TPS56300PWPR [TI]

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP;
TPS56300PWPR
型号: TPS56300PWPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP

开关 光电二极管
文件: 总40页 (文件大小:1178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌꢍꢋꢎ ꢏꢁꢈꢀꢋ ꢐꢌ ꢊꢀꢉ ꢑꢒ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
PWP PACKAGE  
(TOP VIEW)  
D
D
2.8 V – 5.5 V Input Voltage Range  
Programmable Dual Output Controller  
Supports Popular DSP and Microcontroller  
Core and I/O Voltages  
− Switching Regulator Controls Core  
Voltage  
− Low Dropout Controller Regulates I/O  
Voltage  
1
2
3
4
5
6
7
8
9
28  
VID0  
VID1  
SLOWST  
VHYST  
DROOP  
OCP  
IOUT  
PWRGD  
VSEN−LDO  
NGATE−LDO  
INHIBIT  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VREFB  
VSEN−RR  
ANAGND  
BIAS  
VLDODRV  
CPC1  
Thermal  
Pad  
D
Programmable Slow-Start Ensures  
Simultaneous Powerup of Both Outputs  
IOUTLO  
HISENSE  
LOSENSE/LOHIB  
HIGHDR  
BOOT  
BOOTLO  
LOWDR  
D
Power Good Output Monitors Both Outputs  
10  
D
Fast Ripple Regulator Reduces Bulk  
Capacitance for Lower System Costs  
11  
12  
13  
14  
V
CC  
CPC2  
VDRV  
DRVGND  
D
D
D
1.5% Reference Voltage Tolerance  
Efficiencies Greater than 90%  
Overvoltage, Undervoltage, and Adjustable  
Overcurrent Protection  
PowerPADPackage  
D
Drives Low-Cost Logic Level N-Channel  
MOSFETs Through Entire Input Voltage  
Range  
D
Evaluation Module TPS56300EVM−139  
Available  
description  
The high performance TPS56300 synchronous-buck regulator provides two supply voltages to power the core and  
I/O of digital signal processors, such as the ‘C6000 family. The ripple regulator, using hysteretic control with droop  
compensation, is configured for the core voltage and features fast transient response time reducing output bulk  
capacitance (continued).  
typical design  
See Note A  
See Note A  
+
NOTE A: See Table 1  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
ꢀꢣ  
Copyright 2000, Texas Instruments Incorporated  
ꢟ ꢣ ꢠ ꢟꢘ ꢙꢭ ꢛꢚ ꢞ ꢦꢦ ꢤꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢨ  
1
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
description (continued)  
The LDO controller drives an external N-channel power MOSFET and functions as an LDO regulator, suitable for  
powering the I/O or as a power distribution switch. To promote better system reliability during power up, voltage  
sequencing and protection are controlled such that the core and I/O power up together with the same slow-start  
voltage. At power down, the LDO and ripple regulator are discharged towards ground for added protection. The  
TPS56300 also includes inhibit, slowstart, and under-voltage lockout features to aide in controlling power  
sequencing. A tri-level voltage identification network (VID) sets both regulated voltages to any of 9 preset voltage  
pairs from 1.3 V to 3.3 V. Other voltages are possible by implementing an external voltage divider. Strong MOSFET  
drivers, with a typical peak current rating of 2-A sink and source are included on chip, enabling high system currents  
beyond 30 A. The high-side driver features a floating bootstrap driver with the internal bootstrap synchronous rectifier.  
Many protection features are incorporated within the device to ensure better system integrity. An open-drain output  
POWER GOOD status circuit monitors both output voltages, and is pulled low if either output fall below the threshold.  
An over current shutdown circuit protects the high-side power MOSFET against short-to-ground faults at load or the  
phase node, while over voltage protection turns off the output drivers and LDO controller if either output exceeds its  
threshold. Under voltage protection turns off the high-side and low-side MOSFET drivers and the LDO controller if  
either output is 25% below V  
. Lossless current-sensing is done by detecting the drain-source voltage drop across  
REF  
the high-side power MOSFET while it is conducting. The TPS56300 is fully compliant with TI DSP power requirements  
such as the ‘C6000 family.  
AVAILABLE OPTIONS  
PACKAGES  
T
J
EVALUATION MODULE  
TSSOP  
(PWP)  
−40°C to 125°C  
TPS56300PWP  
TPS56300EVM−139 (SLVP139)  
The PWP package is also available taped and reel. To order, add an R to the end of  
the part number (e.g., TPS56300PWPR).  
2
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
functional block diagram  
LOSENSE/  
LOHIB  
19  
IOUTLO HISENSE  
IOUT  
PWRGD  
25  
21  
20  
26  
+
8
Bias  
>0.93xVSEN−RR  
VDRV >0.93xVSEN−LDO  
Reg.  
9
VLDODRV  
22  
SHUTDOWN  
INHIBIT  
VDRV UVLO  
Vcc UVLO  
Delay  
INHIBIT  
11  
10  
Vcc  
HIGHDR  
RR_OVP  
Fault  
Latch  
S
LDO_OVP  
CPC1  
Q
RR_UVP *  
R
LDO_UVP *  
BOOT  
12  
CPC2  
SHUTDOWN  
27  
24  
23  
OCP  
VDRV  
+
125 mV  
5 V  
13  
VDRV  
VSEN−LDO  
NGATE−LDO  
SHUTDOWN  
VLDODRV  
E/A  
1
2
VID0  
VID1  
+
SLOWST  
SHUTDOWN  
Vref_LDO  
VID  
See table 1  
Vbias  
Hysteresis  
Comparator  
SLOWST  
17  
18  
16  
15  
BOOT  
Ivrefb/5  
Vref_RR  
SLOWST  
Adaptive  
Deadtime  
3
+
HIGHDR  
BOOTLO  
SHUTDOWN  
Hysteresis  
Setting  
VDRV  
SHUTDOWN  
LOWDR  
7
5
4
28  
6
14  
ANAGND  
RR−Ripple Regulator  
VREFB  
VHYST DROOP VSEN−RR  
DRVGND  
* UVP is disabled during  
slowstart  
Synchronous  
FET  
3
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
Terminal Functions  
TERMINAL  
DESCRIPTION  
NAME  
VID0  
NO.  
1
Voltage Identification input 0. VID pins are tri-level programming pins that set the output voltages for both convert-  
ers. The code pattern for setting the output voltage is located in table 1. The VID pins are internally pulled to  
Vbias/2, allowing floating voltage set to logic 1 (see table 1).  
VID1  
2
3
Voltage Identification input 1 (see VID0 above and table 1).  
SLOWST  
Slow start (soft start). A capacitor from pin 3 to GND sets the slowstart time for VOUT-RR and VOUT-LDO. Both  
supplies will ramp-up together while tracking the slow-start voltage.  
VHYST  
4
5
6
Hysteresis set pin. The hysteresis is set by 2 × (VREFB − Vhyst).  
VREFB  
Buffered ripple regulator reference voltage from VID network.  
VSEN-RR  
Ripple regulator VOLTAGE SENSE input. This pin is connected to the ripple regulator output. It is used to sense  
the ripple regulator voltage for regulation, OVP, UVP, and Powergood functions.. It is recommended that an RC  
low pass filter be connected at this pin to filter high frequency noise.  
ANAGND  
BIAS  
7
8
9
Analog ground  
Analog BIAS pin. Recommended that a 1-µF capacitor be connected to ANAGND.  
VLDODRV  
Output of charge pump generated through bootstrap diode. Approximately equal to VDRV + V – 300mV. Used  
IN  
as supply for LDO driver and Bias regulator. Recommended that a 1-µF capacitor be connected to DRVGND.  
CPC1  
10  
11  
Connect one end of Charge pump capacitor. Recommended that a 1-µF capacitor be connected from CPC1 to  
CPC2.  
V
CC  
3.3 V or 5 V supply (2.8 V – 5.5 V). Recommended that a low ESR capacitor be connected directly from V  
DRVGND. (Bulk capacitors supplied at power stage input).  
to  
CC  
CPC2  
VDRV  
12  
13  
Other end of charge pump capacitor from CPC1.  
Regulated output of internal charge pump. Supplies DRIVE charge for the low-side MOSFET driver (5V). Recom-  
mended that a 10-µF capacitor be connected to DRVGND.  
DRVGND  
LOWDR  
BOOTLO  
BOOT  
14  
15  
16  
17  
Drive ground. Ground for FET drivers. Connect to source of low-side FET.  
Low drive. Output drive to synchronous rectifier low-side FET.  
Bootstrap low. This pin connects to the junction of the high-side and low-side FETs.  
Bootstrap pin. Connect a 1-µF low ESR capacitor to BOOTLO to generate floating drive for the high-side FET  
driver.  
HIGHDR  
18  
19  
High drive. Output drive to high-side power switching FETs  
LOSENSE/  
LOHIB  
Low sense/low-side inhibit. This pin is connected to the junction of the high and low-side FETs and is used in cur-  
rent sensing and the anti-cross-conduction to eliminate shoot-through current.  
HISENSE  
IOUTLO  
INHIBIT  
20  
21  
22  
High current sense. For current sensing across high-side FETs, connect to the drain of the high-side FETs.  
Current sense low output. Voltage on this pin is the voltage on the LOSENSE pin when the high-side FETs are on.  
Inhibits the drive signals to the MOSFET drivers. IC is in low Iq state if INHIBIT is grounded. It is recommended  
that an external pullup resistor be connected to 5 V.  
NGATE-LDO  
VSEN−LDO  
23  
24  
Drives external N-channel power MOSFET to regulate LDO voltage to VREF-LDO.  
LDO voltage sense. This pin is connected to the LDO output. It is used to sense the LDO voltage for regulation,  
OVP, UVP, and power good functions.  
PWRGD  
25  
Power good. Power good signal goes high when output voltage is about 93% of V  
LDO. This is an open-drain output.  
for both ripple regulator and  
REF  
4
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
Terminal Functions (continued)  
TERMINAL  
NAME  
IOUT  
I/O  
DESCRIPTION  
NO.  
26  
Current signal output. Output voltage on this pin is proportional to the load current as measured across  
the high-side FETs on-resistance. The voltage on this pin equals 2 × R  
× IOUT, where Ron is the  
ON  
equivalent on-resistance of the high-side FETs  
OCP  
DROOP  
27  
28  
Over current protection. Current limit trip point for ripple regulator is set with a resistor divider between  
IOUT pin and ANAGND.  
Droop voltage. Voltage input used to set the amount of output voltage droop as a function of load current.  
The amount of droop compensation is set with a resistor divider between the IOUT pin and ANAGND.  
§¶  
Table 1. Voltage Identification Code  
VREF−LDO  
VID Terminals  
VREF−RR  
(Vdc)  
(Vdc)  
VID1  
VID0  
0
0
0
1
1
1
2
2
2
0
1
2
0
1
2
0
1
2
1.30  
1.50  
1.30  
1.80  
1.30  
2.50  
1.30  
1.50  
1.80  
1.5  
1.80  
1.80  
3.30  
1.30  
3.30  
2.50  
3.30  
2.50  
§
0 = ground (GND), 1 = floating(Vbias/2), 2 = (Vbias)  
RR = Ripple Regulator, LDO = Low Drop-Out Regulator  
Vbias/2 is internal, leave VID pin floating. Adding an external 0.1-µF capacitor to ANAGND may be used to  
avoid erroneous level.  
External resistors may be used as a voltage divider (from V  
voltages to other values.  
to VSEN−xx to Gnd) to program output  
OUT  
5
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
absolute maximum ratings over operating virtual junction temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
CC  
Input voltage range: VDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
BOOT to DRVGND (High-side Driver ON) . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 15 V  
BOOT to BOOTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
BOOT to HIGHDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
BOOTLO to DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 15 V  
DRV to DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
BIAS to ANAGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
INHIBIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
DROOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
+ 0.3 V  
CC  
OCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
VID0, VID1 (tri-level terminals) . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VBIAS + 0.3 V  
PWRGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
LOSENSE, LOHIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 14 V  
IOUTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 14 V  
HISENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
VSEN−LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
VSEN−RR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
Voltage difference between ANAGND and DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mV  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: Unless otherwise specified, all voltages are with respect to ANAGND.  
DISSIPATION RATING TABLE  
PWP  
T
A
< 25°C  
Derating Factor  
0.0358 W/°C  
T
A
= 70°C  
T = 85°C  
A
PowerPAD mounted  
PowerPAD unmounted  
3.58 W  
1.78 W  
1.96 W  
0.98 W  
1.43 W  
0.71 W  
0.0178 W/°C  
JUNCTION-CASE THERMAL RESISTANCE TABLE  
Junction-case thermal resistance 0.72 °C/W  
Test Board Conditions:  
1. Thickness: 0.062”  
2. 3”x 3” (for packages < 27 mm long)  
3. 4” x 4” (for packages > 27 mm long)  
4. 2 oz. Copper traces located on the top of the board (0.071 mm thick )  
5. Copper areas located on the top and bottom of the PCB for soldering  
6. Power and ground planes, 1oz. Copper (0.036 mm thick)  
7. Thermal vias, 0.33 mm diameter, 1.5 mm pitch  
8. Thermal isolation of power plane  
For more information, refer to TI technical brief SLMA002.  
6
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
electrical characteristics T = −40° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
J
CC  
input  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
CC  
Supply voltage range  
2.8  
3.3  
5.5  
V
INHIBIT = 0 V,  
= 5 V  
I
Quiescent current  
15  
mA  
CC  
V
CC  
NOTE 2. Ensured by design, not production tested.  
reference/voltage identification  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
D0−D1 High level input voltage (2)  
Vbias − 0.3 V  
V
V
V
bias  
* 1  
2
bias  
2
D0−D1 Mid level floating voltage (1)  
V
) 1  
D0−D1 Low level input voltage (0)  
Input pull-to-mid resistance  
cumulative reference  
0.3  
V
36.5  
73  
95  
KΩ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
= 1.3 V,  
Hysteresis window = 30 mV,  
REF  
T = 25°C  
−1.3  
0.25  
1.3  
J
V
= 1.3 V,  
Hysteresis window = 30 mV,  
See Note 2  
REF  
T = −40°C,  
−0.2  
Cumulative accuracy ripple regulator  
%
J
V
= full range, Hysteresis window = 30 mV,  
REF  
Droop = 0,  
−1.5  
−2  
1.5  
See Note 2  
V
= 1.3 V,  
I =0.1 A,  
O
REF  
Closed Loop,  
T = 25°C,  
Pass device = IRFZ24N,  
See Note 2  
2
J
Cumulative accuracy LDO  
%
V
= full range,  
I =0.1 A,  
O
Pass device = IRFZ24N,  
REF  
Closed Loop,  
See Note 2  
−2.5  
2.5  
NOTE 2. Ensured by design, not production tested.  
hysteretic comparator(ripreg)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Input bias current  
See Note 2  
500  
nA  
mV  
mV  
V
− V  
= 15 mV,  
VREFB  
VHYST  
Hysteresis accuracy  
−3.5  
60  
3.5  
Hysteresis window = 30mV  
Maximum hysteresis setting  
V
− V = 30 mV, See Note 2  
VREFB  
VHYST  
Propagation delay time from VSENSE to  
HIGHDR or LOWDR  
(excluding deadtime)  
10 mV overdrive, 1.3 V <= V  
See Note 2  
<= 3.3 V  
REF  
150  
5
250  
ns  
Prefilter pole frequency  
See Note 2  
MHz  
NOTE 2. Ensured by design, not production tested.  
7
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢒꢓ  
ꢀꢖ  
ꢗꢈ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
electrical characteristics T = −40° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
J
CC  
overvoltage protection  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
OVP ripple regulator trip point (RR)  
Upper threshold  
112  
115  
120  
%V  
REF  
Upper threshold − lower threshold,  
See Note 2  
Hysteresis (RR)  
10  
1
mV  
Comparator propagation delay time (RR)  
V
= 30mV,  
= 30mV,  
See Note 2  
See Note 2  
µs  
µs  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (RR)  
V
2.25  
112  
11  
overdrive  
OVP LDO trip point (LDO)  
Hysteresis (LDO)  
Upper threshold  
115  
10  
1
120  
%V  
REF  
Upper threshold − lower threshold,  
See Note 2  
mV  
µs  
Comparator propagation delay time (LDO)  
V
= 50mV,  
= 50mV,  
See Note 2  
See Note 2  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (LDO)  
V
2.25  
11  
µs  
overdrive  
NOTE 2. Ensured by design, not production tested.  
undervoltage protection  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
UVP ripple regulator trip point (RR)  
Lower threshold  
70  
75  
80  
%V  
REF  
Upper threshold − lower threshold,  
See Note 2  
Hysteresis (RR)  
10  
1
mV  
Comparator propagation delay time (RR)  
V
= 50mV,  
= 50mV,  
See Note 2  
See Note 2  
µs  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (RR)  
V
0.1  
70  
1
ms  
overdrive  
UVP LDO trip point (LDO)  
Hysteresis (LDO)  
Lower threshold  
75  
10  
1
80  
%V  
REF  
Upper threshold − lower threshold,  
See Note 2  
mV  
µs  
Comparator propagation delay time (LDO)  
V
= 50mV,  
= 50mV,  
See Note 2  
See Note 2  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (LDO)  
V
0.1  
1
ms  
overdrive  
NOTE 2. Ensured by design, not production tested.  
inhibit comparator  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.1  
MAX UNITS  
2.35  
V
Start threshold  
T = −40°C,  
J
See Note 2  
2.1  
Stop threshold  
1.79  
V
NOTE 2. Ensured by design, not production tested.  
VDRV UVLO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Start threshold  
Hysteresis  
See Note 2  
4.9  
V
V
V
See Note 2  
See Note 2  
0.3  
4.4  
0.35  
Stop threshold  
NOTE 2. Ensured by design, not production tested.  
8
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
electrical characteristics T = −40° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
J
CC  
slowstart  
PARAMETER  
CONDITIONS  
MIN  
10.4  
3
TYP  
MAX UNITS  
V
= 0.5V,  
(S/S)  
Resistance from VREFB pin to ANAGND = 20 kΩ  
VREFB = 1.3 V, Ichg = (I /5)  
Charge current  
13  
15.6  
µA  
VREFB  
= 1.3 V  
Discharge current  
V
(S/S)  
mA  
mV  
nA  
Comparator input offset voltage  
Comparator input bias current  
Hysteresis accuracy  
10  
100  
7.5  
See Note 2  
10  
−7.5  
mV  
ns  
Comparator propagation delay  
Overdrive = 10 mV,  
See Note 2  
560  
1000  
NOTE 2. Ensured by design, not production tested.  
V
UVLO  
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.72  
2.71  
MAX UNITS  
See Note 2  
2.80  
V
Start threshold  
Stop threshold  
T = −40°C,  
J
See Note 2  
See Note 2  
2.48  
V
NOTE 2. Ensured by design, not production tested.  
power good  
PARAMETER  
CONDITIONS  
MIN  
TYP  
93  
MAX UNITS  
V
and VDRV above UVLO thresholds  
90  
95  
IN  
T = −40°C,  
Undervoltage trip point ripple regulator  
(VSENSE−RR)  
%V  
REF  
See Note 2  
and VDRV above UVLO thresholds  
93  
J
V
90  
93  
95  
IN  
T = −40°C,  
Undervoltage trip point LDO  
(VSENSE−LDO)  
%V  
REF  
See Note 2  
93  
J
Output saturation voltage  
Leakage current  
I
=5 mA  
0.5  
1
0.75  
V
O
V
V
V
= 4.5V  
µA  
mV  
mV  
PGD  
REF  
REF  
= 1.3V, 1.5V, or 1.8V  
= 2.5V, or 3.3V  
50  
75  
Hysteresis  
100  
125  
Comparator high–low transition time  
(propagation delay only)  
See Note 2  
1
1
µs  
Comparator low–high transition time  
(propagation delay + deglitch)  
See Note 2  
0.2  
2
ms  
NOTE 2. Ensured by design, not production tested.  
droop compensation  
PARAMETER  
CONDITIONS  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
54 mV  
Initial accuracy  
V
= 50 mV  
46  
DROOP  
overcurrent protection (RR)  
PARAMETER  
OCP trip point  
MIN  
TYP  
MAX UNITS  
118  
130  
142  
300  
mV  
nA  
µs  
Input bias current  
Comparator propagation delay time  
V
= 30mV,  
= 30mV,  
See Note 2  
See Note 2  
1
overdrive  
Deglitch time (includes comparator  
propagation delay time)  
V
2.25  
11  
µs  
overdrive  
NOTE 2. Ensured by design, not production tested.  
9
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢒꢓ  
ꢀꢖ  
ꢗꢈ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
electrical characteristics T = −40° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
J
CC  
high-side VDS sensing  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Gain  
2
V/V  
V
= 3.3 V,  
V
= 3.2 V,  
HISENSE  
Differential input to Vds sensing amp = 100 mV  
IOUTLO  
Initial accuracy  
194  
69  
208  
250  
mV  
V
V
=2.8 V to 5.5 V,  
− V  
HISENSE  
HISENSE IOUTLO  
Common-mode rejection ratio  
Sink current (IOUTLO)  
75  
dB  
nA  
µA  
=100 mV  
2.8 V < V  
IOUTLO  
< 5.5 V  
V
V
= 0.5 V,  
=2.8 V  
V
V
=3.3 V,  
IOUT  
IOUTLO  
HISENSE  
Source current (IOUT)  
500  
50  
V
V
= 0.05 V,  
=3.3 V  
=3.35 V,  
IOUT  
IOUTLO  
HISENSE  
Sink current (IOUT)  
Output voltage swing  
µA  
V
V
V
V
V
V
V
V
V
V
V
V
V
=5.5 V,  
=4.5 V,  
=3 V,  
R
R
R
= 10 kΩ  
0
0
1.75  
1.5  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE =  
HISENSE =  
HISENSE =  
HISENSE =  
IOUT  
IOUT  
IOUT  
= 10 kΩ  
= 10 kΩ  
V
0
0.75  
LOSENSE high level input voltage  
LOSENSE low level input voltage  
LOSENSE high level input voltage  
LOSENSE low level input voltage  
LOSENSE high level input voltage  
LOSENSE low level input voltage  
=2.8 V,  
=2.8 V,  
=4.5 V,  
=4.5 V,  
=5.5 V,  
=5.5 V,  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
1.77  
V
V
V
V
V
V
1.49  
2.4  
2.85  
3.80  
3.2  
90  
6 V,  
70  
80  
4.5 V,  
3.6 V,  
2.8 V,  
100  
120  
180  
Sample/hold resistance  
90  
120  
V
V
= 2.55 V,  
HISENSE  
pulsed from 2.55 V to 2.45 V,  
4
3.5  
3
IOUTLO  
100 ns rise and fall times,  
See Note 2  
V
V
= 2.8 V,  
HISENSE  
pulsed from 2.8 V to 2.7 V,  
IOUTLO  
100 ns rise and fall times,  
See Note 2  
Response time (measured from 90% of  
µs  
V
to 90% of V )  
V
V
= 4.5 V,  
IOUTLO  
IOUT  
HISENSE  
pulsed from 4.5V to 4.4V,  
IOUTLO  
100 ns rise and fall times,  
See Note 2  
V
V
= 5.5 V,  
HISENSE  
pulsed from 5.5 V to 5.9 V,  
3
IOUTLO  
100 ns rise and fall times,  
See Note 2  
500  
100  
Short circuit protection rising edge delay  
Sample/hold switch turnon/turnoff delay  
LOSENSE grounded,  
See Note 2  
300  
30  
ns  
ns  
2.8V < V  
V
< 5.5V,  
HISENSE  
= V  
,
See Note 2  
LOSENSE  
HISENSE  
NOTE 2. Ensured by design, not production tested.  
10  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
electrical characteristics T = −40° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
J
CC  
buffered reference  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
REF  
+1.5%  
REF  
I
I
=50 µA,  
=50 µA,  
Accuracy from V  
nominal  
nominal  
V
REF  
REFB  
REF  
−1.5%  
VREFB output voltage  
V
Accuracy from V  
See Note 2  
REFB  
J
REF  
V
−0.6%  
REF  
T = −40°C,  
VREFB load regulation  
10 µA < I  
REFB  
< 500 µA  
2
mV  
NOTE 2. Ensured by design, not production tested.  
thermal shutdown  
PARAMETER  
CONDITIONS  
MIN  
TYP  
145  
10  
MAX UNITS  
Over temperature trip point  
Hysteresis  
See Note 2  
See Note 2  
°C  
°C  
NOTE 2. Ensured by design, not production tested.  
synch charge pump regulator  
PARAMETER  
CONDITIONS  
MIN  
200  
5.05  
TYP  
300  
5.2  
MAX UNITS  
Internal oscillator frequency  
2.8 V < V < 5.5 V, I  
IN DRV  
= 50 mA,  
VDRV=5 V  
See Note 2  
See Note 2  
400  
kHz  
V
Internal oscillator turnon threshold  
Internal oscillator turnon hysteresis  
V
above UVLO threshold,  
above UVLO threshold,  
CC  
CC  
V
20  
mV  
NOTE 2. Ensured by design, not production tested.  
hysteretic comparator (charge pump)  
PARAMETER  
CONDITIONS  
above UVLO threshold,  
MIN  
TYP  
MAX UNITS  
Threshold  
Hysteresis  
V
V
See Note 2  
See Note 2  
5.05  
5.2  
V
IN  
above UVLO threshold,  
20  
mV  
IN  
NOTE 2. Ensured by design, not production tested.  
bias regulator  
PARAMETER  
CONDITIONS  
2.8V < V < 5.5 V, Rip reg operating See Note 3  
MIN  
TYP  
MAX UNITS  
Output voltage  
6.1  
V
IN  
NOTE 3. The BIAS regulator is designed to provide a quiet bias supply for TPS56300 controller. External loads should not be driven by the BIAS  
Regulator.  
deadtime circuit  
PARAMETER  
LOSENSE/LOHIB high level input voltage  
LOSENSE/LOHIB low level input voltage  
LOWDR high level input voltage  
LOWDR low level input voltage  
Driver nonoverlap time  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
V
V
=2.55 V – 5.5 V, See Note 2  
=2.55 V – 5.5 V, See Note 2  
2.4  
V
HISENSE  
HISENSE  
HISENSE  
HISENSE  
1.33  
V
V
=2.55 V–5.5 V,  
=2.55 V–5.5 V,  
See Note 2  
See Note 2  
3
1.7  
V
C
= 9 nF, 10% threshold on LOWDR, VDRV=5 V  
40  
170  
ns  
lowdr  
NOTE 2. Ensured by design, not production tested.  
11  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢒꢓ  
ꢀꢖ  
ꢗꢈ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
electrical characteristics T = −40° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
J
CC  
output drivers (see Note 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Duty cycle < 2%,  
tpw < 100 us,  
= 4.5V,  
V
V
– V  
0.7  
2
BOOT  
BOOTLO  
= 4V (sink),  
See Note 2 and Figure 15  
HIGHDR  
Duty cycle < 2%,  
tpw < 100 us,  
V
V
– V  
= 4.5V,  
= 0.5V (src),  
1.2  
1.3  
1.4  
2
2
2
BOOT  
BOOTLO  
See Note 2 and Figure 15  
HIGHDR  
Peak output current  
A
Duty cycle < 2%,  
= 4.5 V,  
tpw < 100 µs,  
V
DRV  
V
= 4 V (sink)  
LOWDR  
See Note 2 and Figure 15  
Duty cycle < 2%, tpw < 100 us,  
V
= 4.5 V,  
V
= 0.5 V (src),  
DRV  
See Note 2 and Figure 15  
LOWDR  
V
– V  
= 4.5 V, V  
= 0.5 V  
BOOT  
See Note 2  
BOOTLO  
HIGHDR  
= 4 V,  
HIGHDR  
5
V
– V  
= 4.5V, V  
BOOT  
See Note 2  
BOOTLO  
45  
Output resistance  
V
V
= 4.5V,  
V
V
= 0.5V, See Note 2  
9
DRV  
LOWDR  
= 4.5V,  
= 4V,  
See Note 2  
45  
DRV  
LOWDR  
C = 3.3 nF,  
V
= 4.5V,  
l
BOOT  
HIGHDR rise/fall time (see Note 7)  
LOWDR rise/fall time (see Note 7)  
60  
40  
ns  
ns  
V
=grounded  
BOOTLO  
C = 3.3 nF,  
V
DRV  
= 4.5V  
l
INHIBIT grounded,  
< UVLO; VBOOT=6V,  
BOOTLO grounded  
V
10  
µA  
IN  
High-side driver quiescent current  
INHIBIT connected to +5 V,  
Fswx = 200KHz,  
BOOTLO = 0  
V
> UVLO  
IN  
VBOOT = 5.5 V,  
= 50 pF  
2
mA  
C
HIGHDR  
See Note 2  
NOTES: 2. Ensured by design, not production tested.  
5. The pullup/pulldown circuits of the drivers are bipolar and MOSFET transistors in parallel. The peak output current rating is the  
combined current from the bipolar and MOSFET transistors. The output resistance is the R  
the voltage on the driver output is less than the saturation voltage of the bipolar transistor.  
of the MOSFET transistor when  
ds(on)  
LDO N-channel output driver  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
= 7.5V,  
= 0.9 × V  
V
=3 V(src),  
LDODRV  
IOSENSE  
N−DRV  
190  
1.5  
200  
µA  
,
See Note 2  
See Note 2  
LDOREF  
Peak output current  
V
V
= 7.5V,  
= 1.1 × V  
V
N−DRV  
LDOREF  
=0 V(snk),  
LDODRV  
IOSENSE  
mA  
,
Open loop voltage gain  
V
= 5.5 V,  
7.5 V V  
0.5 V,  
3000  
(70)  
V/V  
(dB)  
IN  
NGATE−LDO  
(V  
/ V  
)
See Note 2  
NGATE−LDO SENSE−LDO  
f=1 kHz,  
C
=10 µF,  
T =125 °C,  
J
O
Power supply ripple rejection  
60  
dB  
5.5 V V 2.55 V, See Note 2  
IN  
NOTE 2. Ensured by design, not production tested.  
12  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
electrical characteristics T = −40° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
J
CC  
V
and V  
discharge  
SENSE−RR  
SENSE−LDO  
PARAMETER  
CONDITIONS  
= 1.5 VS,ee Note 2  
MIN  
TYP  
MAX UNITS  
V
discharge FET current satura-  
discharge series resistance  
discharge FET propagation  
SENSE−RR  
tion  
V
5
mA  
SENSE−RR  
V
SENSE−RR  
(limits current)  
INHIBIT = 0 V,  
See Note 2  
V
IN  
= 5.5 V  
1
kΩ  
V
SENSE−RR  
delay time  
100  
100  
ns  
mA  
kΩ  
ns  
V
discharge FET current satu-  
discharge series  
SENSE−LDO  
ration  
V
= 3.3 V,  
See Note 2  
= 5.5 V,  
5
1
SENSE−LDO  
V
SENSE−LDO  
INHIBIT = 0 V,  
See Note 2  
V
IN  
resistance (limits current)  
V
discharge FET  
SENSE−LDO  
propagation delay time  
NOTE 2. Ensured by design, not production tested.  
detailed description  
reference/voltage identification  
The reference/voltage identification (VID) section consists of a temperature compensated bandgap reference and  
a 2-pin voltage selection network. Both ripple regulator and LDO reference voltages are programmed with each VID  
setting. The 2 VID pins are inputs to the VID selection network and are tri-level inputs that may be set to GND, floating  
(internally 2.5V), or VDRV. The VID codes allow the controller to power both current and future DSP products. The  
output voltages may also be programmed by external resistor voltage dividers for any values not included in the VID  
code settings. Refer to Table 1 for the VID code settings. The output voltages of the VID network, VREF−RR &  
VREF−LDO, are within 1.5% of the nominal setting for all the VID range of 1.3V to 3.3V. The reference tolerance  
conditions include a junction temperature range of −40°C to +125°C and a V  
supply voltage range of 2.8 V to 5.5  
CC  
V. The VREF−RR output of the reference/VID network is indirectly brought out through a buffer to the VREFB pin.  
The voltage on this pin will be within 1.5% of VREF−RR. It is not recommended to drive loads with VREFB, other than  
setting the hysteresis of the hysteretic comparator, because the current drawn from VREFB sets the charging current  
for the slowstart capacitor. Refer to the Slowstart section for additional information.  
hysteretic comparator  
The hysteretic comparator regulates the output voltage of the synchronous-buck converter. The hysteresis is set by  
2 external resistors and is centered around V  
. The 2 external resistors form a resistor divider from VREFB to  
REF  
ANAGND, and the divided down voltage connects to the VHYST pin. The hysteresis of the comparator will be equal  
to twice the voltage difference that is across the VREFB and VHYST pins. The propagation delay from the comparator  
inputs to the driver outputs is 250 ns maximum. The maximum hysteresis setting is 60 mv.  
low-side driver  
The low-side driver is designed to drive low Rds(on) logic-level N-channel MOSFETs. The current rating of the driver  
is 2 amps typical, source and sink. The bias to the low-side driver is internally connected to the regulated synchronous  
charge pump output.  
13  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
detailed description (continued)  
high-side driver  
The high-side driver is designed to drive low Rds(on) logic-level N-channel MOSFETs. The current rating of the driver  
is 2 amps typical, source and sink. The high-side driver can be configured either as a floating bootstrap driver or as  
a ground-reference driver. When configured as a floating driver, the bias voltage to the driver is developed from the  
charge pump VDRV voltage. The internal synchronous bootstrap rectifier, connected between the VDRV and BOOT  
pins, is a synchronously-rectified MOSFET for improved drive efficiency. The maximum voltage that can be applied  
between the BOOT pin and ground is 14 V. The driver can be referenced to ground by connecting BOOTLO to  
DRVGND, and connecting a voltage (4.5 V + V ) to the BOOT pin.  
CC  
deadtime control  
Deadtime control prevents shoot-through current from flowing through the main power FETs during switching  
transitions by actively controlling the turn-on time of the MOSFET drivers. The high-side driver is not allowed to turn  
on until the gate drive voltage to the low-side FET is below 1 V, and the low-side driver is not allowed to turn on until  
the voltage at the junction of the 2 FETs (Vphase) is below 2 V.  
current sensing  
Current sensing is achieved by sampling and holding the voltage across the high-side power FET while the high-side  
FET is on. The sampling network consists of an internal 60-switch and an external hold capacitor. Internal logic  
controls the turnon and turnoff of the sample/hold switch such that the switch does not turn on until the Vphase voltage  
transitions high, and the switch turns off when the input to the high-side driver goes low. Thus sampling will occur only  
when the high-side FET is conducting current. The voltage on the IOUT pin equals 2 times the sensed high-side  
voltage.  
droop compensation  
The droop compensation network reduces the load transient overshoot / undershoot on V  
, relative to V  
by an external resistor  
(see  
OUT  
REF  
application information for more details). V  
is programmed to a voltage greater than V  
OUT  
REF  
divider from V  
to the VSENSE pin to reduce the undershoot on V  
during a low to high load transient. The  
OUT  
OUT  
overshoot during a high to low load transient is reduced by subtracting the voltage that is on the DROOP pin from  
. The voltage on the IOUT pin is divided down with an external resistor divider, and connected to the DROOP  
V
pin.  
REF  
inhibit  
INHIBIT is a TTL compatible comparator pin that is used to enable the controller. When INHIBIT is lower than the  
threshold, the output drivers are low and the slowstart capacitor is discharged. When INHIBIT goes high (above 2.1  
V), the short across the slowstart capacitor is released and normal converter operation begins. When another system  
logic supply is connected to the INHIBIT pin, this pin controls power sequencing by locking out controller operation  
until the system logic supply exceeds the input threshold voltage of the inhibit circuit; thus the +3.3-V supply and  
another system logic supply (either +5 V or +12 V) must be above UVLO thresholds before the controller is allowed  
to start up. Toggling the INHIBIT pin down clears the fault latch.  
V
& VDRV undervoltage lockout  
CC  
The V  
undervoltage lockout circuit disables the controller while the V  
supply is below the 2.8-V start threshold.  
CC  
CC  
The VDRV undervoltage lockout circuit disables the controller while the VDRV supply is below the 4.9 V start  
threshold during powerup. While the controller is disabled, the output drivers will be low, the LDO drive is off, and the  
slowstart capacitor will be shorted. When V  
capacitor is released and normal converter operation begins.  
and VDRV exceed the start threshold, the short across the slowstart  
CC  
14  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
detailed description (continued)  
slowstart  
The slowstart circuit controls the rate at which VOUT−RR and VOUT−LDO power up (at same time). A capacitor is  
connected between the SLOWST and ANAGND pins and is charged by an internal current source. The value of the  
current source is proportional to the reference voltage, so that the charging rate of C  
regulator reference voltage. The slowstart charging current is determined by the following equation:  
is proportional to the ripple  
slowst  
I
VREFB  
I
+
SLOWSTART  
5
Where I  
is the current flowing out of the VREFB pin. It is recommended that no additional loads be connected  
VREFB  
to VREFB, other than the resistor divider for setting the hysteresis voltage. Thus these resistor values will determine  
the slowstart charging current. The maximum current that can be sourced by the VREFB circuit is 500 µA. The  
equation for the slowstart time is:  
T
+ 5   C  
  R  
SLOWSTART  
SLOWSTART  
VREFB  
Where R  
is the total external resistance from VREFB to ANAGND.  
VREFB  
power good  
The power good circuit monitors for an undervoltage condition on VOUT−RR and VOUT−LDO. The powergood  
(PWRGD) pin is pulled low if either VOUT−RR is 7% below VREF−RR, or VOUT−LDO is 7% below VREF−LDO.  
PWRGD is an open drain output. The powergood pin is also pulled down, if either V  
thresholds.  
or VDRV are below their UVLO  
CC  
overvoltage protection  
The overvoltage protection circuit monitors VOUT−RR and VOUT−LDO for an overvoltage condition. If VOUT−RR  
or VOUT−LDO are 15% above their reference voltage, then a fault latch is set and both output drivers and LDO are  
turned off. The latch will remain set until the V  
to 5 µs deglitch timer is included for noise immunity.  
or inhibit voltages go below their undervoltage lockout values. A 1-µs  
CC  
overcurrent protection  
The overcurrent protection circuit monitors the current through the high-side FET. The overcurrent threshold is  
adjustable with an external resistor divider between IOUT and ANAGND pins, with the divider voltage connected to  
the OCP pin. If the voltage on the OCP pin exceeds 125 mV, then a fault latch is set and the output drivers are turned  
off. The latch will remain set until the V  
5-µs deglitch timer is included for noise immunity. The OCP circuit is also designed to protect the high-side power  
FET against a short-to-ground fault on the terminal common to both power FETs.  
or inhibit voltages go below their undervoltage lockout values. A 1-µs to  
CC  
undervoltage protection  
The undervoltage protection circuit monitors VOUT−RR and VOUT−LDO for an undervoltage condition. If VOUT−RR  
or VOUT−LDO is 15% below their reference voltage, then a fault latch is set and both output drivers and LDO are  
turned off. The latch will remain set until the V  
or inhibit voltages go below their undervoltage lockout values. A  
CC  
100-µs to 1-ms deglitch timer is included for noise immunity.  
15  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
detailed description (continued)  
synchronous charge pump  
The regulated synchronous charge pump provides drive voltage to the low-side driver at VDRV (5V), and to the  
high-side driver when the high-side driver is configured as a floating driver. The minimum drive voltage is 4.5V, (typical  
5V). The minimum short circuit current is 80 mA. The bootstrap capacitor is used to provide Vdrive for the high-side  
FET, the power for VLDODRV, and the bias regulator. Instead of diodes, synchronous rectified MOSFETs are used  
to reduce voltage drop losses and allow a lower input voltage threshold. The charge pump oscillator operates at 300  
kHz until the UVLO VDRV is set; after which it is synchronized to the converter switching frequency and is turned on  
and off to regulate VDRV at 5 V.  
The charge pump is designed to operate at a switching frequency of 200 kHz to 400 kHz. Operation at low frequency  
may require larger capacitors on CPC and VDRV pin. High frequency (> 400 kHz) may not be possible.  
power sequence  
The VOUT−LDO voltage is powered up with respect to the same slowstart reference voltage as the VOUT−RR. Also,  
at power down, the VOUT−RR and VOUT−LDO are discharged to ground through P-channel MOSFETs in series with  
1-kresistors.  
TYPICAL CHARACTERISTICS  
QUIESCENT CURRENT  
vs  
V
UVLO HYSTERESIS  
vs  
CC  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
13  
12  
11  
10  
180  
175  
170  
165  
160  
155  
150  
V
= 3.3 V  
CC  
Inhibit = 0 V  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 1  
Figure 2  
16  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
V
UVLO START THRESHOLD VOLTAGE  
SLOWSTART CHARGE CURRENT  
vs  
CC  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.750  
2.725  
2.700  
2.675  
2.650  
15  
14  
13  
12  
11  
10  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 3  
Figure 4  
SLOWSTART TIME  
vs  
SUPPLY CURRENT (VREFB)  
SLOWSTART TIME  
vs  
SLOWSTART CAPACITANCE  
1000  
100  
10  
V
V
= 3.3 V  
= 1.3 V  
= 0.1 µF  
CC  
(VREFB)  
V
V
= 3.3 V  
CC  
= 1.3 V  
(VREFB)  
(VREFB)  
J
C
S
J
I
T
= 65 µA  
T
= 27°C  
= 25°C  
100  
10  
1
1
0.1  
0.0001  
1
10  
100  
1000  
0.0010  
0.0100  
0.1000  
1
I
− Supply Current (VREFB) − µA  
CC  
Slowstart Capacitance − µF  
Figure 5  
Figure 6  
17  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
DRIVER  
RISE TIME  
vs  
DRIVER  
FALL TIME  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1000  
100  
1000  
100  
T
J
= 27°C  
T = 27°C  
J
High Side  
High Side  
Low Side  
Low Side  
10  
10  
1
0.1  
1
0.1  
1
10  
100  
1
10  
100  
C
− Load Capacitance − nF  
C
− Load Capacitance − nF  
L
L
Figure 7  
Figure 8  
DRIVER  
DRIVER  
HIGH-SIDE OUTPUT RESISTANCE  
vs  
LOW-SIDE OUTPUT RESISTANCE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
5.0  
8
7
6
5
4
3
2
1
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 9  
Figure 10  
18  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
DRIVER  
INPUT CURRENT  
vs  
VDRV UVLO START THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
OUTPUT VOLTAGE  
5
4.5  
4
4.70  
4.69  
4.68  
4.67  
4.66  
4.65  
3.5  
3
2.5  
2
2 A Typical  
1.5  
1
4.5 V  
3
0.5  
0
0
1
2
4
5
6
7
8
9
0
25  
50  
75  
100  
125  
V
O
− Output Voltage − V  
T
J
− Junction Temperature − °C  
Figure 11  
Figure 12  
RIPPLE REGULATOR  
VDRV UVLO HYSTERESIS  
vs  
POWERGOOD THRESHOLD  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
94.00  
93.75  
93.50  
93.25  
93.00  
92.75  
92.50  
92.25  
92.00  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 13  
Figure 14  
19  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
INHIBIT START THRESHOLD VOLTAGE  
INHIBIT HYSTERESIS VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.100  
2.075  
2.050  
2.025  
2.000  
140  
130  
120  
110  
100  
90  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 15  
Figure 16  
RIPPLE REGULATOR OVP THRESHOLD  
RIPPLE REGULATOR UVP THRESHOLD  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
118  
117  
116  
115  
77  
76  
75  
74  
114  
113  
112  
73  
72  
71  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 17  
Figure 18  
20  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
TYPICAL CHARACTERISTICS  
LDO OVP THRESHOLD  
vs  
OCP THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
118  
117  
116  
115  
114  
113  
112  
135  
133  
131  
129  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 19  
Figure 20  
LDO UVP THRESHOLD  
vs  
JUNCTION TEMPERATURE  
77  
76  
75  
74  
73  
72  
71  
0
25  
50  
75  
100  
125  
T
J
− Junction Temperature − °C  
Figure 21  
21  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
The design shown in this datasheet is a reference design for a DSP application. An evaluation module (EVM),  
TPS56300EVM−139 (SLVP139), is available for customer testing and evaluation. The following figure is an  
application schematic for reference. The circuit can be divided into the power-stage section and the control-circuit  
section. The power stage must be tailored to the input/output requirements of the application. The control circuit is  
basically the same for all applications with some minor tweaking of specific values. Table 2 shows the values of the  
power stage components for various output-current options.  
LDO  
POWER  
STAGE  
TP6  
FB2  
TP5  
+
J2  
+
JP3  
R14  
L1  
3.3 uH  
+
TP8  
TP7  
Q1:A  
J1  
Q4  
TP1  
TP11  
TP9  
TP3  
U1  
TPS56300PWP  
TP4  
TP2 Q1:B  
+
+
+
Q5  
+
TP10  
FB1  
JP1  
JP2  
RIPPLE REGULATOR POWER STAGE  
CONTROL SECTION  
When an output current greater than 4 A is desired on the ripple regulator, please add a 10 resistor (R14) between pin 18 and Q1:A.  
Because the EVM is configured for 4 A and below, R14 is 0 and is not included on the module.  
Figure 22. EVM Schematic  
Table 2. EVM Input and Outputs  
V
IN  
5 V  
I
V
RR  
1.8 V  
I
V
LDO  
3.3 V  
I
IN  
4 A  
RR  
4 A  
LDO  
0.5 A  
22  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
Table 3. Ripple Regulator Power Stage Components  
Ripple Regulator Section  
Ref Des  
C3, C6  
Function  
4A (EVM Design)  
C3: open  
C6: 150 µF  
(Sanyo,  
8A  
12A  
20A  
Input Bulk Ca-  
pacitor  
C3: 150 µF  
C6: 150 µF  
(Sanyo,  
C3: 150 µF  
C6: 150 µF  
(Sanyo,  
C3: 150 µF  
C6: 2x150 µF  
(Sanyo,  
6TPB150M)  
6TPB150M)  
6TPB150M)  
6TPB150M)  
C11, C2  
Input high−freq  
Capacitor  
C2: 0.1 µF  
C2: 0.1 µF  
C2: 0.1 µF  
C11: 0.1 µF  
(muRata  
C2: 0.33 µF  
C11: 0.1 µF  
C11: 0.1 µF  
C11: 0.33 µF  
(muRata  
(muRata  
(muRata  
GRM39X7R104K016A,  
0.1 µF, 16−V, X7R)  
GRM39X7R104K016A,  
0.1 µF, 16−V, X7R)  
GRM39X7R104K016A, 0.1  
µF, 16−V, X7R)  
GRM39X7R334K016A,  
0.33 µF, 16−V, X7R)  
C13, C14  
Output Bulk Ca-  
pacitor  
C13: 150 µF  
(Sanyo, 6TPB150M)  
C14: open  
C13: 150 µF  
(Sanyo, 6TPB150M)  
C14: open  
C13: 150 µF  
C13: 150 µF  
C14: 150 µF  
C14: 150 µF  
(Sanyo, 6TPB150M)  
(Sanyo, 6TPB150M)  
C15,C30,  
C31  
Output Mid−freq  
Capacitor  
C15: open  
C15: open  
C15: 10 µF  
C15: 10 µF  
C30: 10 µF  
C30: 10 µF  
C30: 10 µF  
C30: 10 µF  
C31: 10 µF  
C31: 10 µF  
C31: 10 µF  
(muRata  
C31: 10 µF  
(muRata  
(muRata  
(muRata  
GRM39X7R106K016A,  
10 µF, 16−V, X7R)  
GRM39X7R106K016A,  
10 µF, 16−V, X7R)  
GRM39X7R106K016A, 10  
µF, 16−V, X7R)  
GRM39X7R106K016A,  
10 µF, 16−V, X7R)  
C16  
Output High−freq open  
Capacitor  
0.1 µF  
(muRata  
0.1 µF  
(muRata  
0.1 µF  
(muRata  
GRM39X7R104K016A,  
0.1 µF, 16−V, X7R)  
GRM39X7R104K016A, 0.1  
µF, 16−V, X7R)  
GRM39X7R104K016A,  
0.1 µF, 16−V, X7R)  
L1  
L2  
Input filter  
3.3 µH  
3.3 µH  
1.5 µH  
1 µH  
Coilcraft  
Coilcraft  
Coilcraft  
Coiltronics  
DO3316P−332, 5.4 A  
DO3316P−332,5.4 A  
DO3316P−152,6.4 A  
UP3B−1R0, 12.5−A  
Output filter  
3.3 µH  
Coilcraft  
3.3 µH  
Coilcraft  
1.5 µH  
Coilcraft  
3.3 µH  
Micrometals,  
DO3316P−332, 5.4 A  
DO5022P−332HC, 10 A  
DO5022P−152HC,  
15 A  
T68−8/90 Core w/7T, #16,  
25 A  
R8  
Low Side Gate  
Resistor  
10 Ω  
10 Ω  
5.1 Ω  
5.1 Ω  
Q1A,Q4  
Q1B,Q5  
Power Switch  
Q1A: Dual FET  
IRF7311  
Q4: IRF7811  
Q5: IRF7811  
Q4: 2xIRF7811  
Q5: 2xIRF7811  
Q4: 2xIRF7811  
Synchronous  
Switch  
Q1B: Dual FET  
IRF7311  
Q5:  
2xIRF7811  
The values listed in Table 3 are recommendations based on actual test circuits. Many variations of the above are  
possible based upon the desires and/or requirements of the user. Performance of the circuit is equally, if not more,  
dependent upon the layout than on the specific components, as long as the device parameters are not exceeded.  
Fast-response, low-noise circuits require circuits require critical attention to the layout details.  
23  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
Table 4. LDO Power Stage Components  
LDO Section  
Ref. Des  
Q2:A  
Part  
V
IN  
V
Description  
OUT  
IRF7811(EVM)  
or  
V
IN  
V
IN  
− V  
DROPOUT  
Used as a power distribution switch for LDO  
output control  
Si4410, IRF7413  
FDS6680  
Q2:A  
Q2:A  
Q2: B  
IRF9410, Si9410  
Low cost solution for low LDO output cur-  
rent (V −V  
)*I  
< 1 W  
IN OUT OUT  
IRF7811  
Higher current and still surface mount  
1 W < (V −V )*I ) < 2 W  
IN OUT OUT  
IRLZ24N  
High output current requiring heat sink. Low  
cost but through−hole package.  
(V −V  
)*I  
> 2 W  
IN OUT OUT  
V = I × Rdson. It should be as small as possible.  
DROPOUT OUT  
frequency calculation  
With hysteretic control, the switching frequency is a function of the input voltage, the output voltage, the hysteresis  
window, the delay of the hysteresis comparator and the driver, the output inductance, the resistance in the output  
inductor, the output capacitance, the ESR and ESL in the output capacitor, the output current, and the turnon  
resistance of high-side and low-side MOSFET. It is a very complex equation if everything is included. To make it more  
useful to designers, a simplified equation is developed that considers only the most influential factors. The tolerance  
of the result for this equation is about 30%:  
–9  
ESR*ǒ250 10  
Ǔ
)T  
ȡ
d ȣ  
ǒ
Ǔ
 
V
  V * V  
ȧ
ȧ
Ȥ
OUT  
IN  
OUT  
C
out  
Ȣ
f
+
s
–9  
ǒ
dǓ) V  
hys  
ǒ
INǓ  
V
  V   ESR   250   10 ) T  
  L  
* ESL   V  
IN  
IN  
OUT  
Where fs is the switching frequency (Hz); V  
is the output voltage (V); V is the input voltage (V); C  
is the output  
IN  
OUT  
OUT  
capacitance; ESR is the equivalent series resistance in the output capacitor (); ESL is the equivalent series  
inductance in the output capacitor (H); L  
(S); Vhys is the hysteresis window (V).  
is the output inductance (H); Td is output feedback RC filter time constant  
OUT  
hysteresis window  
The changeable hysteresis window in TPS56300 is used for switching frequency and output voltage ripple  
adjustment. The hysteresis window setup is decided by a two-resistor voltage divider on VREFB and VHYST pin. Two  
times of the voltage drop on the top resistor is the hysteresis window. The formula is shown in the following:  
R13  
Vhyswindow = 2 × VREFB× (1 −  
)
R11 + R13  
Where Vhyswindow is the hysteresis window (V); VREFB is the regulated voltage from VREVB (pin 5); R11 is the  
top resistor in the voltage divider; R13 is the bottom resistor in the voltage divider. The maximum hysteresis window  
is 60 mV.  
24  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
slowstart  
Slowstart reduces the start-up stresses on the power-stage components and reduces the input current surge. The  
minimum slowstart time is limited to 1 ms due to the power good function deglitch time. Slowstart timing is dependent  
of the timing capacitor value on the slowstart pin. The following formula can be used for setting the slowstart timing:  
T
+ 5   C  
  R  
SLOWSTART  
SLOWSTART  
VREFB  
is the capacitor value on SLOWST (pin 3). R is the total  
VREFB  
T
is the slowstart time; C  
SLOWSTART  
resistance on VREFB (pin 5).  
SLOWSTART  
current limit  
Current limit can be implemented using the on-resistance of the upper FETs as the sensing elements. The IOUT signal  
is used for the current limit and the droop function. The voltage at IOUT at the output current trip point will be:  
V
+ R  
  I   2  
IOUT  
ON  
O
R
is the high-side on-time resistance; I is the output current. The current limit is calculated by using the formula:  
ON  
O
R4   ǒIO MAX  
ǒ
* 0.125Ǔ  
  2   R  
Ǔ
ON  
R5 +  
0.125  
Where R4 is the bottom resistor in the voltage divider on OCP pin, and R5 is the top resistor; I  
is the maximum  
O(MAX)  
current allowed; R  
is the high-side FET on-time resistance.  
ON  
Since the FET on-time resistance varies according to temperature, the current limit is basically for catastrophic failure.  
droop compensation  
Droop compensation with the offset resistor divider from V  
to the VSENSE is used to keep the output voltage in  
OUT  
range during load transients by increasing the output voltage setpoint toward the upper tolerance limit during light  
loads and decreasing the voltage setpoint toward the lower tolerance limit during heavy loads. This allows the output  
voltage to swing a greater amount and still remain within the tolerance window. The maximum droop voltage is set  
with R6 and R7:  
R6  
R6 ) R7  
V
+ V  
 
Ǔ
ǒ
Ǔ
ǒ
DROOP max  
IOUT max  
Where V  
is the maximum droop voltage; V  
is the maximum VIOUT that reflects the maximum  
IOUT(max)  
DROOP(max)  
output current (full load); R6 is the bottom resistor of the divider connected to the DROOP pin, R7 is the top resistor.  
The offset voltage is set to be half of the maximum droop voltage higher than the nominal output voltage, so the whole  
droop voltage range is symmetrical to the nominal output voltage. The formula for setting the offset voltage is:  
25  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
1
2
R12  
R10 ) R12Ǔ  
ǒ
V
+
  V  
+ V  
Ǔ
 
ǒ
OFFSET  
DROOP max  
O
Where V  
is the desired offset voltage; V  
is the droop voltage at full load; Vo is the nominal output  
OFFSET  
DROOP(max)  
voltage; R10 is the top resistor of the offset resistor divider, and R12 is the bottom one.  
Therefore, with the setup above, at light load, the output voltage is:  
1
2
V
+ V  
Ǔ
) V  
+ V  
)
Ǔ
  V  
ǒ
Ǔ
ǒ
ǒ
O nom  
And, at full load, the output voltage is:  
+ V  
OFFSET  
O nom  
DROOP  
O NO LOAD  
1
V
* V  
+ V  
*
Ǔ
  V  
ǒ
Ǔ
ǒ
ǒ
Ǔ
O nom  
OFFSET  
O nom  
DROOP  
O FULL LOAD  
2
output inductor ripple current  
The output inductor current ripple can affect not only the efficiency, but also the output voltage ripple. The equation  
for calculating the inductor current ripple is exhibited in the following:  
ǒ
  Rdson ) R  
LǓ  
V
* V  
* I  
out  
IN  
OUT  
I
+
  D   Ts  
ripple  
L
OUT  
Where I  
voltage (V); I  
is the peak-to-peak ripple current (A) through the inductor; V is the input voltage (V); V  
is the output  
ripple  
IN  
OUT  
is the output current; Rdson is the on-time resistance of MOSFET (); R is the output inductor  
OUT  
L
equivalent series resistance; D is the duty cycle; and Ts is the switch cycle (S). From the equation, it can be seen that  
the current ripple can be adjusted by changing the output inductor value.  
Example:  
V
IN  
= 5 V; V  
= 1.8 V; I  
= 5 A; Rdson = 10 m; R = 5 m; D = 0.36; Ts = 5 µs; L  
= 6 µH  
OUT  
OUT  
L
OUT  
Then, the ripple I  
= 1 A.  
ripple  
output capacitor RMS current  
Assuming the inductor ripple current totally goes through the output capacitor to the ground, the RMS current in the  
output capacitor can be calculated as:  
I  
12  
I
=
O(rms)  
Where I  
(A).  
is the maximum RMS current in the output capacitor (A); I is the peak-to-peak inductor ripple current  
O(rms)  
Example:  
I = 1 A, so IO(rms) = 0.29 A  
input capacitor RMS current  
The input capacitor RMS current is important for input capacitor design. Assuming the input ripple current totally goes  
into the input capacitor to the power ground, the RMS current in the input capacitor can be calculated as:  
26  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
2
2
1
12  
(
)
+ Ǹ  
I
I
  D   1 * D )  
  D   I  
I(rms)  
O
ripple  
Where I  
is the input RMS current in the input capacitor (A); I is the output current (A); Iripple is the peak-to-peak  
O
I(rms)  
output inductor ripple current; D is the duty cycle. From the equation, it can be seen that the highest input RMS current  
usually occurs at the lowest input voltage, so it is the worst case design for input capacitor ripple current.  
Example:  
I
= 5 A; D = 0.36; I  
= 1 A,  
O
ripple  
Then, I  
= 2.46 A  
I(rms)  
layout and component value consideration  
Good power supply results will only occur when care is given to proper design and layout. Layout and component  
value will affect noise pickup and generation and can cause a good design to perform with less than expected results.  
With a range of current from milliamps to tens or even hundreds of amps, good power supply layout and component  
selection, especially for a fast ripple controller, is much more difficult than most general PCB design. The general  
design should proceed from the switching node to the output, then back to the driver section, and, finally, to placing  
the low-level components. In the following list are several specific points to consider before layout and component  
selection for TPS56300:  
1. All sensitive analog components should be referenced to ANAGND. These include components connected  
to SLOWST, DROOP, IOUT, OCP, VSENSE, VREFB, VHYST, BIAS, and LOSENSE/LOHIB.  
2. The input voltage range for TPS56300 is low from 2.8-V to 5.5-V, so it has a voltage tripler (charge pump)  
inside to deliver proper voltage for internal circuitry. To avoid any possible noise coupling, a low ESR  
capacitor on V  
is recommended.  
CC  
3. For the same reason in Item 2, the ANAGND and DRVGND should be connected as close as possible to  
the IC.  
4. The bypass capacitor should be placed close to the TPS56300.  
5. When configuring the high-side driver as a boot-strap driver, the connection from BOOTLO to the power  
FETs should be as short and as wide as possible. LOSENSE/LOHIB should have a separate connection  
to the FETs since BOOTLO will have large peak current flowing through it.  
6. The bulk storage capacitors across V should be placed close to the power FETs. High-frequency bypass  
IN  
capacitors should be placed in parallel with the bulk capacitors and connected close to the drain of the  
high-side FET and to the source of the low-side FET.  
7. HISENSE and LOSENSE should be connected very close to the drain and source, respectively, of the  
high-side FET. HISENSE and LOSENSE should be routed very close to each other to minimize  
differential-mode noise coupling to these traces. Ceramic decoupling capacitors should be placed close to  
where HISENSE connects to V , to reduce high-frequency noise coupling on HISENSE.  
IN  
The EVM board (SLVP-139) is used in the test. The test results are shown in the following.  
27  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
RIPPLE OUTPUT  
LOAD REGULATION (1.8 V)  
RIPPLE OUTPUT EFFICIENCY (1.8 V)  
100  
80  
1.83  
V
IN  
= 3.3 V  
1.825  
V
IN  
= 5 V  
V
IN  
= 5 V  
1.82  
60  
1.815  
40  
20  
0
V
= 3.3 V  
IN  
1.81  
1.805  
1.8  
0
1
2
3
4
5
0
1
2
3
4
5
I
O
− Output Current − A  
I
O
− Output Current − A  
Figure 23  
Figure 24  
RIPPLE OUTPUT  
LINE REGULATION (1.8 V)  
LDO OUTPUT  
LOAD REGULATION (3.3 V)  
1.83  
3.32  
3.315  
3.31  
1.825  
1.82  
1.815  
1.81  
3.305  
3.3  
1.805  
1.8  
3.295  
3.29  
2
3
4
5
6
7
2
3
4
5
6
7
V
IN  
− Input Voltage − V  
V
IN  
− Input Voltage − V  
Figure 25  
Figure 26  
28  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
HYSTERESIS CONTROL  
TRANSIENT RESPONSE  
DROOP COMPENSATION EFFECT  
6
10  
Load Current  
4
2
5
0
400 A/µs  
4 A  
0
No Droop  
280 mV  
Recovery Time  
−5  
100  
Output Voltage  
200  
0
−100  
−200  
100  
0
220 mV  
Output Voltage  
With Droop  
−100  
0
5
10 15 20 25 30 35 40 45 50  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t − Time − µs  
t − Time − ms  
Figure 27  
Figure 28  
SLOWSTART  
6
5
4
3.3 V  
3
2
1
1.8 V  
0
−1  
−2  
0
4
8
12 16 20 24 28 32 36 40  
t − Time − ms  
Figure 29  
29  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
layouts  
Figure 30. Top Layer  
Figure 31. Bottom Layer (Top View)  
30  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ ꢆ  
ꢇꢈꢉ ꢊꢋꢌ ꢈꢀ ꢁꢈ ꢀ ꢊ ꢌ ꢍꢋꢎ ꢏꢁꢈꢀꢋꢐ ꢌ ꢊꢀꢉ ꢑꢒ  
ꢇꢂ ꢁ ꢁꢌ ꢍ ꢒꢓ ꢂꢈ ꢁꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊ ꢊꢒ ꢓ ꢍ ꢎꢀ ꢖ ꢂꢒ ꢗ ꢈꢒ ꢏ ꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
bill of materials  
REF  
PN  
Description  
MFG  
Size  
C
C1  
10TPA33M  
Std  
Capacitor, POSCAP, 33 µF, 10 V Sanyo  
Capacitor, Ceramic, 10 µF, 16 V Sanyo  
Capacitor, POSCAP, 150 µF, 6 V Sanyo  
Capacitor, Ceramic, 0.1 µF, 16 V Sanyo  
C2, C20, C21, C30, C31  
C3. C6, C8, C13, C25  
1210  
D
6TPB150M  
Std  
C4, C5, C11, C12, C23, C26,  
C27,  
603  
C7, C22  
C9  
Std  
Std  
Std  
Std  
Std  
Capacitor, Ceramic, 1 µF, 16 V  
Sanyo  
805  
1210  
603  
D
Open  
Open  
Open  
C10, C16  
C14, C15  
C17, C24  
Capacitor, Ceramic, 1000 pF, 16 Sanyo  
V
603  
C18, C19  
D1  
Std  
Capacitor, Ceramic, 1 µF, 16 V  
Diode, LED, Green, 2.1 V SM  
Inductor, 3.3 µH, 5.4 A  
Sanyo  
805  
SML-LX2832G  
DO3316P-332  
ED2227  
Lumwx  
Coilcraft  
1210  
L1, L2  
J1  
0.5 × 0.37 in  
5.08 mm  
Terminal Block, 4-pin, 15 A, 5.08 OST  
mm  
J2  
ED1515  
Terminal Block, 3-pin, 6 A, 3.5  
mm  
OST  
n, 6 A,  
JP1, JP2  
S1132-3-ND  
Header, Right straight, 3-pin, 0.1 Sullins  
ctrs, 0.3” pins  
#S1132-3-ND  
JP1shunt  
J3  
929950-00-ND  
S1132-2-ND  
Shunt jumper, 0.1” (for JP1)  
3M  
0.1”  
Header, Right straight, 2-pin, 0.1 Sullins  
ctrs, 0.3” pins  
#S1132-2-ND  
Q1  
Open  
SO-8  
SO-8  
?
Q2:A, Q4, Q5  
Q2:B  
Q3  
IRF7811  
MOSFET, N-ch, 30 V, 10 mΩ  
Open  
2N7002DICT-N  
MOSFET, N-ch, 115 mA, 1.2 Ω  
Resistor, 10 kohms, 5 %  
Resistor, 1 kohms, 1%  
Resistor, 0 ohms, 1%  
Diodes, Inc.  
TO-236  
603  
603  
603  
603  
603  
603  
1206  
603  
603  
603  
603  
R3  
std  
R4  
std  
R5  
std  
R6  
std  
Resistor, 1 kohms, 1%  
Resistor, 3.32 kohms, 1%  
Resistor, 10 ohms, 5 %  
Resistor, 2.7 ohms, 5 %  
Resistor, 150 ohms, 5 %  
Resistor, 100 ohms, 1 %  
Resistor, 10 kohms, 5 %  
Resistor, 20.0 kohms, 1 %  
Test Point, Red  
R7  
std  
R8  
std  
R9  
std  
R10  
std  
R11  
std  
R12  
std  
R13  
std  
TP1−TP10  
TP11  
240−345  
131−4244−00  
Farnell  
Adaptor, 3.5-mm probe clip ( or  
131−5031−00)  
Tektronix  
U1  
TPS56300PWP  
Dual controller  
TSSOP−28pin  
31  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢌꢈ ꢀ ꢁꢈ ꢀ ꢊꢌ ꢍꢋꢎ ꢏꢁ ꢈꢀꢋꢐ ꢌꢊꢀꢉꢑ ꢒ  
ꢇ ꢂꢁ ꢁꢌꢍ ꢒꢓ ꢂꢈ ꢁ ꢁꢊꢔ ꢕꢌ ꢏꢀ ꢓꢌ ꢊꢊ ꢒꢓ ꢍꢎ ꢀꢖ ꢂꢒ ꢗꢈ ꢒꢏꢕꢎ ꢏꢑ  
SLVS261B − DECEMBER 1999 − SEPTEMBER 2000  
APPLICATION INFORMATION  
Power Supply  
+
Load  
5−V, 5−A Supply  
0 − 4 A  
+
6.8 Ohms  
2 W  
Note: All wire pairs should be twisted.  
Figure 32. Test Setup  
32  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2014  
PACKAGING INFORMATION  
Orderable Device  
TPS56300PWP  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
28  
28  
28  
28  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
TPS56300  
TPS56300PWPG4  
TPS56300PWPR  
TPS56300PWPRG4  
ACTIVE  
ACTIVE  
ACTIVE  
PWP  
PWP  
PWP  
50  
Green (RoHS  
& no Sb/Br)  
TPS56300  
TPS56300  
2000  
Green (RoHS  
& no Sb/Br)  
TBD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2014  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS56300PWPR  
HTSSOP PWP  
28  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
TPS56300PWPR  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

TPS56300PWPRG4

DUAL SWITCHING CONTROLLER, 400kHz SWITCHING FREQ-MAX, PDSO28, GREEN, PLASTIC, HTSSOP-28
TI

TPS56300_16

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56302

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56302PWP

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56302PWPR

SMPS Controller
ETC

TPS563200

采用SOT-23 封装的4.5V 至17V 输入,2A/3A 同步降压稳压器
TI

TPS563200DDCR

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563200DDCT

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563201

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器
TI

TPS563201DDCR

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS563201DDCT

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS563202

采用 SOT563 封装的 4.5V 至 17V 输入、3A 同步降压转换器
TI