TPS564208 [TI]

采用 FCCM 模式的 4.5V 至 17V 输入电压、4A 输出电流、同步降压转换器;
TPS564208
型号: TPS564208
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 FCCM 模式的 4.5V 至 17V 输入电压、4A 输出电流、同步降压转换器

转换器
文件: 总28页 (文件大小:1246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
TPS564208 采用 SOT-23 封装的 4.5V 17V 输入、4A 同步降压稳压器  
1 特性  
3 说明  
1
TPS564208 具有 50mΩ 22mΩ 集成场效应晶体  
(FET) 4A 转换器  
TPS564208 是一款采用 SOT-23 封装的简单易用型  
4A 同步降压转换器。  
D-CAP2™模式控制,具有快速动态响应特性  
输入电压范围:4.5V 17V  
输出电压范围:0.76V 7V  
连续电流模式  
该器件经过优化,最大限度地减少了运行所需的外部组  
件并且可以实现低待机电流。  
这些开关模式电源 (SMPS) 器件采用 D-CAP2 模式控  
制,能够提供快速瞬态响应,并且在无需外部补偿组件  
的情况下支持诸如高分子聚合物等低等效串联电阻  
(ESR) 输出电容以及超低 ESR 陶瓷电容器。  
560kHz 开关频率  
低关断电流(小于 10µA)  
1.6% 反馈电压精度 (25°C)  
从预偏置输出电压中启动  
逐周期过流限制  
TPS564208 采用 6 引脚 1.6-mm × 2.9-mm SOT  
(DDC) 封装,额定结温范围为 –40°C 125°C。  
断续模式过流保护  
器件信息(1)  
非锁存欠压保护 (UVP) 和热关断 (TSD) 保护  
固定软启动时间:1.0ms  
结合使用 TPS564208 WEBENCH® 电源设计器  
创建定制设计方案  
器件型号  
TPS564208  
封装  
DDC (6)  
封装尺寸(标称值)  
1.60mm x 2.90mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
空白  
空白  
空白  
数字电视电源  
高清 蓝光光盘播放器  
网络家庭终端设备  
数字机顶盒 (STB)  
安全监控  
简化原理图  
CBST  
TPS564208 效率  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
TPS564208  
1
2
6
5
GND  
VBST  
EN  
LO  
VOUT  
SW  
VIN  
EN  
CO  
3
4
VIN  
VFB  
VOUT  
RFB1  
RFB2  
CIN  
30%  
20%  
10%  
0
VOUT = 1.05 V  
VOUT = 1.5 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
VOUT = 5 V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 4  
D018  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDG0  
 
 
 
 
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 开发支持................................................................ 20  
11.2 接收文档更新通知 ................................................. 20  
11.3 社区资源................................................................ 20  
11.4 ....................................................................... 20  
11.5 静电放电警告......................................................... 20  
11.6 Glossary................................................................ 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
Changes from Revision A (October 2017) to Revision B  
Page  
Changed the IVIN MAX value From: 780 µA To: 820 µA in the Electrical Characteristics ..................................................... 5  
Changes from Original (March 2016) to Revision A  
Page  
已添加 WEBENCH® 电源设计器链接 特性 ........................................................................................................................... 1  
Changed VFBTH spec MIN from 739 to 745, TYP from 759 to 760, and MAX from 779 to 775 ............................................ 5  
已添加 使用 WEBENCH® 工具创建定制设计方案................................................................................................................ 20  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
GND  
1
2
3
6
5
4
VBST  
EN  
SW  
VIN  
VFB  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for  
controller circuit. Connect sensitive VFB to this GND at a single point.  
GND  
1
SW  
VIN  
VFB  
EN  
2
3
4
5
O
I
Switch node connection between high-side NFET and low-side NFET.  
Input voltage supply pin. The drain terminal of high-side power NFET.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
I
I
Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between  
VBST and SW pins.  
VBST  
6
O
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
19  
UNIT  
V
VIN, EN  
VBST  
25  
V
VBST (10 ns transient)  
27  
V
Input voltage  
VBST (vs SW)  
6.5  
6.5  
19  
V
VFB  
V
SW  
V
SW (10 ns transient)  
–3.5  
–40  
–55  
21  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
17  
UNIT  
VIN  
Supply input voltage range  
V
VBST  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3.5  
–40  
23  
VBST (10 ns transient)  
26  
VBST (vs SW)  
6.0  
17  
VI  
Input voltage range  
EN  
V
VFB  
5.5  
17  
SW  
SW (10 ns transient)  
20  
TJ  
Operating junction temperature  
125  
°C  
6.4 Thermal Information  
TPS564208  
DDC (SOT)  
6 PINS  
86.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
39.4  
13.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.8  
ψJB  
13.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
Operating – non-switching  
supply current  
IVIN  
VIN current, EN = 5 V, VFB = 1 V  
VIN current, EN = 0 V  
640  
0.9  
820  
5
µA  
µA  
IVINSDN  
Shutdown supply current  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
EN high-level input voltage  
EN  
1.6  
225  
745  
V
V
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.8  
VEN = 12 V  
425  
900  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
VFBTH  
VFB threshold voltage  
VFB input current  
VO = 1.05 V, continuous mode operation  
VFB = 0.8 V  
760  
0
775  
mV  
µA  
IVFB  
±0.1  
MOSFET  
RDS(on)h  
RDS(on)l  
High-side switch resistance  
Low-side switch resistance  
TA = 25°C, VBST – SW = 5.5 V  
TA = 25°C  
50  
22  
mΩ  
mΩ  
CURRENT LIMIT  
Iocl  
Current limit(1)  
DC current, VOUT = 1.05 V, L1 = 1.5 µH  
4.2  
6
7.7  
A
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
172  
38  
Thermal shutdown  
threshold(1)  
TSDN  
°C  
ON-TIME TIMER CONTROL  
tOFF(MIN)  
SOFT START  
tSS  
Minimum off time  
VFB = 0.68 V  
220  
1
280  
ns  
ms  
Soft-start time  
Internal soft-start time  
FREQUENCY  
Fsw  
Switching frequency  
VIN = 12 V, VO = 1.05 V, FCCM mode  
560  
kHz  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VUVP  
Output UVP threshold  
Hiccup detect (H > L)  
65%  
1.9  
THICCUP_WAIT Hiccup on time  
ms  
ms  
THICCUP_RE  
Hiccup time before restart  
15.5  
UVLO  
Wake up VIN voltage  
Shutdown VIN voltage  
Hysteresis VIN voltage(1)  
4
3.6  
0.4  
4.3  
UVLO  
UVLO threshold  
3.3  
V
(1) Not production tested.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
0.8  
0.75  
0.7  
0.762  
0.761  
0.76  
0.65  
0.6  
0.759  
0.758  
0.757  
0.756  
0.55  
0.5  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
Figure 1. TPS564208 Supply Current vs Junction  
Temperature  
Figure 2. VFB Voltage vs Junction Temperature  
1.23  
1.2  
1.45  
1.42  
1.39  
1.36  
1.33  
1.3  
1.17  
1.14  
1.11  
1.08  
1.05  
1.02  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D003  
D004  
Figure 3. EN Pin UVLO Low Voltage vs Junction  
Temperature  
Figure 4. TPS564208 EN Pin UVLO High Voltage vs Junction  
Temperature  
80  
70  
60  
50  
40  
30  
20  
32  
28  
24  
20  
16  
12  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D006  
Figure 5. High-Side Rds-On vs Junction Temperature  
Figure 6. Low-Side Rds-On vs Junction Temperature  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
Typical Characteristics (continued)  
VIN = 12 V (unless otherwise noted)  
620  
580  
570  
560  
550  
540  
530  
520  
Vout = 1.8 V  
Vout = 3.3 V  
Vout = 5 V  
600  
580  
560  
540  
520  
500  
Vout = 1.05 V  
Vout = 3.3 V  
Vout = 5 V  
4
6
8
10  
12  
14  
16  
18  
0.0001  
0.001  
0.01  
0.1  
1
4
Input Voltage (V)  
Output Current (A)  
D007  
D008  
IOUT = 1 A  
VIN = 12 V  
Figure 7. TPS564208 Switching Frequency vs Input Voltage  
Figure 8. TPS564208 Switching Frequency vs Output  
Current  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.01  
0.1  
1
4
0.001  
0.01  
0.1  
1
4
Output Current (A)  
Output Current (A)  
D009  
D010  
Figure 9. TPS564208 VOUT = 1.05 V Efficiency, L = 2.2 µH  
Figure 10. TPS564208 VOUT = 1.5 V Efficiency, L = 2.2 µH  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.01  
0.1  
1
4
0.001  
0.01  
0.1  
1
4
Output Current (A)  
Output Current (A)  
D011  
D012  
Figure 11. TPS564208 VOUT = 1.8 V Efficiency, L = 2.2 µH  
Figure 12. TPS564208 VOUT = 3.3 V Efficiency, L = 2.2 µH  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 12 V (unless otherwise noted)  
100%  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
0.0001  
0.001  
0.01  
0.1  
1
4
Output Current (A)  
D013  
Figure 13. TPS564208 VOUT = 5 V Efficiency, L = 3.3 µH  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
7 Detailed Description  
7.1 Overview  
The TPS564208 is a 4-A synchronous step-down converter. The proprietary D-CAP2™ mode control supports  
low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without  
complex external compensation circuits. The fast transient response of D-CAP2™ mode control can reduce the  
output capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
3
VIN  
VUVP  
+
Hiccup  
VREG5  
UVP  
Control Logic  
Regulator  
UVLO  
œ
VFB  
4
6
VBST  
œ
+
+
PWM  
Voltage  
Reference  
Ref  
HS  
SS  
Soft Start  
Turn-On  
One Shot  
XCON  
2
1
SW  
VREG5  
LS  
TSD  
OCL  
Threshold  
œ
OCL  
+
GND  
+
ZC  
œ
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS564208 is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2™ mode control. The D-CAP2™ mode control combines adaptive on-time control  
with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration  
with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one shot duration is set inversely proportional to the converter input voltage, VIN,  
and proportional to the output voltage VO, to maintain a pseudo-fixed frequency over the input voltage range,  
hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on  
again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference  
voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2TM mode  
control.  
7.3.2 Soft Start and Pre-Biased Soft Start  
The TPS564208 has an internal 1.0-ms soft-start. When the EN pin becomes high, the internal soft-start function  
begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is pre-biased at startup, the device initiates switching and starts ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converter ramps up smoothly into regulation point.  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
Feature Description (continued)  
7.3.3 Current Protection  
The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current Iout. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. And then, the device shuts down after the UVP delay time  
(typically 24 µs) and re-starts after the hiccup time (typically 15.5 ms).  
When the over current condition is removed, the output voltage returns to the regulated value.  
7.3.4 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is non-latching.  
7.3.5 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 172°C),  
the device is shut off. This is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS564208 operates in the normal switching mode. Normal continuous conduction mode (CCM) occurs when  
the minimum switch current is above 0 A. In CCM, the TPS564208 operates at a quasi-fixed frequency of 560  
kHz.  
7.4.2 Standby Operation  
When the TPS564208 is operating in normal CCM, it may be placed in standby by asserting the EN pin low.  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The device is a typical step-down DC-DC converter for converting a higher dc voltage to a lower dc voltage with  
a maximum available output current of 4 A. The following design procedure can be used to select component  
values for the TPS564208. Alternately, the WEBENCH® software may be used to generate a complete design.  
The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of  
components when generating a design. This section presents a simplified discussion of the design process.  
8.2 Typical Application  
The application schematic in Figure 14 shows the TPS564208 4.5-V to 17-V input, 1.05-V output converter  
design meeting the requirements for 4-A output. This circuit is available as the evaluation module (EVM). The  
sections provide the design procedure.  
C7 0.1 F  
TPS564208  
1
2
6
5
GND  
SW  
VBST  
EN  
L1  
VOUT = 1.05 V / 4A  
R3 10 kꢀ  
EN  
VOUT  
2.2 H  
C9  
22 F  
C8  
22 F  
3
4
VIN  
VFB  
VOUT  
R1 3.09 kꢀ  
R2  
10 kꢀ  
C4  
1
C1  
C2  
C3  
10 F  
10 F 0.1 F  
1
Not Installed  
VIN  
1
VIN = 4.5 V to 17 V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. TPS564208 1.05-V, 4-A Reference Design  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 1 shows the design parameters for this application.  
Table 1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.5 to 17 V  
1.05 V  
Output voltage  
Transient response, 2-A load step  
Input ripple voltage  
ΔVout = ±5%  
400 mV  
30 mV  
Output ripple voltage  
Output current rating  
Operating frequency  
4 A  
560 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS564208 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using to calculate VOUT  
.
To improve efficiency at very light loads consider using larger value resistors. However, using too high of  
resistance causes the circuit to be more susceptible to noise; and, voltage errors from the VFB input current will  
be more noticeable.  
R1  
æ
ö
VOUT = 0.760 ´ 1 +  
ç
÷
R2  
è
ø
(1)  
8.2.2.3 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
fP  
=
2p LOUT ì COUT  
(2)  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
 
 
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40  
dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that reduces the gain  
roll off to –20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor  
and capacitor for the output filter must be selected so that the double pole of Equation 2 is located below the  
high frequency zero but close enough that the phase boost provided be the high frequency zero provides  
adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 2.  
Table 2. Recommended Component Values  
L1 (µH)  
TYP  
2.2  
OUTPUT  
VOLTAGE (V)  
R1 (kΩ)  
R2 (kΩ)  
C8 + C9 (µF)  
MIN  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
3.3  
6.5  
3.3  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 3,  
Equation 4, and Equation 5. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current.  
Use 560 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of Equation 4 and the RMS  
current of Equation 6.  
V
- VOUT  
VOUT  
IN(MAX)  
IlP-P  
IlPEAK = IO  
ILO(RMS)  
=
ì
V
LO ì fSW  
IN(MAX)  
(3)  
(4)  
IlP-P  
2
+
1
2
2
=
IO  
+
IlP-P  
12  
(5)  
For this design example, the calculated peak current is 4.4 A and the calculated RMS current is 4 A. The  
inductor used is a WE 74431122 with a peak current rating of 13 A and an RMS current rating of 9 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS564208 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 20 µF to 68 µF. Use Equation 6  
to determine the required RMS current rating for the output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(6)  
For this design two TDK C3216X5R0J226M 22-µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.286 A and each output capacitor is rated for 4 A.  
8.2.2.4 Input Capacitor Selection  
The TPS564208 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF  
capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage  
rating needs to be greater than the maximum input voltage.  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
8.2.2.5 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI  
recommends to use a ceramic capacitor.  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
8.2.3 Application Curves  
3%  
2%  
1%  
0
3%  
2%  
1%  
0
-1%  
-2%  
-3%  
-1%  
-2%  
-3%  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
Output Current (A)  
D015  
D014  
VIN = 5 V  
VOUT1 = 1.05 V  
VIN = 12 V  
VOUT1 = 1.05 V  
Figure 15. TPS564208 Load Regulation, VIN = 5 V  
Figure 16. TPS564208 Load Regulation, VIN = 12 V  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
1.058  
1.057  
1.056  
1.055  
1.054  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
4
6
8
10  
12  
14  
16  
18  
0.001  
0.01  
0.1  
1
4
Input Voltage (V)  
Output Current (A)  
D016  
D017  
IOUT = 1 A  
Figure 17. TPS564208 Line Regulation  
Figure 18. TPS564208 Efficiency, Vout = 1.05 V  
VOUT = 10 mV/div  
VIN =100mV/div  
LX=5V/div  
LX= 5V/div  
IOUT = 2A/div  
IL = 500 mA/div  
1 µs/div  
Figure 19. TPS564208 Input Voltage Ripple  
1 µs/div  
Figure 20. TPS564208 Output Voltage Ripple, No Load  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
VOUT = 10 mV/div  
VOUT = 10 mV/div  
LX=5V/div  
IL = 2 A/div  
LX=5V/div  
IOUT = 5 A/div  
1 µs/div  
1 µs/div  
Figure 21. TPS564208 Output Voltage Ripple, IOUT 2 A  
Figure 22. TPS564208 Output Voltage Ripple, IOUT 4 A  
VOUT = 10 mV/div  
VOUT = 10 mV/div  
IOUT = 1 A/div  
IOUT = 1 A/div  
100 µs/div  
100 µs/div  
Figure 23. TPS564208 Transient Response 0.1 to 2 A  
Figure 24. TPS564208 Transient Response, 1 to 3 A  
VOUT = 10 mV/div  
VIN = 5 V/div  
VEN = 5 V/div  
IOUT = 2 A/div  
VOUT = 500 mV/div  
2 ms/div  
100 µs/div  
Figure 26. TPS564208 Startup Relative to VIN  
Figure 25. TPS564208 Transient Response, 2 to 4 A  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
VIN = 5 V/div  
VIN = 5 V/div  
VEN = 5 V/div  
VEN = 5 V/div  
VOUT = 500 mV/div  
VOUT = 500 mV/div  
400 µs/div  
20 ms/div  
Figure 27. TPS564208 Startup Relative to EN  
Figure 28. TPS564208 Shutdown Relative to VIN  
VIN = 5 V/div  
VEN = 5 V/div  
VOUT = 500 mV/div  
400 µs/div  
Figure 29. TPS564208 Shutdown Relative to EN  
9 Power Supply Recommendations  
The TPS564208 is designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation. The maximum recommended  
operating duty cycle is 75%. Using that criteria, the minimum recommended input voltage is VO / 0.75.  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS564208  
www.ti.com.cn  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
VOUT  
GND  
Vias to the  
Internal SW  
Node Copper  
Additional  
Vias to the  
GND Plane  
Output  
Capacitor  
BOOST  
CAPACITOR  
Output  
Inductor  
GND  
SW  
VBST  
EN  
Feedback  
Resistors  
To Enable  
Control  
VFB  
Vias to the  
Internal SW  
Node Copper  
VIN  
VIN  
Input Bypass  
Capacitor  
SW Node Copper  
Pour Area on  
Internal  
or Bottom Layer  
Figure 30. TPS564208 Layout Example  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
TPS564208  
ZHCSEW2B MARCH 2016REVISED DECEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 开发支持  
11.1.1 使用 WEBENCH® 工具创建定制设计方案  
请单击此处,结合使用 TPS564208 器件和 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
D-CAP2, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
蓝光 is a trademark of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS564208DDCR  
TPS564208DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
4208  
4208  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS564208DDCR  
TPS564208DDCT  
SOT-23-  
THIN  
DDC  
DDC  
6
6
3000  
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-23-  
THIN  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS564208DDCR  
TPS564208DDCT  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
6
6
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS564208DDCR

采用 FCCM 模式的 4.5V 至 17V 输入电压、4A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564208DDCT

采用 FCCM 模式的 4.5V 至 17V 输入电压、4A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564242

采用 SOT-563 封装的 3V 至 16V 输入电压、4A ECO 模式同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564242DRLR

采用 SOT-563 封装的 3V 至 16V 输入电压、4A ECO 模式同步降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564252

3-V to 17-V input voltage, 4-A ECO mode, synchronous buck converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564252DRLR

3-V to 17-V input voltage, 4-A ECO mode, synchronous buck converter | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564255

3-V to 17-V input voltage, 4-A OOA mode, synchronous buck converter with PG

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564255DRLR

3-V to 17-V input voltage, 4-A OOA mode, synchronous buck converter with PG | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564257

3-V to 17-V input voltage, 4-A FCCM mode, synchronous buck converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564257DRLR

3-V to 17-V input voltage, 4-A FCCM mode, synchronous buck converter | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56428

4.5V to 18 V Input, 4-A Synchronous Step-Down Converter with Advanced Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56428DDA

4.5V to 18 V Input, 4-A Synchronous Step-Down Converter with Advanced Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI