TPS560200-Q1 [TI]

具有高级 Eco-Mode™ 的 4.5V 至 17V 输入、500mA 同步降压转换器;
TPS560200-Q1
型号: TPS560200-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有高级 Eco-Mode™ 的 4.5V 至 17V 输入、500mA 同步降压转换器

转换器
文件: 总23页 (文件大小:1367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
具有高级 Eco-mode™ TPS560200-Q1 4.5V 17V 输入、500mA 同  
步降压转换器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准  
TPS560200-Q1 是一款集成 MOSFET 17V、  
500mA、低 Iq 自适应导通时间 D-CAP2 模式同步单片  
降压转换器,采用简单易用的 8 引脚 MSOP 封装。  
温度范围:等级 1-40°C 125°C  
人体模型 (HBM) 静电放电 (ESD) 分类等  
级:H2  
TPS560200-Q1 有助于系统设计人员通过具备成本效  
益、所用组件较少并且待机电流较低的解决方案完成各  
种终端设备的电源总线调节器集。器件主控制回路采用  
D-CAP2 模式控制,无需外部补偿元件即可实现快速瞬  
态响应。自适应导通时间控制支持器件在高负载条件下  
PWM 模式与轻负载条件下的高级 Eco-mode 工作  
模式之间实现无缝切换。  
带电器件模型 (CDM) 静电放电 (ESD) 分类等  
级:C4B  
集成单片 0.95Ω 高侧和 0.33Ω 低侧 MOSFET  
500mA 持续输出电流  
输出电压范围:0.8V 6.5V  
0.8V 基准电压,温度范围内的精度为 ±1.3%  
高级自动跳跃 Eco-mode™用于在轻负载时实现高  
效率  
TPS560200-Q1 的专有电路还可使其适应低等效串联  
电阻 (ESR) 输出电容(如导电性聚合物钽固体电解电  
(POSCAP) 和导电性聚合物铝电解电容 (SP-  
CAP))以及超低 ESR 陶瓷电容。该器件由 4.5V 至  
17V 范围内的输入电压供电。输出电压可在 0.8 V 至  
6.5V 范围内进行编程。该器件还 具有 2ms 固定软启  
动时间。该器件采用 8 引脚 MSOP 封装。  
D-CAP2™模式启用快速瞬态响应  
无需外部补偿  
600kHz 开关频率  
2ms 内部软启动  
安全启动至预偏置 VOUT  
热关断  
-40°C 125°C 的工作结温范围  
采用 8 引脚微型小外形尺寸封装 (MSOP)  
器件信息(1)  
器件型号  
封装  
VSSOP (8)  
封装尺寸(标称值)  
TPS560200-Q1  
3.00mm x 3.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
电动汽车 (EV) 充电站  
信息娱乐系统  
简化原理图  
VOUT  
Lo  
VIN  
VIN  
EN  
PH  
Cin  
Co  
R1  
R2  
VSENSE  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCW4  
 
 
 
 
 
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes.......................................... 9  
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application ................................................. 10  
Power Supply Recommendations...................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
8
9
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 14  
11 器件和文档支持 ..................................................... 15  
11.1 接收文档更新通知 ................................................. 15  
11.2 社区资源................................................................ 15  
11.3 ....................................................................... 15  
11.4 静电放电警告......................................................... 15  
11.5 Glossary................................................................ 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (May 2016) to Revision B  
Page  
仅限编辑更新;无技术性更改 ................................................................................................................................................ 1  
Changes from Original (April 2016) to Revision A  
Page  
器件状态从:预览更改为:生产 ............................................................................................................................................ 1  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS560200-Q1  
www.ti.com.cn  
ZHCSF66B APRIL 2016REVISED MAY 2019  
5 Pin Configuration and Functions  
DGK Package  
8- Pin VSSOP  
(Top View)  
GND  
PH  
VIN  
NC  
5
8
7
6
1
2
3
4
EN  
GND VSENSE NC  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
1
I
I
Enable pin. Float to enable  
Return for control circuitry and low-side power MOSFET  
GND  
VSENSE  
NC  
2, 8  
3
Converter feedback input. Connect to output voltage with feedback resistor divider  
No connection inside, can be connected to any node or can be floating  
Supplies the control circuitry of the power converter  
The switch node  
4, 5  
6
I
VIN  
PH  
7
O
Copyright © 2016–2019, Texas Instruments Incorporated  
3
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.6  
–2  
MAX  
19  
UNIT  
V
VIN  
Input voltage  
EN  
7
V
VSENSE  
3
V
PH  
19  
V
Output voltage  
PH 10-ns transient  
21  
V
EN  
PH  
PH  
±100  
µA  
A
Source current  
Sink current  
Current limit  
Current limit  
A
Operating junction temperature  
Storage temperature, Tstg  
–40  
–65  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all –2000, 2000 pins(1)  
Charged-device model (CDM), per AEC Q100-011, all pins  
V(ES Electrostatic  
V
discharge  
D)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
17  
UNIT  
V
VI  
Input voltage range  
4.5  
TJ  
Operating junction temperature  
–40  
125  
°C  
6.4 Thermal Information  
TPS560200-Q1  
DGK (VSSOP)  
8 Pins  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
184.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
76.8  
106.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
14.4  
ψJB  
104.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS560200-Q1  
www.ti.com.cn  
ZHCSF66B APRIL 2016REVISED MAY 2019  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 4.5 V to 17 V (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE (VIN PIN)  
VIN Operating input voltage  
VIN Internal UVLO wakeup  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4.5  
17  
V
V
VIN Rising  
4.35  
4.15  
3.7  
4.5  
VIN Internal UVLO shutdown  
VIN Shutdown supply current  
VIN Operating – non switching supply current  
ENABLE (EN PIN)  
VIN Fallling  
3.9  
2.0  
35  
V
EN = 0 V, VIN = 12 V  
VSENSE = 850 mV, VIN = 12 V  
9
µA  
µA  
60  
95  
Rising  
1.16  
1.13  
2
1.29  
V
V
Enable threshold  
Falling  
1.05  
Internal Soft-Start  
VSENSE ramps from 0 V to 0.8 V  
ms  
OUTPUT VOLTAGE  
25°C, VIN = 12 V, VOUT = 1.05 V, IOUT = 5  
mA, Pulse-Skipping  
0.796  
0.792  
0.804  
0.800  
0.812  
0.808  
V
V
25°C, VIN = 12 V, VOUT = 1.05 V, IOUT = 100  
mA, Continuous current mode  
Voltage reference  
VIN = 12 V, VOUT = 1.05 V, IOUT = 100 mA,  
Continuous current mode  
0.789  
0.800  
0.811  
V
MOSFET  
High-side switch resistance(1)  
Low-side switch resistance(1)  
CURRENT LIMIT  
VIN = 12 V  
VIN = 12 V  
0.50  
0.20  
0.95  
0.33  
1.50  
0.55  
Ω
Ω
Low-side switch sourcing current limit  
THERMAL SHUTDOWN  
Thermal shutdown  
LOUT = 10 µH, Valley current, VOUT = 1.05 V  
570  
670  
795  
mA  
160  
10  
°C  
°C  
Thermal shutdown hysteresis  
ON-TIME TIMER CONTROL  
On time  
VIN = 12 V  
130  
56  
165  
250  
200  
400  
ns  
ns  
Minimum off time  
25°C, VSENSE = 0.5 V  
OUTPUT UNDERVOLTAGE PROTECTION  
Output UVP threshold  
Hiccup time  
Falling  
63  
15  
69 %VREF  
ms  
(1) Not production tested  
版权 © 2016–2019, Texas Instruments Incorporated  
5
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 12 V, TA = 25°C (unless otherwise noted).  
100  
80  
60  
40  
20  
0
6
5
4
3
2
1
0
EN = 0 V  
œ50  
0
50  
100  
150  
œ50  
0
50  
100  
150  
C001  
C002  
TJ Junction Temperature (°C)  
TJ Junction Temperature (°C)  
1. Supply Current vs Junction Temperature  
2. Shutdown Current vs Junction Temperature  
40  
30  
20  
10  
0
700  
675  
650  
625  
600  
575  
550  
525  
500  
VOUT=1.05V  
IOUT = 500mA  
VOUT=1.05V  
VOUT=1.8V  
VOUT=3.3V  
-10  
0
2
4
6
8
10  
4
6
8
10  
12  
14  
16  
18  
EN Input Voltage (V)  
VIN - Input Voltage (V)  
D000  
D001  
3. EN Input Current vs EN Input Voltage  
4. Switching Frequency vs Input Voltage  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
800  
700  
600  
500  
400  
300  
200  
100  
0
IO = 100 mA  
Vout=1.05  
Vout=1.8  
Vout=3.3  
œ50  
0
50  
100  
150  
C006  
TJ Junction Temperature (°C)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
IOUT - Output Current (A)  
D002  
6. VSENSE Voltage vs Junction Temperature  
版权 © 2016–2019, Texas Instruments Incorporated  
5. Switching Frequency vs Output Current  
6
TPS560200-Q1  
www.ti.com.cn  
ZHCSF66B APRIL 2016REVISED MAY 2019  
7 Detailed Description  
7.1 Overview  
The TPS560200-Q1 is a 500-mA synchronous step-down (buck) converter with two integrated N-channel  
MOSFETs. It operates using D-CAP2 mode control. The fast transient response of D-CAP2 control reduces the  
output capacitance required to meet a specific level of performance. Proprietary internal circuitry allows the use  
of low-ESR output capacitors including ceramic and special polymer types.  
7.2 Functional Block Diagram  
VIN  
VREF  
HS  
Drive  
VSS  
VSENSE  
VREF  
Soft  
Start  
SSDONE  
START  
EN  
VIN  
XCON  
PH  
UVLO  
VREF  
Control  
Logic  
VIN  
LS  
Drive  
TON  
One-Shot  
PGND  
GND  
AGND  
PH  
Thermal  
Shutdown  
ZCD  
ZCD  
Bandgap  
Reference  
LS  
OCP  
VREF  
VREF  
PGND  
BGOK  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 PWM Operation  
The main control loop of the TPS560200-Q1 is an adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2 mode control. D-CAP2 mode control combines constant on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one shot is set by the converter input voltage, VIN, and the output voltage, VOUT, to  
maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The  
one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the  
reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need  
for ESR induced output ripple from D-CAP2 mode control.  
版权 © 2016–2019, Texas Instruments Incorporated  
7
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 PWM Frequency and Adaptive On-Time Control  
TPS560200-Q1 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator.  
The TPS560200-Q1 runs with a pseudo-constant frequency of 600 kHz by using the input voltage and output  
voltage to set the on-time, one-shot timer. The on-time is inversely proportional to the input voltage and  
proportional to the output voltage; therefore, when the duty ratio is VOUT/VIN, the frequency is constant.  
7.3.3 Advanced Auto-Skip Eco-Mode Control  
The TPS560200-Q1 is designed with advanced auto-skip Eco-Mode to increase higher light-load efficiency. As  
the output current decreases from heavy-load condition, the inductor current is also reduced. If the output current  
is reduced enough, the inductor current ripple valley reaches the zero level, which is the boundary between  
continuous conduction and discontinuous conduction modes. The rectifying low-side MOSFET is turned off when  
its zero inductor current is detected. As the load current further decreases the converter run into discontinuous  
conduction mode. The on-time is kept approximately the same as is in continuous conduction mode. The off-time  
increases as it takes more time to discharge the output capacitor to the level of the reference voltage with  
smaller load current. The transition point to the light load operation IOUT(LL) current can be calculated in 公式 1.  
V -V  
IN OUT  
×V  
)
OUT  
(
1
IOUT(LL)  
=
×
2×LOUT×fsw  
V
IN  
(1)  
7.3.4 Soft-Start and Prebiased Soft-Start  
The TPS560200-Q1 has an internal 2-ms soft-start. When the EN pin becomes high, internal soft-start function  
begins ramping up the reference voltage to the PWM comparator.  
The TPS560200-Q1 contains a unique circuit to prevent current from being pulled from the output during start-up  
if the output is prebiased. When the soft-start commands a voltage higher than the prebias level (internal soft-  
start becomes greater than feedback voltage VVSENSE), the controller slowly activates synchronous rectification by  
starting the first low-side FET gate driver pulses with a narrow on-time. It then increments that on-time on a  
cycle-by-cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter.  
This scheme prevents the initial sinking of the prebias output, and ensure that the out voltage (VOUT) starts and  
ramps up smoothly into regulation and the control loop is given time to transition from prebiased start-up to  
normal mode operation.  
7.3.5 Current Protection  
The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The  
switch current is monitored by measuring the low-side FET switch voltage between the PH pin and GND. This  
voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature  
compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current Iout. The TPS560200-Q1  
constantly monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-  
side on-time. If the measured voltage is above the voltage proportional to the current limit, an internal counter is  
incremented per each switching cycle and the converter maintains the low-side switch on until the measured  
voltage is below the voltage corresponding to the current limit at which time the switching cycle is terminated and  
a new switching cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current  
is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. The peak current is the average  
load current plus one half of the peak-to-peak inductor current. The valley current is the average load current  
minus one half of the peak-to-peak inductor current. Because the valley current is used to detect the overcurrent  
threshold, the load current is higher than the overcurrent threshold. Also, when the current is being limited, the  
output voltage tends to fall as the demanded load current may be higher than the current available from the  
converter. This protection is nonlatching. When the VSENSE voltage becomes lower than 63% of the target  
voltage, the UVP comparator detects it. After 7 µs detecting the UVP voltage, device shuts down and re-starts  
after hiccup time.  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
8
版权 © 2016–2019, Texas Instruments Incorporated  
 
TPS560200-Q1  
www.ti.com.cn  
ZHCSF66B APRIL 2016REVISED MAY 2019  
Feature Description (接下页)  
7.3.6 Thermal Shutdown  
TPS560200-Q1 monitors the temperature of itself. If the temperature exceeds the threshold value  
(typically 160°C), the device is shut off. This is nonlatch protection.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS560200-Q1 can operate in its normal switching modes. Normal continuous conduction mode (CCM) occurs  
when the minimum switch current is above 0 A. In CCM, the TPS560200-Q1 operates at a quasi-fixed frequency  
of 600 kHz.  
7.4.2 Eco-Mode Operation  
When the TPS560200-Q1 is in the normal CCM operating mode and the switch current falls to 0 A, the  
TPS560200-Q1 begins operating in pulse-skipping Eco-Mode. Each switching cycle is followed by a period of  
energy-saving sleep time. The sleep time ends when the VFB voltage falls below the Eco-Mode threshold  
voltage. As the output current decreases the perceived time between switching pulses increases.  
7.4.3 Standby Operation  
When the TPS560200-Q1 is operating in either normal CCM or Eco-Mode, it may be placed in standby by  
asserting the EN pin low.  
版权 © 2016–2019, Texas Instruments Incorporated  
9
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS560200-Q1 is used as a step-down converter which converts a voltage of 4.5 V to 17 V to a lower  
voltage. WEBENCH® software is available to aid in the design and analysis of circuits.  
8.2 Typical Application  
U1  
TPS560200  
L1 10µH  
VIN 4.5-17V  
VOUT 1.05V, 0.5 A  
6
1
3
7
VIN  
PH  
C5  
R1  
C1  
C2  
C3  
C4  
open  
6.19k  
10µF  
10µF  
10µF  
0.1µF  
EN  
R2  
20.0k  
2,8  
VSENSE  
GND  
Copyright © 2016, Texas Instruments Incorporated  
7. Typical Application Schematic  
8.2.1 Design Requirements  
For this design example, refer to the application parameters shown in 1.  
1. Design Parameters  
PARAMETER  
Input voltage range  
VALUES  
4.5 V to 17 V  
1.05 V  
Output voltage  
Output current  
500 mA  
Output voltage ripple  
30 mV/pp  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends using 1%  
tolerance or better divider resistors. Start by using 公式 2 to calculate VOUT  
.
To improve efficiency at light loads, consider using larger value resistors, high resistance is more susceptible to  
noise, and the voltage errors from the VSENSE input current are more noticeable.  
R1´0.8 V  
R2 =  
VOUT -0.8V  
(2)  
8.2.2.2 Output Filter Selection  
The output filter used with the TPS560200-Q1 is an LC circuit. This LC filter has double pole at:  
1
F
P
=
2p L  
x C  
OUT  
OUT  
(3)  
10  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
TPS560200-Q1  
www.ti.com.cn  
ZHCSF66B APRIL 2016REVISED MAY 2019  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the TPS560200-Q1. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain  
rolls off at a –40 dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that  
reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole  
of 公式 3 is located below the high frequency zero but close enough that the phase boost provided by the high  
frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values  
recommended in 2.  
2. Recommended Component Values  
L1  
(µH)  
Output Voltage  
(V)  
R1  
(kΩ)  
R2  
(kΩ)  
C5  
(pF)  
C3 + C4  
(µF)  
MIN  
TYP  
10  
10  
10  
10  
10  
10  
10  
10  
MAX  
1.0  
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
4.99  
6.19  
10.0  
17.4  
24.9  
42.2  
61.9  
105  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
10 + 10  
10 + 10  
10 + 10  
10 + 10  
10 + 10  
10 + 10  
10 + 10  
10 + 10  
optional  
optional  
optional  
optional  
Because the DC gain is dependent on the output voltage, the required inductor value increases as the output  
voltage increases. Additional phase boost can be achieved by adding a feed-forward capacitor (C5) in parallel  
with R1. The feed-forward capacitor is most effective for output voltages at or above 1.8 V.  
The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using 公式 4, 公式 5, and  
公式 6. The inductor saturation current rating must be greater than the calculated peak current and the RMS or  
heating current rating must be greater than the calculated RMS current. Use 600 kHz for fSW  
.
Use 600 kHz for fSW. Make sure the chosen inductor is rated for the peak current of 公式 5 and the RMS current  
of 公式 6.  
V
- V  
V
IN(max)  
OUT  
OUT  
I
=
x
LPP  
V
L
x
fsw  
IN(max)  
OUT  
(4)  
(5)  
ILPP  
I
= I  
OUT  
+
LPEAK  
2
1
2
2
I
=
I
+
I
LOUT(RMS)  
OUT  
LPP  
12  
(6)  
For this design example, the calculated peak current is 0.582 A and the calculated RMS current is 0.502 A. The  
inductor used is a Würth 744777910 with a peak current rating of 2.6 A and an RMS current rating of 2 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS560200-Q1 is intended for  
use with ceramic or other low-ESR capacitors. The recommended values are given in 2. Use 公式 7 to  
determine the required RMS current rating for the output capacitor.  
V
x (V - V  
)
OUT  
IN  
OUT  
I
=
COUT(RMS)  
12 x V x L  
x fsw  
IN  
OUT  
(7)  
For this design two MuRata GRM32DR61E106KA12L 10-µF output capacitors are used. The typical ESR is 2  
mΩ each. The calculated RMS current is 0.047 A and each output capacitor is rated for 3 A.  
8.2.2.3 Input Capacitor Selection  
The TPS560200-Q1 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. A ceramic capacitor over 10 μF is recommended for the decoupling capacitor. An additional 0.1-µF  
capacitor (C2) from pin 6 to ground is optional to provide additional high frequency filtering. The capacitor voltage  
rating must be greater than the maximum input voltage.  
版权 © 2016–2019, Texas Instruments Incorporated  
11  
 
 
 
 
 
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
www.ti.com.cn  
8.2.3 Application Curves  
VIN = 12 V, VOUT = 1.05 V, TA = 25°C (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=5V  
VIN=12V  
VIN=5V  
VIN=12V  
10  
0
0
100  
200  
300  
400  
500  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
D003  
D004  
8. Efficiency  
9. Light-Load Efficiency  
1.1025  
1.092  
1.1025  
1.092  
1.0815  
1.071  
1.0815  
1.071  
1.0605  
1.05  
1.0605  
1.05  
1.0395  
1.029  
1.0395  
1.029  
1.0185  
1.008  
1.0185  
1.008  
VIN=5V  
VIN=12V  
IOUT=0.25A  
0.9975  
0.9975  
0
100  
200  
300  
400  
500  
4
6
8
10  
12  
14  
16  
18  
Output Current (mA)  
Input Voltage (V)  
D005  
D013  
10. Load Regulation  
11. Line Regulation  
60  
180  
800  
700  
600  
500  
400  
300  
200  
100  
0
40  
20  
120  
60  
VOUT (ac coupled)  
0
0
-20  
-40  
-60  
-60  
-120  
IOUT  
Gain  
Phase  
Time (10Ps/div)  
-180  
1000000  
D007  
10 20 50 100  
1000  
Frequency (Hz)  
10000  
100000  
13. Transient Response, 25% to 75% Load Step  
D006  
12. Loop Response, IOUT = 0.25 A  
12  
版权 © 2016–2019, Texas Instruments Incorporated  
TPS560200-Q1  
www.ti.com.cn  
ZHCSF66B APRIL 2016REVISED MAY 2019  
800  
700  
600  
500  
400  
300  
200  
100  
0
10.0  
5.0  
0
VOUT (ac coupled)  
VEN  
-5.0  
1.5  
1.0  
0.5  
0
VOUT  
IOUT  
-0.5  
Time (10Ps/div)  
Time (2ms/div)  
D008  
D009  
14. Transient Response, 2% to 50% Load Step  
15. Start-Up Relative to EN  
VOUT (ac coupled)  
VOUT (ac coupled)  
VPH  
VPH  
Time (1ms/div)  
Time (4ms/div)  
D010  
D011  
16. Output Ripple, IOUT = 500 mA  
17. Output Ripple, IOUT = 30 mA  
VOUT (ac coupled)  
VPH  
Time (2ms/div)  
D012  
18. Output Ripple, IOUT = 0 mA  
版权 © 2016–2019, Texas Instruments Incorporated  
13  
TPS560200-Q1  
ZHCSF66B APRIL 2016REVISED MAY 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS560200-Q1 is designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck  
converters require the input voltage to be higher than the output voltage for proper operation. The maximum  
recommended operating duty cycle is 75%. Using that criteria, the minimum recommended input voltage is VO /  
0.75.  
10 Layout  
10.1 Layout Guidelines  
The VIN pin should be bypassed to ground with a low-ESR ceramic bypass capacitor. Take care to minimize the  
loop area formed by the bypass capacitor connection, the VIN pin, and the GND pin of the IC. The typical  
recommended bypass capacitance is 10-μF ceramic with a X5R or X7R dielectric and the optimum placement is  
closest to the VIN and GND pins of the device. An additional high-frequency bypass capacitor may be added.  
See for a PCB layout example. The GND pin should be tied to the PCB ground plane at the pin of the IC. The  
PH pin should be routed to a small copper area directly adjacent to the pin. Make the circulating loop from PH to  
the output inductor, output capacitors and back to GND as tight as possible while preserving adequate etch width  
to reduce conduction losses in the copper. Use vias adjacent to the IC to tie top-side ground copper plane to the  
internal or bottom layer ground planes. The additional external components can be placed approximately as  
shown. It may be possible to obtain acceptable performance with alternate layout schemes; however, this layout  
produced good results and is intended as a guideline.  
10.2 Layout Example  
OUTPUT  
GND  
FILTER  
CAPACITOR  
TO ENABLE  
OUTPUT  
EN  
GND  
GND  
PH  
CONTROL  
INDUCTOR  
VOUT  
VSENSE  
NC  
VIN  
NC  
VIN  
VIN  
HIGH FREQENCY  
BYPASS  
FEEDBACK  
RESISTORS  
CAPACITOR  
OPTIONAL  
FEED FORWARD  
CAPACITOR  
VIN  
INPUT  
BYPASS  
CAPACITOR  
VIA to Ground Plane  
19. Layout Schematic  
14  
版权 © 2016–2019, Texas Instruments Incorporated  
TPS560200-Q1  
www.ti.com.cn  
ZHCSF66B APRIL 2016REVISED MAY 2019  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
Eco-mode, D-CAP2, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS560200QDGKRQ1  
TPS560200QDGKTQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
ZDNK  
ZDNK  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS560200QDGKRQ1 VSSOP  
TPS560200QDGKTQ1 VSSOP  
DGK  
DGK  
8
8
2500  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS560200QDGKRQ1  
TPS560200QDGKTQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS560200DBVR

4.5V to 17V Input, 500mA Synchronous Step Down SWIFT Converter with Advanced Eco-mode
TI

TPS560200DBVT

4.5V to 17V Input, 500mA Synchronous Step Down SWIFT Converter with Advanced Eco-mode
TI

TPS560200QDGKRQ1

具有高级 Eco-Mode™ 的 4.5V 至 17V 输入、500mA 同步降压转换器 | DGK | 8 | -40 to 125
TI

TPS560200QDGKTQ1

具有高级 Eco-Mode™ 的 4.5V 至 17V 输入、500mA 同步降压转换器 | DGK | 8 | -40 to 125
TI

TPS5602DBT

DUAL, FAST, HIGH EFFICIENCY CONTROLLER FOR DSP POWER
TI

TPS5602IDBR

3A DUAL SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO30, TSSOP-30
TI

TPS5602IDBT

DUAL, FAST, HIGH EFFICIENCY CONTROLLER FOR DSP POWER
TI

TPS5602IDBTG4

DUAL, FAST, HIGH EFFICIENCY CONTROLLER FOR DSP POWER
TI

TPS5602IDBTR

DUAL, FAST, HIGH EFFICIENCY CONTROLLER FOR DSP POWER
TI

TPS5602IDBTRG4

DUAL, FAST, HIGH EFFICIENCY CONTROLLER FOR DSP POWER
TI

TPS560430

具有高效睡眠模式的 SIMPLE SWITCHER® 36V 600mA 降压稳压器
TI

TPS560430-Q1

通过汽车级认证的 SIMPLE SWITCHER® 4V 至 36V、600mA 同步降压转换器
TI