TPS56300 [TI]

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING; 测序双输出低输入电压DSP电源控制器
TPS56300
型号: TPS56300
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
测序双输出低输入电压DSP电源控制器

输出元件 输入元件 控制器
文件: 总34页 (文件大小:699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
PWP PACKAGE  
(TOP VIEW)  
2.8 V – 5.5 V Input Voltage Range  
Programmable Dual Output Controller  
Supports Popular DSP and Microcontroller  
Core and I/O Voltages  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VID0  
VID1  
DROOP  
OCP  
IOUT  
PWRGD  
VSEN–LDO  
NGATE–LDO  
INHIBIT  
2
– Switching Regulator Controls Core  
Voltage  
– Low Dropout Controller Regulates I/O  
Voltage  
3
SLOWST  
VHYST  
VREFB  
VSEN–RR  
ANAGND  
BIAS  
VLDODRV  
CPC1  
4
5
6
Thermal  
Pad  
7
Programmable Slow-Start Ensures  
Simultaneous Powerup of Both Outputs  
8
IOUTLO  
9
HISENSE  
LOSENSE/LOHIB  
HIGHDR  
BOOT  
BOOTLO  
LDWDR  
Power Good Output Monitors Both Outputs  
10  
11  
12  
13  
14  
Fast Ripple Regulator Reduces Bulk  
Capacitance for Lower System Costs  
V
CC  
CPC2  
VDRV  
DRVGND  
±1.5% Reference Voltage Tolerance  
Efficiencies Greater than 90%  
Overvoltage, Undervoltage, and Adjustable  
Overcurrent Protection  
PowerPAD Package  
Drives Low-Cost Logic Level N-Channel  
MOSFETs Through Entire Input Voltage  
Range  
Evaluation Module TPS56300EVM–139  
Available  
description  
The high performance TPS56300 synchronous-buck regulator provides two supply voltages to power the core  
and I/O of digital signal processors, such as the ‘C6000 family. The ripple regulator, using hysteretic control with  
droop compensation, is configured for the core voltage and features fast transient response time reducing  
output bulk capacitance (continued).  
typical design  
See Note A  
See Note A  
+
NOTE A: See Table 1  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
description (continued)  
The LDO controller drives an external N-channel power MOSFET and functions as an LDO regulator, suitable  
for powering the I/O or as a power distribution switch. To promote better system reliability during power up,  
voltage sequencing and protection are controlled such that the core and I/O power up together with the same  
slow-start voltage. At power down, the LDO and ripple regulator are discharged towards ground for added  
protection. The TPS56300 also includes inhibit, slowstart, and under-voltage lockout features to aide in  
controlling power sequencing. A tri-level voltage identification network (VID) sets both regulated voltages to any  
of 9 preset voltage pairs from 1.3 V to 3.3 V. Other voltages are possible by implementing an external voltage  
divider. Strong MOSFET drivers, with a typical peak current rating of 2-A sink and source are included on chip,  
enabling high system currents beyond 30 A. The high-side driver features a floating bootstrap driver with the  
internal bootstrap synchronous rectifier. Many protection features are incorporated within the device to ensure  
better system integrity. An open-drain output POWER GOOD status circuit monitors both output voltages, and  
is pulled low if either output fall below the threshold. An over current shutdown circuit protects the high-side  
power MOSFET against short-to-ground faults at load or the phase node, while over voltage protection turns  
off the output drivers and LDO controller if either output exceeds its threshold. Under voltage protection turns  
off the high-side and low-side MOSFET drivers and the LDO controller if either output is 25% below V  
.
REF  
Lossless current-sensing is done by detecting the drain-source voltage drop across the high-side power  
MOSFET while it is conducting. The TPS56300 is fully compliant with TI DSP power requirements such as the  
‘C6000 family.  
AVAILABLE OPTIONS  
PACKAGES  
T
J
EVALUATION MODULE  
TSSOP  
(PWP)  
–40°C to 125°C  
TPS56300PWP  
TPS56300EVM–139 (SLVP139)  
The PWP package is also available taped and reel. To order, add an R to the end of  
the part number (e.g., TPS56300PWPR).  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
functional block diagram  
LOSENSE/  
LOHIB  
IOUTLO HISENSE  
IOUT  
PWRGD  
25  
19  
21  
20  
26  
+
8
Bias  
>0.93xVSEN–RR  
VDRV >0.93xVSEN–LDO  
Reg.  
9
VLDODRV  
22  
SHUTDOWN  
INHIBIT  
VDRV UVLO  
Vcc UVLO  
Delay  
INHIBIT  
11  
10  
Vcc  
HIGHDR  
RR_OVP  
Fault  
Latch  
S
LDO_OVP  
CPC1  
Q
RR_UVP *  
R
LDO_UVP *  
BOOT  
12  
CPC2  
SHUTDOWN  
27  
24  
23  
OCP  
VDRV  
+
125 mV  
5 V  
13  
VDRV  
VSEN–LDO  
NGATE–LDO  
SHUTDOWN  
VLDODRV  
E/A  
1
2
VID0  
VID1  
+
SLOWST  
SHUTDOWN  
Vref_LDO  
VID  
See table 1  
Vbias  
Hysteresis  
Comparator  
SLOWST  
17  
18  
16  
15  
BOOT  
Ivrefb/5  
Vref_RR  
SLOWST  
Adaptive  
Deadtime  
3
+
HIGHDR  
BOOTLO  
SHUTDOWN  
Hysteresis  
Setting  
VDRV  
SHUTDOWN  
LOWDR  
7
5
4
28  
6
14  
ANAGND  
RR–Ripple Regulator  
VREFB  
VHYST DROOP VSEN–RR  
DRVGND  
* UVP is disabled during  
slowstart  
Synchronous  
FET  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
Terminal Functions  
TERMINAL  
DESCRIPTION  
NAME  
VID0  
NO.  
1
Voltage Identification input 0. VID pins are tri-level programming pins that set the output voltages for both convert-  
ers. The code pattern for setting the output voltage is located in table 1. The VID pins are internally pulled to  
Vbias/2, allowing floating voltage set to logic 1 (see table 1).  
VID1  
2
3
Voltage Identification input 1 (see VID0 above and table 1).  
SLOWST  
Slow start (soft start). A capacitor from pin 3 to GND sets the slowstart time for VOUT-RR and VOUT-LDO. Both  
supplies will ramp-up together while tracking the slow-start voltage.  
VHYST  
4
5
6
Hysteresis set pin. The hysteresis is set by 2 × (VREFB – Vhyst).  
VREFB  
Buffered ripple regulator reference voltage from VID network.  
VSEN-RR  
Ripple regulator VOLTAGE SENSE input. This pin is connected to the ripple regulator output. It is used to sense  
the ripple regulator voltage for regulation, OVP, UVP, and Powergood functions.. It is recommended that an RC  
low pass filter be connected at this pin to filter high frequency noise.  
ANAGND  
BIAS  
7
8
9
Analog ground  
Analog BIAS pin. Recommended that a 1-µF capacitor be connected to ANAGND.  
VLDODRV  
Output of charge pump generated through bootstrap diode. Approximately equal to VDRV + V – 300mV. Used  
IN  
as supply for LDO driver and Bias regulator. Recommended that a 1-µF capacitor be connected to DRVGND.  
CPC1  
10  
11  
Connect one end of Charge pump capacitor. Recommended that a 1-µF capacitor be connected from CPC1 to  
CPC2.  
V
CC  
3.3 V or 5 V supply (2.8 V – 5.5 V). Recommended that a low ESR capacitor be connected directly from V  
DRVGND. (Bulk capacitors supplied at power stage input).  
to  
CC  
CPC2  
VDRV  
12  
13  
Other end of charge pump capacitor from CPC1.  
Regulated output of internal charge pump. Supplies DRIVE charge for the low-side MOSFET driver (5V). Recom-  
mended that a 10-µF capacitor be connected to DRVGND.  
DRVGND  
LOWDR  
BOOTLO  
BOOT  
14  
15  
16  
17  
Drive ground. Ground for FET drivers. Connect to source of low-side FET.  
Low drive. Output drive to synchronous rectifier low-side FET.  
Bootstrap low. This pin connects to the junction of the high-side and low-side FETs.  
Bootstrap pin. Connect a 1-µF low ESR capacitor to BOOTLO to generate floating drive for the high-side FET  
driver.  
HIGHDR  
18  
19  
High drive. Output drive to high-side power switching FETs  
LOSENSE/  
LOHIB  
Low sense/low-side inhibit. This pin is connected to the junction of the high and low-side FETs and is used in cur-  
rent sensing and the anti-cross-conduction to eliminate shoot-through current.  
HISENSE  
IOUTLO  
INHIBIT  
20  
21  
22  
High current sense. For current sensing across high-side FETs, connect to the drain of the high-side FETs.  
Current sense low output. Voltage on this pin is the voltage on the LOSENSE pin when the high-side FETs are on.  
Inhibits the drive signals to the MOSFET drivers. IC is in low Iq state if INHIBIT is grounded. It is recommended  
that an external pullup resistor be connected to 5 V.  
NGATE-LDO  
VSEN–LDO  
23  
24  
Drives external N-channel power MOSFET to regulate LDO voltage to VREF-LDO.  
LDO voltage sense. This pin is connected to the LDO output. It is used to sense the LDO voltage for regulation,  
OVP, UVP, and power good functions.  
PWRGD  
25  
Power good. Power good signal goes high when output voltage is about 93% of V  
LDO. This is an open-drain output.  
for both ripple regulator and  
REF  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
Terminal Functions (continued)  
TERMINAL  
NAME  
IOUT  
I/O  
DESCRIPTION  
NO.  
26  
Current signal output. Output voltage on this pin is proportional to the load current as measured across  
the high-side FETs on-resistance. The voltage on this pin equals 2 × R  
equivalent on-resistance of the high-side FETs  
× IOUT, where Ron is the  
ON  
OCP  
DROOP  
27  
28  
Over current protection. Current limit trip point for ripple regulator is set with a resistor divider between  
IOUT pin and ANAGND.  
Droop voltage. Voltage input used to set the amount of output voltage droop as a function of load current.  
The amount of droop compensation is set with a resistor divider between the IOUT pin and ANAGND.  
§¶  
Table 1. Voltage Identification Code  
VID Terminals  
VREF–RR  
(Vdc)  
VREF–LDO  
(Vdc)  
VID1  
VID0  
0
0
0
1
1
1
2
2
2
0
1
2
0
1
2
0
1
2
1.30  
1.50  
1.30  
1.80  
1.30  
2.50  
1.30  
1.50  
1.80  
1.5  
1.80  
1.80  
3.30  
1.30  
3.30  
2.50  
3.30  
2.50  
§
0 = ground (GND), 1 = floating(Vbias/2), 2 = (Vbias)  
RR = Ripple Regulator, LDO = Low Drop-Out Regulator  
Vbias/2 is internal, leave VID pin floating. Adding an external 0.1-µF capacitor to ANAGND may be used to  
avoid erroneous level.  
External resistors may be used as a voltage divider (from V  
voltages to other values.  
to VSEN–xx to Gnd) to program output  
OUT  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
absolute maximum ratings over operating virtual junction temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
CC  
Input voltage range: VDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
BOOT to DRVGND (High-side Driver ON) . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 15 V  
BOOT to BOOTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
BOOT to HIGHDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
BOOTLO to DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 15 V  
DRV to DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
BIAS to ANAGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
INHIBIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
DROOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
+ 0.3 V  
CC  
OCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
VID0, VID1 (tri-level terminals) . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VBIAS + 0.3 V  
PWRGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
LOSENSE, LOHIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 14 V  
IOUTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 14 V  
HISENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
VSEN–LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
VSEN–RR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
Voltage difference between ANAGND and DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±300 mV  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 125°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: Unless otherwise specified, all voltages are with respect to ANAGND.  
DISSIPATION RATING TABLE  
PWP  
T
A
< 25°C  
Derating Factor  
T
A
= 70°C  
T = 85°C  
A
PowerPAD mounted  
PowerPAD unmounted  
3.58 W  
1.78 W  
0.0358 W/°C  
1.96 W  
0.98 W  
1.43 W  
0.71 W  
0.0178 W/°C  
JUNCTION-CASE THERMAL RESISTANCE TABLE  
Junction-case thermal resistance 0.72 °C/W  
Test Board Conditions:  
1. Thickness: 0.062”  
2. 3”x 3” (for packages < 27 mm long)  
3. 4” x 4” (for packages > 27 mm long)  
4. 2 oz. Copper traces located on the top of the board (0.071 mm thick )  
5. Copper areas located on the top and bottom of the PCB for soldering  
6. Power and ground planes, 1oz. Copper (0.036 mm thick)  
7. Thermal vias, 0.33 mm diameter, 1.5 mm pitch  
8. Thermal isolation of power plane  
For more information, refer to TI technical brief SLMA002.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
electrical characteristics T = 0° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
CC  
J
input  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
CC  
Supply voltage range  
2.8  
3.3  
5.5  
V
INHIBIT = 0 V,  
= 5 V  
I
Quiescent current  
15  
mA  
CC  
V
CC  
NOTE 2. Ensured by design, not production tested.  
reference/voltage identification  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
D0–D1 High level input voltage (2)  
Vbias – 0.3 V  
V
V
V
bias  
1
bias  
2
D0–D1 Mid level floating voltage (1)  
V
1
2
D0–D1 Low level input voltage (0)  
Input pull-to-mid resistance  
cumulative reference  
0.3  
V
36.5  
73  
95  
KΩ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
= 1.3 V,  
Hysteresis window = 30 mV,  
REF  
T = 25°C  
–1.3  
0.25  
1.3  
J
V
= 1.3 V,  
Hysteresis window = 30 mV,  
See Note 2  
REF  
T = –40°C,  
Cumulative accuracy ripple regulator  
–0.2  
%
J
V
= full range, Hysteresis window = 30 mV,  
REF  
Droop = 0,  
–1.5  
–2  
1.5  
See Note 2  
V
= 1.3 V,  
I =0.1 A,  
O
REF  
Closed Loop,  
T = 25°C,  
Pass device = IRFZ24N,  
See Note 2  
2
J
Cumulative accuracy LDO  
%
V
= full range,  
I =0.1 A,  
O
Pass device = IRFZ24N,  
REF  
Closed Loop,  
See Note 2  
–2.5  
2.5  
NOTE 2. Ensured by design, not production tested.  
hysteretic comparator(ripreg)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Input bias current  
See Note 2  
– V  
500  
nA  
mV  
mV  
V
= 15 mV,  
VHYST  
VREFB  
Hysteresis window = 30mV  
Hysteresis accuracy  
–3.5  
60  
3.5  
Maximum hysteresis setting  
V
– V = 30 mV, See Note 2  
VREFB  
VHYST  
Propagation delay time from VSENSE to  
HIGHDR or LOWDR  
(excluding deadtime)  
10 mV overdrive, 1.3 V <= V  
See Note 2  
<= 3.3 V  
REF  
150  
5
250  
ns  
Prefilter pole frequency  
See Note 2  
MHz  
NOTE 2. Ensured by design, not production tested.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
electrical characteristics T = 0° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
CC  
J
overvoltage protection  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
OVP ripple regulator trip point (RR)  
Upper threshold  
112  
115  
120  
%V  
REF  
mV  
Upper threshold – lower threshold,  
See Note 2  
Hysteresis (RR)  
10  
1
Comparator propagation delay time (RR)  
V
= 30mV,  
= 30mV,  
See Note 2  
See Note 2  
µs  
µs  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (RR)  
V
2.25  
112  
11  
overdrive  
OVP LDO trip point (LDO)  
Hysteresis (LDO)  
Upper threshold  
115  
10  
1
120  
%V  
REF  
Upper threshold – lower threshold,  
See Note 2  
mV  
µs  
Comparator propagation delay time (LDO)  
V
= 50mV,  
= 50mV,  
See Note 2  
See Note 2  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (LDO)  
V
2.25  
11  
µs  
overdrive  
NOTE 2. Ensured by design, not production tested.  
undervoltage protection  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
UVP ripple regulator trip point (RR)  
Lower threshold  
70  
75  
80  
%V  
REF  
mV  
Upper threshold – lower threshold,  
See Note 2  
Hysteresis (RR)  
10  
1
Comparator propagation delay time (RR)  
V
= 50mV,  
= 50mV,  
See Note 2  
See Note 2  
µs  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (RR)  
V
0.1  
70  
1
ms  
overdrive  
UVP LDO trip point (LDO)  
Hysteresis (LDO)  
Lower threshold  
75  
10  
1
80  
%V  
REF  
Upper threshold – lower threshold,  
See Note 2  
mV  
µs  
Comparator propagation delay time (LDO)  
V
= 50mV,  
= 50mV,  
See Note 2  
See Note 2  
overdrive  
Deglitch time (includes comparator  
propagation delay time) (LDO)  
V
0.1  
1
ms  
overdrive  
NOTE 2. Ensured by design, not production tested.  
inhibit comparator  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.1  
MAX UNITS  
2.35  
V
Start threshold  
T = –40°C,  
J
See Note 2  
2.1  
Stop threshold  
1.79  
V
NOTE 2. Ensured by design, not production tested.  
VDRV UVLO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Start threshold  
Hysteresis  
See Note 2  
4.9  
V
V
V
See Note 2  
See Note 2  
0.3  
4.4  
0.35  
Stop threshold  
NOTE 2. Ensured by design, not production tested.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
electrical characteristics T = 0° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
CC  
J
slowstart  
PARAMETER  
CONDITIONS  
MIN  
10.4  
3
TYP  
MAX UNITS  
V
= 0.5V,  
(S/S)  
Resistance from VREFB pin to ANAGND = 20 kΩ  
VREFB = 1.3 V, Ichg = (I /5)  
Charge current  
13  
15.6  
µA  
VREFB  
= 1.3 V  
Discharge current  
V
(S/S)  
mA  
mV  
nA  
Comparator input offset voltage  
Comparator input bias current  
Hysteresis accuracy  
10  
100  
7.5  
See Note 2  
10  
–7.5  
mV  
ns  
Comparator propagation delay  
Overdrive = 10 mV,  
See Note 2  
560  
1000  
NOTE 2. Ensured by design, not production tested.  
V
UVLO  
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.72  
2.71  
MAX UNITS  
See Note 2  
2.80  
V
Start threshold  
T = –40°C,  
J
See Note 2  
Stop threshold  
See Note 2  
2.48  
V
NOTE 2. Ensured by design, not production tested.  
power good  
PARAMETER  
CONDITIONS  
MIN  
TYP  
93  
MAX UNITS  
V
and VDRV above UVLO thresholds  
90  
95  
Undervoltage trip point ripple regulator  
(VSENSE–RR)  
IN  
T = –40°C,  
%V  
%V  
REF  
REF  
See Note 2  
and VDRV above UVLO thresholds  
93  
J
V
90  
93  
95  
Undervoltage trip point LDO  
(VSENSE–LDO)  
IN  
T = –40°C,  
See Note 2  
93  
J
Output saturation voltage  
Leakage current  
I
=5 mA  
0.5  
1
0.75  
V
O
V
V
V
= 4.5V  
µA  
mV  
mV  
PGD  
REF  
REF  
= 1.3V, 1.5V, or 1.8V  
= 2.5V, or 3.3V  
50  
75  
Hysteresis  
100  
125  
Comparator high–low transition time  
(propagation delay only)  
See Note 2  
1
1
µs  
Comparator low–high transition time  
(propagation delay + deglitch)  
See Note 2  
0.2  
2
ms  
NOTE 2. Ensured by design, not production tested.  
droop compensation  
PARAMETER  
CONDITIONS  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
54 mV  
Initial accuracy  
V
= 50 mV  
46  
DROOP  
overcurrent protection (RR)  
PARAMETER  
OCP trip point  
MIN  
TYP  
MAX UNITS  
118  
130  
142  
300  
mV  
nA  
µs  
Input bias current  
Comparator propagation delay time  
V
= 30mV,  
= 30mV,  
See Note 2  
See Note 2  
1
overdrive  
Deglitch time (includes comparator  
propagation delay time)  
V
2.25  
11  
µs  
overdrive  
NOTE 2. Ensured by design, not production tested.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
electrical characteristics T = 0° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
CC  
J
high-side VDS sensing  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Gain  
2
V/V  
V
= 3.3 V,  
V
= 3.2 V,  
HISENSE  
Differential input to Vds sensing amp = 100 mV  
IOUTLO  
Initial accuracy  
194  
69  
208  
250  
mV  
V
V
=2.8 V to 5.5 V,  
– V  
HISENSE  
HISENSE IOUTLO  
Common-mode rejection ratio  
Sink current (IOUTLO)  
75  
dB  
nA  
µA  
=100 mV  
2.8 V < V  
IOUTLO  
< 5.5 V  
V
V
= 0.5 V,  
=2.8 V  
V
V
=3.3 V,  
IOUT  
IOUTLO  
HISENSE  
Source current (IOUT)  
500  
50  
V
V
= 0.05 V,  
=3.3 V  
=3.35 V,  
IOUT  
IOUTLO  
HISENSE  
Sink current (IOUT)  
Output voltage swing  
µA  
V
V
V
V
V
V
V
V
V
V
V
V
V
=5.5 V,  
=4.5 V,  
=3 V,  
R
R
R
= 10 kΩ  
0
0
1.75  
1.5  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE =  
HISENSE =  
HISENSE =  
HISENSE =  
IOUT  
IOUT  
IOUT  
= 10 kΩ  
= 10 kΩ  
V
0
0.75  
LOSENSE high level input voltage  
LOSENSE low level input voltage  
LOSENSE high level input voltage  
LOSENSE low level input voltage  
LOSENSE high level input voltage  
LOSENSE low level input voltage  
=2.8 V,  
=2.8 V,  
=4.5 V,  
=4.5 V,  
=5.5 V,  
=5.5 V,  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
1.77  
V
V
V
V
V
V
1.49  
2.4  
2.85  
3.80  
3.2  
90  
6 V,  
70  
80  
4.5 V,  
3.6 V,  
2.8 V,  
100  
120  
180  
Sample/hold resistance  
90  
120  
V
V
= 2.55 V,  
HISENSE  
pulsed from 2.55 V to 2.45 V,  
4
3.5  
3
IOUTLO  
100 ns rise and fall times,  
See Note 2  
V
V
= 2.8 V,  
HISENSE  
pulsed from 2.8 V to 2.7 V,  
IOUTLO  
100 ns rise and fall times,  
See Note 2  
Response time (measured from 90% of  
µs  
V
to 90% of V  
)
IOUTLO  
IOUT  
V
V
= 4.5 V,  
HISENSE  
pulsed from 4.5V to 4.4V,  
IOUTLO  
100 ns rise and fall times,  
See Note 2  
V
V
= 5.5 V,  
HISENSE  
pulsed from 5.5 V to 5.9 V,  
3
IOUTLO  
100 ns rise and fall times,  
See Note 2  
500  
100  
Short circuit protection rising edge delay  
Sample/hold switch turnon/turnoff delay  
LOSENSE grounded,  
See Note 2  
300  
30  
ns  
ns  
2.8V < V  
< 5.5V,  
HISENSE  
= V  
V
,
See Note 2  
LOSENSE  
HISENSE  
NOTE 2. Ensured by design, not production tested.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
electrical characteristics T = 0° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
CC  
J
buffered reference  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
REF  
V
REF  
+1.5%  
I
I
=50 µA,  
=50 µA,  
Accuracy from V  
nominal  
nominal  
V
REF  
REFB  
REF  
REF  
–1.5%  
VREFB output voltage  
Accuracy from V  
See Note 2  
REFB  
J
V
–0.6%  
REF  
T = –40°C,  
VREFB load regulation  
10 µA < I  
< 500 µA  
2
mV  
REFB  
NOTE 2. Ensured by design, not production tested.  
thermal shutdown  
PARAMETER  
CONDITIONS  
MIN  
TYP  
145  
10  
MAX UNITS  
Over temperature trip point  
Hysteresis  
See Note 2  
See Note 2  
°C  
°C  
NOTE 2. Ensured by design, not production tested.  
synch charge pump regulator  
PARAMETER  
CONDITIONS  
MIN  
200  
5.05  
TYP  
300  
5.2  
MAX UNITS  
Internal oscillator frequency  
2.8 V < V < 5.5 V, I  
IN DRV  
= 50 mA,  
VDRV=5 V  
See Note 2  
See Note 2  
400  
kHz  
V
Internal oscillator turnon threshold  
Internal oscillator turnon hysteresis  
V
above UVLO threshold,  
above UVLO threshold,  
CC  
V
CC  
20  
mV  
NOTE 2. Ensured by design, not production tested.  
hysteretic comparator (charge pump)  
PARAMETER  
CONDITIONS  
above UVLO threshold,  
MIN  
TYP  
MAX UNITS  
Threshold  
Hysteresis  
V
V
See Note 2  
See Note 2  
5.05  
5.2  
V
IN  
above UVLO threshold,  
20  
mV  
IN  
NOTE 2. Ensured by design, not production tested.  
bias regulator  
PARAMETER  
CONDITIONS  
2.8V < V < 5.5 V, Rip reg operating See Note 3  
MIN  
TYP  
MAX UNITS  
Output voltage  
6.1  
V
IN  
NOTE 3. The BIAS regulator is designed to provide a quiet bias supply for TPS56300 controller. External loads should not be driven by the BIAS  
Regulator.  
deadtime circuit  
PARAMETER  
LOSENSE/LOHIB high level input voltage  
LOSENSE/LOHIB low level input voltage  
LOWDR high level input voltage  
LOWDR low level input voltage  
Driver nonoverlap time  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
V
V
=2.55 V – 5.5 V, See Note 2  
=2.55 V – 5.5 V, See Note 2  
2.4  
V
HISENSE  
HISENSE  
HISENSE  
HISENSE  
1.33  
V
V
=2.55 V–5.5 V,  
=2.55 V–5.5 V,  
See Note 2  
See Note 2  
3
1.7  
V
C
= 9 nF, 10% threshold on LOWDR, VDRV=5 V  
40  
170  
ns  
lowdr  
NOTE 2. Ensured by design, not production tested.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
electrical characteristics T = 0° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
CC  
J
output drivers (see Note 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Duty cycle < 2%,  
tpw < 100 us,  
= 4.5V,  
V
V
– V  
0.7  
2
BOOT  
BOOTLO  
= 4V (sink),  
See Note 2 and Figure 15  
HIGHDR  
Duty cycle < 2%,  
tpw < 100 us,  
V
V
– V  
= 4.5V,  
1.2  
1.3  
1.4  
2
2
2
BOOT  
BOOTLO  
= 0.5V (src),  
See Note 2 and Figure 15  
HIGHDR  
Peak output current  
A
Duty cycle < 2%,  
= 4.5 V,  
tpw < 100 µs,  
V
V
= 4 V (sink)  
DRV  
See Note 2 and Figure 15  
LOWDR  
Duty cycle < 2%, tpw < 100 us,  
V
= 4.5 V,  
V
= 0.5 V (src),  
DRV  
See Note 2 and Figure 15  
LOWDR  
V
– V  
= 4.5 V, V  
= 0.5 V  
BOOT  
See Note 2  
BOOTLO  
BOOTLO  
HIGHDR  
= 4 V,  
HIGHDR  
5
V
– V  
= 4.5V, V  
BOOT  
See Note 2  
45  
Output resistance  
V
V
= 4.5V,  
V
V
= 0.5V, See Note 2  
9
DRV  
LOWDR  
= 4.5V,  
= 4V,  
See Note 2  
45  
DRV  
LOWDR  
C = 3.3 nF,  
V
= 4.5V,  
l
BOOT  
HIGHDR rise/fall time (see Note 7)  
LOWDR rise/fall time (see Note 7)  
60  
40  
ns  
ns  
V
=grounded  
BOOTLO  
C = 3.3 nF,  
V
DRV  
= 4.5V  
l
INHIBIT grounded,  
< UVLO; VBOOT=6V,  
BOOTLO grounded  
V
10  
µA  
IN  
High-side driver quiescent current  
INHIBIT connected to +5 V,  
Fswx = 200KHz,  
BOOTLO = 0  
V
> UVLO  
IN  
VBOOT = 5.5 V,  
= 50 pF  
2
mA  
C
HIGHDR  
See Note 2  
NOTES: 2. Ensured by design, not production tested.  
5. The pullup/pulldown circuits of the drivers are bipolar and MOSFET transistors in parallel. The peak output current rating is the  
combined current from the bipolar and MOSFET transistors. The output resistance is the R  
the voltage on the driver output is less than the saturation voltage of the bipolar transistor.  
of the MOSFET transistor when  
ds(on)  
LDO N-channel output driver  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
= 7.5V,  
= 0.9 × V  
V
=3 V(src),  
LDODRV  
IOSENSE  
N–DRV  
190  
1.5  
200  
µA  
,
See Note 2  
See Note 2  
LDOREF  
Peak output current  
V
V
= 7.5V,  
= 1.1 × V  
V
N–DRV  
LDOREF  
=0 V(snk),  
LDODRV  
IOSENSE  
mA  
,
Open loop voltage gain  
V
= 5.5 V,  
7.5 V V  
0.5 V,  
3000  
(70)  
V/V  
(dB)  
IN  
NGATE–LDO  
(V  
/ V  
)
See Note 2  
NGATE–LDO SENSE–LDO  
f=1 kHz,  
C
=10 µF,  
T =125 °C,  
J
O
Power supply ripple rejection  
60  
dB  
5.5 V V 2.55 V, See Note 2  
IN  
NOTE 2. Ensured by design, not production tested.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
electrical characteristics T = 0° to 125°C, V  
= 2.8 V to 5.5 V (unless otherwise noted)  
CC  
J
V
and V  
discharge  
SENSE–RR  
SENSE–LDO  
PARAMETER  
CONDITIONS  
= 1.5 VS,ee Note 2  
MIN  
TYP  
MAX UNITS  
V
dischargeFETcurrentsatura-  
discharge series resistance  
discharge FET propagation  
SENSE–RR  
tion  
V
5
mA  
SENSE–RR  
V
SENSE–RR  
(limits current)  
INHIBIT = 0 V,  
See Note 2  
V
IN  
= 5.5 V  
1
kΩ  
V
SENSE–RR  
delay time  
100  
100  
ns  
mA  
kΩ  
ns  
V
dischargeFETcurrentsatu-  
discharge series  
SENSE–LDO  
ration  
V
= 3.3 V,  
See Note 2  
5
1
SENSE–LDO  
V
SENSE–LDO  
INHIBIT = 0 V,  
See Note 2  
V
IN  
= 5.5 V,  
resistance (limits current)  
V
discharge FET  
SENSE–LDO  
propagation delay time  
NOTE 2. Ensured by design, not production tested.  
detailed description  
reference/voltage identification  
The reference/voltage identification (VID) section consists of a temperature compensated bandgap reference  
and a 2-pin voltage selection network. Both ripple regulator and LDO reference voltages are programmed with  
each VID setting. The 2 VID pins are inputs to the VID selection network and are tri-level inputs that may be  
set to GND, floating (internally 2.5V), or VDRV. The VID codes allow the controller to power both current and  
future DSP products. The output voltages may also be programmed by external resistor voltage dividers for any  
values not included in the VID code settings. Refer to Table 1 for the VID code settings. The output voltages  
of the VID network, VREF–RR & VREF–LDO, are within 1.5% of the nominal setting for all the VID range of 1.3V  
to 3.3V. The reference tolerance conditions include a junction temperature range of –40°C to +125°C and a V  
CC  
supply voltage range of 2.8 V to 5.5 V. The VREF–RR output of the reference/VID network is indirectly brought  
out through a buffer to the VREFB pin. The voltage on this pin will be within 1.5% of VREF–RR. It is not  
recommended to drive loads with VREFB, other than setting the hysteresis of the hysteretic comparator,  
because the current drawn from VREFB sets the charging current for the slowstart capacitor. Refer to the  
Slowstart section for additional information.  
hysteretic comparator  
The hysteretic comparator regulates the output voltage of the synchronous-buck converter. The hysteresis is  
set by 2 external resistors and is centered around V  
. The 2 external resistors form a resistor divider from  
REF  
VREFB to ANAGND, and the divided down voltage connects to the VHYST pin. The hysteresis of the  
comparator will be equal to twice the voltage difference that is across the VREFB and VHYST pins. The  
propagation delay from the comparator inputs to the driver outputs is 250 ns maximum. The maximum  
hysteresis setting is 60 mv.  
low-side driver  
The low-side driver is designed to drive low Rds(on) logic-level N-channel MOSFETs. The current rating of the  
driver is 2 amps typical, source and sink. The bias to the low-side driver is internally connected to the regulated  
synchronous charge pump output.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
detailed description (continued)  
high-side driver  
The high-side driver is designed to drive low Rds(on) logic-level N-channel MOSFETs. The current rating of the  
driver is 2 amps typical, source and sink. The high-side driver can be configured either as a floating bootstrap  
driver or as a ground-reference driver. When configured as a floating driver, the bias voltage to the driver is  
developed from the charge pump VDRV voltage. The internal synchronous bootstrap rectifier, connected  
between the VDRV and BOOT pins, is a synchronously-rectified MOSFET for improved drive efficiency. The  
maximum voltage that can be applied between the BOOT pin and ground is 14 V. The driver can be referenced  
to ground by connecting BOOTLO to DRVGND, and connecting a voltage (4.5 V + V ) to the BOOT pin.  
CC  
deadtime control  
Deadtime control prevents shoot-through current from flowing through the main power FETs during switching  
transitions by actively controlling the turn-on time of the MOSFET drivers. The high-side driver is not allowed  
to turn on until the gate drive voltage to the low-side FET is below 1 V, and the low-side driver is not allowed  
to turn on until the voltage at the junction of the 2 FETs (Vphase) is below 2 V.  
current sensing  
Current sensing is achieved by sampling and holding the voltage across the high-side power FET while the  
high-side FET is on. The sampling network consists of an internal 60-switch and an external hold capacitor.  
Internal logic controls the turnon and turnoff of the sample/hold switch such that the switch does not turn on until  
the Vphase voltage transitions high, and the switch turns off when the input to the high-side driver goes low.  
Thus sampling will occur only when the high-side FET is conducting current. The voltage on the IOUT pin equals  
2 times the sensed high-side voltage.  
droop compensation  
The droop compensation network reduces the load transient overshoot / undershoot on V  
, relative to V  
REF  
REF  
OUT  
(seeapplicationinformationformoredetails).V  
isprogrammedtoavoltagegreaterthanV  
byanexternal  
OUT  
resistor divider from V  
to the VSENSE pin to reduce the undershoot on V  
during a low to high load  
OUT  
OUT  
transient. The overshoot during a high to low load transient is reduced by subtracting the voltage that is on the  
DROOP pin from V . The voltage on the IOUT pin is divided down with an external resistor divider, and  
REF  
connected to the DROOP pin.  
inhibit  
INHIBIT is a TTL compatible comparator pin that is used to enable the controller. When INHIBIT is lower than  
the threshold, the output drivers are low and the slowstart capacitor is discharged. When INHIBIT goes high  
(above2.1V), theshortacrosstheslowstartcapacitorisreleasedandnormalconverteroperationbegins. When  
another system logic supply is connected to the INHIBIT pin, this pin controls power sequencing by locking out  
controller operation until the system logic supply exceeds the input threshold voltage of the inhibit circuit; thus  
the +3.3-V supply and another system logic supply (either +5 V or +12 V) must be above UVLO thresholds  
before the controller is allowed to start up. Toggling the INHIBIT pin down clears the fault latch.  
V
& VDRV undervoltage lockout  
CC  
The V  
undervoltage lockout circuit disables the controller while the V  
supply is below the 2.8-V start  
CC  
CC  
threshold. The VDRV undervoltage lockout circuit disables the controller while the VDRV supply is below the  
4.9 V start threshold during powerup. While the controller is disabled, the output drivers will be low, the LDO  
drive is off, and the slowstart capacitor will be shorted. When V  
short across the slowstart capacitor is released and normal converter operation begins.  
and VDRV exceed the start threshold, the  
CC  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
detailed description (continued)  
slowstart  
The slowstart circuit controls the rate at which VOUT–RR and VOUT–LDO power up (at same time). A capacitor  
is connected between the SLOWST and ANAGND pins and is charged by an internal current source. The value  
of the current source is proportional to the reference voltage, so that the charging rate of C  
to the ripple regulator reference voltage. The slowstart charging current is determined by the following equation:  
is proportional  
slowst  
I
VREFB  
I
SLOWSTART  
5
Where I  
is the current flowing out of the VREFB pin. It is recommended that no additional loads be  
VREFB  
connectedtoVREFB, otherthantheresistordividerforsettingthehysteresisvoltage. Thustheseresistorvalues  
will determine the slowstart charging current. The maximum current that can be sourced by the VREFB circuit  
is 500 µA. The equation for the slowstart time is:  
T
5
C
R
SLOWSTART  
SLOWSTART  
VREFB  
Where R  
is the total external resistance from VREFB to ANAGND.  
VREFB  
power good  
The power good circuit monitors for an undervoltage condition on VOUT–RR and VOUT–LDO. The powergood  
(PWRGD)pin is pulled low if either VOUT–RR is 7% below VREF–RR, or VOUT–LDO is 7% below VREF–LDO.  
PWRGD is an open drain output. The powergood pin is also pulled down, if either V  
UVLO thresholds.  
or VDRV are below their  
CC  
overvoltage protection  
The overvoltage protection circuit monitors VOUT–RR and VOUT–LDO for an overvoltage condition. If  
VOUT–RRorVOUT–LDOare15%abovetheirreferencevoltage, thenafaultlatchissetandbothoutputdrivers  
and LDO are turned off. The latch will remain set until the V  
lockout values. A 1-µs to 5 µs deglitch timer is included for noise immunity.  
or inhibit voltages go below their undervoltage  
CC  
overcurrent protection  
The overcurrent protection circuit monitors the current through the high-side FET. The overcurrent threshold  
is adjustable with an external resistor divider between IOUT and ANAGND pins, with the divider voltage  
connected to the OCP pin. If the voltage on the OCP pin exceeds 125 mV, then a fault latch is set and the output  
drivers are turned off. The latch will remain set until the V  
lockout values. A 1-µs to 5-µs deglitch timer is included for noise immunity. The OCP circuit is also designed  
or inhibit voltages go below their undervoltage  
CC  
to protect the high-side power FET against a short-to-ground fault on the terminal common to both power FETs.  
undervoltage protection  
The undervoltage protection circuit monitors VOUT–RR and VOUT–LDO for an undervoltage condition. If  
VOUT–RR or VOUT–LDO is 15% below their reference voltage, then a fault latch is set and both output drivers  
and LDO are turned off. The latch will remain set until the V  
lockout values. A 100-µs to 1-ms deglitch timer is included for noise immunity.  
or inhibit voltages go below their undervoltage  
CC  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
detailed description (continued)  
synchronous charge pump  
The regulated synchronous charge pump provides drive voltage to the low-side driver at VDRV (5V), and to the  
high-side driver when the high-side driver is configured as a floating driver. The minimum drive voltage is 4.5V,  
(typical 5V). The minimum short circuit current is 80 mA. The bootstrap capacitor is used to provide Vdrive for  
the high-side FET, the power for VLDODRV, and the bias regulator. Instead of diodes, synchronous rectified  
MOSFETs are used to reduce voltage drop losses and allow a lower input voltage threshold. The charge pump  
oscillator operates at 300 kHz until the UVLO VDRV is set; after which it is synchronized to the converter  
switching frequency and is turned on and off to regulate VDRV at 5 V.  
The charge pump is designed to operate at a switching frequency of 200 kHz to 400 kHz. Operation at low  
frequency may require larger capacitors on CPC and VDRV pin. High frequency (> 400 kHz) may not be  
possible.  
power sequence  
The VOUT–LDO voltage is powered up with respect to the same slowstart reference voltage as the VOUT–RR.  
Also, at power down, the VOUT–RR and VOUT–LDO are discharged to ground through P-channel MOSFETs  
in series with 1-kresistors.  
TYPICAL CHARACTERISTICS  
QUIESCENT CURRENT  
vs  
V
UVLO HYSTERESIS  
vs  
CC  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
13  
12  
11  
10  
180  
175  
170  
165  
160  
155  
150  
V
= 3.3 V  
CC  
Inhibit = 0 V  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 1  
Figure 2  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
TYPICAL CHARACTERISTICS  
V
UVLO START THRESHOLD VOLTAGE  
SLOWSTART CHARGE CURRENT  
vs  
CC  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.750  
2.725  
2.700  
2.675  
2.65  
15  
14  
13  
12  
11  
10  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 3  
Figure 4  
SLOWSTART TIME  
vs  
SUPPLY CURRENT (VREFB)  
SLOWSTART TIME  
vs  
SLOWSTART CAPACITANCE  
1000  
100  
10  
V
V
= 3.3 V  
= 1.3 V  
= 0.1 µF  
CC  
(VREFB)  
V
V
= 3.3 V  
CC  
= 1.3 V  
(VREFB)  
(VREFB)  
J
C
S
J
I
T
= 65 µA  
T
= 27°C  
= 25°C  
100  
10  
1
1
0.1  
0.0001  
1
10  
100  
1000  
0.0010  
0.0100  
0.1000  
1
I
– Supply Current (VREFB) – µA  
CC  
Slowstart Capacitance – µF  
Figure 5  
Figure 6  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
TYPICAL CHARACTERISTICS  
DRIVER  
RISE TIME  
DRIVER  
FALL TIME  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1000  
100  
1000  
100  
T
J
= 27°C  
T = 27°C  
J
High Side  
High Side  
Low Side  
Low Side  
10  
10  
1
0.1  
1
0.1  
1
10  
100  
1
10  
100  
C
– Load Capacitance – nF  
C
– Load Capacitance – nF  
L
L
Figure 7  
Figure 8  
DRIVER  
DRIVER  
HIGH-SIDE OUTPUT RESISTANCE  
vs  
LOW-SIDE OUTPUT RESISTANCE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
5.0  
8
7
6
5
4
3
2
1
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 9  
Figure 10  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
TYPICAL CHARACTERISTICS  
DRIVER  
INPUT CURRENT  
vs  
VDRV UVLO START THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
OUTPUT VOLTAGE  
5
4.5  
4
4.70  
4.69  
4.68  
4.67  
4.66  
4.65  
3.5  
3
2.5  
2
2 A Typical  
1.5  
1
4.5 V  
3
0.5  
0
0
1
2
4
5
6
7
8
9
0
25  
50  
75  
100  
125  
V
O
– Output Voltage – V  
T
J
– Junction Temperature – °C  
Figure 11  
Figure 12  
RIPPLE REGULATOR  
VDRV UVLO HYSTERESIS  
vs  
POWERGOOD THRESHOLD  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
94.00  
93.75  
93.50  
93.25  
93.00  
92.75  
92.50  
92.25  
92  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 13  
Figure 14  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
TYPICAL CHARACTERISTICS  
INHIBIT START THRESHOLD VOLTAGE  
INHIBIT HYSTERESIS VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.100  
2.075  
2.050  
2.025  
2.000  
140  
130  
120  
110  
100  
90  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 15  
Figure 16  
RIPPLE REGULATOR OVP THRESHOLD  
RIPPLE REGULATOR UVP THRESHOLD  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
118  
117  
116  
115  
77  
76  
75  
74  
114  
113  
112  
73  
72  
71  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 17  
Figure 18  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
TYPICAL CHARACTERISTICS  
LDO OVP THRESHOLD  
vs  
OCP THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
118  
117  
116  
115  
114  
113  
112  
135  
133  
131  
129  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 19  
Figure 20  
LDO UVP THRESHOLD  
vs  
JUNCTION TEMPERATURE  
77  
76  
75  
74  
73  
72  
71  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
Figure 21  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
The design shown in this datasheet is a reference design for a DSP application. An evaluation module (EVM),  
TPS56300EVM–139 (SLVP139), is available for customer testing and evaluation. The following figure is an  
application schematic for reference. The circuit can be divided into the power-stage section and the  
control-circuit section. The power stage must be tailored to the input/output requirements of the application. The  
control circuit is basically the same for all applications with some minor tweaking of specific values. Table 2  
shows the values of the power stage components for various output-current options.  
LDO  
POWER  
STAGE  
TP6  
FB2  
TP5  
+
J2  
+
JP3  
L1  
3.3 uH  
+
TP8  
TP7  
Q1:A  
J1  
Q4  
TP1  
TP11  
TP9  
TP3  
U1  
TPS56300PWP  
TP4  
TP2 Q1:B  
+
+
+
Q5  
+
TP10  
FB1  
JP1  
JP2  
RIPPLE REGULATOR POWER STAGE  
CONTROL SECTION  
Figure 22. EVM Schematic  
Table 2. EVM Input and Outputs  
V
IN  
5 V  
I
V
RR  
1.8 V  
I
V
LDO  
3.3 V  
I
IN  
4 A  
RR  
4 A  
LDO  
0.5 A  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
Table 3. Ripple Regulator Power Stage Components  
Ripple Regulator Section  
Ref Des  
C3, C6  
Function  
4A (EVM Design)  
C3: open  
C6: 150 µF  
(Sanyo,  
8A  
12A  
20A  
C3: 150 µF  
C6: 2x150 µF  
(Sanyo,  
Input Bulk Ca-  
pacitor  
C3: 150 µF  
C6: 150 µF  
(Sanyo,  
C3: 150 µF  
C6: 150 µF  
(Sanyo,  
6TPB150M)  
6TPB150M)  
6TPB150M)  
6TPB150M)  
C11, C2  
Input high–freq  
Capacitor  
C2: 0.1 µF  
C11: 0.1 µF  
(muRata  
C2: 0.1 µF  
C11: 0.1 µF  
(muRata  
C2: 0.1 µF  
C11: 0.1 µF  
(muRata  
C2: 0.33 µF  
C11: 0.33 µF  
(muRata  
GRM39X7R104K016A,  
0.1 µF, 16–V, X7R)  
GRM39X7R104K016A,  
0.1 µF, 16–V, X7R)  
GRM39X7R104K016A, 0.1  
µF, 16–V, X7R)  
GRM39X7R334K016A,  
0.33 µF, 16–V, X7R)  
C13, C14  
Output Bulk Ca-  
pacitor  
C13: 150 µF  
(Sanyo, 6TPB150M)  
C14: open  
C13: 150 µF  
(Sanyo, 6TPB150M)  
C14: open  
C13: 150 µF  
C14: 150 µF  
(Sanyo, 6TPB150M)  
C13: 150 µF  
C14: 150 µF  
(Sanyo, 6TPB150M)  
C15,C30,  
C31  
Output Mid–freq  
Capacitor  
C15: open  
C30: 10 µF  
C15: open  
C30: 10 µF  
C15: 10 µF  
C30: 10 µF  
C15: 10 µF  
C30: 10 µF  
C31: 10 µF  
C31: 10 µF  
C31: 10 µF  
C31: 10 µF  
(muRata  
(muRata  
(muRata  
(muRata  
GRM39X7R106K016A,  
10 µF, 16–V, X7R)  
GRM39X7R106K016A,  
10 µF, 16–V, X7R)  
GRM39X7R106K016A, 10  
µF, 16–V, X7R)  
GRM39X7R106K016A,  
10 µF, 16–V, X7R)  
C16  
Output High–freq open  
Capacitor  
0.1 µF  
(muRata  
0.1 µF  
(muRata  
0.1 µF  
(muRata  
GRM39X7R104K016A,  
0.1 µF, 16–V, X7R)  
GRM39X7R104K016A, 0.1  
µF, 16–V, X7R)  
GRM39X7R104K016A,  
0.1 µF, 16–V, X7R)  
L1  
L2  
Input filter  
3.3 µH  
Coilcraft  
DO3316P–332, 5.4 A  
3.3 µH  
Coilcraft  
DO3316P–332,5.4 A  
1.5 µH  
Coilcraft  
DO3316P–152,6.4 A  
1 µH  
Coiltronics  
UP3B–1R0, 12.5–A  
Output filter  
3.3 µH  
3.3 µH  
1.5 µH  
3.3 µH  
Coilcraft  
Coilcraft  
Coilcraft  
Micrometals,  
DO3316P–332, 5.4 A  
DO5022P–332HC, 10 A  
DO5022P–152HC,  
15 A  
T68–8/90 Core w/7T, #16,  
25 A  
R8  
Low Side Gate  
Resistor  
10 Ω  
10 Ω  
5.1 Ω  
5.1 Ω  
Q1A,Q4  
Q1B,Q5  
Power Switch  
Q1A: Dual FET  
IRF7311  
Q4: IRF7811  
Q5: IRF7811  
Q4: 2xIRF7811  
Q5: 2xIRF7811  
Q4: 2xIRF7811  
Synchronous  
Switch  
Q1B: Dual FET  
IRF7311  
Q5:  
2xIRF7811  
The values listed in Table 3 are recommendations based on actual test circuits. Many variations of the above  
are possible based upon the desires and/or requirements of the user. Performance of the circuit is equally, if  
not more, dependent upon the layout than on the specific components, as long as the device parameters are  
not exceeded. Fast-response, low-noise circuits require circuits require critical attention to the layout details.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
Table 4. LDO Power Stage Components  
LDO Section  
Ref. Des  
Q2:A  
Part  
V
IN  
V
Description  
OUT  
IRF7811(EVM)  
or  
V
IN  
V
IN  
– V  
DROPOUT  
Used as a power distribution switch for LDO  
output control  
Si4410, IRF7413  
FDS6680  
Q2:A  
Q2:A  
Q2: B  
IRF9410, Si9410  
Low cost solution for low LDO output cur-  
rent (V –V  
)*I  
< 1 W  
IN OUT OUT  
IRF7811  
Higher current and still surface mount  
1 W < (V –V )*I ) < 2 W  
IN OUT OUT  
IRLZ24N  
High output current requiring heat sink. Low  
cost but through–hole package.  
(V –V  
)*I  
> 2 W  
IN OUT OUT  
V = I × Rdson. It should be as small as possible.  
DROPOUT OUT  
frequency calculation  
With hysteretic control, the switching frequency is a function of the input voltage, the output voltage, the  
hysteresis window, the delay of the hysteresis comparator and the driver, the output inductance, the resistance  
in the output inductor, the output capacitance, the ESR and ESL in the output capacitor, the output current, and  
the turnon resistance of high-side and low-side MOSFET. It is a very complex equation if everything is included.  
To make it more useful to designers, a simplified equation is developed that considers only the most influential  
factors. The tolerance of the result for this equation is about 30%:  
–9  
ESR 250 10  
T
d
V
V
V
OUT  
IN  
OUT  
C
out  
f
s
–9  
V
V
ESR  
250 10  
T
V
L
ESL  
V
IN  
IN  
d
hys  
OUT  
IN  
Where fs is the switching frequency (Hz); V  
theoutputcapacitance;ESRistheequivalentseriesresistanceintheoutputcapacitor();ESListheequivalent  
is the output voltage (V); V is the input voltage (V); C  
is  
IN  
OUT  
OUT  
series inductance in the output capacitor (H); L  
time constant (S); Vhys is the hysteresis window (V).  
is the output inductance (H); Td is output feedback RC filter  
OUT  
hysteresis window  
The changeable hysteresis window in TPS56300 is used for switching frequency and output voltage ripple  
adjustment. The hysteresis window setup is decided by a two-resistor voltage divider on VREFB and VHYST  
pin. Two times of the voltage drop on the top resistor is the hysteresis window. The formula is shown in the  
following:  
R13  
Vhyswindow = 2 × VREFB× (1 –  
)
R11 + R13  
Where Vhyswindow is the hysteresis window (V); VREFB is the regulated voltage from VREVB (pin 5); R11 is  
the top resistor in the voltage divider; R13 is the bottom resistor in the voltage divider. The maximum hysteresis  
window is 60 mV.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
slowstart  
Slowstart reduces the start-up stresses on the power-stage components and reduces the input current surge.  
The minimum slowstart time is limited to 1 ms due to the power good function deglitch time. Slowstart timing  
is dependent of the timing capacitor value on the slowstart pin. The following formula can be used for setting  
the slowstart timing:  
T
5
C
R
SLOWSTART  
SLOWSTART  
VREFB  
isthecapacitorvalueonSLOWST(pin3). R is thetotal  
VREFB  
T
is the slowstart time; C  
SLOWSTART  
resistance on VREFB (pin 5).  
SLOWSTART  
current limit  
Current limit can be implemented using the on-resistance of the upper FETs as the sensing elements. The IOUT  
signal is used for the current limit and the droop function. The voltage at IOUT at the output current trip point  
will be:  
V
R
I
2
IOUT  
ON  
O
R
is the high-side on-time resistance; I is the output current. The current limit is calculated by using the  
ON  
O
formula:  
R4  
I
2
R
0.125  
ON  
O MAX  
R5  
0.125  
Where R4 is the bottom resistor in the voltage divider on OCP pin, and R5 is the top resistor; I  
is the  
O(MAX)  
maximum current allowed; R  
is the high-side FET on-time resistance.  
ON  
Since the FET on-time resistance varies according to temperature, the current limit is basically for catastrophic  
failure.  
droop compensation  
DroopcompensationwiththeoffsetresistordividerfromV  
totheVSENSEisusedtokeeptheoutputvoltage  
OUT  
in range during load transients by increasing the output voltage setpoint toward the upper tolerance limit during  
light loads and decreasing the voltage setpoint toward the lower tolerance limit during heavy loads. This allows  
the output voltage to swing a greater amount and still remain within the tolerance window. The maximum droop  
voltage is set with R6 and R7:  
R6  
R6 R7  
V
V
DROOP max  
IOUT max  
WhereV  
isthemaximumdroopvoltage;V isthemaximumVIOUTthatreflectsthemaximum  
IOUT(max)  
DROOP(max)  
output current (full load); R6 is the bottom resistor of the divider connected to the DROOP pin, R7 is the top  
resistor.  
The offset voltage is set to be half of the maximum droop voltage higher than the nominal output voltage, so  
the whole droop voltage range is symmetrical to the nominal output voltage. The formula for setting the offset  
voltage is:  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
1
2
R12  
R10 R12  
V
V
V
OFFSET  
DROOP max  
O
Where V  
is the desired offset voltage; V  
is the droop voltage at full load; Vo is the nominal  
OFFSET  
DROOP(max)  
output voltage; R10 is the top resistor of the offset resistor divider, and R12 is the bottom one.  
Therefore, with the setup above, at light load, the output voltage is:  
1
V
V
V
V
V
O nom  
OFFSET  
O nom  
DROOP  
V
O NO LOAD  
2
And, at full load, the output voltage is:  
1
2
V
V
V
V
O nom  
OFFSET  
O nom  
DROOP  
O FULL LOAD  
output inductor ripple current  
The output inductor current ripple can affect not only the efficiency, but also the output voltage ripple. The  
equation for calculating the inductor current ripple is exhibited in the following:  
V
V
I
Rdson  
R
out  
IN  
OUT  
L
I
D
Ts  
ripple  
L
OUT  
Where I  
output voltage (V); I  
is the peak-to-peak ripple current (A) through the inductor; V is the input voltage (V); V  
is the  
ripple  
IN  
OUT  
is the output current; Rdson is the on-time resistance of MOSFET (); R is the output  
OUT  
L
inductor equivalent series resistance; D is the duty cycle; and Ts is the switch cycle (S). From the equation, it  
can be seen that the current ripple can be adjusted by changing the output inductor value.  
Example:  
V
IN  
= 5 V; V  
= 1.8 V; I  
= 5 A; Rdson = 10 m; R = 5 m; D = 0.36; Ts = 5 µs; L  
= 6 µH  
OUT  
OUT  
L
OUT  
Then, the ripple I  
= 1 A.  
ripple  
output capacitor RMS current  
Assuming the inductor ripple current totally goes through the output capacitor to the ground, the RMS current  
in the output capacitor can be calculated as:  
I  
I
=
O(rms)  
12  
Where I  
current (A).  
is the maximum RMS current in the output capacitor (A); I is the peak-to-peak inductor ripple  
O(rms)  
Example:  
I = 1 A, so IO(rms) = 0.29 A  
input capacitor RMS current  
The input capacitor RMS current is important for input capacitor design. Assuming the input ripple current totally  
goes into the input capacitor to the power ground, the RMS current in the input capacitor can be calculated as:  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
2
2
1
12  
(
)
D
I
I
D
1
D
I
I(rms)  
O
ripple  
Where I  
is the input RMS current in the input capacitor (A); I is the output current (A); Iripple is the  
O
I(rms)  
peak-to-peak output inductor ripple current; D is the duty cycle. From the equation, it can be seen that the  
highest input RMS current usually occurs at the lowest input voltage, so it is the worst case design for input  
capacitor ripple current.  
Example:  
I
= 5 A; D = 0.36; I  
= 1 A,  
ripple  
O
Then, I  
= 2.46 A  
I(rms)  
layout and component value consideration  
Good power supply results will only occur when care is given to proper design and layout. Layout and  
component value will affect noise pickup and generation and can cause a good design to perform with less than  
expected results. With a range of current from milliamps to tens or even hundreds of amps, good power supply  
layout and component selection, especially for a fast ripple controller, is much more difficult than most general  
PCB design. The general design should proceed from the switching node to the output, then back to the driver  
section, and, finally, to placing the low-level components. In the following list are several specific points to  
consider before layout and component selection for TPS56300:  
1. All sensitive analog components should be referenced to ANAGND. These include components connected  
to SLOWST, DROOP, IOUT, OCP, VSENSE, VREFB, VHYST, BIAS, and LOSENSE/LOHIB.  
2. The input voltage range for TPS56300 is low from 2.8-V to 5.5-V, so it has a voltage tripler (charge pump)  
inside to deliver proper voltage for internal circuitry. To avoid any possible noise coupling, a low ESR  
capacitor on V  
is recommended.  
CC  
3. For the same reason in Item 2, the ANAGND and DRVGND should be connected as close as possible to  
the IC.  
4. The bypass capacitor should be placed close to the TPS56300.  
5. When configuring the high-side driver as a boot-strap driver, the connection from BOOTLO to the power  
FETs should be as short and as wide as possible. LOSENSE/LOHIB should have a separate connection  
to the FETs since BOOTLO will have large peak current flowing through it.  
6. The bulk storage capacitors across V should be placed close to the power FETs. High-frequency bypass  
IN  
capacitors should be placed in parallel with the bulk capacitors and connected close to the drain of the  
high-side FET and to the source of the low-side FET.  
7. HISENSE and LOSENSE should be connected very close to the drain and source, respectively, of the  
high-side FET. HISENSE and LOSENSE should be routed very close to each other to minimize  
differential-mode noise coupling to these traces. Ceramic decoupling capacitors should be placed close to  
where HISENSE connects to V , to reduce high-frequency noise coupling on HISENSE.  
IN  
The EVM board (SLVP-139) is used in the test. The test results are shown in the following.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
RIPPLE OUTPUT  
LOAD REGULATION (1.8 V)  
RIPPLE OUTPUT EFFICIENCY (1.8 V)  
100  
1.83  
V
IN  
= 3.3 V  
1.825  
1.82  
80  
60  
V
IN  
= 5 V  
V
IN  
= 5 V  
1.815  
40  
20  
0
V
= 3.3 V  
IN  
1.81  
1.805  
1.8  
0
1
2
3
4
5
0
1
2
3
4
5
I
O
– Output Current – A  
I
O
– Output Current – A  
Figure 23  
Figure 24  
RIPPLE OUTPUT  
LINE REGULATION (1.8 V)  
LDO OUTPUT  
LOAD REGULATION (3.3 V)  
1.83  
3.32  
3.315  
3.31  
1.825  
1.82  
1.815  
1.81  
3.305  
3.3  
1.805  
1.8  
3.295  
3.29  
2
3
4
5
6
7
2
3
4
5
6
7
V
IN  
– Input Voltage – V  
V
IN  
– Input Voltage – V  
Figure 25  
Figure 26  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
HYSTERESIS CONTROL  
TRANSIENT RESPONSE  
DROOP COMPENSATION EFFECT  
6
10  
Load Current  
4
2
5
0
400 A/µs  
4 A  
0
No Droop  
280 mV  
Recovery Time  
–5  
100  
Output Voltage  
200  
0
–100  
–200  
100  
0
220 mV  
Output Voltage  
With Droop  
–100  
0
5
10 15 20 25 30 35 40 45 50  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t – Time – µs  
t – Time – ms  
Figure 27  
Figure 28  
SLOWSTART  
6
5
4
3.3 V  
3
2
1
1.8 V  
0
–1  
–2  
0
4
8
12 16 20 24 28 32 36 40  
t – Time – ms  
Figure 29  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
layouts  
Figure 30. Top Layer  
Figure 31. Bottom Layer (Top View)  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
bill of materials  
REF  
PN  
Description  
MFG  
Size  
C
C1  
10TPA33M  
Std  
Capacitor, POSCAP, 33 µF, 10 V Sanyo  
Capacitor, Ceramic, 10 µF, 16 V Sanyo  
Capacitor, POSCAP, 150 µF, 6 V Sanyo  
Capacitor, Ceramic, 0.1 µF, 16 V Sanyo  
C2, C20, C21, C30, C31  
C3. C6, C8, C13, C25  
1210  
D
6TPB150M  
Std  
C4, C5, C11, C12, C23, C26,  
C27,  
603  
C7, C22  
C9  
Std  
Std  
Std  
Std  
Std  
Capacitor, Ceramic, 1 µF, 16 V  
Sanyo  
805  
1210  
603  
D
Open  
Open  
Open  
C10, C16  
C14, C15  
C17, C24  
Capacitor, Ceramic, 1000 pF, 16 Sanyo  
V
603  
C18, C19  
D1  
Std  
Capacitor, Ceramic, 1 µF, 16 V  
Diode, LED, Green, 2.1 V SM  
Inductor, 3.3 µH, 5.4 A  
Sanyo  
805  
SML-LX2832G  
DO3316P-332  
ED2227  
Lumwx  
Coilcraft  
1210  
L1, L2  
J1  
0.5 × 0.37 in  
5.08 mm  
Terminal Block, 4-pin, 15 A, 5.08 OST  
mm  
J2  
ED1515  
Terminal Block, 3-pin, 6 A, 3.5  
mm  
OST  
n, 6 A,  
JP1, JP2  
S1132-3-ND  
Header, Right straight, 3-pin, 0.1 Sullins  
ctrs, 0.3” pins  
#S1132-3-ND  
JP1shunt  
J3  
929950-00-ND  
S1132-2-ND  
Shunt jumper, 0.1” (for JP1)  
3M  
0.1”  
Header, Right straight, 2-pin, 0.1 Sullins  
ctrs, 0.3” pins  
#S1132-2-ND  
Q1  
Open  
SO-8  
SO-8  
?
Q2:A, Q4, Q5  
Q2:B  
Q3  
IRF7811  
MOSFET, N-ch, 30 V, 10 mΩ  
Open  
2N7002DICT-N  
MOSFET, N-ch, 115 mA, 1.2 Ω  
Resistor, 10 kohms, 5 %  
Resistor, 1 kohms, 1%  
Resistor, 0 ohms, 1%  
Diodes, Inc.  
TO-236  
603  
603  
603  
603  
603  
603  
1206  
603  
603  
603  
603  
R3  
std  
R4  
std  
R5  
std  
R6  
std  
Resistor, 1 kohms, 1%  
Resistor, 3.32 kohms, 1%  
Resistor, 10 ohms, 5 %  
Resistor, 2.7 ohms, 5 %  
Resistor, 150 ohms, 5 %  
Resistor, 100 ohms, 1 %  
Resistor, 10 kohms, 5 %  
Resistor, 20.0 kohms, 1 %  
Test Point, Red  
R7  
std  
R8  
std  
R9  
std  
R10  
R11  
std  
std  
R12  
R13  
TP1–TP10  
TP11  
std  
std  
240–345  
131–4244–00  
Farnell  
Adaptor, 3.5-mm probe clip ( or  
131–5031–00)  
Tektronix  
U1  
TPS56300PWP  
Dual controller  
TSSOP–28pin  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
APPLICATION INFORMATION  
Power Supply  
+
Load  
5–V, 5–A Supply  
0 – 4 A  
+
6.8 Ohms  
2 W  
Note: All wire pairs should be twisted.  
Figure 32. Test Setup  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS56300  
DUAL-OUTPUT LOW-INPUT-VOLTAGE  
DSP POWER SUPPLY CONTROLLER WITH SEQUENCING  
SLVS261A – DECEMBER 1999 – JANUARY 2000  
MECHANICAL DATA  
PWP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
20-PIN SHOWN  
0,30  
0,19  
11  
0,65  
20  
M
0,10  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/E 03/97  
NOTES: B. All linear dimensions are in millimeters.  
C. This drawing is subject to change without notice.  
D. Body dimensions do not include mold flash or protrusions.  
E. Thepackagethermalperformancemaybeenhancedbybondingthethermalpadtoanexternalthermalplane.Thispadiselectrically  
and thermally connected to the backside of the die and possibly selected leads.  
F. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments Incorporated.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TPS56300EVM-139

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300PWP

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300PWPG4

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP
TI

TPS56300PWPR

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP
TI

TPS56300PWPRG4

DUAL SWITCHING CONTROLLER, 400kHz SWITCHING FREQ-MAX, PDSO28, GREEN, PLASTIC, HTSSOP-28
TI

TPS56300_16

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56302

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56302PWP

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56302PWPR

SMPS Controller
ETC

TPS563200

采用SOT-23 封装的4.5V 至17V 输入,2A/3A 同步降压稳压器
TI

TPS563200DDCR

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563200DDCT

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125
TI