the corresponding mask bit in register 05h is set as well, the FB/INT pin outputs low logic  
̅
level to indicate the situation. Reading register 07h clears the SCP bit, OCP bit, and OVP bit. After the SCP bit,  
OCP bit, or OVP bit is set, it does not reset until the register is read. If the situation still exists, the corresponding  
bit is set again.  
7-22. STATUS Register  
7
6
5
4
3
2
1
0
SCP  
R-0b  
OCP  
R-0b  
OVP  
R-0b  
Reserved  
R/W-0b  
Reserved  
R/W-0b  
Reserved  
R/W-0b  
STATUS  
R-11b  
7-11. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCP  
R
0b  
Short circuit protection  
0b = No short circuit  
1b = Short circuit happens. Does not reset until it is read.  
6
5
OCP  
OVP  
R
R
0b  
0b  
Overcurrent protection  
0b = No output overcurrent  
1b = Output current hits the current limit sensed at the ISP and the  
ISN pin. Does not reset until it is read.  
Overvoltage protection  
0b = No OVP  
1b = Output voltage exceeds the OVP threshold. Does not reset until  
it is read.  
4
RESERVED  
RESERVED  
RESERVED  
STATUS  
R
R
R
R
0b  
Reserved  
Reserved  
Reserved  
3
0b  
2
0b  
1-0  
11b  
Operating status  
00b = Boost  
01b = Buck  
10b = Buck-Boost  
11b = Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
7.6.8 Register Summary  
The 7-12 summarizes the default settings of the registers in the TPS55288.  
7-12. Default Settings of Registers  
Register Address  
Register Name  
VREF_LSB  
VREF_MSB  
IOUT_LIMIT  
VOUT_SR  
VOUT_FS  
CDC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Default Values  
11010010  
00000000  
11100100  
00000001  
00000011  
11100000  
00100000  
00000011  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
MODE  
STATUS  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS55288 can operate over a wide range of 2.7-V to 36-V input voltage and output 0.8 V to 22 V. It can  
transition among buck mode, buck-boost mode, and boost mode smoothly according to the input voltage and the  
setting output voltage. The TPS55288 operates in buck mode when the input voltage is greater than the output  
voltage and in boost mode when the input voltage is less than the output voltage. When the input voltage is  
close to the output voltage, the TPS55288 operates in one-cycle buck and one-cycle boost mode alternately.  
The switching frequency is set by an external resistor. To reduce the switching power loss in high power  
conditions, it is recommended to set the switching frequency below 500 kHz. If a system requires higher  
switching frequency above 500 kHz, it is recommended to set the lower switch current limit for better thermal  
performance.  
8.2 Typical Application  
The TPS55288 provides a small size solution for USB PD power supply application with the input voltage  
ranging from 9 V to 20 V.  
L1  
4.7µH  
C5  
C4  
0.1µF  
0.1µF  
SW1  
BOOT2  
DR1H  
VIN  
DR1L BOOT1  
SW2  
VIN = 9V to 20V  
VOUT = 5V to 20V  
VOUT  
R1  
10mΩ  
C1  
C2  
4 x 10µF  
VCC  
C3  
4.7µF  
4 x 22µF  
PGND  
AGND  
ISP  
SCL  
SDA  
ON  
EN/UVLO  
MODE  
TPS55288  
ISN  
OFF  
FB/INT  
COMP  
CDC  
R6  
20kΩ  
DITH/SYNC  
FSW  
C6  
R3  
C7  
R4  
C8  
0.01µF  
100kΩ  
ILIM  
R5  
R2  
49.9kΩ  
20kΩ  
8-1. USB PD Power Supply With 9-V to 20-V Input Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
8.2.1 Design Requirements  
The design parameters are listed in 8-1:  
8-1. Design Parameters  
PARAMETERS  
Input voltage  
VALUES  
9 V to 20 V  
5 V to 20 V  
5 A  
Output voltage  
Output current limit  
Output voltage ripple  
Operating mode at light load  
±50 mV  
PFM  
8.2.2 USB PD Power Supply Detailed Design Procedure  
8.2.2.1 Switching Frequency  
The switching frequency of the TPS55288 is set by a resistor at the FSW pin. Use Equation 3 to calculate the  
resistance for the desired frequency. To reduce the switching power loss with such a high current application, a  
1% standard resistor of 49.9 kis selected for 400-kHz switching frequency for this application.  
8.2.2.2 Output Voltage Setting  
The TPS55288 has I2C interface to set the internal reference voltage. A microcontroller can easily set the  
desired output voltage by writing the proper data into the reference voltage registers through I2C bus.  
8.2.2.3 Inductor Selection  
Since the selection of the inductor affects steady state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications: inductance, saturation current, and DC resistance.  
The TPS55288 is designed to work with inductor values between 1 µH and 10 µH. The inductor selection is  
based on consideration of both buck and boost modes of operation.  
For buck mode, the inductor selection is based on limiting the peak-to-peak current ripple to the maximum  
inductor current at the maximum input voltage. In CCM, Equation 9 shows the relationship between the  
inductance and the inductor ripple current.  
k
o
VIN(MAX)-VOUT ×VOUT  
L=  
IL(P-P)×fSW×VIN MAX  
:
;
(9)  
where  
VIN(MAX) is the maximum input voltage  
VOUT is the output voltage  
• ΔIL(P-P) is the peak to peak ripple current of the inductor  
fSW is the switching frequency  
For a certain inductor, the inductor ripple current achieves maximum value when VOUT equals half of the  
maximum input voltage. Choosing higher inductance gets smaller inductor current ripple while smaller  
inductance gets larger inductor current ripple.  
For boost mode, the inductor selection is based on limiting the peak-to-peak current ripple to the maximum  
inductor current at the maximum output voltage. In CCM, Equation 10 shows the relationship between the  
inductance and the inductor ripple current.  
k
VIN× VOUT(MAX)-VIN  
o
L=  
IL(P-P)×fSW×VOUT(MAX)  
(10)  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
where  
VIN is the input voltage  
VOUT(MAX) is the maximum output voltage  
• ΔIL(P-P) is the peak to peak ripple current of the inductor  
fSW is the switching frequency  
For a certain inductor, the inductor ripple current achieves maximum value when VIN equals to the half of the  
maximum output voltage. Choosing higher inductance gets smaller inductor current ripple while smaller  
inductance gets larger inductor current ripple.  
For this application example, a 4.7-µH inductor is selected, which produces approximate maximum inductor  
current ripple of 50% of the highest average inductor current in buck mode and 50% of the highest average  
inductor current in boost mode.  
In buck mode, the inductor DC current equals to the output current. In boost mode, the inductor DC current can  
be calculated with Equation 11.  
VOUT×IOUT  
IL(DC)  
=
VIN×  
(11)  
where  
VOUT is the output voltage  
IOUT is the output current  
VIN is the input voltage  
ηis the power conversion efficiency  
For a given maximum output current of the buck-boost converter TPS55288, the maximum inductor DC current  
happens at the minimum input voltage and maximum output voltage. Set the inductor current limit of the  
TPS55288 higher than the calculated maximum inductor DC current to make sure the TPS55288 has the desired  
output current capability.  
In boost mode, the inductor ripple current is calculated with Equation 12.  
:
VIN× VOUT-VIN  
;
IL(P-P)  
=
L×fSW×VOUT  
(12)  
where  
• ΔIL(P-P) is the inductor ripple current  
L is the inductor value  
fSW is the switching frequency  
VOUT is the output voltage  
VIN is the input voltage  
Therefore, the inductor peak current is calculated with Equation 13.  
IL(P-P)  
IL(P) = IL(DC)  
+
2
(13)  
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI, but in the same way, load transient response time is increased. The  
selected inductor must have higher saturation current than the calculated peak current.  
The conversion efficiency is dependent on the resistance of its current path. The switching loss associated with  
the switching MOSFETs, and the inductor core loss. Therefore, the overall efficiency is affected by the inductor  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS55288  
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
DC resistance (DCR), equivalent series resistance (ESR) at the switching frequency, and the core loss. 8-2  
lists recommended inductors for the TPS55288. In this application example, the Coilcraft inductor XAL1010-472  
is selected for its small size, high saturation current, and small DCR.  
8-2. Recommended Inductors  
DCR  
(MAXIMUM)  
(mΩ)  
SATURATION  
CURRENT / HEAT  
RATING CURRENT (A)  
PART NUMBER  
L (µH)  
SIZE (L x W x H mm)  
(1)VENDOR  
XAL1010-472ME  
IHLP5050EZER4R7  
125CDMCCDS-4R7MC  
4.7  
4.7  
4.7  
10  
10.1  
10  
25.4/17.5  
17.8/15.3  
22/14  
11.3 × 10 × 10  
13.5 × 12.9 × 5  
13.5 × 12.6 × 5  
Coilcraft  
Vishay  
Sumida  
(1) See the Third-party Products disclaimer.  
8.2.2.4 Input Capacitor  
In buck mode, the input capacitor supplies high ripple current. The RMS current in the input capacitors is given  
by Equation 14.  
:
VOUT× VIN-VOUT  
;
¨
ICIN RMS; = I  
:
×
OUT  
VIN×VIN  
(14)  
where  
ICIN(RMS) is the RMS current through the input capacitor  
IOUT is the output current  
The maximum RMS current occurs at the output voltage is half of the input voltage, which gives ICIN(RMS) = IOUT  
/
2. Ceramic capacitors are recommended for their low ESR and high ripple current capability. A total of 20 µF  
effective capacitance is a good starting point for this application.  
8.2.2.5 Output Capacitor  
In boost mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is  
given by Equation 15, where the minimum input voltage and the maximum output voltage correspond to the  
maximum capacitor current.  
VOUT  
¨
ICOUT RMS; = I  
:
×
-1  
OUT  
VIN  
(15)  
where  
ICOUT(RMS) is the RMS current through the output capacitor  
IOUT is the output current  
In this example, the maximum output ripple RMS current is 5.5 A.  
The ESR of the output capacitor causes an output voltage ripple given by Equation 16 in boost mode.  
IOUT×VOUT  
VRIPPLE(ESR)  
=
×RCOUT  
VIN  
(16)  
where  
RCOUT is the ESR of the output capacitance  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
The capacitance also causes a capacitive output voltage ripple given by Equation 17 in boost mode. When input  
voltage reaches the minimum value and the output voltage reaches the maximum value, there is the largest  
output voltage ripple caused by the capacitance.  
VIN  
VOUT  
l
IOUT× 1-  
p
VRIPPLE(CAP)  
=
COUT×fSW  
(17)  
Typically, a combination of ceramic capacitors and bulk electrolytic capacitors is needed to provide low ESR,  
high ripple current, and small output voltage ripple. From the required output voltage ripple, use Equation 16 and  
Equation 17 to calculate the minimum required effective capacitance of the COUT  
.
8.2.2.6 Output Current Limit  
The output current limit is implemented by putting a current sense resistor between the ISP and ISN pins along  
with setting a limit voltage between the ISP pin and the ISN pin through register 02h. The maximum value of the  
limit voltage between the ISP and ISN pins is 63.5 mV. The default limit voltage is 50 mV. The current sense  
resistor between the ISP and ISN pins should be selected to ensure that the output current limit is set high  
enough for output. The output current limit setting resistor is given by Equation 18.  
VSNS  
RSNS  
=
IOUT_LIMIT  
(18)  
where  
VSNS is the current limit setting voltage between the ISP and ISN pins  
IOUT_LIMIT is the desired output current limit  
Because the power dissipation is large, make sure the current sense resistor has enough power dissipation  
capability with large package.  
8.2.2.7 Loop Stability  
The TPS55288 uses average current control scheme. The inner current loop uses internal compensation and  
requires the inductor value must be larger than 1.2/fSW. The outer voltage loop requires an external  
compensation. The COMP pin is the output of the internal voltage error amplifier. An external compensation  
network comprised of resistor and ceramic capacitors is connected to the COMP pin.  
The TPS55288 operates in buck mode or boost mode. Therefore, both buck and boost operating modes require  
loop compensations. The restrictive one of both compensations is selected as the overall compensation from a  
loop stability point of view. Typically for a converter designed either work in buck mode or boost mode, the boost  
mode compensation design is more restrictive due to the presence of a right half plane zero (RHPZ).  
The power stage in boost mode can be modeled by Equation 19.  
s
s
l
p l  
× 1-  
p
1+  
:
RLOAD× 1-D  
;
2N×fESRZ  
2N×fRHPZ  
GPS(s) =  
×
s
2×RSENSE  
1+  
2N×fP  
(19)  
where  
RLOAD is the output load resistance  
D is the switching duty cycle in boost mode  
RSENSE is the equivalent internal current sense resistor, which is 0.055 Ω  
The power stage has two zeros and one pole generated by the output capacitor and load resistance. Use 方程式  
20 to Equation 22 to calculate them.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS55288  
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
2
fP =  
2N×RLOAD×COUT  
(20)  
(21)  
(22)  
1
fESRZ  
=
2N×RCOUT×COUT  
2
:
RLOAD× 1-D  
;
fRHPZ  
=
2N×L  
The internal transconductance amplifier together with the compensation network at the COMP pin constitutes the  
control portion of the loop. The transfer function of the control portion is shown by Equation 23.  
s
l
p
1+  
GEA×REA×VREF  
VOUT  
2N×fCOMZ  
GC(s) =  
×
s
s
l
p
l
× 1 +  
p
1+  
2N×fCOMP1  
2N×fCOMP2  
(23)  
where  
GEA is the transconductance of the error amplifier  
REA is the output resistance of the error amplifier  
VREF is the reference voltage input to the error amplifier  
VOUT is the output voltage  
fCOMP1 and fCOMP2 are the poles frequency of the compensation network  
fCOMZ is the zeros frequency of the compensation network  
The total open-loop gain is the product of GPS(s) and GC(s). The next step is to choose the loop crossover  
frequency, fC, at which the total open-loop gain is 1, namely 0 dB. The higher in frequency that the loop gain  
stays above 0 dB before crossing over, the faster the loop response. It is generally accepted that the loop gain  
cross over 0 dB at the frequency no higher than the lower of either 1/10 of the switching frequency, fSW or 1/5 of  
the RHPZ frequency, fRHPZ  
.
Then, set the value of RC, CC and CP by Equation 24 to Equation 26.  
2N×VOUT×R  
×COUT×fC  
SENSE  
RC =  
: ;  
1-D ×VREF×GEA  
(24)  
where  
fC is the selected crossover frequency  
RLOAD×COUT  
CC =  
2×RC  
(25)  
(26)  
RCOUT×COUT  
CP=  
RC  
If the calculated CP is less than 10 pF, it can be left open.  
Designing the loop for greater than 45° of phase margin and greater than 10-dB gain margin eliminates output  
voltage ringing during the line and load transient.  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
8.2.3 Application Curves  
8-2. Switching Waveforms in VIN = 12 V, VOUT = 5  
8-3. Switching Waveforms in VIN = 12 V, VOUT = 5  
V, IO = 5 A, FPWM  
V, IO = 0 A, PFM  
8-4. Switching Waveforms in VIN = 12 V, VOUT  
=
8-5. Switching Waveforms in VIN = 12 V, VOUT  
=
12 V, IO = 5 A, FPWM  
12 V, IO = 0 A, PFM  
8-7. Switching Waveforms in VIN = 12 V, VOUT  
=
8-6. Switching Waveforms in VIN = 12 V, VOUT  
=
20 V, IO = 0 A, PFM  
20 V, IO = 5 A, FPWM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
8-9. Shutdown Waveforms in VIN = 12 V, VOUT = 5  
8-8. Start-up Waveforms in VIN = 12 V, VOUT = 5  
V, IOUT = 5 A, FPWM  
V, IO = 5 A, FPWM  
8-10. Line Transient Waveforms in VIN = 9 V to  
20 V, VOUT = 12 V, IO = 5 A with 200-μs Slew Rate,  
FPWM  
8-11. Load Transient Waveforms in VIN = 12 V,  
V
OUT = 5 V, IO = 2.5 A to 5 A with 20-μs Slew Rate,  
FPWM  
8-12. 3-A Output Current Limit Waveforms in VIN = 12 V, VOUT = 5 V, RLOAD = 1.2 Ω, FPWM  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS55288  
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.7 V to 36 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is an aluminum  
electrolytic capacitor with a value of 100 μF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS55288  
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If layout is not carefully done, the regulator can suffer from instability and  
noise problems. To maximize efficiency, switching rise time and fall time are very fast. To prevent radiation of  
high-frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential.  
Minimize the length and area of all traces connected to the SW1 and SW2 pins, and always use a ground plane  
under the switching regulator to minimize interplane coupling. The input capacitor needs to be close to the VIN  
pin and the PGND to reduce the input supply current ripple.  
The most critical current path for buck converter portion is from the switching FET at the buck side, through the  
rectifier FET at the buck side to the PGND, then the input capacitors, and back to the input of the switching FET.  
This high current path contains nanosecond rise time and fall time, and should be kept as short as possible.  
Therefore, the input capacitor for power stage must be close to the input of the switching FET and the PGND  
terminal of the rectifier FET.  
The most critical current path for boost converter portion is from the switching FET at the boost side, through the  
rectifier FET at boost side, then the output capacitors, and back to ground of the switching FET. This high current  
path contains nanosecond rise time and fall time, and should be kept as short as possible. Therefore, the output  
capacitor needs not only to be close to the VOUT pin, but also to the PGND pin to reduce the overshoot at the  
SW2 pin and the VOUT pin.  
The traces from the output current sensing resistor to the ISP pin and the ISN pin must be in parallel and close  
to each other to avoid noise coupling.  
The PGND plane and the AGND plane are connected at the terminal of the capacitor at the VCC pin. Thus the  
noise caused by the MOSFET driver and parasitic inductance does not interfere with the AGND and internal  
control circuit.  
To get good thermal performance, it is recommended to use thermal vias beneath the TPS55288 connecting the  
PGND pin to the PGND plane, and the VOUT pin to a large VOUT area separately.  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
10.2 Layout Example  
trace on bottom layer  
AGND plane on an inner layer  
The first inner layer is the PGND plane  
VOUT  
AGND plane connects to PGND plane at the terminal of the capacitor at the VCC pin  
AGND  
PGND  
18 17 16 15 14 13  
19  
12  
11  
20  
26  
25  
24  
21  
22  
10  
9
23  
1
8
VIN  
2
3
4
5
6
7
NMOSFET  
PGND  
AGND  
10-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS55288  
 
TPS55288  
www.ti.com.cn  
ZHCSKY4B NOVEMBER 2018 REVISED DECEMBER 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS55288  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS55288RPMR  
ACTIVE  
VQFN-HR  
RPM  
26  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 150  
55288  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS55288RPMR  
VQFN-  
HR  
RPM  
26  
3000  
330.0  
12.4  
3.8  
4.3  
1.5  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN-HR RPM 26  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TPS55288RPMR  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RPM 26  
3.5 x 4, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
VERY THIN QUAD FLATPACK-HotRod  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226451/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPM0026A  
A
4.1  
3.9  
B
3.6  
3.4  
PIN 1 INDEX AREA  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5X 0.25±0.05  
2X 0.35±0.05  
0.1  
C A B  
0.1  
C A B  
0.05  
C
0.05  
C
5X  
6X 0.4±0.1  
0.425±0.1  
2X (0.150 X 0.150)  
TYP  
(0.1) TYP  
6X 0.525±0.1  
7
2X 1.4875  
13  
6X 0.25±0.05  
0.1  
C A B  
2X 0.225±0.05  
2X 1  
0.05  
C
2X 0.5  
PKG  
6X 0.25±0.05  
3X  
0.1  
C A B  
1.425±0.1  
24  
25  
26  
0.05  
C
2X 0.225±0.05  
2X 1.4875  
19  
1
2X (0.175 X 0.150)  
TYP  
2X 0.475±0.1  
PKG  
2X 0.25±0.05  
2X 0.4±0.05  
0.1  
C
A
B
3X 0.375±0.05  
0.05  
C
0.1  
C A B  
0.05  
C
4224618/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPM0026A  
3X (0.375)  
PKG  
2X (0.4)  
1
2X (0.25)  
2X (0.675)  
19  
2X (1.4875)  
2X (0.225)  
(R0.05) TYP  
(1.6125)  
(1.65)  
3X (1.425)  
PKG  
24  
25  
26  
2X (0.5)  
2X (1)  
(1.6375)  
6X (0.25)  
6X (0.25)  
13  
2X (1.4875)  
2X (0.225)  
7
6X (0.725)  
6X (0.6)  
5X (0.625)  
5X (0.25)  
2X (0.35)  
(3.675)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.05 MAX  
ALL AROUND  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4224618/A 10/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPM0026A  
3X (0.375)  
PKG  
2X (0.4)  
1
2X (0.25)  
2X (0.675)  
19  
2X (1.4875)  
2X (0.225)  
(R0.05) TYP  
(1.6125)  
(1.65)  
3X (1.425)  
PKG  
24  
25  
26  
2X (0.5)  
2X (1)  
(1.6375)  
6X (0.25)  
6X (0.25)  
13  
2X (1.4875)  
2X (0.225)  
7
6X (0.725)  
6X (0.6)  
5X (0.625)  
5X (0.25)  
2X (0.35)  
(3.675)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 20X  
4224618/A 10/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS55289

36V、8A 完全集成式降压/升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS552892

36V 8A 完全集成式降压/升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS552892RYQR

36V 8A 完全集成式降压/升压转换器 | RYQ | 21 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55289RYQR

36V、8A 完全集成式降压/升压转换器 | RYQ | 21 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55330

Integrated 5-A 24-V Boost/SEPIC/Flyback DC-DC Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55330RTE

IC SWITCHING REGULATOR, Switching Regulator or Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55330RTER

Integrated 5-A 24-V Boost/SEPIC/Flyback DC-DC Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55330RTET

Integrated 5-A 24-V Boost/SEPIC/Flyback DC-DC Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55332-Q1

2.2-MHz, 60-V OUTPUT STEP UP DC/DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55332QPWPRQ1

2.2-MHz, 60-V OUTPUT STEP UP DC/DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55340

Integrated 5-A 40-V Wide Input Range Boost/SEPIC/Flyback DC-DC Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS55340-EP

TPS55340-EP Integrated 5-A, 40-V Wide Input Range Boost/SEPIC/Flyback DC-DC Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI