TPS562200DDCT [TI]

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、2A 同步降压稳压器 | DDC | 6 | -40 to 125;
TPS562200DDCT
型号: TPS562200DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、2A 同步降压稳压器 | DDC | 6 | -40 to 125

稳压器
文件: 总36页 (文件大小:1676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
TPS56x200 6 SOT-23 封装4.5V 17V 输入、2A3A 同步降压稳压  
1 特性  
3 说明  
TPS562200 - 集成122m72mFET 的  
2A 转换器  
TPS562200 TPS563200 是采用 6 引脚 SOT-23 封  
装的简单易用2A 3A 同步降压转换器。  
TPS563200 - 集成68m39mFET 3A  
转换器  
• 可实现快速瞬态响应D-CAP2控制拓扑  
• 输入电压范围4.5V 17V  
• 输出电压范围0.76V 7V  
• 开关频率650 kHz  
• 高Eco-Mode 脉冲跳跃  
• 低关断电流10µA)  
1% 反馈电压精(25°C)  
• 从预偏置输出电压启动  
• 逐周期过流限制  
• 断续模式欠压保护  
此器件被优化为使用尽可能少的外部组件即可运行并  
且可以实现低待机电流。  
这些开关模式电源 (SMPS) 器件采用 D-CAP2 控制拓  
从而提供快速瞬态响应并且在无需外部补偿组件  
的情况下支持专用聚合物等低等效串联电阻 (ESR) 输  
出电容器以及超ESR 陶瓷电容器。  
TPS562200 TPS563200 可在高级 Eco-mode 下运  
从而能在轻载运行期间保持高效率。这些器件采用  
6 引脚 1.6mm × 2.9mm SOT (DDC) 封装额定工作  
环境温度范围40°C 85°C。  
器件信息(1)  
• 非锁OVPUVLO TSD 保护  
• 固定软启动1ms  
• 使TPS563252 在更小的封装中实现更高的效率  
和频率  
输出电流最大值)  
器件型号  
TPS562200  
TPS563200  
封装  
2A  
3A  
DRL (SOT-236, 6)  
使WEBENCH® 工具创建定制设计  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 数字电视电源  
• 高清蓝光光盘播放器  
• 网络家庭终端设备  
• 数字机顶(STB)  
TPS562200  
TPS563200  
100  
90  
LO  
3
5
4
2
6
1
VIN  
VIN  
SW  
VBST  
GND  
VOUT  
CO  
EN  
CIN  
VOUT  
EN  
CBST  
80  
VFB  
RFB1  
RFB2  
70  
VOUT = 1.8 V  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3 V  
Copyright © 2016, Texas Instruments Incorporated  
简化原理图  
VOUT = 5 V  
0.001  
0.01 0.1  
IOUT - Output Current (A)  
1
10  
C007  
Tps562200 效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCB0  
 
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Applications.................................................. 15  
8.3 Power Supply Recommendations.............................26  
8.4 Layout....................................................................... 26  
9 Device and Documentation Support............................28  
9.1 Device Support......................................................... 28  
9.2 接收文档更新通知..................................................... 28  
9.3 支持资源....................................................................28  
9.4 Trademarks...............................................................28  
9.5 静电放电警告............................................................ 28  
9.6 术语表....................................................................... 28  
10 Mechanical, Packaging, And Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings(1) ....................................5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Requirements..................................................7  
6.7 Typical Characteristics TPS562200............................8  
6.8 Typical Characteristics TPS563200..........................10  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (June 2016) to Revision E (May 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 添加了 TPS563252 信息.....................................................................................................................................1  
• 更新了商标信息.................................................................................................................................................. 1  
• 通篇去除了图像的颜色........................................................................................................................................1  
Changes from Revision C (August 2015) to Revision D (June 2016)  
Page  
Updated the Pinout image in Pin Configuration And Functions .........................................................................4  
Changed RθJB for TPS562200 From: 3.4 To: 13.4 in Thermal Information ...................................................... 6  
7.3.1, changed text From: "proportional to the converter input voltage, VIN, and inversely proportional to  
the output voltage, VO" To: "inversely proportional to the converter input voltage, VIN, and proportional to the  
output voltage, VO"........................................................................................................................................... 13  
Changes from Revision B (July 2014) to Revision C (August 2015)  
Page  
• 将部分从“集122m72mFET ('562200)”更改为“TPS562200 - 集成122m72mFET  
2A 转换器”...................................................................................................................................................1  
• 将部分从“集68m39mFET ('563200)”更改为“TPS563200 - 集成68m39mFET 的  
3A 转换器”........................................................................................................................................................1  
• 添加了1650kHz 开关频率...........................................................................................................................1  
• 将部分从“逐周期间断过流限制”更改为逐周期过流限制......................................................................1  
• 添加了特性断续模式欠压保护.........................................................................................................................1  
• 将“说明”第一段中的文本从“采SOT-23 封装...”修改为“采6 SOT-23 封装............................1  
Moved Storage temperature range, Tstg From: Handling Ratings To: Absolute Maximum Ratings ...................5  
Changed the Handling Ratings table to the ESD Ratings table..........................................................................5  
Changed the TPS562200 Thermal Information values.......................................................................................6  
Changed VOVP Description in the Electrical Characteristics From: OVP Detect (L > H) To: OVP Detect, and  
the TYP value From: 125% To: 125% x Vfbth.................................................................................................... 7  
Changed VUVP Description in the Electrical Characteristics From: Hiccup detect (H < L) To: Hiccup detect ,  
and the TYP value From: 65% To: 65% x Vfbth................................................................................................. 7  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
2
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
Changed the Output Current (A) scale of 6-7 ............................................................................................... 8  
Changed VOUT = 5 V To VOUT = 3.3 V in 6-15 .............................................................................................10  
Changed the X axis From: Junction Temperature To: Ambient Temperature in 6-16 ..................................10  
Added a NOTE to the Application and Implementation section........................................................................15  
Changed column heading C8 + C9 (µF) To: C5 + C6 (µF) in 8-2 ............................................................... 17  
Changed column heading C8 + C9 (µF) To: C5 + C6 + C7 (µF) in 8-2 .......................................................22  
Changes from Revision A (January 2014) to Revision B (July 2014)  
Page  
• 添加了特性说部分、器件功能模式应用和实部分、电源相关建部分、器件和文档支部分以及机  
械、封装和可订购信息 部分............................................................................................................................... 1  
• 将数据表标题从“4.5V 17V 输入2A 同步降压...”修改为“4.5V 17V 输入2A/3A 同步降压...........1  
• 将器件编号TPS563209 更改为 TPS563200.................................................................................................. 1  
• 将部分从“2% 反馈电压精度 (25°C)”更改为1% 反馈电压精度 (25°C).................................................1  
Added the Timing Requirements table ...............................................................................................................7  
Added 8-1 ....................................................................................................................................................15  
Changed 8-2 ............................................................................................................................................... 17  
Deleted sentence following 8-2 "For higher output voltages, additional phase boost can be achieved by  
adding a feed forward capacitor (C7) in parallel with R2."................................................................................17  
Added Application Information for the TPS563200 device .............................................................................. 22  
Added 8-3 ....................................................................................................................................................22  
Changes from Revision * (January 2014) to Revision A (January 2014)  
Page  
• 将器件状态从“产品预发布”更改为“量产”....................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND  
SW  
1
2
3
6
5
4
VBST  
EN  
VIN  
VFB  
5-1. DDC Package 6 Pin (SOT) Top View  
5-1. Pin Functions  
PIN  
DESCRIPTION  
NAME  
GND  
NUMBER  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for controller circuit.  
Connect sensitive VFB to this GND at a single point.  
1
SW  
VIN  
VFB  
EN  
2
3
4
5
Switch node connection between high-side NFET and low-side NFET.  
Input voltage supply pin. The drain terminal of high-side power NFET.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
Supply input for the high-side NFET gate drive circuit. Connect a 0.1µF capacitor between VBST and SW  
pins.  
VBST  
6
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
4
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
TJ = -40°C to 150°C(unless otherwise noted)  
MIN  
0.3  
MAX  
UNIT  
V
VIN, EN  
VBST  
19  
25  
V
0.3  
0.3  
0.3  
0.3  
2  
VBST (10-ns transient)  
VBST (vs SW)  
27.5  
6.5  
6.5  
19  
V
Input voltage range  
V
VFB  
V
SW  
V
SW (10-ns transient)  
21  
V
3.5  
40  
55  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TJ = -40°C to 150°C(unless otherwise noted)  
MIN  
MAX  
17  
23  
26  
6
UNIT  
VIN  
Supply input voltage range  
VBST  
4.5  
0.1  
0.1  
0.1  
0.1  
0.1  
1.8  
3.5  
40  
V
VBST (10-ns transient)  
VBST(vs SW)  
VI  
Input voltage range  
EN  
17  
5.5  
17  
20  
85  
V
VFB  
SW  
SW (10-ns transient)  
TA  
Operating free-air temperature  
°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
 
 
 
 
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
UNITS  
6.4 Thermal Information  
TPS562200  
DDC (SOT)  
(6 PINS)  
89.0  
TPS563200  
DDC (SOT)  
(6 PINS)  
87.9  
THERMAL METRIC (1)  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.5  
42.2  
13.4  
13.6  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.2  
1.9  
13.2  
13.3  
ψJB  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
6
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
TJ = -40°C to 150°C, VIN = 12V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
TPS562200  
TPS563200  
230  
190  
3
330  
µA  
VIN current, TA = 25°C, EN = 5V,  
VFB = 0.8 V  
Operating non-switching  
supply current  
I(VIN)  
290  
I(VINSDN) Shutdown supply current  
VIN current, TA = 25°C, EN = 0 V  
10  
µA  
LOGIC THRESHOLD  
VEN(H)  
VEN(L)  
REN  
EN high-level input voltage  
EN low-level input voltage  
EN pin resistance to GND  
EN  
1.6  
V
V
EN  
0.6  
VEN = 12 V  
225  
450  
772  
900  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
TA = 25°C, VO = 1.05 V, IO = 10 mA,  
Eco-mode operation  
mV  
VFB(TH)  
VFB threshold voltage  
TA = 25°C, VO = 1.05 V, continuous mode operation  
VFB = 0.8V, TA = 25°C  
758  
765  
0
772  
mV  
µA  
I(VFB)  
VFB input current  
±0.1  
MOSFET  
TPS562200  
122  
68  
mΩ  
mΩ  
mΩ  
mΩ  
RDS(on)h High side switch resistance  
TA = 25°C, VBST SW = 5.5 V  
TPS563200  
TPS562200  
TPS563200  
72  
RDS(on)l  
Low side switch resistance  
TA = 25°C  
39  
CURRENT LIMIT  
DC current, VOUT = 1.05 V, LOUT = 2.2 µF  
DC current, VOUT = 1.05 V, LOUT = 1.5 µF  
TPS562200  
TPS563200  
2.5  
3.5  
3.2  
4.2  
4.3  
5.3  
A
A
Iocl  
Current limit (1)  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
35  
Thermal shutdown  
threshold(1)  
TSDN  
°C  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
125%  
x Vfbth  
VOVP  
VUVP  
Output OVP threshold  
Output Hiccup threshold  
OVP Detect  
65% x  
Vfbth  
Hiccup detect  
tHiccupOn Hiccup On Time  
tHiccupOff Hiccup Off Time  
UVLO  
Relative to soft-start time  
Relative to soft-start time  
1
7
ms  
ms  
Wake up VIN voltage  
Hysteresis VIN voltage  
3.45  
0.13  
3.75  
0.32  
4.05  
0.55  
UVLO  
UVLO threshold  
V
(1) Not production tested  
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ON-TIME TIMER CONTROL  
tON  
On time  
VIN = 12 V, VO = 1.05 V  
150  
260  
ns  
ns  
tOFF(MIN)  
SOFT START  
tss  
Minimum off time  
TA = 25°C, VFB = 0.5 V  
310  
1.3  
Soft-start time  
Internal soft-start time, TA = 25°C  
0.7  
1
ms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
6.7 Typical Characteristics TPS562200  
VIN = 12 V (unless otherwise noted).  
400  
350  
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
0
œ50  
0
50  
100  
150  
œ50  
0
50  
100  
150  
C001  
C002  
TJ - Junction Temperature (°C)  
TJ - Junction Temperature (°C)  
6-1. Supply Current vs Junction Temperature  
EN = 0 V  
6-2. VIN Shutdown Current vs Junction Temperature  
0.780  
60  
50  
40  
30  
20  
10  
0
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
œ10  
œ50  
0
50  
100  
150  
0
3
6
9
12  
15  
18  
C003  
C004  
TJ - Junction Temperature (°C)  
EN Input Voltage (V)  
6-4. En Current vs En Voltage  
IO = 1 A  
6-3. Vfb Voltage vs Junction Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1.8 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
VOUT = 3.3 V  
VOUT = 5 V  
0.001  
0.01 0.1  
IOUT - Output Current (A)  
1
10  
0.001  
0.01 0.1  
IOUT - Output Current (A)  
1
10  
C007  
C008  
6-5. Efficiency vs Output Current  
VIN = 5 V  
6-6. Efficiency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
8
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
6.7 Typical Characteristics TPS562200 (continued)  
VIN = 12 V (unless otherwise noted).  
2.5  
800  
750  
700  
650  
600  
550  
500  
VOUT = 1.8 V  
VOUT = 5 V  
2.0  
VOUT = 3.3 V  
VOUT = 0.76 V to 3.3 V  
1.5  
VOUT = 5 V  
1.0  
VOUT = 1.2 V  
VOUT = 7 V  
VOUT = 1.05 V  
0.5  
0.0  
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
18  
C009  
C010  
TA - Ambient Temperature (°C)  
VIN - Input Voltage (V)  
6-7. Output Current vs Ambient Temperature  
IOUT = 500 mA  
6-8. Switching Frequency vs Input Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
VOUT = 3.3 V  
VOUT = 1.8 V  
VOUT = 1.05 V  
0
0.01  
0.10  
1.00  
10.00  
C011  
IO - Output Current (A)  
6-9. Switching Frequency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics TPS563200  
VIN = 12 V (unless otherwise noted).  
400  
350  
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (èC)  
Junction Temperature (èC)  
D037  
D038  
6-10. Supply Current vs Junction Temperature  
EN = 0 V  
6-11. VIN Shutdown Current vs Junction Temperature  
0.780  
60  
50  
40  
30  
20  
10  
0
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
œ10  
0
3
6
9
12  
15  
18  
-50  
-25  
0
25  
50  
75  
100  
C019  
EN Input Voltage (V)  
Junction Temperature (èC)  
D039  
6-13. En Current vs En Voltage  
IO = 1 A  
6-12. Vfb Voltage vs Junction Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 5V  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 3.3 V  
VOUT = 1.8 V  
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
D040  
D041  
6-14. Efficiency vs Output Current  
VIN = 5 V  
6-15. Efficiency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
10  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics TPS563200 (continued)  
VIN = 12 V (unless otherwise noted).  
4
800  
750  
700  
650  
600  
550  
500  
3
2
1
VO = 0.76 V to 3.3 V  
VO = 5 V  
VO = 7 V  
VO = 1.05 V  
VO = 7 V  
0
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
0
25  
50  
75  
100  
TA - Ambient Temperature (èC)  
D043  
D042  
IOUT = 1 A  
6-17. Switching Frequency vs Input Voltage  
6-16. Output Current vs Ambient Temperature  
900  
VO = 1.05 V  
VO = 7 V  
750  
600  
450  
300  
150  
0
0.001  
0.01 0.02 0.05 0.1 0.2  
IO - Output Current (A)  
0.5  
1
2 3 45  
D044  
6-18. Switching Frequency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS562200 and TPS563200 are 2-A and 3-A synchronous step-down converters. The proprietary D-CAP2  
control scheme supports low ESR output capacitors such as specialty polymer capacitors and multi-layer  
ceramic capacitors without complex external compensation circuits. The fast transient response of D-CAP2  
control scheme can reduce the output capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
3
VIN  
+
UVP  
VUVP  
Hiccup  
VREG5  
Control Logic  
Regulator  
UVLO  
+
OVP  
VOVP  
4
VFB  
VBST  
6
PWM  
Voltage  
Reference  
Ref  
SS  
+
+
HS  
Soft Start  
Ton  
One-Shot  
2
1
SW  
XCON  
VREG5  
LS  
TSD  
OCL  
threshold  
OCL  
+
GND  
+
ZC  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
12  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 The Adaptive On-Time Control And PWM Operation  
The main control loop of the TPS562200 and TPS563200 are adaptive on-time pulse width modulation (PWM)  
controller that supports a proprietary D-CAP2 control scheme. The D-CAP2 control scheme combines adaptive  
on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component  
count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at  
the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot duration is set inversely proportional to the converter input voltage, VIN, and  
proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence  
it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again  
when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2 control scheme.  
7.3.2 Advanced Eco-mode Control  
The TPS562200 and TPS563200 are designed with Advanced Eco-mode to maintain high light load efficiency.  
As the output current decreases from heavy load condition, the inductor current is also reduced and eventually  
comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction  
and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is  
detected. As the load current further decreases, the converter runs into discontinuous conduction mode. The on-  
time is kept almost the same as it was in the continuous conduction mode so that it takes longer time to  
discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the  
switching frequency lower, proportional to the load current, and keeps the light load efficiency high. The  
transition point to the light load operation IOUT(LL) current can be calculated in Equation 1.  
V
IN - VOUT ´ V  
)
(
1
OUT  
IOUT(LL)  
=
´
2´L ´ ƒSW  
V
IN  
(1)  
7.3.3 Soft Start And Pre-Biased Soft Start  
The TPS562200 and TPS563200 have an internal 1 ms soft-start. When the EN pin becomes high, the internal  
soft-start function begins ramping up the reference voltage to the PWM comparator. If the output capacitor is pre-  
biased at startup, the devices initiate switching and start ramping up only after the internal reference voltage  
becomes greater than the feedback voltage VFB. This scheme ensures that the converters ramp up smoothly  
into regulation point.  
7.3.4 Current Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. If the over  
current condition exists consecutive switching cycles, the internal OCL threshold is set to a lower level, reducing  
the available output current. When a switching cycle occurs where the switch current is not above the lower OCL  
threshold, the counter is reset and the OCL threshold is returned to the higher value.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current can be higher than the current available  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
from the converter. This can cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. Then, the device shuts down after the UVP delay time  
(typically 14 µs) and re-start after the hiccup time (typically 12 ms).  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
7.3.5 Over Voltage Protection  
TPS562200 and TPS563200 detect overvoltage condition by monitoring the feedback voltage (VFB). When the  
feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high and  
both the high-side MOSFET driver and the low-side MOSFET driver turn off. This function is non-latch operation.  
7.3.6 UVLO Protection  
Undervoltage lock out protection (UVLO) monitors the internal regulator voltage. When the voltage is lower than  
UVLO threshold voltage, the device is shut off. This protection is non-latching.  
7.3.7 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 155°C),  
the device is shut off. This is a non-latch protection  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS562200 and TPS563200 can operate in their normal switching modes. Normal continuous conduction mode  
(CCM) occurs when the minimum switch current is above 0 A. In CCM, the TPS562200 and TPS563200 operate  
at a quasi-fixed frequency of 650 kHz.  
7.4.2 Eco-mode Operation  
When the TPS562200 and TPS563200 are in the normal CCM operating mode and the switch current falls to 0  
A, the TPS562200 and TPS563200 begin operating in pulse skipping Eco-mode. Each switching cycle is  
followed by a period of energy saving sleep time. The sleep time ends when the VFB voltage falls below the  
Eco-mode threshold voltage. As the output current decreases the perceived time between switching pulses  
increases.  
7.4.3 Standby Operation  
When the TPS562200 and TPS563200 are operating in either normal CCM or Eco-mode, they can be placed in  
standby by asserting the EN pin low.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
14  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS562200 and TPS563200 are typically used as step down converters, which convert a voltage from 4.5 V  
17 V to a lower voltage. WEBENCH software is available to aid in the design and analysis of circuits  
8.2 Typical Applications  
8.2.1 Tps562200 4.5-V To 17-V Input, 1.05-V Output Converter  
U1  
L1 2.2 uH  
TPS562200  
VOUT = 1.05 V, 2 A  
VIN = 4.5 V to 17 V  
3
5
4
2
6
1
VIN  
VIN  
EN  
SW  
VBST  
GND  
VOUT  
C4  
R1 10.0 k  
R2  
3.74 k  
EN  
C1  
10 µF  
C2  
10 µF  
C3  
C5  
22 µF  
C6  
22 µF  
0.1 µF  
VFB  
R3  
10.0 k  
Not Installed  
8-1. Tps562200 1.05v/2a Reference Design  
8.2.1.1 Design Requirements  
To begin the design process, the user must know a few application parameters:  
8-1. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
4.5 V to 17 V  
1.05 V  
Output current  
2 A  
Output voltage ripple  
20 mVpp  
8.2.1.2 Detailed Design Procedures  
8.2.1.2.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the WEBENCH Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
8.2.1.2.2 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using Equation 2 to calculate VOUT  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
 
 
 
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
To improve efficiency at light loads consider using larger value resistors, too high of resistance is more  
susceptible to noise and voltage errors from the VFB input current are more noticeable.  
R2  
æ
ö
VOUT = 0.765 ´ 1+  
ç
÷
R3  
è
ø
(2)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
16  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
8.2.1.2.3 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
F =  
P
2p LOUT ´ COUT  
(3)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off  
at a 40 dB per decade rate and the phase drops rapidly. D-CAP2 control scheme introduces a high frequency  
zero that reduces the gain roll off to 20 dB per decade and increases the phase to 90 degrees one decade  
above the zero frequency. The inductor and capacitor selected for the output filter must be selected so that the  
double pole of Equation 3 is located below the high frequency zero but close enough that the phase boost  
provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this  
requirement use the values recommended in Table 1.  
8-2. TPS562200 Recommended Component Values  
L1(uH)  
Output Voltage (V)  
C5 + C6 (µF)  
R2 (kΩ)  
R3 (kΩ)  
MIN  
1.5  
TYP  
2.2  
MAX  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
2.2  
2.2  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
6.5  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 方程式 4, 方程式 5  
and Equation 6. The inductor saturation current rating must be greater than the calculated peak current and the  
RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for ƒSW  
.
Use 650 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of 方程式 5 and the RMS  
current of 方程6.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(4)  
(5)  
IlP-P  
IlPEAK = IO +  
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 2.34 A and the calculated RMS current is 2.01 A. The  
inductor used is a TDK CLF7045T-2R2N with a peak current rating of 5.5 A and an RMS current rating of 4.3 A  
The capacitor value and ESR determines the amount of output voltage ripple. The device is intended for use  
with ceramic or other low ESR capacitors. Recommended values range from 20 µF to 68 µF. Use 方程式 7 to  
determine the required RMS current rating for the output capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
 
 
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
VOUT ´ VIN - VOUT  
(
12 ´ V ´LO ´ ƒSW  
)
ICO(RMS)  
=
IN  
(7)  
For this design, two TDK C3216X5R0J226M 22-µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.286 A and each output capacitor is rated for 4 A.  
8.2.1.2.4 Input Capacitor Selection  
The device requires an input decoupling capacitor and a bulk capacitor is needed depending on the application.  
TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF capacitor(C3)  
from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating must  
be greater than the maximum input voltage.  
8.2.1.2.5 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI  
recommends to use a ceramic capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
18  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
8.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0.5  
1
Output Current (A)  
1.5  
2
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
D032  
D033  
8-2. Tps562200 Efficiency  
8-3. Tps562200 Light Load Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.5  
1
Output Current (A)  
1.5  
2
0
0.5  
1
Output Current (A)  
1.5  
2
D034  
D034  
8-4. Tps562200 Load Regulation, VI = 5 V  
8-5. Tps562200 Load Regulation, VI = 12 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 2 A  
VI = 100 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
Time = 1 µsec / div  
D036  
8-6. Tps562200 Line Regulation  
8-7. Tps562200 Input Voltage Ripple  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
IO = 10 mA  
IO = 250 mA  
VO = 20 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 1 µsec / div  
Time = 20 µsec / div  
8-9. Tps562200 Output Voltage Ripple  
8-8. Tps562200 Output Voltage Ripple  
IO = 2 A  
VO = 20 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
IO = 500 mA / div  
SW = 5 V / div  
Load step = 0.5 A - 1.5 A  
Slew rate = 500 mA / µsec  
Time = 1 µsec / div  
Time = 200 µsec / div  
8-10. Tps562200 Output Voltage Ripple  
8-11. Tps562200 Transient Response  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 2 msec / div  
Time = 2 msec / div  
8-13. Tps562200 Start Up Relative to En  
8-12. Tps562200 Start Up Relative to VI  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 2 msec / div  
Time = 2 msec / div  
8-14. Tps562200 Shut Down Relative to VI  
8-15. Tps562200 Shut Down Relative to En  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
8.2.2 Tps563200 4.5-V To 17-V Input, 1.05-V Output Converter  
U1  
L1 1.5 uH  
TPS563200  
VOUT = 1.05 V, 3 A  
VIN = 4.5 V to 17 V  
3
5
4
2
6
1
VIN  
VIN  
EN  
SW  
VBST  
GND  
VOUT  
C4  
R1 10.0k  
R2  
3.74k  
EN  
C1  
10µF  
C2  
10µF  
C3  
0.1µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
0.1µF  
VFB  
R3  
10.0k  
Copyright © 2016, Texas Instruments Incorporated  
8-16. Tps563200 1.05v/3a Reference Design  
8.2.2.1 Design Requirements  
To begin the design process, the user must know a few application parameters:  
8-3. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
4.5 V to 17 V  
1.05 V  
Output current  
3 A  
Output voltage ripple  
20 mVpp  
8.2.2.2 Detailed Design Procedures  
The detailed design procedure for TPS563200 is the same as for TPS562200 except for inductor selection.  
8.2.2.2.1 Output Filter Selection  
8-4. Tps563200 Recommended Component Values  
L1 (µH)  
Output Voltage (V)  
C5 + C6 + C7 (µF)  
R2 (kΩ)  
R3 (kΩ)  
MIN  
TYP  
MAX  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.2  
2.2  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
3.3  
3.3  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
6.5  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 方程式 8, 方程式 9  
and 方程式 10. The inductor saturation current rating must be greater than the calculated peak current and the  
RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for ƒSW  
.
Use 650 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of 方程式 9 and the RMS  
current of 方程10.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(8)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
22  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
 
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
IlP-P  
IlPEAK = IO +  
2
(9)  
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(10)  
For this design example, the calculated peak current is 3.505 A and the calculated RMS current is 3.014 A. The  
inductor used is a TDK CLF7045T-1R5N with a peak current rating of 7.3 A and an RMS current rating of 4.9 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS563209 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 20 μF to 68 μF. Use Equation  
6 to determine the required RMS current rating for the output capacitor. For this design three TDK  
C3216X5R0J226M 22μF output capacitors are used. The typical ESR is 2 mΩ each. The calculated RMS  
current is 0.292 A and each output capacitor is rated for 4 A.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
8.2.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
D027  
D028  
8-17. Tps563200 Efficiency  
8-18. Tps563200 Light Load Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D029  
D030  
8-19. Tps563200 Load Regulation, VI = 5 V  
8-20. Tps563200 Load Regulation, VI = 12 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 3 A  
VI = 50 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
Time = 1 µsec / div  
D031  
8-21. Tps563200 Line Regulation  
8-22. Tps563200 Input Voltage Ripple  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
IO = 0 mA  
IO = 300 mA  
VO = 20 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 1 µsec / div  
Time = 5 msec / div  
8-23. Tps563200 Output Voltage Ripple  
8-24. Tps563200 Output Voltage Ripple  
IO = 3 A  
VO = 50 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
SW = 5 V / div  
IO = 1 A / div  
Load step = 0.75 A - 2.25 A  
Slew rate = 500 mA / µsec  
Time = 1 µsec / div  
Time = 200 µsec / div  
8-25. Tps563200 Output Voltage Ripple  
8-26. Tps563200 Transient Response  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 1 msec / div  
Time = 1 msec / div  
8-27. Tps563200 Start-up Relative to VI  
8-28. Tps563200 Start-up Relative to En  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
EN = 10 V / div  
VO = 500 mV / div  
Time = 1 msec / div  
Time = 1 msec / div  
8-29. Tps563200 Shut Down Relative to VI  
8-30. Tps563200 Shutdown Relative to En  
8.3 Power Supply Recommendations  
The TPS562200 and TPS563200 are designed to operate from input supply voltage in the range of 4.5 V to 17  
V. Buck converters require the input voltage to be higher than the output voltage for proper operation. The  
maximum recommended operating duty cycle is 65%. Using that criteria, the minimum recommended input  
voltage is VO / 0.65.  
8.4 Layout  
8.4.1 Layout Guidelines  
1. VIN and GND traces must be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor must be placed as close to the device as possible to minimize trace  
impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path must be connected to the upper feedback resistor  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop must be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node must be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin must be as wide as possible to minimize its  
trace impedance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
26  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
8.4.2 Layout Example  
GND  
VOUT  
Additional  
Vias to the  
GND plane  
OUTPUT  
CAPACITOR  
Vias to the  
internal SW  
node copper  
BOOST  
CAPACITOR  
OUTPUT  
INDUCTOR  
FEEDBACK  
RESISTORS  
GND  
SW  
VBST  
TO ENABLE  
CONTROL  
EN  
VFB  
VIN  
Vias to the  
internal SW  
node copper  
HIGH FREQUENCY  
INPUT BYPASS  
CAPACITOR  
SW node copper  
pour area on internal  
or bottom layer  
INPUT BYPASS  
CAPACITOR  
VIN  
8-31. Typical Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS562200 TPS563200  
English Data Sheet: SLVSCB0  
TPS562200, TPS563200  
ZHCSC24E JANUARY 2014 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the WEBENCH Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
D-CAP2and TI E2Eare trademarks of Texas Instruments.  
蓝光光盘is a trademark of Blu-ray Disc Association.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, And Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCB0  
28  
Submit Document Feedback  
Product Folder Links: TPS562200 TPS563200  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS562200DDCR  
TPS562200DDCT  
TPS563200DDCR  
TPS563200DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
200  
200  
320  
320  
Samples  
Samples  
Samples  
Samples  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS562200DDCR  
TPS562200DDCT  
TPS563200DDCR  
TPS563200DDCT  
SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
SOT-23-  
THIN  
3000  
250  
SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS562200DDCR  
TPS562200DDCT  
TPS563200DDCR  
TPS563200DDCT  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS562201

具有 Eco-mode 的 4.5V 至 17V 输入电压、2A 输出电流、同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562201DDCR

具有 Eco-mode 的 4.5V 至 17V 输入电压、2A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562201DDCT

具有 Eco-mode 的 4.5V 至 17V 输入电压、2A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562202

4.3V 至 17V 输入、2A 输出同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562202DRLR

4.3V 至 17V 输入、2A 输出同步降压转换器 | DRL | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562202S

采用 SOT563 封装的 4.3V 至 17V 输入、2A ECO 模式同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562202SDRLR

采用 SOT563 封装的 4.3V 至 17V 输入、2A ECO 模式同步降压转换器 | DRL | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562207

采用 SOT563 封装的 4.3V 至 17V 输入、2A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562207DRLR

采用 SOT563 封装的 4.3V 至 17V 输入、2A 同步降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562207S

采用 SOT563 封装的 4.3V 至 17V 输入、2A FCCM 模式同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562207SDRLR

采用 SOT563 封装的 4.3V 至 17V 输入、2A FCCM 模式同步降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS562208

采用 FCCM 模式的 4.5V 至 17V 输入电压、2A 输出电流、同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI