TPS561201DDCT [TI]

采用 6 引脚 SOT-23 封装的 4.5V 至 17V 输入、1A 同步降压稳压器 | DDC | 6 | -40 to 125;
TPS561201DDCT
型号: TPS561201DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 6 引脚 SOT-23 封装的 4.5V 至 17V 输入、1A 同步降压稳压器 | DDC | 6 | -40 to 125

稳压器
文件: 总28页 (文件大小:1505K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
TPS561201, TPS561208  
采用 6 引脚 SOT-23 封装的 TPS56120x 4.5V 17V 输入、1A 同步降压稳压器  
数字机顶盒 (STB)  
1 特性  
监控  
TPS561201 TPS561208 1A 转换器集成了  
140mΩ 和 84mΩ FET  
3 说明  
{1}D-CAP2{2} 模式控制用于快速瞬态响应  
TPS561201 TPS561208 是采用 SOT-23 封装的简  
单易用型 1A 同步降压转换器。  
输入电压范围4.5V 17V  
输出电压范围0.76V 7V  
脉冲跳跃模式 (TPS561201) 或持续电流模式  
此器件被优化为使用尽可能少的外部组件即可运行并  
且可以实现低待机电流。  
(TPS561208)  
这些开关模式电源 (SMPS) 器件采用 D-CAP2 模式控  
从而提供快速瞬态响应并且在无需外部补偿组件  
的情况下支持专用聚合物等低等效串联电阻 (ESR) 输  
出电容器以及超低 ESR 陶瓷电容器。  
580kHz 开关频率  
低关断电流低于 10µA)  
2% 反馈电压精度 (25°C)  
从预偏置输出电压启动  
TPS561201 可在脉冲跳跃模式下运行从而能在轻载  
运行期间保持高效率。TPS561201 TPS561208 可  
提供 6 引脚 1.6 × 2.9 (mm) SOT (DDC) 封装额定结  
温范围为 –40°C 125°C。  
逐周期过流限制  
断续模式过流保护  
非锁存欠压保护 (UVP) 和热关断 (TSD) 保护  
固定软启动1.0ms  
使用 TPS56120x 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS561201  
TPS561208  
SOT (6)  
1.60mm x 2.90mm  
2 应用  
数字电视电源  
高清蓝光光盘播放器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
网络家庭终端设备  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
TPS561201  
1
6
5
4
VBST  
GND  
2
3
EN  
SW  
VIN  
EN  
VOUT  
COUT  
VIN  
VFB  
VOUT  
Vout = 1.05 V  
Vout = 1.5 V  
Vout = 3.3 V  
Vout = 5 V  
20%  
10%  
0
CIN  
0.001  
0.01  
0.1  
1
Output Current (A)  
D001  
TPS561201 效率  
简化原理图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSC95  
 
 
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................10  
8 Application and Implementation..................................12  
8.1 Application Information............................................. 12  
8.2 Typical Application.................................................... 12  
9 Power Supply Recommendations................................18  
10 Layout...........................................................................19  
10.1 Layout Guidelines................................................... 19  
10.2 Layout Example...................................................... 19  
11 Device and Documentation Support..........................20  
11.1 Device Support........................................................20  
11.2 Receiving Notification of Documentation Updates..20  
11.3 Support Resources................................................. 20  
11.4 Trademarks............................................................. 20  
11.5 Electrostatic Discharge Caution..............................20  
11.6 Glossary..................................................................20  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
Information.................................................................... 20  
4 Revision History  
Changes from Revision * (April 2017) to Revision A (September 2020)  
更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
Replaced 6-5 and 6-6 ...............................................................................................................................6  
Page  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
GND  
VBST  
6
2
3
SW  
VIN  
EN  
5
4
TPS561201  
VFB  
5-1. 6-Pin SOTDDC Package (Top View)  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
GND  
NO.  
Ground pin source terminal of low-side power NFET as well as the ground terminal for controller circuit.  
Connect sensitive VFB to this GND at a single point.  
1
SW  
2
3
4
5
6
Switch node connection between high-side NFET and low-side NFET  
VIN  
Input voltage supply pin. The drain terminal of high-side power NFET  
VFB  
EN  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
Supply input for the high-side NFET gate drive circuit. Connect 0.1-µF capacitor between VBST and SW pins.  
VBST  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS561201 TPS561208  
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
2  
MAX  
19  
UNIT  
V
VIN, EN  
VBST  
25  
V
VBST (10-ns transient)  
27  
V
VBST (vs SW)  
Input voltage  
6.5  
6.5  
19  
V
VFB  
V
SW  
V
SW (10 ns transient)  
21  
V
3.5  
40  
55  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±3000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
17  
UNIT  
VIN  
Supply input voltage  
4.5  
0.1  
0.1  
0.1  
0.1  
0.1  
1.8  
3.5  
40  
V
VBST  
23  
VBST (10-ns transient)  
26  
VBST(vs SW)  
6.0  
17  
VI  
Input voltage  
EN  
V
VFB  
5.5  
17  
SW  
SW (10 ns transient)  
20  
TJ  
Operating junction temperature  
125  
°C  
6.4 Thermal Information  
TPS561201 and  
TPS561208  
THERMAL METRIC(1)  
UNIT  
DDC (SOT)  
6 PINS  
90.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
42.3  
16.3  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
 
 
 
 
 
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
TPS561201 and  
TPS561208  
THERMAL METRIC(1)  
UNIT  
DDC (SOT)  
6 PINS  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.6  
°C/W  
°C/W  
ψJT  
ψJB  
16.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, V = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
TPS561201  
TPS561208  
380  
590  
1
520  
µA  
VIN current, EN = 5 V, VFB =  
0.8 V  
Operating non-switching  
supply current  
IVIN  
750  
IVINSDN  
Shutdown supply current  
VIN current, EN = 0 V  
10  
µA  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
EN high-level input voltage  
EN  
1.6  
V
V
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.8  
VEN = 12 V  
225  
400  
900  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
VFB threshold voltage  
VO = 1.05 V, IO = 10 mA, Eco-modeoperation  
VO = 1.05 V, continuous mode operation  
VFB = 0.8 V  
774  
768  
0
mV  
mV  
µA  
VFBTH  
VFB threshold voltage  
VFB input current  
749  
787  
IVFB  
±0.1  
MOSFET  
RDS(on)h  
RDS(on)l  
High-side switch resistance  
Low-side switch resistance  
140  
84  
TA = 25°C, VBST SW = 5.5 V  
mΩ  
mΩ  
TA = 25°C  
CURRENT LIMIT  
Iocl  
Current limit  
DC current, VOUT = 1.05 V, L1 = 2.2 µH  
1.2  
1.6  
2.0  
A
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
160  
25  
TSDN  
Thermal shutdown threshold(1)  
°C  
ON-TIME TIMER CONTROL  
tOFF(MIN)  
SOFT START  
tss  
Minimum off time  
VFB = 0.5 V  
220  
1.0  
310  
ns  
ms  
Soft-start time  
Internal soft-start time  
VIN = 12 V, VO = 1.05 V, FCCM mode  
Frequency  
Fsw  
Switching frequency  
580  
kHz  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VUVP  
Output UVP threshold  
Hiccup wait time  
Hiccup detect (H > L)  
65%  
1.8  
15  
THICCUP_WAI  
ms  
ms  
T
THICCUP_RE Hiccup time before restart  
UVLO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS561201 TPS561208  
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
TJ = 40°C to 125°C, V = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4.0  
3.6  
0.4  
MAX UNIT  
Wake up VIN voltage  
4.3  
UVLO  
UVLO threshold  
Shut down VIN voltage  
Hysteresis VIN voltage  
3.3  
V
(1) Not production tested  
6.6 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
0.5  
0.762  
0.761  
0.76  
0.45  
0.4  
0.35  
0.759  
0.3  
-50  
-50  
-20  
10  
40  
70  
100  
130  
-20  
10  
40  
70  
100  
130  
TJ - Junction Temperature (èC)  
D002  
TJ - Junction Temperature (èC)  
D001  
6-2. VFB Voltage vs Junction Temperature  
6-1. TPS561201 Supply Current vs Junction  
Temperature  
1.23  
1.2  
1.45  
1.42  
1.39  
1.36  
1.33  
1.3  
1.17  
1.14  
1.11  
1.08  
1.05  
1.02  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D004  
D003  
6-3. EN Pin UVLO Low Voltage vs Junction  
6-4. EN Pin UVLO High Voltage vs Junction  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
250  
230  
210  
190  
170  
150  
130  
110  
90  
130  
120  
110  
100  
90  
80  
70  
60  
50  
70  
10  
30  
50  
70  
90  
110 130  
10  
40  
70  
100  
130  
œ50 œ30 œ10  
œ50  
œ20  
Junction Temperature (°C)  
Junction Temperature (°C)  
C006  
C005  
6-6. Low-Side Rds-on vs Junction Temperature  
6-5. High-Side Rds-on vs Junction Temperature  
620  
600  
600  
580  
560  
540  
500  
400  
300  
200  
100  
0
Vout = 1.05 V  
Vout = 3.3 V  
Vout = 5 V  
520  
500  
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
0.001  
0.01  
0.1  
1
Output Current (A)  
D007  
D009  
Iout = 10 mA  
VIN = 12 V  
6-7. TPS561208 Switching Frequency vs Input  
6-8. TPS561201 Switching Frequency vs Output  
Voltage  
Current  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
30%  
Vin = 5 V  
Vin = 9 V  
Vin = 5 V  
Vin = 9 V  
20%  
20%  
Vin = 12 V  
Vin = 15 V  
Vin = 12 V  
Vin = 15 V  
10%  
0
10%  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D010  
D011  
6-9. TPS561201 VOUT = 1.05 V, Efficiency, L = 2.2  
6-10. TPS561201 VOUT = 1.5 V, Efficiency, L = 2.2  
µH  
µH  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS561201 TPS561208  
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D012  
D013  
6-11. TPS561201 VOUT = 3.3 V, Efficiency, L = 3.3 6-12. TPS561201 VOUT = 5 V, Efficiency, L = 4.7  
µH µH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
1
0.8  
0.6  
0.4  
0.2  
0
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
D015  
Output Current (A)  
D014  
6-14. TPS561208 VOUT = 1.5 V, Efficiency, L = 2.2  
6-13. TPS561208 VOUT = 1.05 V, Efficiency, L =  
µH  
2.2 µH  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
30%  
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
20%  
20%  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
10%  
0
10%  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
D017  
D016  
6-16. TPS561208 VOUT = 5 V, Efficiency, L = 4.7  
6-15. TPS561208 VOUT = 3.3 V, Efficiency, L = 3.3  
µH  
µH  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS561201 and TPS561208 are 1-A synchronous step-down converters. The proprietary D-CAP2 mode  
control supports low-ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic  
capacitors without complex external compensation circuits. The fast transient response of D-CAP2 mode control  
can reduce the output capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
3
VIN  
V
V
UVP  
+
UVP  
Hiccup  
VREG5  
Regulator  
UVLO  
+
OVP  
OVP  
VFB  
4
6
2
VBST  
PWM  
Voltage  
Ref  
+
+
Reference  
HS  
Control Logic  
SS  
Soft Start  
SW  
Ton  
One-Shot  
XCON  
VREG5  
LS  
TSD  
OCL  
threshold  
OCL  
+
1
GND  
+
ZC  
7.3 Feature Description  
7.3.1 Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS561201 is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2 mode control. The D-CAP2 mode control combines adaptive on-time control with  
an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely  
proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence  
it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again  
when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2 mode control.  
7.3.2 Pulse Skip Control (TPS561201)  
The TPS561201 and TPS561208 are designed with Advanced Eco-mode to maintain high light load efficiency.  
As the output current decreases from heavy load condition, the inductor current is also reduced and eventually  
comes to point that the rippled valley touches zero level, which is the boundary between continuous conduction  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS561201 TPS561208  
 
 
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is  
detected. As the load current further decreases, the converter runs into discontinuous conduction mode. The on-  
time is kept almost the same as it was in continuous conduction mode so that it takes longer time to discharge  
the output capacitor with smaller load current to the level of the reference voltage. This makes the switching  
frequency lower and proportional to the load current, and keeps the light load efficiency high. The transition point  
to the light load operation IOUT(LL) current can be calculated in 方程式 1.  
(VIN - VOUT )´ VOUT  
´
1
IOUT(LL)  
=
2´L ´ fSW  
V
IN  
(1)  
7.3.3 Soft Start and Pre-Biased Soft Start  
The TPS561201 and TPS561208 have an internal 1.0-ms soft start. When the EN pin becomes high, the internal  
soft-start function begins ramping up the reference voltage to the PWM comparator. If the output capacitor is pre-  
biased at start-up, the devices initiate switching and start ramping up only after the internal reference voltage  
becomes greater than the feedback voltage VFB. This scheme ensures that the converters ramp up smoothly  
into regulation point.  
7.3.4 Current Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time, and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current Iout. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current can be higher than the current available  
from the converter. This can cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time  
(typically 24 µs) and restart after the hiccup time (typically 15 ms).  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
7.3.5 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is non-latching.  
7.3.6 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 160°C),  
the device is shut off. This is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS561208 can operate in their normal switching modes. Normal continuous conduction mode (CCM) occurs  
when the minimum switch current is above 0 A. In CCM, the TPS561208 operates at a quasi-fixed frequency of  
580 kHz.  
7.4.2 Eco-mode Operation  
When the TPS561201 and TPS561208 are in the normal CCM operating mode and the switch current falls to 0  
A, the TPS561201 begins operating in pulse skipping Eco-mode. Each switching cycle is followed by a period of  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
energy saving sleep time. The sleep time ends when the VFB voltage falls below the Eco-mode threshold  
voltage. As the output current decreases, the perceived time between switching pulses increases.  
7.4.3 Standby Operation  
When the TPS561201 and TPS561208 are operating in either normal CCM or Eco-mode, they can be placed in  
standby by asserting the EN pin low.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS561201 TPS561208  
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The devices are typical step-down DC-DC converters. It typically uses to convert a higher dc voltage to a lower  
dc voltage with a maximum available output current of 1 A. The following design procedure can be used to select  
component values for the TPS561201 and TPS561208. Alternately, the WEBENCH® software can be used to  
generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a  
comprehensive database of components when generating a design. This section presents a simplified  
discussion of the design process.  
8.2 Typical Application  
The application schematic in 8-1 was developed to meet the previous requirements. This circuit is available  
as the evaluation module (EVM). The sections provide the design procedure.  
8-1 shows the TPS561201 and TPS561208 4.5-V to 17-V Input, 1.05-V output converter schematics.  
C7 0.1 uF  
1
2
3
6
5
VBST  
EN  
GND  
SW  
R3 10.0 k  
L1  
VOUT = 1.05 V / 1 A  
EN  
VOUT  
2.2 uH  
4
C9  
C8  
VIN  
VOUT  
VFB  
R1 3.09 k  
22 uF 22 uF  
R2  
10 k  
C4  
1
C1  
C2  
C3  
1
Not Installed  
10 uF 10 uF 0.1 uF  
VIN = 4.5 to 17 V  
VIN  
1
8-1. TPS561201 and TPS561208 1.05-V/1-A Reference Design  
8.2.1 Design Requirements  
8-1 shows the design parameters.  
8-1. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
Input voltage range  
4.5 to 17 V  
1.05 V  
Output voltage  
Transient response, 1-A load step  
Input ripple voltage  
ΔVout = ±5%  
400 mV  
30 mV  
Output ripple voltage  
Output current rating  
Operating frequency  
1A  
580 kHz  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
 
 
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS56120x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using 方程式 2 to calculate VOUT.  
To improve efficiency at very light loads, consider using larger value resistors. Too high of resistance will be more  
susceptible to noise and voltage errors from the VFB input current will be more noticeable.  
R1  
æ
ö
VOUT = 0.768´ 1+  
ç
÷
R2  
è
ø
(2)  
8.2.2.3 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
F =  
P
2p LOUT ´ COUT  
(3)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off  
at a 40 dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that  
reduces the gain roll off to 20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of 方程  
3 is located below the high frequency zero but close enough that the phase boost provided be the high  
frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values  
recommended in 8-2.  
8-2. Recommended Component Values  
L1 (µH)  
R1  
(kΩ)  
R2  
(kΩ)  
OUTPUT VOLTAGE  
(V)  
C8 + C9  
(µF)  
MIN  
2.2  
2.2  
2.2  
2.2  
2.2  
3.3  
TYP  
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
2.2  
2.2  
2.2  
2.2  
2.2  
3.3  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
1.05  
1.2  
1.5  
1.8  
2.5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS561201 TPS561208  
 
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8-2. Recommended Component Values (continued)  
L1 (µH)  
R1  
(kΩ)  
R2  
(kΩ)  
OUTPUT VOLTAGE  
(V)  
C8 + C9  
(µF)  
MIN  
3.3  
3.3  
3.3  
TYP  
MAX  
4.7  
3.3  
5
33.2  
54.9  
75  
10.0  
10.0  
10.0  
3.3  
4.7  
4.7  
20 to 68  
20 to 68  
20 to 68  
4.7  
6.5  
4.7  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 方程式 4, 方程式 5,  
and 方程式 6. The inductor saturation current rating must be greater than the calculated peak current and the  
RMS or heating current rating must be greater than the calculated RMS current.  
Use 580 kHz for fSW. Make sure the chosen inductor is rated for the peak current of 方程式 5 and the RMS  
current of 方程式 6.  
V
IN(MAX) - VOUT  
VOUT  
´
IlP-P  
=
V
LO ´ fSW  
IN(MAX)  
(4)  
(5)  
IlP-P  
IlPEAK = IO +  
2
1
2
2
ILO(RMS) = IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 1.69 A and the calculated RMS current is 1.11 A. The  
inductor used is a WE 744311330 with a peak current rating of 11 A and an RMS current rating of 6.5 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS561201 and TPS561208  
are intended for use with ceramic or other low-ESR capacitors. Recommended values range from 20 µF to 68  
µF. Use 方程式 7 to determine the required RMS current rating for the output capacitor.  
VOUT ´ VIN - VOUT  
(
12 ´ V ´LO ´ fSW  
)
ICO(RMS)  
=
IN  
(7)  
For this design, two TDK C3216X5R0J226M 22-µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.286 A.  
8.2.2.4 Input Capacitor Selection  
The TPS561201 and TPS561208 require an input decoupling capacitor and a bulk capacitor is needed  
depending on the application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An  
additional 0.1-µF capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering.  
The capacitor voltage rating needs to be greater than the maximum input voltage.  
8.2.2.5 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI  
recommends to use a ceramic capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
 
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.2.3 Application Curves  
3.00%  
2.00%  
1.00%  
0.00  
3.00%  
2.00%  
1.00%  
0.00  
TPS561201  
TPS561208  
TPS561201  
TPS561208  
-1.00%  
-2.00%  
-3.00%  
-1.00%  
-2.00%  
-3.00%  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
D018  
D019  
D018  
8-2. Load Regulation VIN = 5 V  
8-3. Load Regulation VIN = 12 V  
1.07  
1.065  
1.06  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
TPS561201  
TPS561208  
1.055  
1.05  
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
1.045  
1.04  
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
0.001  
0.01  
0.1  
1
Output Current (A)  
D020  
D021  
TPS56201 IOUT = 0.5 A  
TPS56208 IOUT = 10 mA  
8-4. Line Regulation  
8-5. TPS561201 VOUT = 1.05 V, Efficiency L = 2.2  
µH  
50 mV/div  
100 mV/div  
5 V/div  
5 V/div  
1 A/div  
500 mA/div  
4 us/div  
1 us/div  
8-7. TPS561201 Output Voltage Ripple, IOUT = 10  
8-6. TPS561201 Input Voltage Ripple  
mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS561201 TPS561208  
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
20 mV/div  
20 mV/div  
5 V/div  
5 V/div  
500 mA/div  
500 mA/div  
1 us/div  
1 us/div  
8-8. TPS561201 Output Voltage Ripple, IOUT  
=
8-9. TPS561201 Output Voltage Ripple, IOUT = 1  
0.25 A  
A
50 mV/div  
20 mV/div  
500 mA/div  
5 V/div  
1 us/div  
100 us/div  
8-10. TPS561208 Output Voltage Ripple, IOUT = 0  
8-11. TPS561201 Transient Response, 0.1 to 1 A  
A
50 mV/div  
50 mV/div  
500 mA/div  
500 mA/div  
100 us/div  
100 us/div  
8-13. TPS561208 Transient Response 0.1 to 1 A  
8-12. TPS561201 Transient Response, 0.5 to 1.5  
A
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
5 V/div  
5 V/div  
5 V/div  
5 V/div  
500 mV/div  
500 mV/div  
1 ms/div  
2 ms/div  
8-14. TPS561201 Start-Up Relative to VI  
8-15. TPS561201 Start-Up Relative to EN  
5 V/div  
5 V/div  
5 V/div  
5 V/div  
500 mV/div  
500 mV/div  
100 us/div  
10 ms/div  
8-16. TPS561201 Shutdown Relative to VI  
8-17. TPS561201 Shutdown Relative to EN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS561201 TPS561208  
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS561201 and TPS561208 are designed to operate from input supply voltage in the range of 4.5 V to 17  
V. Buck converters require the input voltage to be higher than the output voltage for proper operation. The  
maximum recommended operating duty cycle is 75%. Using that criteria, the minimum recommended input  
voltage is VO / 0.75.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10.The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
VOUT  
GND  
Additional  
Vias to the  
GND plane  
Vias to the  
internal SW  
node copper  
OUTPUT  
CAPACITOR  
BOOST  
CAPACITOR  
OUTPUT  
INDUCTOR  
GND  
SW  
VBST  
EN  
FEEDBACK  
RESISTORS  
TO ENABLE  
CONTROL  
VFB  
Vias to the  
internal SW  
node copper  
VIN  
VIN  
INPUT BYPAS  
CAPACITOR  
SW node copper  
pour area on internal  
or bottom layer  
10-1. TPS561201 and TPS561208 Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS561201 TPS561208  
 
 
 
TPS561201, TPS561208  
ZHCSG73A APRIL 2017 REVISED SEPTEMBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS56120x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
蓝光is a trademark of Blu-ray Disc Association.  
Eco-modeand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS561201 TPS561208  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS561201DDCR  
TPS561201DDCT  
TPS561208DDCR  
TPS561208DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1201  
1201  
1208  
1208  
Samples  
Samples  
Samples  
Samples  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS561201DDCR  
TPS561201DDCT  
TPS561208DDCR  
TPS561208DDCT  
SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
SOT-23-  
THIN  
3000  
250  
SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS561201DDCR  
TPS561201DDCT  
TPS561208DDCR  
TPS561208DDCT  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS561208

4.5V 至 17V 输入、1A 输出、同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS561208DDCR

4.5V 至 17V 输入、1A 输出、同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS561208DDCT

4.5V 至 17V 输入、1A 输出、同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56121

4.5-V to 14-V Input High-Current Synchronous Buck Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56121DQPR

4.5-V to 14-V Input High-Current Synchronous Buck Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56121DQPT

4.5-V to 14-V Input High-Current Synchronous Buck Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56121_14

4.5-V to 14-V Input High-Current Synchronous Buck Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56121_16

Input High-Current Synchronous Buck SWIFT Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56121_17

4.5-V to 14-V Input High-Current Synchronous Buck SWIFT Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5615

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5615/TPS5618/TPS5625/TPS5633

Synchronous-Buck Hysteretic Regulator Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS5615CPWPR

Voltage-Mode SMPS Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC