TPS563201DDCR [TI]

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125;
TPS563201DDCR
型号: TPS563201DDCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125

开关 光电二极管 转换器
文件: 总25页 (文件大小:1143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
TPS56320x 采用 SOT-23 封装的 4.5V 17V 输入、3A 同步降压稳压器  
1 特性  
3 说明  
1
TPS563201 TPS563208 3A 转换器集成了  
TPS563201 TPS563208 是采用小外形尺寸晶体管  
(SOT)-23 封装的简单易用型 3A 同步降压转换器。  
95mΩ 57mΩ 场效应晶体管 (FET)  
D-CAP2™模式控制,用于快速瞬态响应  
输入电压范围:4.5V 17V  
两款器件均经过优化,最大限度地减少了运行所需的外  
部组件并且可以实现低待机电流。  
输出电压范围:0.76V 7V  
这些开关模式电源 (SMPS) 器件采用 D-CAP2 模式控  
制,能够提供快速瞬态响应,并且在无需外部补偿组件  
的情况下支持诸如高分子聚合物等低等效串联电阻  
(ESR) 输出电容以及超低 ESR 陶瓷电容器。  
脉冲跳跃模式 (TPS563201) 或持续电流模式  
(TPS563208)  
580kHz 开关频率  
低关断电流(小于 10µA)  
2% 反馈电压精度 (25°C)  
从预偏置输出电压中启动  
逐周期过流限制  
TPS563201 可在脉冲跳跃模式下运行,从而能在轻载  
运行期间保持高效率。TPS563201 TPS563208 采  
6 引脚 1.6mm × 2.9mm SOT (DDC) 封装,额定结  
温范围为 –40°C 125°C。  
断续模式过流保护  
非锁存欠压保护 (UVP) 和热关断 (TSD) 保护  
固定软启动时间:1.0ms  
器件信息(1)  
器件型号  
TPS563201  
TPS563208  
封装  
封装尺寸(标称值)  
2 应用  
DDC (6)  
1.60mm x 2.90mm  
数字电视电源  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
高清 蓝光光盘播放器  
网络家庭终端设备  
数字机顶盒(STB)  
安全监控  
简化电路原理图  
TPS563201 效率  
100%  
90%  
80%  
70%  
60%  
50%  
TPS563201  
1
2
3
6
5
4
VBST  
EN  
GND  
SW  
EN  
VOUT  
COUT  
VIN  
VIN  
VOUT  
VFB  
CIN  
40%  
VOUT = 1.05 V  
VOUT = 1.5 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
VOUT = 5 V  
30%  
20%  
10%  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D023  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD90  
 
 
 
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 相关链接................................................................ 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 12 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
GND  
1
2
3
6
5
4
VBST  
EN  
SW  
VIN  
VFB  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for  
controller circuit. Connect sensitive VFB to this GND at a single point.  
GND  
1
SW  
VIN  
VFB  
EN  
2
3
4
5
O
I
Switch node connection between high-side NFET and low-side NFET.  
Input voltage supply pin. The drain terminal of high-side power NFET.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
I
I
Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between  
VBST and SW pins.  
VBST  
6
O
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
19  
UNIT  
V
VIN, EN  
VBST  
25  
V
VBST (10 ns transient)  
27  
V
Input voltage  
VBST (vs SW)  
6.5  
6.5  
19  
V
VFB  
V
SW  
V
SW (10 ns transient)  
–3.5  
–40  
–55  
21  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
UNIT  
VIN  
Supply input voltage range  
17  
23  
V
VBST  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3.5  
–40  
VBST (10 ns transient)  
26  
VBST (vs SW)  
6.0  
17  
VI  
Input voltage range  
EN  
V
VFB  
5.5  
17  
SW  
SW (10 ns transient)  
20  
TJ  
Operating junction temperature  
125  
°C  
6.4 Thermal Information  
TPS56320x  
DDC (SOT)  
6 PINS  
92.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.5  
15.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.5  
ψJB  
15.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
TPS563201  
TPS563208  
380  
590  
1
520  
µA  
Operating – non-switching  
supply current  
IVIN  
VIN current, EN = 5 V, VFB = 0.8 V  
VIN current, EN = 0 V  
750  
IVINSDN  
Shutdown supply current  
10  
µA  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
EN high-level input voltage  
EN  
1.6  
V
V
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.8  
VEN = 12 V  
225  
400  
900  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
VFB threshold voltage  
VFB threshold voltage  
VFB input current  
VO = 1.05 V, IO = 10 mA, Eco-mode™ operation  
VO = 1.05 V, continuous mode operation  
VFB = 0.8 V  
774  
768  
0
mV  
mV  
µA  
VFBTH  
749  
787  
IVFB  
±0.1  
MOSFET  
RDS(on)h  
RDS(on)l  
High-side switch resistance  
Low-side switch resistance  
TA = 25°C, VBST – SW = 5.5 V  
TA = 25°C  
95  
57  
mΩ  
mΩ  
CURRENT LIMIT  
Iocl  
Current limit  
DC current, VOUT = 1.05 V, L1 = 1.5 µH  
3.3  
4.2  
5.1  
A
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
172  
37  
Thermal shutdown  
threshold(1)  
TSDN  
°C  
ON-TIME TIMER CONTROL  
tOFF(MIN)  
SOFT START  
Tss  
Minimum off time  
VFB = 0.5 V  
220  
1.0  
310  
ns  
ms  
Soft-start time  
Internal soft-start time  
VIN = 12 V, VO = 1.05 V, FCCM mode  
FREQUENCY  
Fsw  
Switching frequency  
580  
kHz  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VUVP  
Output UVP threshold  
Hiccup detect (H > L)  
65%  
1.8  
15  
THICCUP_WAIT Hiccup on time  
ms  
ms  
THICCUP_RE  
Hiccup time before restart  
UVLO  
Wake up VIN voltage  
Shutdown VIN voltage  
Hysteresis VIN voltage  
4.0  
3.6  
0.4  
4.3  
UVLO  
UVLO threshold  
3.3  
V
(1) Not production tested.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
0.6  
0.55  
0.5  
0.764  
0.763  
0.762  
0.761  
0.76  
0.45  
0.4  
0.35  
0.3  
0.759  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
Figure 1. TPS563201 Supply Current vs Junction  
Temperature  
Figure 2. VFB Voltage vs Junction Temperature  
1.23  
1.2  
1.5  
1.47  
1.44  
1.41  
1.38  
1.35  
1.17  
1.14  
1.11  
1.08  
1.05  
1.02  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (èC)  
Junction Temperature (èC)  
D003  
D004  
Figure 3. EN Pin UVLO Low Voltage vs Junction  
Temperature  
Figure 4. EN Pin UVLO High Voltage vs Junction  
Temperature  
170  
150  
130  
110  
90  
100  
90  
80  
70  
60  
50  
40  
30  
70  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D006  
Figure 5. High-Side Rds-On vs Junction Temperature  
Figure 6. Low-Side Rds-On vs Junction Temperature  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
Typical Characteristics (continued)  
VIN = 12 V (unless otherwise noted)  
620  
600  
500  
400  
300  
200  
100  
0
VOUT = 1.8 V  
VOUT = 3.3 V  
VOUT = 5 V  
VOUT = 1.05 V  
VOUT = 3.3 V  
VOUT = 5 V  
600  
580  
560  
540  
520  
500  
4
6
8
10  
12  
14  
16  
18  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
Input Voltage (V)  
D007  
D008  
IOUT = 10 mA  
VIN = 12 V  
Figure 7. TPS563208 Switching Frequency vs Input Voltage  
Figure 8. TPS563201 Switching Frequency vs Output  
Current  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
30%  
20%  
10%  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D009  
D010  
Figure 9. TPS563201 VOUT = 1.05 V Efficiency, L = 2.2 µH  
Figure 10. TPS563201 VOUT = 1.5 V Efficiency, L = 2.2 µH  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D011  
D012  
Figure 11. TPS563201 VOUT = 1.8 V Efficiency, L = 2.2 µH  
Figure 12. TPS563201 VOUT = 3.3 V Efficiency, L = 2.2 µH  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 12 V (unless otherwise noted)  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D013  
D014  
Figure 13. TPS563201 VOUT = 5 V Efficiency, L = 3.3 µH  
Figure 14. TPS563208 VOUT = 1.05 V Efficiency, L = 2.2 µH  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D015  
D016  
Figure 15. TPS563208 VOUT = 1.5 V Efficiency, L = 2.2 µH  
Figure 16. TPS563208 VOUT = 1.8 V Efficiency, L = 2.2 µH  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
D017  
D018  
Figure 17. TPS563208 VOUT = 3.3 V Efficiency, L = 2.2 µH  
Figure 18. TPS563208 VOUT = 5 V Efficiency, L = 3.3 µH  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
7 Detailed Description  
7.1 Overview  
The TPS563201 and TPS563208 are 3-A synchronous step-down converters. The proprietary D-CAP2 mode  
control supports low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic  
capacitors without complex external compensation circuits. The fast transient response of D-CAP2 mode control  
can reduce the output capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
3
VIN  
VUVP  
+
Hiccup  
VREG5  
UVP  
Control Logic  
Regulator  
UVLO  
œ
+
OVP  
VOVP  
œ
VFB  
4
6
VBST  
œ
+
+
PWM  
Voltage  
Reference  
Ref  
HS  
SS  
Soft Start  
tON  
One-Shot  
XCON  
2
1
SW  
VREG5  
LS  
TSD  
OCL  
Threshold  
œ
OCL  
+
GND  
+
ZC  
œ
7.3 Feature Description  
7.3.1 Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS563201 and TPS563208 is adaptive on-time pulse width modulation (PWM)  
controller that supports a proprietary D-CAP2 mode control. The D-CAP2 mode control combines adaptive on-  
time control with an internal compensation circuit for pseudo-fixed frequency and low external component count  
configuration with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the  
output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely  
proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence  
it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again  
when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2 mode control.  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Pulse Skip Control (TPS563201)  
The TPS563201 is designed with advanced Eco-mode to maintain high light load efficiency. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its  
rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load  
current further decreases the converter runs into discontinuous conduction mode. The on-time is kept almost the  
same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor  
with smaller load current to the level of the reference voltage. This makes the switching frequency lower,  
proportional to the load current, and keeps the light load efficiency high. The transition point to the light load  
operation IOUT(LL) current can be calculated in Equation 1.  
(V - VOUT ) ì VOUT  
1
IN  
IOUT(LL)  
=
ì
2 ì L ì fSW  
V
IN  
(1)  
7.3.3 Soft Start and Pre-Biased Soft Start  
The TPS563201 and TPS563208 have an internal 1-ms soft-start. When the EN pin becomes high, the internal  
soft-start function begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
7.3.4 Current Protection  
The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current Iout. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time  
(typically 24 µs) and re-start after the hiccup time (typically 15 ms).  
When the over current condition is removed, the output voltage returns to the regulated value.  
7.3.5 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is non-latching.  
7.3.6 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 172°C),  
the device is shut off. This is a non-latch protection.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS563201 and TPS563208 can operate in their normal switching modes. Normal continuous conduction mode  
(CCM) occurs when the minimum switch current is above 0 A. In CCM, the TPS563201 and TPS563208 operate  
at a quasi-fixed frequency of 580 kHz.  
7.4.2 Eco-mode Operation  
When the TPS563201 and TPS563208 are in the normal CCM operating mode and the switch current falls to 0  
A, the TPS563201 and TPS563208 begin operating in pulse skipping Eco-mode. Each switching cycle is  
followed by a period of energy saving sleep time. The sleep time ends when the VFB voltage falls below the Eco-  
mode threshold voltage. As the output current decreases, the perceived time between switching pulses  
increases.  
7.4.3 Standby Operation  
When the TPS563201 and TPS563208 are operating in either normal CCM or Eco-mode, they may be placed in  
standby by asserting the EN pin low.  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The devices are typical step-down DC-DC converters. It typically uses to convert a higher dc voltage to a lower  
dc voltage with a maximum available output current of 3 A. The following design procedure can be used to select  
component values for the TPS563201 and TPS563208. Alternately, the WEBENCH® software may be used to  
generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a  
comprehensive database of components when generating a design. This section presents a simplified discussion  
of the design process.  
8.2 Typical Application  
The application schematic in Figure 19 was developed to meet the previous requirements. This circuit is  
available as the evaluation module (EVM). The sections provide the design procedure.  
Figure 19 shows the TPS563201 and TPS563208 4.5-V to 17-V input, 1.05-V output converter schematics.  
C7 0.1 F  
1
2
6
5
GND  
SW  
VBST  
EN  
L1  
VOUT = 1.05 V/3A  
R3 10 kꢀ  
EN  
VOUT  
2.2 H  
C9  
22 F  
C8  
22 F  
3
4
VIN  
VFB  
VOUT  
R1 3.09 kꢀ  
R2  
10 kꢀ  
C4  
1
C1  
C2  
C3  
10 F  
10 F 0.1 F  
1
Not Installed  
VIN  
1
VIN = 4.5 V to 17 V  
Figure 19. TPS563201 and TPS563208 1.05-V/3-A Reference Design  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 1 shows the design parameters for this application.  
Table 1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.5 to 17 V  
1.05 V  
Output voltage  
Transient response, 1.5-A load step  
Input ripple voltage  
ΔVout = ±5%  
400 mV  
Output ripple voltage  
Output current rating  
Operating frequency  
30 mV  
3 A  
580 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using Equation 2 to calculate VOUT  
.
To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more  
susceptible to noise and voltage errors from the VFB input current will be more noticeable.  
R1  
R2  
VOUT = 0.768 ì 1 +  
÷
«
(2)  
8.2.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
fP  
=
2p LOUT ì COUT  
(3)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40  
dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that reduces the gain  
roll off to –20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor  
and capacitor for the output filter must be selected so that the double pole of Equation 3 is located below the  
high frequency zero but close enough that the phase boost provided be the high frequency zero provides  
adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 2.  
Table 2. Recommended Component Values  
L1 (µH)  
TYP  
2.2  
OUTPUT  
VOLTAGE (V)  
R1 (kΩ)  
R2 (kΩ)  
C8 + C9 (µF)  
MIN  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
3.3  
6.5  
3.3  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
 
 
 
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 4,  
Equation 5, and Equation 6. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current.  
V
- VOUT  
VOUT  
IN(MAX)  
IlP-P  
IlPEAK = IO  
ILO(RMS)  
=
ì
V
LO ì fSW  
IN(MAX)  
(4)  
(5)  
IlP-P  
2
+
1
2
2
=
IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 3.5 A and the calculated RMS current is 3.01 A. The  
inductor used is a WE 74431122 with a peak current rating of 13 A and an RMS current rating of 9 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS563201 and TPS563208  
are intended for use with ceramic or other low ESR capacitors. Recommended values range from 20 µF to 68  
µF. Use Equation 7 to determine the required RMS current rating for the output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(7)  
For this design two TDK C3216X5R0J226M 22-µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.286 A and each output capacitor is rated for 4 A.  
8.2.2.3 Input Capacitor Selection  
The TPS563201 and TPS563208 require an input decoupling capacitor and a bulk capacitor is needed  
depending on the application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An  
additional 0.1-µF capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The  
capacitor voltage rating needs to be greater than the maximum input voltage.  
8.2.2.4 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI  
recommends to use a ceramic capacitor.  
8.2.3 Application Curves  
3%  
2%  
1%  
0
3%  
2%  
1%  
0
TPS563201  
TPS563208  
TPS563201  
TPS563208  
-1%  
-2%  
-3%  
-1%  
-2%  
-3%  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
D019  
D020  
Figure 20. TPS563201 and TPS563208 Load Regulation,  
VIN = 5 V  
Figure 21. TPS563201 and TPS563208 Load Regulation,  
VIN = 12 V  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
1.055  
1.054  
1.053  
1.052  
1.051  
1.05  
TPS563201  
TPS563208  
1.049  
1.048  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
1.047  
4
6
8
10  
12  
14  
16  
18  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3
Input Voltage (V)  
D021  
D022  
IOUT of TPS563201: 1 A  
IOUT of TPS563208: 10 mA  
Figure 22. TPS563201 and TPS563208 Line Regulation  
Figure 23. TPS563201 Efficiency  
VOUT = 100 mV/div  
VIN = 100 mV/div  
LX = 5 V/div  
IOUT = 2 A/div  
LX = 5 V/div  
IL = 500 mA/div  
800 ns/div  
20 µs/div  
Figure 24. TPS563201 Input Voltage Ripple  
Figure 25. TPS563201 Output Voltage Ripple, 10 mA  
VOUT = 20 mV/div  
VOUT = 20 mV/div  
LX = 5 V/div  
LX = 5 V/div  
IL = 2 A/div  
IL = 500 mA/div  
1 µs/div  
1 µs/div  
Figure 26. TPS563201 Output Voltage Ripple, Iout = 0.25 A  
Figure 27. TPS563201 Output Voltage Ripple, Iout = 2 A  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
VOUT = 10 mV/div  
SW = 5 V/div  
VOUT = 50 mV/div  
IOUT = 1 A/div  
800 ns/div  
100 µs/div  
Figure 28. TPS563208 Output Voltage Ripple, IOUT = 0 A  
Figure 29. TPS563201 Transient Response, 0.1 to 1.5 A  
VOUT = 20 mV/div  
VOUT = 20 mV/div  
IOUT = 1 A/div  
IOUT = 1 A/div  
100 µs/div  
100 µs/div  
Figure 30. TPS563201 Transient Response, 0.75 to 2.25 A  
Figure 31. TPS563208 Transient Response 0.1 to 2 A  
VIN = 5 V/div  
VIN = 5 V/div  
VEN = 5 V/div  
VEN = 5 V/div  
VOUT = 500 mV/div  
VOUT = 500 mV/div  
2 ms/div  
400 µs/div  
Figure 32. TPS563201 Start Up Relative to VI  
Figure 33. TPS563201 Start-Up Relative to EN  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
VIN = 5 V/div  
VIN = 5 V/div  
VEN = 5 V/div  
VEN = 5 V/div  
VOUT = 500 mV/div  
VOUT = 500 mV/div  
10 ms/div  
100 µs/div  
Figure 34. TPS563201 Shutdown Relative to VI  
Figure 35. TPS563201 Shutdown Relative to EN  
9 Power Supply Recommendations  
TPS563201 and TPS563208 are designed to operate from input supply voltage in the range of 4.5 V to 17 V.  
Buck converters require the input voltage to be higher than the output voltage for proper operation. The  
maximum recommended operating duty cycle is 75%. Using that criteria, the minimum recommended input  
voltage is VO / 0.75.  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS563201, TPS563208  
ZHCSEL2 DECEMBER 2015  
www.ti.com.cn  
10.2 Layout Example  
VOUT  
GND  
Vias to the  
Additional  
Vias to the  
GND Plane  
Internal SW  
Node Copper  
Output  
Capacitor  
BOOST  
CAPACITOR  
Output  
Inductor  
GND  
SW  
VBST  
EN  
Feedback  
Resistors  
To Enable  
Control  
VFB  
Vias to the  
Internal SW  
Node Copper  
VIN  
VIN  
Input Bypass  
Capacitor  
SW Node Copper  
Pour Area on  
Internal  
or Bottom Layer  
Figure 36. TPS563201 and TPS563208 Layout  
18  
版权 © 2015, Texas Instruments Incorporated  
TPS563201, TPS563208  
www.ti.com.cn  
ZHCSEL2 DECEMBER 2015  
11 器件和文档支持  
11.1 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访  
问。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS563201  
TPS563208  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
D-CAP2, Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
蓝光 is a trademark of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS563201DDCR  
TPS563201DDCT  
TPS563208DDCR  
TPS563208DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
3201  
3201  
3208  
3208  
Call TI | SN  
Call TI | SN  
Call TI | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS563201DDCT

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS563202

采用 SOT563 封装的 4.5V 至 17V 输入、3A 同步降压转换器
TI

TPS563202DRLR

采用 SOT563 封装的 4.5V 至 17V 输入、3A 同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS563202S

采用 SOT563 封装的 4.3V 至 17V 输入、3A ECO 模式同步降压转换器
TI

TPS563202SDRLR

采用 SOT563 封装的 4.3V 至 17V 输入、3A ECO 模式同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS563203

4.2-V to 17-V input, 3-A synchronous buck converter in SOT563
TI

TPS563206

4.2-V to 17-V input, 3-A synchronous buck converter in SOT563
TI

TPS563207

采用 SOT563 封装的 4.3V 至 17V 输入、3A 同步降压转换器
TI

TPS563207DRLR

采用 SOT563 封装的 4.3V 至 17V 输入、3A 同步降压转换器 | DRL | 6 | -40 to 150
TI

TPS563207S

采用 SOT563 封装的 4.3V 至 17V 输入、3A FCCM 模式同步降压转换器
TI

TPS563207SDRLR

采用 SOT563 封装的 4.3V 至 17V 输入、3A FCCM 模式同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS563208

采用 FCCM 模式的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器
TI